
A Simple Additive Re-weighting Strategy for Improving Margins

Fabio Aiolli and Alessandro Sperduti
Department of Computer Science, Corso Italia 40, Pisa, Italy

e-mail:
�
aiolli, perso � @di.unipi.it

Abstract

We present a sample re-weighting scheme inspired
by recent results in margin theory. The basic idea is
to add to the training set replicas of samples which
are not classified with a sufficient margin. We prove
the convergence of the input distribution obtained
in this way. As study case, we consider an instance
of the scheme involving a 1-NN classifier imple-
menting a Vector Quantization algorithm that ac-
commodates tangent distance models. The tangent
distance models created in this way have shown
a significant improvement in generalization power
with respect to the standard tangent models. More-
over, the obtained models were able to outperform
state of the art algorithms, such as SVM.

1 Introduction
In this paper we introduce a simple additive re-weighting
method that is able to improve the margin distribution on
the training set. Recent results in computational learning the-
ory [Vapnik, 1998; Schapire et al., 1998; Bartlett, 1998] have
tightly linked the expected risk of a classifier (i.e. the proba-
bility of misclassification of a pattern drawn from an indepen-
dent random distribution), with the distribution of the margins
in the training set. In general, it results that we can expect best
performances on generalization (minimal error on test data)
when most of the patterns have high margins.

The aforementioned results are at the basis of the theory of
two of the most impressive algorithms: Support Vector Ma-
chines and Boosting. Either SVM’s and Boosting effective-
ness is largely due to the fact that they, directly or not, effec-
tively improve the margins on the training set. In particular,
SVM explicitly finds the hyper-plane with the largest mini-
mum margin in a dimensional-augmented space where train-
ing points are mapped by a kernel function. In this case, mar-
gin theory permits to explain impressive performances even
in very high dimensional spaces where data are supposed to
be more separated. Most of the recent efforts in SVMs are
in the choice of the right kernels for particular applications.
For example, in OCR problems, the polynomial kernel was
proven to be very effective.

On the other side, boosting algorithms, and in particular the
most famous version AdaBoost, produce weighted ensemble

of hypotheses, each one trained in such a way to minimize the
empirical error in a given “difficult” distribution of the train-
ing set. Again, it has been shown [Schapire, 1999] that boost-
ing essentially is a procedure for finding a linear combination
of weak hypotheses which minimizes a particular loss func-
tion dependent on the margins on the training set, literally�������	��

������������� ���

. Recently, research efforts related to
boosting algorithms faced the direct optimization of the mar-
gins on the training set. For example, this has been done by
defining different margin-based cost functions and searching
for combinations of weak hypotheses so to minimize these
functions [Mason et al., 1998].

We will follow a related approach that aims to find a sin-
gle (eventually non linear) optimal hypothesis where the op-
timality is defined in terms of a loss-function dependent on
the distribution of the margins on the training set. In order to
minimize this loss we propose a re-weighting algorithm that
maintains a set of weights associated with the patterns in the
training set. The weight associated to a pattern is iteratively
updated when the margin of the current hypothesis does not
reach a predefined threshold on it. In this way a new distribu-
tion on the training data will be induced. Furthermore, a new
hypothesis is then computed that improves the expectation of
the margin on the new distribution. In the following we prove
that the distribution converges to a uniform distribution on a
subset of the training set.

We apply the above scheme to an OCR pattern recognition
problem, where the classification is based on a 1-NN tangent
distance classifier [Simard et al., 1993], obtaining a signifi-
cant improvement in generalization. Basically, the algorithm
builds a set of models for each class by an extended version of
the Learning Vector Quantization procedure (LVQ [Kohonen
et al., 1996]) adapted to tangent distance. In the following we
will refer to this new algorithm as Tangent Vector Quantiza-
tion (TVQ).

The paper is organized as follows. In Section 2, we intro-
duce the concept of margin regularization via the input dis-
tribution on the training set. Specifically, we present the � -
Margin Re-weighting Strategy, which holds the property to
guarantee the convergence of the input distribution. In Sec-
tion 3, we introduce a definition for the margins in a 1-NN
scheme that considers the discriminative ratio observed for
a particular pattern, and in Section 4 we define the TVQ al-
gorithm. Finally, in Section 5 we present empirical results



comparing TVQ with other 1-NN based algorithms, includ-
ing SVM.

