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Abstract

Winner-take-all multiclass classifiers are built on the ¢d@ set of prototypes each representing
one of the available classes. A pattern is then classifiel thi¢ label associated to the most
‘similar’ prototype. Recent proposal of SVM extensions talticlass can be considered instances
of the same strategy with one prototype per class.

The multi-prototype SVM proposed in this paper extends itiais SVM to multiple proto-
types per class. It allows to combine several vectors in gcjpied way to obtain large margin
decision functions. For this problem, we give a compact taimed quadratic formulation and we
propose a greedy optimization algorithm able to find locaftyimal solutions for the non convex
objective function.

This algorithm proceeds by reducing the overall problera anseries of simpler convex prob-
lems. For the solution of these reduced problems an efficiptitnization algorithm is proposed.
A number of pattern selection strategies are then discussggeed-up the optimization process.
In addition, given the combinatorial nature of the overatilgem, stochastic search strategies are
suggested to escape from local minima which are not glologtiynal.

Finally, we report experiments on a number of datasets. Enpnance obtained using few
simple linear prototypes is comparable to that obtainedtatesf-the-art kernel-based methods
but with a significant reduction (of one or two orders) in r@sge time.

Keywords: multiclass classification, multi-prototype support veéctoachines, kernel ma-
chines, stochastic search optimization, large margirsiflass

1. Introduction

In multiclass classification, given a set of labelled examples with labels seleoted finite set,
an inductive procedure builds a function that (hopefully) is able to mapamgistances to their
appropriate classes. In this work, we exclusively focus orsthgle-labelversion of the multiclass
classification problem in which instances are associated exiéitctly oneslement of the label set.
However, throughout this paper, we will refer to this problem simply as mutsgteoblem. Binary
classification can be considered a particular instance of the multiclass seliimg the cardinality
of the label set is two.
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Multiclass classifiers are often based onwiener-take-allWTA) rule. WTA based classifiers
define a set of prototypes, each associated with one of the availablectems a sefy”. A scoring
functionf : X x M — R is then defined, measuring the similarity of an elemerit imith prototypes
defined in a spac@/. For simplicity, in the following, we assuni® = X. When new instances are
presented in input, the label that is returned is the one associated with thisimdat’ prototype:

H(x)=C <arg [rggxf (X, Mr)> 1)

whereQ is the set of prototype indexes, thMg’s are the prototypes and : Q — 9 the function
returning the class associated to a given prototype. An equivalenttiefinan also be given in
terms of the minimization of a distance or loss (these cases are often refeaedistance-based
andloss-basediecoding respectively).

1.1 Motivations and Related Work

Several well-known methods for binary classification, including newtdarks (Rumelhart et al.,
1986), decision trees (Quinlan, 1993), k-NN (see for example (Mitch®87)), can be naturally
extended to the multiclass domain and can be viewed as instances of the WIE§ystranother
class of methods for multiclass classification are the so cplietbtype based methodsne of the
most relevant of which is thiearning vector quantizatio(LVQ) algorithm (Kohonen et al., 1996).
Although different versions of the LVQ algorithm exist, in the more geneaak these algorithms
guantize input patterns into codeword vectgrand use these vectors for 1-NN classification. Sev-
eral codewords may correspond to a single class. In the simplest tsasknawn as LVQ1, at each
step of the codewords learning, for each input patigrthe algorithm finds the elemeaqt closest

to x;. If that codeword is associated to a class which is the same as the claspafttdra, thercy

is updated by — ¢+ n(t)(x — ck) thus making the prototype get closer to the pattern, otherwise
it is updated by, < ¢ — n(t)(X; — c) thus making the prototype farther away. Other more com-
plicated versions exist. For example, in the LVQ2.1 yidte the class of the pattern, at each step
the closest codeword of class£ y and the closest codeword of clasare updated simultaneously.
Moreover, the update is done only if the pattern under consideration falsvwindow” which is
defined around the midplane between the selected codewords.

