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Abstract— In many applicative settings there is the interest in
ranking a list of items arriving from a data stream. In a human
resource application, for example, to help selecting people for a
given job role, the person in charge of the selection may want
to get a list of candidates sorted according to their profiles and
how much they are suited for the target job role. Historical data
about past decisions can be analyzed to try to discover rules
to help in defining such ranking. Moreover, samples have a
temporal dynamics. To exploit this possibly useful information,
here we propose a method that incrementally builds a committee
of classifiers (experts), each one trained on the newer chunks
of samples. The prediction of the committee is obtained as a
combination of the rankings proposed by the experts which
are “closer” to the data to rank. The experts of the committee
are generated using the Preference Learning Model, a recent
method which can directly exploit supervision in the form
of preferences (partial orders between instances) and thus
particularly suitable for rankings. We test our approach on
a large dataset coming from many years of human resource
selections in a bank.

I. INTRODUCTION

Nowadays the diffusion of IT systems, and specifically
of data warehouses, for collecting up to date business in-
formation, allows the management of a company to have
easily access a huge amount of potentially useful data.
However, because of the large amount and variety of data,
human exploitation of this resource is quite difficult. Thus,
approaches that automatically attempt to extract meaningful
knowledge from data are welcome.

In this paper, we are interested in instance ranking prob-
lems, i.e. the same kind of problems addressed in [3].
Specifically, we address a human resource management task
where employees of a company are evaluated for promotion
to a given target job role. From a mathematical point of
view, we can understand the input of this task as the set
of profiles of candidates, while the expected output is a list
of profiles sorted according to their fitness to cover the job
role. We assume that historical data about past decisions can
be retrieved and analyzed to try to discover rules to help in
defining such ranking. The problem, thus, can be cast as a
machine learning instance ranking task.

Moreover, samples of historical data are ordered with
respect to the time and this ordering can leads to a hidden
but possibly crucial temporal relationship. Note however that
this kind of task does not meet the typical temporal data
mining task as temporal data mining treats the case where
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each data is a sequence and items of the sequences have
temporal relations.

In this paper, we give the following original contributions:
i) we argue that the Preference Learning Model [2] is partic-
ularly suited for this kind of task, since its adoption allows to
specify only preferences over candidates, without imposing
an absolute (and independent) reference score, as happens
when casting the problem as a classification problem; we
show how to model the problem using preferences and, in
addition, we demonstrate how such formulation can lead
to the definition of a kernel over preferences that brings
to an efficient treatment of the problem; ii) to cope with
temporal dynamics, we propose a new way to exploit ’local’
experts trained on data in a temporal window; specifically,
we suggest to dynamically select, among the set of available
experts at time ¢, the ones that appear to be the most
competent to rank a given set of candidates. The degree of
competence of an expert is defined according to its maximum
score over the set of current candidates. This definition is
reasonable in our context since the number of candidates
which are actually promoted (“positive” examples) are far
much less than the number of candidates that are not selected.
Thus, the score of an expert is very correlated with the fitness
of the candidate to cover the target job role. The selected
experts are then used as members of a committee.

We present the above ideas within a general framework
where both standard a priori defined committees, such as
a committee using the most recent generated experts, and
committees exploiting our dynamical selection strategy, can
be seen as specific instances.

We have tested the proposed approach, versus the one
exploiting committees using the most recent generated ex-
perts, on a large dataset coming from many years of human
resource selections in a bank, obtaining quite promising
results.

The paper is organized as follows. We start by introducing
the Preference Learning Model [1] in Section II. Then, in
Section III we argue why the task of selecting some candi-
dates from a pool for a job role can be cast as a preference
learning task. In the same section, we also discuss why
modeling the task as a simple binary classification task is
not adequate. In Section III-B, we discuss how the preference
model for the selection task can be efficiently implemented
by an SVM. After that, in Section IV we introduce a general
framework for defining committees of preference learning
experts where the membership of experts created along time
to the committee is dynamically computed. Experimental
results on a quite large dataset are presented in Section V.



