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Abstract

The preference model introduced in this paper gives a
natural framework and a principled solution for a broad
class of supervised learning problems with structured pre-
dictions, such as predicting orders (label and instance rank-
ing), and predicting rates (classification and ordinal regres-
sion). We show how all these problems can be cast as linear
problems in an augmented space, and we propose an on-line
method to efficiently solve them. Experiments on an ordinal
regression task confirm the effectiveness of the approach.

1 Introduction

Many real-world learning problems are characterized by
heterogeneous tasks which currently cannot be solved by
general-purpose algorithms. These includeordering tasks
(either label or instance ranking) where the required predic-
tion concerns some order between labels/instances, andrat-
ing tasks where the required prediction consists of ratings
(e.g. binary classification and ordinal regression). The typi-
cal approach followed to cope with these complex problems
is to map them into a series of simpler, well-known settings
and then to combine the resulting predictions. Often, these
solutions lack a principled theory and/or require too much
computational resources to be practical for data-mining ap-
plications. Although some efforts have been recently made
to generalize label ranking tasks [5, 4, 2], a general frame-
work and a theory encompassing all these supervised learn-
ing settings is missing. In this paper1, we show that many
types of supervision can be naturally seen as a set of prefer-
ences over the predictions of the learner and we show how
they can be reduced to linear binary problems defined on an
augmented space, thus suggesting very simple optimization
procedures available for the binary case.

The main contribution of this paper is to define a flexible
preference model which allows a practitioner to optimize

1An extended version of this paper can be found in [1].

the learning parameters on the basis of a proper evaluation
function. In fact, while the goal of a problem in terms of its
evaluation function is often clear, a crucial thing in the de-
sign of learning algorithms is how to define them in such a
way to have some theoretical guarantee that a learning pro-
cedure leads to the effective minimization of that particular
cost function. The model introduced here gives a natural
and uniform way to encode the cost function of a supervised
learning problem and plug it into a learning algorithm.

2 A Model for Supervised Learning

For reasons that will be clear soon, we assume supervi-
sion to consist of (soft) constraints over the learner predic-
tions, that is constraints whose violation entails a cost for
the solution. Specifically, assuming a learner makes its pre-
dictions on the basis of a set of parametersΘ, supervisionS
causes the learner to suffer a costc(S|Θ). Different settings
are characterized by different types of prediction and super-
vision. Nevertheless, a broad set of them can be studied in
the following framework.

We consider a spaceX of instances, a spaceY of la-
bels and an hypothesis spaceH, based on which the learner
makes its predictions, consisting ofrelevance functionsu :
X × Y → R, depending on some set of parametersΘ. The
goal of the learner is then to select a functionû ∈ H which
is ”consistent” with the supervision in a sense that will de-
pend on the particular supervised setting.

In particular, we will consider hypotheses having form:

u(x, y) = w · φ(x, y) (1)

whereφ(x, y) ∈ Rd is a joint representation of instance-
class pairs andw ∈ Rd is a weight vector. This form
encompasses the more standard formu(x, y) = wy · φ(x)
which has a weight vector for each different label.

Common supervised learning tasks include ordering pre-
dictions and rating predictions (see [1] for details).

Ordering predictionsare related to the ordering of
classes (or instances) on a relevance basis in such a way



to be consistent with the supervision given as partial orders
over the labels (or instances). These are referred to asla-
bel ranking(e.g. single-label multiclass classification and
category ranking) andinstance ranking, respectively.

Rating predictionsaim at giving ranks from an ordinal
scale to examples. The typical approach in this case is
to associate the available ranksZ = {0, . . . , R − 1}
to intervals of the real line by using an auxiliary set of
thresholdsτ = {τ0 = −∞, τ1, . . . , τR−1, τR = +∞}
and considering the rankz wheneveru(x, y) ∈ (τz, τz+1).
Binary classification, ordinal regression, and theirmulti-
variateextensions belong to this family.

Supervision for all the settings above can be described
as conjunctive sets of preferences of two types:qualitative
preferences

(u(xi, yr), u(xj , ys))

telling that the value ofu(xi, yr) should be higher than the
value ofu(xj , ys), andquantitativepreferences

(u(x, y), τ) or (τ, u(x, y)), τ ∈ R
relating the value ofu(x, y) to a given thresholdτ .