2 Regularization of the margins
When learning takes place, the examples tend to influence in
a different way the discriminant function of a classifier. A
discriminant function can be viewed as a resource that has
to be shared among different clients (the examples). Often,
when pure Empirical Risk Minimization (ERM) principle is
applied, that resource is used in a wrong way since, with high
probability, it is almost entirely used by a fraction of the train-
ing set. Margin theory formally tells us that it is preferable to
regularize the discriminant function in such a way to make
the examples sharing more equally its support.

Inspired on the basic ideas of margin optimization, here,
we propose a simple general procedure applicable, eventu-
ally, to any ERM-based algorithm. It permits to regularize the
parameters of a discriminant function so to obtain hypotheses
with large margins for many examples in the training set.

Without generality loss we consider the margin for a train-
ing example as a real number, taking values in � ���������	� , rep-
resenting a measure of the confidence shown by a classifier in
the prediction of the correct label. In a binary classifier, e.g.
the perceptron, the margin is usually defined as 
�� ��
 � where
 is the target and � ��
 � is the output computed by the clas-
sifier. Anyway, it can be easily re-conduced to the � ���������	�
range by a monotonic (linear or sigmoidal) transformation of
the output. In any case, a positive value of the margin must
correspond to a correct classification of the example.

Given the function
��� ��
 ���

that, provided an hypothesis � ,
associates to each pattern its margin, we want to define a loss-
function that, when minimized, permits to obtain hypotheses
with large margins (greater than a fixed threshold � ) for many
examples in the training set. For this, we propose to minimize
a function that, basically, is a re-formulation of SVM’s slack
variables: � ���

�������
� � � ��� ��
 � � � ��� �! #"�$�% ����&(' � (1)

where ) is a training set with * examples, and
��� �! #"�$�% ���+&(' ��

if
��� ��
 � �-, � , and 0 otherwise. The

�
function is null

for margins higher than the threshold � and is linear with re-
spect to the values of the margins when they are below this
threshold.

We suggest to minimize
�

indirectly via a two-step itera-
tive method that “simultaneously” (1) searches for an a priori
distribution .0/ �21 for the examples that, given the current hy-
pothesis � , better approximates the function

�3� �! #"�$�% �0&+' and
(2) searches for a hypothesis � (e.g. by a gradient based
procedure) that, provided the distribution .!/ �41 , improves the
weighted function

5 �76�
8!9�: / 8

� � ��
 8 �	; (2)

This new formulation is equivalent to that given in eq. (1)
provided that .0/ � 1 converges to the uniform distribution on
the � -mistakes (patterns that have margin less than the thresh-
old).

<
-Margin Re-weighting Strategy

Input:
T: number of iterations;=

: hypotheses space;� : margin threshold;> �@? �BA ��CD�FEG�
: bounded function;) � . ��
 � � 
 � � 1 � 9�:�HJIJIJH 6 : training set;

Initialize�LK A = (initial hypothesis);
for M �N��� ;O; � *P � ��C �RQ �

, / � �SC �RQ :
6 ;

for T �U�V� ;W; �@X
begin

find �DY such that
 6� 9Z: / � � T �[� � ����\���
 ���^] 
 6� 9�: / � � T �[� � ����\�_3` ��
 � � ;P � � T �RQ P � � T �a� � � > � T � ��� �! #"�$ \ % � � &+' ;
/ � � T �bQ c � % Y &
edfSg ` c f % Y & ;

end

return �Dh ;

Figure 1: The � -Margin Re-weighting Strategy.

The algorithm, shown in Figure 1, consists of a series of
trials. An optimization process, that explicitly maximizes the
function

� � ��
 �
according to the current distribution for the

examples, works on an artificial training set )ji , initialized
to be equal to the original training set ) . For each T , > � T �
replicas of those patterns in ) that have margin below the
fixed threshold � are added to )bi augmenting their density
in )Ri and consequently their contribution in the optimization
process. Note that P � � T � denotes the number of occurrences
in the extended training set )Ri of the pattern


 �
.

In the following, we will prove that the simple iterative
procedure just described makes the distribution approaching
a uniform distribution on the � -mistakes, provided that

> � T �
is bounded.