The section on conclusions closes the paper.

II. THE PREFERENCE LEARNING MODEL

The General Preference Learning Model (GPLM for short)
[1] is a quite flexible framework which gives a general solu-
tion to many different machine learning problems, including
classification, instance and label ranking.

In our context, the GPLM assumes the existence of a
real-valued relevance function that, given a role, for each
candidate c, returns a score R(c) (the relevance value) which
measures the degree to which the role can be covered by
the candidate c. Given a role, the relevance function induces
a ranking among candidates. A preference is a constraint
involving candidates, that should be satisfied by the relevance
function. Specifically, GPLM can deal with two types of
preferences: (i) qualitative preferences c;>c; (“the candidate
¢; is suitable for the role more than c; does”), which means
R(c;) > R(c;); and (ii) quantitative preferences of type c> 7
(“the degree to which the candidate ¢ applies to a role is at
least 77, where 7 € R), which means R(c) > 7, and similarly
T > ¢ which means R(c) < 7.

In this learning framework, supervision for a task is
provided as a set of preferences (of either types). These pref-
erences constitute constraints on the form of the relevance
function which has to be learned. The aim of the learning
process is to learn the parameter of the relevance function
which is as consistent as possible with these constraints.
From now on, we will consider only qualitative preferences.

It should be stressed that in GPLM any set of preferences
can be associated to any pair of candidates, so if no informa-
tion about the relative ranking of two candidates for a role is
available, no preference involving these two candidates need
to be stated. This allows us to impose on the learner only
constraints which are really needed.

We may instantiate the GPLM by assuming that the
relevance of a candidate to a given role can be expressed
in linear form, i.e.

R(ci) = (w,ci) M

where c; € RP is a vectorial representation of candidate ¢;
in a feature space, e.g. the mapping of a kernel function,
and D is the size of this vector. The vector w € RP
is the weight vector (containing parameters to be learnt)
associated to the role under consideration. For this case, very
effective algorithms are given which explicitly attempt to
minimize the number of wrong predictions in the training
set. In fact, following Eq. 1, qualitative preferences can be
conveniently reformulated as linear constraints. Specifically,
let us consider the qualitative preference A = (c; > ¢;). This
preference imposes the constraint R(c;) > R(c;) on the
relevance function R, which using Eq. 1 can be rewritten
as (w,c;) > (w,c;), or (w,(c; —cj)) > 0.

In general, the training data, in the form of preferences
between candidates, can then be reduced to a set of linear
constraints of the form w - ¢(A) > 0 where w is the vector
of weights for a given role and ¥)(\) = (c¢; — ¢;) is the

representation of preference A = ¢; I> ¢;. It follows that, any
preference learning problem can be seen as a (homogeneous)
linear problem in RP. Specifically, any algorithm for linear
optimization (e.g., perceptron or a linear programming pack-
age) can be used to solve it, provided the problem has a
solution.

Unfortunately, the set of preferences may generate a set
of linear constraints that have no solution (i.e., the set of
the 1(\)’s is not linearly separable), i.e., such that there is
no weight vector w able to fulfil all the constraints induced
by the preferences in the training set. To deal with training
errors we may minimize, consistently with the principles
of Structural Risk Minimization (SRM) theory [13], an
objective function which is increasing in the number of
unfulfilled preferences (the training error) while maximizing
the margin 1/||wl||2 (where ||-||2 denotes the 2-norm of a
vector).

To this end, consider the quantity p(A | w) = (w,9(N))
as the degree of satisfaction of a preference A given the
hypothesis w. This value is greater than zero when the
hypothesis is consistent with the preference and smaller than
zero otherwise. Now, let us assume a training set Tr =
{(Ai)}i=1,..., v, Where A; is the set of preferences associated
to the i-th job selection relative to a given role. We aim at
minimizing the number of preferences which are unfulfilled
(and thus the number of wrong predictions) on the training
set, while trying to maximizing the margin 1/||w||2. Let L(-)
be a convex, always positive, and non-increasing function,
such that L(0) = 1. It is not difficult to show that the function
L(p(XA | w)) is an upper bound to the error function on the
preference A. Thus, a fairly general approach is the one that
attempts to minimize a (convex) function like