Preference sets (or p-sets) for the supervision of the gen-
eral settings described above are given in Table 1. Instanti-
ations to more specific problems are immediate anyway.

Ordering {(u(x, yr), u(x, ys))}(x,yr)ºS(x,ys)

Rating {(u(x, y), τi)}i<z ∪ {(τi, u(x, y))}i≥z

Table 1. Ordering predictions have a prefer-
ence for each order relation induced by the
supervision S. In rating predictions, a pref-
erence are related to thresholds and z ∈ Z is
the rank given by the supervision.

Exploiting equation (1) it is possible to conveniently re-
formulate qualitative and quantitative preferences as linear
constraints. Specifically, in the qualitative case, we can ex-
press a preferencea ≡ (u(xi, yr), u(xj , ys)) as

w · (φ(xi, yr)− φ(xj , ys))︸ ︷︷ ︸
ψ(a)

> 0.

Viceversa, in the quantitative case, givenδ ∈ {−1, +1},
the preferenceδ(u(x, y)− τr) > 0 can be expressed as

(w, τ1, . . . , τR−1) · (δφ(x, y), 0, . . . , 0,−δ, 0, . . . , 0)︸ ︷︷ ︸
ψ(a)

> 0.

In general, supervision constraints of all the problems dis-
cussed above can be reduced into sets of particular lin-
ear constraints of the formw · ψ(a) > 0 wherew =

(w, τ1, . . . , τR) is the vector of weights augmented with the
set of available thresholds andψ(a) is an opportune repre-
sentation of the preference under consideration.

The quantityρA(a|w) = w · ψ(a) will be also referred
to as the margin of the hypothesis w.r.t. the preference. This
value is greater than zero when the preference isconsistent
with the hypothesis (denoteda @ w) and less than zero oth-
erwise. The margin of an hypothesis w.r.t. the whole super-
visionS can also be defined as the minimum of the margins
of preferences in the associated p-set, here denotedg[S], i.e.
ρ(S) = mina∈g[S] ρA(a). This definition is consistent with
definitions of the margin commonly used in different prob-
lems. In particular, the margin is positive if and only if the
prediction is consistent with the supervision.

Summarizing, all the settings above can be seen as (ho-
mogeneous) linear problems in a opportune augmented
space. Specifically, any algorithm for linear optimization
(e.g. perceptron or a linear programming package) can be
used to solve them, provided the problem has a solution.

3 GPLM and Cost Functions

The mere consistency of supervision constraints is not
necessarily the ultimate goal of a supervised learning set-
ting. Rather, cost functions are often preferred measuring
the disagreement between the current hypothesis and the
supervision. These functions may either depend on the par-
ticular structure of the prediction or other factors.

In [2] a general model for label rankings has been pro-
posed. Here, we extend the same idea to general super-
vised settings by mapping supervision into sets of prefer-
ences with costs. We will refer to this method asGeneral-
ized Preference Learning Model(GPLM).

Definition 3.1 Preference Sets w/ CostsA (conjunctive)
preference set with costs, or simply”cp-set”, is a preference
set where preferences have costs associated. Preferences
of a cp-set will be denoted byaγ(a). When the cost is not
indicatedγ(a) = 1 will be considered.

Given a cp-setg, it is natural to define the cost for an
hypothesis w.r.t. this set as the maximum of the costs of its
unfulfilled preferences, i.e.c(g|w) = maxa∈g,a 6vw γ(a).
Then, similarly to [2], we consider acost mapping:

G : g[S] 7→ {g1(S), . . . , gqS (S)}
where each cp-setgi(S) is a subset ofg[S] with some costs
assigned to the preferences. Once the cost mappingG is
given, the total cost suffered by an hypothesisw for the
supervisionS is defined as the cumulative cost of cp-sets

c(g[S]|w) =
qS∑

j=1

c(gj(S)|w).