2.1 Convergence of the distribution

For each trial T , given the margin of each example in the
training set ) , we can partition the training sample as ) �
)lk � T �nm )po � T � where )�k � T � is the set of � -mistakes and)po � T � � ) � )lk � T � is the complementary set of � -correct
patterns.

Let denote q � T � �sr )Ri � T � r and let P � � T � be the number of
occurrences of pattern


 �
in )Ri at time T , with density / � � T � �P � � T �Ft q � T � . Moreover, let u � T � be a suitable function of T

such that q � T �v� � � q � T � u � T � .
Let P � � T �w� � � P � � T � � > � T � be the update rule for the number
of occurences in )Ri , where

> � T � is bounded and takes values
in
��CL�xEy�

(note that
> � T � may change at different iterations but

it is independent from M ). It’s easy to verify that u � T �^z �
for

each T because of the monotonicity of q � T � , and that u � T �R{



�
with the number of iterations. In fact

��� q � T � � �
q � T �

� q � T � ��� q � T �
q � T �

� �j� E r ) r
q � T �

{ � ;

At time T �v�
we have

/ � � T � � � � P � � T � � > � T � �V� �! "3% Y &('
u � T � q � T �

� / � � T � ��� % Y &� % Y & ��� �! #"3% Y &+'
u � T �

;

First of all we show that the distribution converges. This
can be shown by demonstrating that the changes tend to zero
with the number of iterations, i.e., � 
 � A ) � r � / � � T � r { C ;

We have� / � � T � � � % Y &� % Y & �V� �! "3% Y &(' � � u � T � �a� � / � � T �
u � T �

�
which can be easily bounded in module by a quantity that
tends to 0:

r � / � � T � r�� 	� % Y & � � u � T � �a� � / � � T �
u � T �

{ C ;

We now show to which values they converge. Let 
 � and� � be, respectively, the cumulative number and the mean ratio
of � -mistakes for


 �
on the first T epochs, � � �
� � % Y &Y , then

/ � � T � � P � ��C � ��� � > � T � � 
 � � T �
q ��C � ��� � > � T � � 
 6� 9�: 
 � � T �

� �j� T � � > � T � � � �
* � T � � > � T � � 
 6� 9�: � � { � �
 6� 9�: � � ;

Given the convergence of the optimization process that
maximizes

5
in eq. (2), the two sets ) k and ) o are going to

become stable and the distribution on ) will tend to a uniform
distribution in )�k (where � � { �

) and will be null elsewhere
(where � � { C

). This can be understood in the following way
as well.

Given the definition of the changes made on the gamma
values on each iteration of the algorithm, we calculate the
function that we indeed minimize. Since

� P � T � � > � T � ?��� �! #"3% Y &(' , after some algebra, we can rewrite
� / � � T � as:� / � � T � � � q � T �

q � T �v� �
� ��� �! #" � % Y &('r )lk � T � r

� / � � T ��� ;
Thus,

� / � � T � �vC
when / � � :� ��� % Y & � �V� �	 " � % Y &(' , for which the

minimum of function��� � � q � T �
q � T � � ��� �� � � /��� � T � � �

r )lk � T � r
� � ��� �! #" � % Y &(' / � � T ���

is reached. Note that, the minimum of
� �

is consistent with
the constraint


 � / � �N�
.

In general, the energy function is modulated by a term de-
creasing with the number of iterations, dependent on the

> � T �
used but independent from gamma, that can be viewed as a
sort of annealing introduced in the process.

In the following, we study a specific instance of the � -
Margin Re-weighting Strategy.

3 Margins in a 1-NN framework and tangent
distance

Given a training example
��
 � � 
 � � A ) , 
 � A"! and a fixed

number of models for each class, below, we give a definition
of the margin for the example when classified by a distance
based 1-NN classifier.

Given the example
��
 � � 
 � � , let # 8� and #%$� be the squared

distances between the nearest of the positive set of models
and the nearest of the negative sets of models, respectively.
We can define the margin of a pattern in the training set as:

� � � #&$� � # 8�# $� � # 8� ; (3)

This formula takes values in the interval � ���V�����!� represent-
ing the confidence in the prediction of the 1-NN classifier.
Higher values of the

� �
’s can also be viewed as an indication

of a higher discriminative power of the set of models with
respect to the pattern. Moreover, a pattern will result cor-
rectly classified in the 1-NN scheme if and only if its margin
is greater than zero.