Diw) = 3w+ 3 Lo [ w) @

i=1 A€EA;

where v is a parameter that determines the relative contri-
butions of the regularization and the loss in the objective
function. Note that, if we adopt the hinge loss L(p) =
1 — pl+ = max(0,1 — p), the optimization required is
the same as required by a binary SVM with a training set
consisting of all 9(\) € RP, one for each preference, each
one taken as a (positive) example (see [1] for details).

III. CANDIDATE SELECTION AS A PREFERENTIAL TASK

In a candidate selection task for filling a job role, one
or more candidates have to be selected from a pool of
candidates. Without loss of generality, let assume that the
k > 1 most suited candidate for the job are selected. This
decision is taken by looking at each candidate professional
profile. Moreover, we may assume that the number k of
candidates to select is already known from the beginning.

This last point is very important to model the problem.
In fact, a candidate will be selected on the basis of which
other candidates are in the pool. In other words, no decisions
can be taken for a candidate without knowing who else is
competing for the same position(s).



Our training set consists of past decisions about promo-
tions to a given role. For any of these decisions, we know
which candidates were in the selection pool and how many
and which candidates were selected for the job. Thus, it
seems natural to interpret any past decision as a set of
constraints in which the k selected candidates were preferred
to the others. More formally, we define C; = {c1,...,¢n, }
to be the set of candidates for the job role (the pool) at
time t, S; = {s(t) ..,sk)} the set of candldates which

got the promotion, and U; = {u m kt} the set of
candidates which were not selected Thus, there is evidence
that s; was preferred to u; for each i € {1,...,k;} and
j € {1,...,n — k;}. Using our notation, we can write
$; > uy. Note that a selection having a pool of cardinality n;
and k; candidates selected for the job, will introduce exactly
ki X (ny — k) preferences. However, since k; < n;, the order
of magnitude is still linear in the number of candidates.

A. Why not a simple binary task?

One could think of a job role selection as a setting where
for each candidate an independent decision is taken. In this
case, at any time ¢, we would have exactly n; independent
decisions (e.g. a +1 decision, representing that the candidate
was selected for the job role, and a -1 decision representing
that the candidate was not selected for the job role). This
could be modeled as a typical binary task where any of the
2™t different outcomes are possible.

However, a job role selection is competitive in its nature,
i.e. the choice of one candidate instead of another is not
independent on the other’s candidates potentials and only a
fixed number of candidates can get the promotion.

For this reason, the binary task does not seem to be the best
choice. This will be confirmed in the experimental section
where we compare the GPLM model against a binary SVM
implementation.

Finally, it should be noted that the problem tends to be
highly unbalanced when considered as a binary problem.
In fact, the number of promoted candidates is a very small
percentage of the number of candidates which compete for
the promotion. On the other side, GPLM does not make any
additional assumption on the sign of the relevance function
for different candidates but only on the order it induces. This
should make the problem easier and more balanced.

B. GPLM with SVM

We have seen that the preferential problem, i.e. the task
to find a linear function which is consistent with a set of
preferences, can also be cast as a SVM problem where
examples becomes () =s; — u; for each A = s; > u;.

Specifically, let A = {(S1,U1),..., (ST, Ur} be the sets
involved in past promotions given as a training set for a given
role, thus the SVM dual problem will be posed as

1222 ses, 2uzeu, @ (‘t‘)zﬁ(si > u;)||?
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and the (primal) SVM solution which solves Eq. 2 is in
the form wsva = )2, D, cs, ZuJeUt a” z/)(sz > uj).

Note that the kernel computation in this case consists in
computing a kernel between preferences (i.e. dot product
between their vectorial representations). Nevertheless, this
kernel can be easily reduced to a combination of simpler
kernels between candidate profiles in the following way:

k(c} >ej,ci>c) = (¢ —cj, el —cl)
= (el e2) - (c},c?) - (c},c?)+
<CJ 02>
= k(c}, 2)—k(0 ,€3) — k(cj, )+
k(c1 c?)
30 €5

where k(c;,c;) = (c;, ¢ ) is the kernel function associated
to the mapping used for the candidate profiles.