Let gp be a preference set, natural mappings already
proposed in [4] for preference graphs are easily adapted
by considering classes of equivalence among preferences
and by defining mappings in which a different cp-set is
built for each partition. Specifically, leta ≡ (as, ae) and
a′ ≡ (a′s, a

′
e) be a pair of preferences, we have:

(i) the identity mapping, denoted byGI , where gp is
mapped on a single cp-setgc. This corresponds to de-
fine the trivial equivalence relation(as, ae) ≡ (a′s, a

′
e);

(ii) thedomination mapping, denoted byGD, wheregp is
split into a set of cp-sets on the basis of the equivalence
relation(as, ae) ≡ (a′s, a

′
e) ⇔ as = a′s;

(ii) thedominated mapping, denoted byGdom, wheregp is
split into a set of cp-sets on the basis of the equivalence
relation(as, ae) ≡ (a′s, a

′
e) ⇔ ae = a′e;

(iv) the disagreement mapping, denoted byGd, wheregp

is split into a set of cp-sets on the basis of equivalence
relations(as, ae) ≡ (a′s, a′e) ⇔ as = a′s ∧ ae = a′e.

Now, we can show how many common cost functions
can naturally be defined with the tools offered by our model.

Basic mappings for standard label ranking tasks can be
found in [2] and can be reproduced with the model proposed
in this paper. In fact, it can be shown quite easily that, for
label rankings, PLM preference graphs and GPLM cp-sets
with unitary costs are equivalent.

However, the extension presented here introduces far
more flexibility on the choice of the cost function for la-
bel rankings because of the use of cp-sets in place of pref-
erence graphs. A typical example is classification where
misclassifications can have different costs. This can be the
case in single-label classification when categories are not
represented with the same frequencies in the training and
the test set. Another interesting case is when there is some
structure between the available classes and a different met-
ric for misclassification costs is introduced. For example, in
hierarchical classification, it makes sense to pay costs pro-
portional to the path length to reach the true class from the
predicted one. In all these cases, a cost matrix∆ is used to
have a better control over the learning algorithm, where the
element∆(yr, ys) represents the cost of classifying a pat-
tern asyr when it is actually inys. In GPLM, this can be
easily obtained by exploiting the cost mapping feature.

Similar considerations can be made for instance ranking
tasks. A common loss function used in instance ranking is
the so called AUC (area under ROC curve) measure. It can
be shown that it can be implemented byGd. Interestingly,
our model suggests new settings and loss definitions one
might use for the tasks in the family of instance rankings.

To illustrate standard loss functions used for rating tasks
and the implementation in our model, we consider (univari-
ate) ordinal regression problems as the classification setting

is just a particular case. Multi-variate extensions are omit-
ted for space reasons and can be found in [1].

Specifically, recalling the natural definition of cost for
ordinal regression problems, i.e.c = |ẑ(x) − z(x)|, where
ẑ(x) is the rank given as output by the hypothesis andz(x)
the correct rank, we would like to define a cost mapping for
GPLM consistent with the same cost function. At least two
different cost mappings have this property. The easiest one
is the mappingGd. In this case, the resulting cost will be the
number of thresholds which are not correctly ordered w.r.t.
u(x). This is exactly the cost as given before. A second pos-
sibility is to define a mappingGI followed by an assignment
of costs where ther-th preference is set to(u(x), τr)z−i+r

wheneverr ≤ z, and(τr, u(x))r−z otherwise.

4 Learning in GPLM

We have already discussed the structure behind the su-
pervision and how it can be modeled using cp-sets. Now,
we see how to give a learning algorithm. We only consider
the on-line learning setting, the motivation being that it is
generally faster to train w.r.t. thebatchcounterpart and thus
more suited for data-mining applications. Thus, we sup-
pose supervision becomes available one by one and each
time the learner updates the hypothesis to minimize future
costs. Since the costsc(S|w) are not continuous w.r.t.w,
we try to approximate them by introducing a continuous
non-increasing functionl : R → R+ approximating the
indicator function and by defining the approximation

c̃(S|w) =
∑

g∈G(g[S])

max
a∈g

γ(a)l(ρA(a|w)).

Examples of losses one can use are presented in Table 2
whereβ > 0, λ > 0, θ ∈ R are external parameters.

β-margin [β − ρ]+ Exp e−ρ

Sigmoidal (1 + eλ(ρ−θ))−1 LogReg log2(1 + e−ρ)

Table 2. Margin-based approximation losses.

In on-line learning, a suitable measure of performance
afterm rounds is thecumulative costfunction

Rm
t [w] =

m∑

i=1

c(g[Si]|wi)

wherewi is the hypothesis obtained after seeing supervi-
sionS1, . . . , Si−1.