In this paper, we are particularly interested in distances
that are invariant to given transformations. Specifically,
we refer to the one-sided tangent distance [Simard, 1994;
Hastie et al., 1995; Schwenk and Milgram, 1995b; 1995a],
which computes the distance between a pattern


 : and a pat-
tern


 � as the minimum distance between

 : and the lin-

ear subspace '
 � �)( � approximating the manifold induced by
transforming the pattern


 � according to a given set of trans-
formations: *

h ��
 : �@
 � � �,+.-0/132 
 : � '
 � �4( � 2 ; (4)

If the transformations are not known a priori, we can learn
them by defining, for each class 
 , a (one-sided) tangent
distance model 5�6 , compounded by a centroid 786 (i.e., a
prototype vector for class 
 ) and a set of tangent vectors9 6 � . X � 1 (i.e., an orthonormal base of the linear subspace'7:6 �)( � ), that can be written as 5�6 �)( � � 7:6 � 
 � ;=<>�� 9�: ( � X � .

This model can be determined by just using the *.6 positive
examples of class 
 , i.e.

��
 � � 
 �^A ) , as5�6 �"?�@BAC+D-0/k 6 <�
8!9�:

+.-E/�GF 2 5 � � 8 � �-
 8 2 � � (5)

which can easily be solved by resorting to principal compo-
nent analysis (PCA) theory, also called Karhunen-Loéve Ex-
pansion. In fact, equation (5) can be minimized by choos-
ing 7:6 as the average over all available positive samples
 8 , and

9 6 as the set of the most representative eigenvec-
tors (principal components) of the covariance matrix H�6 �:
6 < 
 6 <8!9�: ��
 8 � 7 6 � ��
 8 � 7 6 � Y .

The corresponding problem for the two-sided tangent dis-
tance can be solved by an iterative algorithm, called (two-
sided) HSS, based on Singular Value Decomposition, pro-
posed by Hastie et al. [Hastie et al., 1995]. When the one-
sided version of tangent distance is used, HSS and PCA co-
incide. So, in the following, the one sided version of this
algorithm will be simply referred as to HSS.



Given a one-sided tangent distance model 5�6 , it is quite
easy to verify that the squared tangent distance between a pat-
tern



and the model 5 6 can be written as:* �h ��
�� 5�6 � ��� Y � � � ; ��� 9Z: ( � � (6)

where
� �N
	� 7:6 , ( � ��� Y X � and

� Y denotes the transpose
of
�
. Consequently, in our definition of margin, we have# 8� � 
 M��� <�� < � * �h ��
 � � 5 6 � , and #&$� � 
 M��� <	�� < � * �h ��
 � � 5 6 � .

Given this definition of margin, we can implement the
choice of the new hypothesis in the � -Margin Re-weighting
Strategy by maximizing the margin using gradient ascent on
the current input distribution.

3.1 Improving margins as a driven gradient ascent

Considering the tangent distance formulation as given in
equation (6) we can verify that it is defined by scalar prod-
ucts. Thus, we can derivate it with respect to the centroid7 and the tangent vectors

9 � . X � 1 of the nearest positive
model obtaining:

� # 8�� 7 � � � �
� � � ; ��� 9�: ( � X � � � � # 8�� X � � � � ( � � ;
Considering that

� " �� o � � " ��
� F� ��� F�� o and
� " �� h�� � � " ���� F� �
� F�� h�� we can

compute the derivative of the margin with respect to changes
in the nearest positive model:

��� �
� 7 � � # $�� # $� � # 8� � � �
� �

� ; ��� 9�: ( � X � � ���� �
� X � � � #%$�� # $� � # 8� � � ( � � ;

A similar solution is obtained for the nearest negative model
since it only differs in changing the sign and in exchanging
indexes � and � . Moreover, the derivatives are null for all the
other models.

Thus, we can easily maximize the average margin in the
training set if for each pattern presented to the classifier we
move the nearest models in the direction suggested by the gra-
dient. Note that, like in the LVQ algorithm, for each training
example, only the nearest models are changed.