In this way, we have reduced a preferential task into a
binary task which can be easily solved by a standard SVM
by just redefining the kernel function suitably.

Furthermore, using the SVM decision function
fsvm(A) = sgn({wsvar, ¥(N))) it is possible to determine
if a given order relation is verified between any two
candidates. However, in order to decide which candidates
should be selected for a new event t, k; x (ny — ki)
calculations of the above defined function should be
computed to obtain the relative order of candidates.

In the following, we show that the selection can actually
be computed in linear time. To this end, we can decompose
the weight vector computed by the SVM in the following
way:

WsvMm Zt Zc,eSt cheUt az] (CZ > cJ)
= Zt Ec,GSt cheUt az] (Cl )
= D) cies, EcJeUt 0‘ Cl

=2t s ZcJeUt ) )CJ

This decomposition allows us to decouple, in the compu-
tation of the relevance function for a new candidate, the
contribution of candidate profiles given in the training set

fle) = (wsvm,c)
= > Zciest(zcjeUt az; ){ci,c)
“ Xt Teer Tees, o <’><cj,c>
= > Zciest(zcjeUt a'ij )k(ci,c)
X TeerDees, o} k(e )
= Zt Eclest O‘( k(ci,c) — Zt Zciest ag't)k(cjvc)
Hence the relevance function can be directly computed by
post-processing the output of the SVM (the o vector) and
then building a new model as follows

fle) = Ecs Bsk(cs,c)

where 35 =3, cs, @ — D pc.cu, @s - The new model
defined by the 3’s can dlrectly be used by a SVM, and it
returns the correct relevance for any candidate.



IV. COMMITTEE OF GPLM MODELS

One standard approach for dealing with data whose dis-
tribution changes with time is to define classifiers using
newer data instances only (what we refer as temporal window
methods in the following). Unfortunately, these methods may
produce unstable classifiers since they do not consider the
history of the changing distribution.

Moreover, the nature of the distribution drift is not always
strictly related to time. In some tasks, the drift phenomenon
can also show more regular behaviors. For example, some
trends observed in the past can also be observed again in the
future, e.g. by cycling over a small set of different trends.
In these cases, it would be useful to maintain previously
created predictors which can be more suitable for the new
distribution of data. The problem here is how to decide which
predictors is better to use on never seen instances.

To deal with this problem, in our approach, new experts are
added to a committee incrementally as new chunks of data
arrive. We assume that the size of the chunk with which
we create a new expert is fixed a priori. Clearly, the right
size to apply is dependent on the changing rate of the input
distribution and this also depends on the degree of concept
drift. So the optimal value of the chunk size can only be
defined by a validation phase or on the basis of background
knowledge on the problem at hand. An interesting work
addressing this point is presented in [9].

In the following, we describe a family of strategies which
define how to select and how to combine the expert predic-
tions in the committee. Let’s consider a set of candidates
Cy ={c1,...,cn, } representing the pool for a new job role
selection, and the set of experts P, = {p1, ..., Pm, } available
a time t. Each individual expert, let say p;, produces a score
fi(c;) for each candidate ¢;, ¢ = 1,...,n;. Thus, a matrix
similar to the one given as an example in Table I, can be
defined, where rows contain the values of the score functions
fi(c;) over the candidates for a given expert, and columns
are the values of the score function fj(c;) given by different
experts on the same candidate. Based on this matrix, it is
possible to define two ranking functions which will be used
in the following. Specifically, RANK(¢;|p;) € {0, ...,n;—1}
which gives the rank of candidate ¢; induced by the ordered
series of score values given by the expert p; (lower ranks
mean highest values), and RANK(p;) € {0,...,m; — 1}
which gives the relative rank of the expert p; relatively to
the ordered series of values obtained by using the maximum
score obtained over all candidates, i.e. max; fi(c;). This last
value may be interpreted as a measure of distance of the
expert p; from the current pool.