When the direct extension of a binary method into a multiclass one is not possigpéneral
strategy to build multiclass classifiers based on a set of binary classifieigagsapossible, the
so callederror correcting output codingeECOC) strategy, originally proposed by Dietterich and
Bakiri in (Dietterich and Bakiri, 1995). Basically, this method codifies edabscof the multiclass
problem as a fixed size binary string and then solves one differentyljimablem for each bit of
the string. Given a new instance, the class whose associated string issmlstr” to the output
of the binary classifiers on that instance is returned as output. Exterisignsles with values in
{-1,0,+1} (Allwein et al., 2000) and continuous codes (Crammer and Singer, 280@) been
recently proposed.

Recently, large margin kernel-based methods have shown state-at-fiegfarmance in a wide
range of applications. They search for a large margin linear discriminag¢inmoa typically very
high dimensional space, tHeature spacewhere examples are implicitly mapped via a function
X — @(X). Since kernel-based algorithms use only dot products in this space, gs@hfmto resort
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to the 'kernel trick’ when dot products can be computed efficiently by medim kernel function
k(x,y) = (@(x),@(y)) defined in terms of the original patterns. Examples of kernel functionthare
polynomial kernel

k(x,y) = ({(x,y) +u)?u>0,deN

of which the linear case is just an instande< 1) and the radial basis function (RBF) kernel
k(X7y) = exp(—)\\ |X _y| |2>1)\ > 0.

Kernel machines, and the SVM in particular, has been initially devised fobitiey setting.
However, extensions to the multiclass case have been promptly propagedhfaik, 1998; Weston
and Watkins, 1999; Guermeur et al., 2000; Crammer and Singer, 2000).

The discriminant functions generated by general kernel-based mettednglicitly defined
in terms of a subset of the training patterns, the so caliggport vectorson the basis of a linear
combination of kernel productx) = ¥isvaik(X;,x). In the particular case of the kernel function
being linear, this sum can be simplified in a single dot product. When this is aatabe, the
implicit form allows to elegantly deal with non linear decision functions obtaingdiging non
linear kernels. In this last case, the efficiency with respect to the time fmedkassifying new
vectors tends to be low when the number of support vectors is large. &kisnbtivated some
recent works, briefly discussed in the following, whose aim was at bgilkimnel-based machines
with a minimal number of support vectors.

The relevance vector machingRVM) in (Tipping, 2001) is a model used for regression and
classification exploiting a probabilistic Bayesian learning framework. It ¢htoes a prior over the
weights of the model and a set of hyperparameters associated to thenoritheftthe RVM pre-
diction is the same as the one used for SVM. Sparsity is obtained becausstieqy distributions
of many of the weights become sharply peaked around the zero. Othestirigradvantages of the
RVM are that it produces probabilistic predictions and that it can be apmigeéneral functions
and not only to kernel functions satisfying the Mercer’s condition. Tirfieimal kernel classifier
(MKC) in (Fung et al., 2002) is another model theoretically justified by lineagmming pertur-
bation and a bound on the leave-one-out error. This model uses aufartass function measuring
both the presence and the magnitude of an error. Finally, quite diffeppnbaches are those in
(Schblkopf et al., 1999; Downs et al., 2001) that try to reduce the numberpgdat vectors after
the classifiers have been constructed.

The approach we propose here gives an alternative method to combirie giregictors to-
gether to obtain large margin multiclass classifiers. This can be extremelydienfefi two main
reasons. First, adding prototypes can produce higher margin decisiotions without dramati-
cally increasing the complexity of the generated model. This can be triviallyrsby considering
that the single-prototype margin is a lower bound on the margin for multi-protciyfme it can
be obtained when all the prototypes of the same class coincide. Secomuingwy several simple
models can be advisable when no a priori knowledge is available aboutsthatthand. In the
following, we will study only the linear version of the algorithm without explgrimore complex
kernel functions, the rationale being that adding linear prototypes in igamalr space allows to
increase the expressiveness of the decision functions without regither(computationally expen-
sive) use of kernels. Moreover, linearity makes easier the interpretattittre produced models,
which can be useful in some particular tasks, and allows for an easierisetteo the on-line set-
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ting since the explicit representation for the models can be used.