When maximizing the expected margin on the current dis-
tribution .0/ � 1 , i.e.,

5
, for each model 5 � � 7 � . X � 1 � we

have: � 7 ��� � � �� � 9�: /
� ��� �� 7 � ��X � ��� � � �� � 9�: /

� ��� �� X � �
where

�
is the usual learning rate parameter. In the algorithm

(see Figure 2), for brevity, we will group the above variations
by referring to the whole model, i.e.,

� 5 ��� 
 � � �� 9�: / � � " �� k ;

TVQ Algorithm

Input:
T: no. of iterations;
Q: no. of models per class;� : margin threshold;

Initialize
q Q * , / �ZQ :

6 ;�#
 ��� , initialize 5 %�� &6 Q � 7 %�� &6 � 9 %�� &6 �
with random

models;
for T �U�V� ;W; �@X� 
 � � � � � 5 %�� &6 � C

;� ��
 � � 
 � �BA ) , select
��� 8 ���
 � ��� $ � s.t. 5 %��4F &6 � and 5 %���� &�6 �

are the nearest, positive and negative, models. Com-
pute

� �
as in eq. (3) and accumulate the changes on

the nearest models� 5 %��4F &6 � Q � 5 %��4F &6 � � / � �
��� �
� 5 %�� F &6 � �

� 5 %���� &�6 � Q � 5 %���� &�6 � � / �
��� �
� 5 %�� � &�6 � �

� 
 � � � � 5 %�� &6 � 5 %�� &6 � � � 5 %�� &6 and orthonormalize its
tangents;� ��
 � � 
 � �^A ) , update the distribution / � by the rule

/ � Q / � �
��� �! #" � '
q

Normalize / � ’s such that

 6� 9�: / � �U�

;

q Q q � r . ��
 � � 
 � � r � � , � 1 r ;
End

Figure 2: The TVQ Algorithm.

4 The TVQ algorithm

The algorithm (see Figure 2) starts with random models and a
uniform distribution on the training set. For each pattern, the
variation on the closest positive and the closest negative mod-
els are computed accordingly to the density of that pattern on
the training set )Ri . When all the patterns in ) are processed,
the models are updated performing a weighted gradient as-
cent on the values of the margin. Moreover, for each pattern
in the training set such that the value of the margin is smaller
than a fixed value, the distribution is augmented. The effect
is to force the gradient ascent to concentrate on hardest ex-
amples in the training set. As we saw in Section 2 the incre-
ment to the distribution is simply the effect of adding a replica
(
> � T � �U�

) of incorrectly classified patterns to the augmented
training set.

The initialization of the algorithm may be done in different
ways. The default choice is to use random generated models
however, when the training set size is not prohibitive, we can
drastically speed up the algorithm by taking as initial mod-
els the ones generated by any algorithm (e.g., HSS). How-



Method Parameters Err%
HSS 1-sided 15 tangents 3.58
LVQ 2.1 16 codebooks 3.52
TD-Neuron 15 tangents 3.51
HSS 2-sided 9 tangents 3.40
Euclidean 1-NN prototypes 3.16
SVM Linear 10.64
SVM Poly d=2 2.82
SVM Poly d=3 3.23
SVM Poly d=4 4.02

Table 1: Test results for different 1-NN methods.

ever, in the case of multiple models per class the initialization
through the HSS method would generate identical models for
each class and that would invalidate the procedure. A possi-
ble choice in this case, is to generate HSS models by using
different random conditional distributions for different mod-
els associated to the same class. Another solution, which is
useful when the size of the training set is relatively large, is
to initialize the centroids as the average of the positive in-
stances and then generating random tangents. Experimental
results have shown that the differences on the performance
obtained by using different initialization criteria are negligi-
ble. As we could expect the speed of convergence with differ-
ent initialization methods may be drastically different. This is
due to the fact that when TVQ is initialized with HSS models
it starts with a good approximation of the optimal hypothe-
sis (see Figure 3-

��� �
), while random initializations implicitly

introduce an initial poor estimate of the final distribution due
to the mistakes that most of the examples do on the first few
iterations.