The score matrix, as defined above, is then used to define
a family of strategies to combine the experts in a committee
which can be used to give the final rank of candidates in the
pool. To this aim, we propose to use the following general
formula:

score(c) = Zt Ii(r)Si(c)

=1

where I;(r) is the selector function which selects the r most
“reliable” experts, 7 < m; , and Si(c) is the scoring function
which represents “how much” each expert contributes to
the overall prediction. Specifically, a dynamical selection of
experts can be obtained by defining I; as follows:

1 if RANK(p;)) <r-1

L) = { 0 otherwise( )

which returns the r experts which are estimated to be closer
to the pool under consideration.

Note that, the temporal window method, with window
size T, can be implemented by slightly changing the selector
function as follows:

(tw) 1 ifme—r<i<my
L) = { 0 otherwise

The scoring function S is then chosen among one of the
following:

5@ = file)
S®(c) = RANK(c|m)

Specifically, for the dynamical selection we may obtain
the following four strategies:

Sum of scores:

the sum of the scores of the r-closest experts by
using I;(r) and Sl(l).
Maximum of scores:
the score of the closest expert by using I;(1) and
s,

Minimal position:
the minimal rank position of the closest predictor
by using I;(1) and Sl(l).

Sum of position:

the sum of the rank positions of the r-closest
experts by using I;(r) and Sl(2).

file) | 1 | c2 | ca
D1 21 | 34 ] 4.0
D2 1.2 129 ~-1.7
p3 4.7 1511 29

TABLE I

RANK FUNCTION EXAMPLE WITH P; = 3, ny = 3. IN THIS CASE, WE
WOULD HAVE RANK(p2) = 2 AS p2 IS THE THIRD RANKED IN THE
SERIES {4.0,2.9,5.1}, WHILE RANK(z2|p2) = 0 AS x2 IS THE BEST

RANKED IN THE ROW pg, L.E. IN THE SERIES {1.2,2.9,-1.7}. MAXIMUM
SCORE VALUES OBTAINED OVER DIFFERENT CANDIDATES BY EACH

PREDICTOR ARE EMPHASIZED.

V. EXPERIMENTAL RESULTS

In this section we report the experimental results we have
obtained on a quite large dataset involving a task in Human
Resources Management. On this dataset, we have compared
the performance of our proposed approach versus a local
expert (i.e., a predictor trained on the most recent chunk of
examples), and committees composed of the r most recent
trained experts using the four alternative ways of combining
the predictions described above.



Chunk | Rule r=1 r=3|r=5r=7]r=9
size

max 75.45 | 74.73 | 72.563 | 72.31 | 71.51

4 sum 67.11 65.79 66.01 66.27
min pos 78.00 77.79 78.79 78.44

sum pos 66.18 | 64.78 | 64.45 | 64.90

max 77.14 76.26 74.61 73.92 73.27

5 sum 70.21 | 68.51 | 68.59 | 68.82
min pos 80.11 | 80.32 | 80.39 | 80.56

sum pos 67.81 | 67.27 | 66.96 | 67.01

max 78.31 | 77.38 | 75.85 | 75.32 | 74.81

6 sum 71.56 69.35 69.21 69.47
min pos 80.82 81.27 81.70 82.56

sum pos 67.80 | 66.85 | 66.77 | 67.04

TABLE 11

CUMULATIVE CROSS-VALIDATION PERFORMANCE OF TEMPORAL
WINDOW COMMITTEES WITH r € {1,3,5,7,9} AND THE FOUR
AGGREGATION RULES.