In Section 2 we give some preliminaries and the notation we adopt along tee pégen, in
Section 3 we derive a convex quadratic formulation for the easier pratfiégarning one prototype
per class. The obtained formulation can be shown to be equivalent, ughemges of variables and
constant factors, to the one proposed by Crammer and Singer (200@) iiltiple prototypes are
introduced in Section 4, the problem becomes not convex in general.ydavire Section 5 we will
see that once fixed an appropriate set of variables, the reducddmrisbconvex. Moreover, three
alternative methods are given for this optimization problem and heuristiteddsmart” selection
of patterns in the optimization process are proposed and compared. ifitgagtion 6 we give a
greedy procedure to find a locally optimal solution for the overall problathvae propose an ef-
ficient stochastic-search based method to improve the quality of the soluti®gction 7 we give
theoretical results about the generalization ability of our model. Specifigadiygresent an upper
bound on the leave-one-out error and upper bounds on the genéaalierror. Finally, the experi-
mental work in Section 8 compares our linear method with state-of-the-art dgtiviih respect to
the complexity of the generated solution and with respect to the generalization e

This paper substantially extends the material contained in other two cordgrapers. Namely,
(Aiolli and Sperduti, 2003) which contains the basic idea and the theorgahthti-prototype SVM
together with preliminary experimental work and (Aiolli and Sperduti, 200&#Eh proposes and
analyzes selection heuristics for the optimization of multiclass SVM.

2. Preliminaries

Let us start by introducing some definitions and the notation that will be ustdsipaper. We
assume to have a labelled training Set {(x1,¢1),...,(Xn,Cn)} Of cardinalityn, wherex; € X are
the examples in a inner-product spatec RY andc; € 9 = {1,...,m} the corresponding class or
label. To keep the notation clearer, we focus on the linear case wheedkare not used. However,
we can easily consider the existence of a feature mapping— X. In this case, it is trivial to
extend the derivations we will obtain to non-linear mappirgs @(x) of possibly non vectorial
patterns by substituting dot productsy) with a suited kernel functiok(x,y) = (¢(x),@(y)) and
the squared 2-norrfjx||?> with k(x,x) consequently. The kernel matrik € R™" is the matrix
containing the kernel products of all pairs of examples in the training sek;j.es K(x;, X;).

We consider dot-product based WTA multiclass classifiers having the form

() = € (aramaxie @)

whereQ is the set of prototype indices and the prototypes are arranged in a tagrik/?*d and
C: Q — 9 the function that, given an indexreturns the class associated totkta prototype. We
also denote by!, 1 <i <n, r € Q, the constant that is equal to 1dfr) = ¢; and—1 otherwise.
Moreover, for a given exampbe, 7 = {r € Q :y| = 1} is the set of 'positive’ prototypes for the
examplex;, i.e. the set of prototype indices associated to the clags afhile A{ = Q\ B = {r €
Q:y; = —1} is the set of 'negative’ prototypes, i.e. the set of prototype indicesagsd to classes
different from the class of;. The dot producf, (x) = (M,,X) is referred to as theimilarity score
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(or simplyscorg of ther-th prototype vector for the instange Finally, symbols in bold represent
vectors and, as particular case, the syntbh@presents the vector with all components set to 0.

3. Single-Prototype Multi-Class SVM

One of the most effective multi-class extension of SVM has been profms€dammer and Singer
(2000). The resulting classifier is of the same form of Eq. (2) where €lass has associated exactly
one prototype, i.eQ = 9 andvr € Q, C(r) =r. The solution is obtained through the minimization
of a convex quadratic constrained function. Here, we derive a fotionl¢ghat, up to a change of
variables, can be demonstrated to be equivalent to the one proposadroyn€r and Singer (see
Aiolli and Sperduti (2002a)). This will serve to introduce a uniform notatiseful for presenting
the multi-prototype extension in the following sections.