5 Results
We compared the TVQ algorithm versus SVMs and other
1-NN based algorithms: 1-sided HSS, 2-sided HSS, TD-
Neuron [Sona et al., 2000], and LVQ. The comparison was
performed using exactly the same split of a dataset consisting
of 10705 digits randomly taken from the NIST-3 dataset. The
binary 128x128 digits were transformed into 64-grey level
16x16 images by a simple local counting procedure1. The
only preprocessing performed was the elimination of empty
borders. The training set consisted of 5000 randomly chosen
digits, while the remaining digits were used in the test set.

The obtained results for the test data are summarized in Ta-
ble 1. For each algorithm, we reported the best result, without
rejection, obtained for the dataset. Specifically, for the SVM
training we used the SVM

�
�
�
� Y package available on the in-

ternet2. Different kernels were considered for the SVMs: lin-
ear and polynomial with degrees 2,3 and 4 (we used the de-
fault for the other parameters). Since SVMs are binary clas-
sifiers, we built 10 SVMs, one for each class against all the
others, and we considered the overall prediction as the label
with higher margin. The best performance has been obtained

1The number of pixel with value equal to 1 is used as the grey
value for the corresponding pixel in the new image.

2http://www-ai.cs.uni-dortmund.de/SOFTWARE/SVM LIGHT/

� �vC ; � � �vC ; � � � C ; �
Q

r 9 r
=10

r 9 r
= 15

r 9 r
=10

r 9 r
=15

r 9 r
= 0

1 2.40 2.20 3.00 2.22 6.40
3 2.10 2.26 2.43 2.10 –

Table 2: Test results for TVQ.

with a polynomial kernel of degree 2. We ran the TVQ al-
gorithm with two different values for � and four different ar-
chitectures. Moreover, we ran also an experiment just using
a single centroid for class (i.e.,

r 9 6 r � C
) with � � C ; �

. The
smaller value for � has been chosen just to account for the far
smaller complexity of the model.

In almost all the experiments the TVQ algorithm obtained
the best performance. Results on the test data are reported in
Table 2. Specifically, the best result for SVM is worst than
almost all the results obtained with TVQ. Particularly inter-
esting is the result obtained by just using a single centroid for
each class. This corresponds to perform an LVQ with just 10
codebooks, one for each class.

In addition, TVQ returns far more compact models allow-
ing a reduced response time in classification. In fact, the 1-
NN using polynomial SVMs with

* � �
, needs 2523 support

vectors, while in the worst case the models returned by the
TVQ involve a total of 480 vectors (one centroid plus 15 tan-
gents for each model).

In Figure 3, typical error curves for the training and test er-
rors (3-

��� �
), as well as the margin distributions on the training

set (3-
��� �

) and the induced margin distribution on the test set
(3-
� * �

) are reported. From these plots it is easy to see that the
TVQ doesn’t show overfitting. This was also confirmed by
the experiments involving the models with higher complexity
and smaller values of � . Moreover, the impact of the � -margin
on the final margin distribution on the training set is clearly
shown in 3-

��� �
, where a steep increase of the distribution is

observed in correspondence of � at the expenses of higher
values of margin. Even if at a minor extent, a similar impact
on the margin distribution is observed for the test data.

In Figure 4 we have reported the rejection curves for the
different algorithms. As expected, the TVQ algorithm was
competitive with the best SVM, resulting to be the best algo-
rithm for almost the whole error range.

6 Conclusions
We proposed a provably convergent re-weighting scheme for
improving margins, which focuses on “difficult” examples.
On the basis of this general approach, we defined a Vector
Quantization algorithm based on tangent distance, which ex-
perimentally outperformed state of the art classifiers both in
generalization and model compactness. These results confirm
that the control of the shape of the margin distribution has a
great effect on the generalization performance.

When comparing the proposed approach with SVM, we
may observe that, while our approach shares with SVM the
Statistical Learning Theory concept of uniform convergence
of the empirical risk to the ideal risk, it exploits the input
distribution to directly work on non-linear models instead
of resorting to predefined kernels. This way to proceed is
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very similar to the approach adopted by Boosting algorithms.
However, in Boosting algorithms, several hypotheses are gen-
erated and combined, while in our approach the focus is on
a single hypothesis. This justifies the adoption of an addi-
tive re-weighting scheme, instead of a multiplicative scheme
which is more appropriate for committee machines.
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