Chunk | Rule r=1 r=3|r=5|r=7]r=9
size

max 76.38 | 68.35 | 68.35 | 69.15 | 69.38

4 sum 75.63 | 76.22 | 74.63 | 73.60
min pos 79.40 | 81.19 | 81.17 | 80.96

sum pos 71.58 | 69.94 | 67.88 | 66.69

max 78.36 | 68.95 | 69.78 | 70.31 | 70.70

5 sum 79.43 | 79.61 | 77.16 | 75.23
min pos 82.15 | 82.45 | 81.64 | 81.56

sum pos 75.95 | 72.08 | 69.59 | 67.79

max 79.82 | 70.87 | 71.71 72.04 | 72.68

6 sum 81.24 | 78.45 | 76.11 74.87
min pos 83.58 | 83.91 | 84.06 | 83.71

sum pos 75.37 | 71.46 | 68.79 | 67.58

TABLE 111

CUMULATIVE CROSS-VALIDATION PERFORMANCE OF DYNAMICAL
SELECTION COMMITTEES WITH T € {1, 3,5,7,9} AND THE FOUR
AGGREGATION RULES.

A. Human Resources Data

Our data is collected from the Human Resources data
warehouse of a bank. Specifically, we have considered all
the events related to the promotion of an employee to the
job role of director of a branch office (target job role). The
data used ranges from January 2002 to November 2007.
Each event involves from a minimum of 1 promotion up
to a maximum of 7 simultaneous promotions. Since for
each event a short list of candidates was not available, we
were forced to consider as candidates competing for the
promotion(s) all the employees which at the time of the
event were potentially eligible for promotion to the target
job role. Because of that, each event typically involves k
“positive” examples, i.e. the employees that were promoted,
and N > k “negative” examples, i.e. eligible employees that
were not promoted. As already stated, k ranges from 1 to 7,
while N ranges (approximately) from 3,700 to 4,200, for
a total of 199 events, 267 positive examples, and 809, 982
negative examples'. Each candidate is represented, at the
time of the event, through a profile involving 102 features.
Of these features, 29 involve personal data, such as age, sex,
title of study, zone of residence, etc., while the remaining

INote that the same employee can play the role of negative example in
several events. Moreover, it might also be a positive example.

73 features codify information about the status of service,
such as current office, salary, hours of work per day, annual
assessment, skills self-assessment, etc. The features, and the
way they are numerically coded, were chosen in such a way
that it is impossible to recognize the identity of an employee
from a profile. Moreover, we were careful in preserving, for
each numerical feature, its inherent metric if present, e.g.
the ZIP codes where redefined so that the geographic degree
of proximity of two areas is preserved in the numerical
proximity of the new codes associated to these two areas.
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Fig. 1. Performance of temporal window committees with r €

{1,3,5,7,9} on one split with chunk size 4. The committees, selected
on the basis of the best cumulative performance on the validation set, use
the minimal position aggregation rule.

The same employee can be represented by different pro-
files though time and events, as well as the same profile can
be assigned to different employees. Not all the features are
available at all times for all employees. When a feature is
not available, the value O is used. The reason for using a
specific value instead of a mark for a missing value is due
to the fact that, in our case, a value for the feature was never
generated, i.e. it does not exist.

B. Results

In order to test whether learning preferences was better
than using a binary classifier where binary supervision is
used for training and the score of the resulting classifier
used to rank the instances belonging to the same event,



we have performed a set of preliminary experiments on
a representative subset of the whole dataset. The binary
classifier was an SVM with gaussian kernel and the values
to use for the hyperparameters were decided through a
validation set. The gaussian kernel was used also for learning
preferences.

The results show that it is better to learn preferences, in
fact, the SVM obtained a total accuracy of 61.88% versus
an accuracy of 76,20% obtained for the approach based on
learning preferences. We recall that the accuracy measures
how many ranking relations are correctly predicted. So, all
the experiments we will describe in the following are based
on the preference approach and use the whole dataset.
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Fig. 2. Performance of temporal window committees with r €

{1,3,5,7,9} on one split with chunk size 5. The committees, selected
on the basis of the best cumulative performance on the validation set, use
the minimal position aggregation rule.