Following a typical approach for on-line learning, we
perform a stochastic gradient descent with respect to the in-
stantaneous costQ(wt) = c̃(St|wt). The update will be in
the formwt = wt−1 − ηQ′w, where

Q′w =
∑

g∈G(g[St])
γ(â[g])l′ρ(ρ(â[g]))ψ(â[g]),



â[g] = arg maxa∈g γ(a)l(ρ(a)) and f ′x(v) stands for the
gradient off w.r.t. the parametersx evaluated inv.

It can be shown easily that these updates make the weight
vectorw taking the sparse formw =

∑
i,r αr

i φ(xi, yr) thus
obtaining an implicit representation of the relevance func-
tion asu(x, y) =

∑
i,r αr

i φ(xi, yr)φ(x, y).

5 Experiments and Results

To demonstrate the flexibility of the model proposed in
this paper, we performed a set of experiments on a syn-
thetic dataset. The explicit purpose was the one to try dif-
ferent cost mappings and loss functions in a relatively self-
contained task in such a way to have a better control and to
do fair comparisons between different configurations.

The experimental setting is the same used in [3]. Points
x = (x1, x2) are uniformly distributed in the unit square
[0, 1]2. Ranks are assigned basing on the following rule:

r ∈ {0, . . . , 4} : 10(x1 − 0.5)(x2 − 0.5) + ε ∈ (br, br+1)

whereb = {b0, . . . , b5} = {−∞,−1,−0.1, 0.25, 1, +∞}
and ε is a normally distributed noiseε ∼ N(0, σ). We
generated 100 sequences of 100,000 examples each. More-
over, a non-homogeneous second order polynomial kernel
K(x1,x2) = Φ(x1) ·Φ(x2) = (x1 ·x2+1)2 has been used.
The performance on a sequence is obtained by feeding all
the instances of the sequence and computing thecumulative
costat each iterationm ascm =

∑m
t=1 |r̂t − rt|. Finally,

the obtained costs are averaged over the 100 sequences to
obtain higher statistical significance.

Experiments have been performed using configurations
produced according to three dimensions:

(i) Cost Mapping: Three cost mappings for ordinal re-
gression have been used. Two of them are the ones pre-
sented in Section 3, i.e. the mappingGI with costs (denoted
Gc

I ) and the mappingGd. The last mapping is basically the
mappingGI where the cost assignment is not performed.
Note that, this mapping represents the cost function which
gives a unitary cost for incorrect predicted ranks.

(ii) Complexity of the task: Different values of the stan-
dard deviationσ ∈ {0, 0.125, 0.5, 1.0} have been used. A
greaterσ leads to a more difficult task.

(iii) Preference Loss: Two losses from the ones in Table
2 were used, i.e. the Perceptron loss (β-margin withβ = 0),
and the Sigmoidal loss with parameterλ = 1, θ = −1.

One may notice that the configuration(Gd, ·, PLoss) is
equivalent to the PRank algorithm proposed in [3].

In Fig. 1, the curves of cost obtained for the three map-
pings andσ = 0.5 are shown. Different plots refer to the
two preference losses. In Table 3 a detail of results after
10000 presentations is shown. Results show that the base-
line cost mappingGI is consistently worse than the other

two, while the performance ofGc
I andGd ar quite similar.

Interestingly, a far larger improvement is obtained for the
sigmoidal loss and this can be due to the effective use of
margins and/or a better approximation of the true cost.
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Figure 1. Curves of the cost (see text).

—– Perc. Loss —– —– Sigm. Loss —–
σ GI Gc

I Gd GI Gc
I Gd

0.000 0.369 0.339 0.317 0.326 0.259 0.236
0.125 0.502 0.470 0.452 0.454 0.384 0.364
0.500 1.148 1.062 1.057 1.104 0.944 0.910
1.000 1.661 1.575 1.620 1.626 1.474 1.447

Table 3. Costs for different methods and task
complexities.

6 Conclusion

We have proposed a general preference model for super-
vised learning and its application to on-line algorithms. The
model allows to codify cost functions as preferences and
naturally plug them into the same training shell. Further-
more, it gives a tool for comparing different methods and
cost functions on a same learning problem. Experiments
performed on an ordinal regression problem have confirmed
the validity of the approach and highlighted the important
role of the loss functions used for training.
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