In multiclass classifiers based on Eqg. (2), in order to have a corresifetation, the prototype
of the correct class is required to have a score greater than the maximumg #mecscores of the
prototypes associated to incorrect classes. The multiclass margin foratmpkex; is then defined
by

p(Xi,C|M) = (My,,Xi) — max(M;, Xi),
r#Yi
wherey; such thatC(y;) = ¢, is the index of the prototype associated to the correct label for the
examplex;. In the single prototype case, with no loss of generality, we considertatppe and the
associated class indices to be coincident, thatdsc;. Thus, a correct classification of the example
Xi with a margin greater or equal to 1 requires the condition

(My,,%i) > 6; +1 whereb; = rr;ax (My, X). (3)
I#Yi

to be satisfied. Note that, the condition above is implied by the existence of a idagirch that
vr £y, (I\7Iyi,xi) > (I\7Ir,xi>. In fact, the matrixM can always be obtained by an opportune re-
scaling of the matrisM. With these premises, a set of examples is said tinearly separableby
a multiclass classifier if there exists a matkixable to fulfill the above constraints for every pattern
in the set.

Unfortunately, the examples in the training set can not always be sepaagesome exam-
ples may violate the margin constraints. We consider these cases by intgdottimargin slack
variablest; > 0, one for each example, such that

& = [6i +1— (My, X))+,

where the symbdl].. corresponds to the soft-margin loss that is equalita > 0 and 0 otherwise.
Note that the valué; can also be seen as an upper bound on the binary loss for the exangwid
consequently its average value over the training set is an upper bouhd empirical error.
Motivated by thestructural risk minimizatiodSRM) principle in (Vapnik, 1998; Sdtkopf and
C. Burges and V. Vapnik, 1995), we search for a matfixvith small norm such to minimize the
empirical error over the training set. We use the 2-norm of the mstrixVe thus formulate the
problem in a SVM style by requiring a set of small norm prototypes to fulfillgbf constraints
given by the classification requirements. Specifically, the single-prototgmaon of multiclass
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SVM (SProtSVM in the following) will result in:

miny ¢ 6 3/ IM|[2+C3; &

vi,r #Yi, (Mr,Xi) <6, @)
subjectto: ¢ Vi, (My,,xi) > 6 +1-§;,

Vi, & >0

where the paramet€r controls the amount of regularization applied to the model.

It can be observed that, at the optimunwill be set to the maximum value among the negative
scores for the instance (in such a way to minimize the corresponding slack variables) consistently
with Eqg. (3).

The problem in Eq. (4) is convex and it can be solved in the standard ywagsbrting to the
optimization of the Wolfe dual problem. In this case, the Lagrangian is:

L(M,E,8,0,A) = %l\M!l2+Cz.E.+
er;é))/ Mr,X|> e)""
B +1—-¢& — <Myi,Xi>)— 5)
ZI)\EI

= %HM_HZ_ Zi,ryirair_(<Mr,Xi> — Bi)+
il +3i(C—af = N)E,

subject to the constraintg,A; > 0.

By differentiating the Lagrangian with respect to the primal variables andsmgahe optimal-
ity conditions we obtain a set of constraints that the variables have to fulfittierdo be an optimal
solution:

6L(Mé'2v,|9,a,)\) —0 o M =3 yalx

LMEIN 0 o C-af ~Ai=0eaf <C (6)
oL(w,&,0,0,A q
FEGN =0 & al =30

By using the factst!' = 5, a! and||M(a)|> = YijrYiyjoia(xi,X;j), substituting equalities
from Eg. (6) into Eq. (5) and omitting constants that do not change the sw|titie problem can be
restated as:

maxg 3 - af — [[M(a)[]?
: Vi,r, af >0
subject to: O
’ { vi,af' =Yz af <C

Notice that, when kernels are used, by the linearity of dot-products, thismgdunction for the
r-th prototype and a pattesncan be conveniently reformulated as

fr(X) = (M, @ Zyrakxx.