To study the dependence of the concept drift on time, we
have considered 3 alternative splits of the whole dataset,
each composed of chunks of k consecutive events, with
k € {4,5,6}. To compare the different methods, given a split
with a chunk size k, a k-fold cross-validation is performed.
Specifically, at each cross-validation step, k — 1 events are
used for training and validation, and 1 for testing. When the
“optimal” values for the hyperparameters are identified by
using the validation set, a predictor is obtained using these
values on the merge of the training and validation sets. This
model is then evaluated on the test event. The same procedure

is hence repeated k times, each time choosing a different
event for testing. Finally, all the results are averaged.

As already mentioned, we have compared the performance
of our approach, versus a committee using the 7 most recent
experts, i.e. if the current chunk is the one with index ¢, the
committee is composed of the experts p;, Pi—1,--.,Pi—r+1
generated using chunks 4, ¢ — 1, ...,i —7r+ 1, respectively.
We will refer to these committees with the name femporal
window committees, since they are defined by using the most
recent chunk of data in a temporal window of size 7.
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Fig. 3. Performance of temporal window committees with 7 &
{1,3,5,7,9} on one split with chunk size 6. The committees, selected
on the basis of the best cumulative performance on the validation set, use
the minimal position aggregation rule.

In Table II we have reported, for each of the three splits
defined above, the cumulative performance obtained by the
cross-validation using the temporal window committees with
r € {1,3,5,7,9} and the considered aggregation rules. It can
be observed that, only if the minimal position aggregation
rule is used, it helps to consider a committee, i.e. 7 > 1,
instead of the most recent expert, i.e. 7 = 1.

In Table III we have reported, for each of the three
splits defined above, the cumulative performance obtained
by the cross-validation using the commitees with dynamical
selection. These results confirm that the best aggregation rule
is minimal position. Moreover, using this aggregation rule,
the final results are consistently better independently from
the chunk size and the value of r.



In Figures 1-3, for the three splits, we have reported the
performance curves, obtained for a sample partition of the
cross-validation, using temporal window committees with
r € {1,3,5,7,9} and minimal position aggregation rule.

It can be observed that for all data splits, using a larger
and larger window size (e.g., from r = 5 to r = 9) does
not help too much, since there is no much difference in the
performance curves.

dynamical selection 1 —+—

temporal window 7 -+
dynamical selection 3 -------

Chunk Size 4
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5 10 15 20 25 30 35 40 45 50
Chunk ID

Fig. 4. Performance, on one cross-validation sample partition of the split
with chunk size 4, of the best temporal window expert (r = 7), the best
dynamically selected expert (r = 1), and the best committee with dynamical
selection (r = 3).

In Figures 4-6, for the three splits, we have reported the
performance curves, , obtained for a sample partition of the
cross-validation, of the best temporal window committees
versus the best dynamically selected expert (r = 1) and
the best committee with dynamical selection (r > 1). All
committees use the minimal position aggregation rule.

dynamical selection 1 —+—

temporal window 9 ----#----
dynamical selection 5 -=-a---

Chunk Size 5
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Fig. 5. Performance, on one cross-validation sample partition of the split
with chunk size 5, of the best temporal window expert (r = 9), the best
dynamically selected expert (r = 1), and the best committee with dynamical
selection (r = 5).

In Figure 7, for the split of size 5 on one cross-validation
sample partition, we show the first 6 experts selected by our
approach when predicting the test data for each chunk of
analyzed data. The oldest chunks have higher ID index. It
should be recalled that the number of experts increases with
the number of analyzed chunks. In fact, at the beginning (here

dynamical selection 1 —+—

temporal window 5 ----#----
dynamical selection 3 -=-s---

Chunk Size 6
100 = = T

Accuracy (%)
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Chunk ID

Fig. 6. Performance, on one cross-validation sample partition of the split
with chunk size 6, of the best temporal window expert (r = 5), the best
dynamically selected expert (r = 1), and the best committee with dynamical
selection (r = 3).
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Fig. 7. Ranking of the first 6 experts for each chunks of size 5 on one
cross-validation sample partition. The experts ID is reported on the ordinates
for each chunk. The more recent chunks have lower ID number. At the
beginning (chunk ID equal to 40), only one expert is available. As long as
new chunks are analyzed, more and more experts are created and involved
in the dynamical selection.

for chunk 33), only one expert is available, the current one.
Then, for each new analyzed chunk of data, a new expert
is generated and can be involved in the dynamical selection.
The plot should be read by column, i.e. in correspondence
of a chunk ID, the ID of the first 6 experts is reported on
the ordinate. As expected, it can be observed, that the first
expert is usually the current one. However, in some cases
a different expert is selected. This, plus the fact that the
dynamical selection of a single expert returns better results
than using every time the current expert, confirms that the
adopted selection rule is able to recognize when the current
expert is not the best expert to use and a better expert, from
the pool of available one, is selected. We can also observe
that with the increase of the number of available experts,
less and less recent experts are selected within the first 6.
Finally, it is interesting to see that the selection of an expert
for chunk ¢ often implies that the same expert is selected also
for chunks 7 — 1, i — 2, etc. In Figure 8, we report the same
plot for the split of size 6. In this case, it can be observed



that the pattern of experts selection is more scattered. This
could be due to the fact that the size of a single chunk is
larger and thus there is higher probability to have concept
drift within a single chunk.
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Fig. 8. Ranking of the first 6 experts for each chunks of size 6 on one
cross-validation sample partition. The experts ID is reported on the ordinates
for each chunk. The more recent chunks have lower ID number. At the
beginning (chunk ID equal to 33), only one expert is available. As long as
new chunks are analyzed, more and more experts are created and involved
in the dynamical selection.

VI. RELATED WORK

There are many works addressing the problem of non-
stationary environments, especially when concerning binary
classification tasks. Among these, quite related with our
proposal are the approaches which fall under the concept drift
umbrella. The most popular method to cope with drifting
concepts in machine learning is by fixed or adaptive size
temporal windows (see e.g. [6], [9]). In the case of fixed
windows one has to make strong assumptions on the type
of concept drift in the data. Adaptive window size based
approaches try to overcome this problem by adapting the
window size based on the extent of the current drift but they
often use heuristics and parameter tuning which can cause a
system to be unstable and generally difficult to tune. Other
methods to deal with concept drift use example weighting
[8], [7], [10]. A different kind of approaches to concept
drift are the ones based on ensemble of classifiers. In [12] a
boosting-like method is given to train a classifier ensemble
from a data stream. The use of weighted learners is also
suggested from the theoretical analysis given in [11].

Far less works has been done for the case of concept
drift for tasks which are not binary classification tasks. For
example, in [3] there is an application to instance ranking
using a weighted ensemble. This method differs from ours
in many aspects. First of all, the ranking algorithm of experts
is done using a perceptron-like method and the way experts
are combined is different since they perform a continuous
reweighting of the experts as data arrives. Unfortunately,
there is not public available implementation of this algorithm,
which is quite involved and not so easy to implement from
scratch.

VII. CONCLUSIONS

We have addressed a quite difficult ranking task involving
a non-stationary data distribution. We suggested to approach
the problem by using the preference learning framework for
modeling the task. This decision was supported by experi-
mental results showing that modeling the problem through
a binary classification problem and then using the score
of the classifier to rank the candidates was returning much
worst performance than learning preferences. Moreover, we
proposed to use a committee of experts where the members
are dynamically selected from a set of experts generated on
each new chunk of data. The dynamical selection is based on
the “similarity” of an expert competence with the current data
to be ranked. At our best knowledge, although dynamical
selection of members in a committee has been studied in the
past for classification tasks (e.g. [5], [4]), it is the first time
that a ranking problem with non-stationary data distribution
is addressed in this way, as well as it is the first time that our
dynamical way of selecting the experts is proposed. It should
be noted that our selection strategy seems to be particularly
suited for ranking, since the score is highly correlated with
the fitness of a candidate to cover the target job role.

We assessed our approach on a large dataset, comparing
our proposal versus committees using the most recent gen-
erated experts. Our approach showed better performances.
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