The next section includes an efficient optimization procedure for the neorergl multi-prototype
setting that includes the single-prototype case as an instance.
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4. Multi-Prototype Multi-Class SVM

The SProtSVM model presented in the previous section is here extendeatriontere than one
prototypes per class. This is done by generalizing Eq. (3) to multiple prastyp this setting, one
instance is correctly classified if and onlyaif leastone of the prototypes associated to the correct
class has a score greater than the maximum of the scores of the prototypeiatas to incorrect
classes.

A natural extension of the definition for the margin in the multi-prototype casers th

p(Xi,Ci|[M) = max(M;, xj) — max(M,X;).
red reaf

and its value will result greater than zero if and only if the example correctly classified.
We can now give conditions for a correct classification of an exaphdth a margin greater
or equal to 1 by requiring that:

IreB: (M,x)>6+1andg = m?%x (M, Xi). @)
reij

To allow for margin violations, for each examplg we introduce soft margin slack variables
& > 0, one for each positive prototype, such that

Vre R, & =6 +1— (M, X))+

Given a patterrx;, we arrange the soft margin slack variabi¢sn a vectorg; € RI%I. Let us now
introduce, for each examplg, a new vector having a number of components equal to the number of
positive prototypes fox;, 15 € {0,1}%!, whose components are all zero except one component that
is 1. In the following, we refer tag as theassignmenbf the patterrx; to the (positive) prototypes.
Notice that the dot produdfr, ;) is always an upper bound on the binary loss for the example
Xj independently from its assignment and, similarly to the single-prototype casaydinage value
over the training set represents an upper bound on the empirical error.

Now, we are ready to formulate the general multi-prototype problem byiriega set of pro-
totypes of small norm and the best assignment for the examples able to felfibthconstraints
given by the classification requirements. Thus, the MProtSVM formulatiorbeagiven as:

Miny ¢ 6.3/ M2+ C 3 (15, &;)

Vi,r € AL, (Mp,xi) <6,

Vi,r e B, <Mr,xi>zei+1—£{, (8)
Vi,re B,§ >0

Vi, T € {0,1}/%1.

Unfortunately, this is a mixed integer problem that is not convex and it is auliffproblem to
solve in general. However, as we will see in the following, it is prone to &aieifit optimization
procedure that approximates a global optimum. At this point, it is worth noticiag fince this
formulation is itself an (heuristic) approximation to the structural risk minimizatiorcypia where
the paramete€ rules the trade-off between keeping the VC-dimension low and minimizing the
training error, a good solution of the problem in Eq. (8), even if not opticet, nevertheless give
good results in practice. As we will see, this claim seems confirmed by thiéssrebtained in the
experimental work.

In the following section we demonstrate that when the assignment is fixechdbr gattern,
the problem results tractable and we are able to give an efficient prectalaolve the associated
problem.

subject to:
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5. Optimization with Static Assignments

Let suppose that the assignments are kept fixed. In this case, thedguhoblem becomes convex
and it can be solved as described above by resorting to the optimization\Wbifeedual problem.
In this case, the Lagrangian is:

Ln(M.E,8,a,8) = 3[[M|P+Cxi(m, &)+
Zi7r€1’| Gir(ei +1*E{ - <Mr’xi>)* (9)
Sirem N&+
ZiJeMG{«Ml’vXO _ei)v

subject to the constraintg ,A{ > 0.
As above, by differentiating the Lagrangian of the reduced problem anasimgpthe optimality
conditions, we obtain:

AnMEBAN _ g o M, =3y alx

oM,
LnMESIN —0 & Crif—al—N =0« af <Crf (10)
ALn(M,E,0,0\
( aa WN=0 & Sren Of = JreaOf

Notice that the second condition requires the dual variables associafgasttive) prototypes
not assigned to a pattern to be 0. By denoting now t# unique index €  such thatt =1, once
using the conditions of Eq. (10) in Eq. (9) and omitting constants that dohawtge the obtained
solution, the reduced problem can be restated as:

maxy ¥, af —|[M(a)][?

Vi,r,af >0
subjectto:{ Vi, o =3, cqc0f <C (11)
Vi,r € B\{yi}, a =0.

It can be trivially shown that this formulation is consistent with the formulaticdheSProtSVM
dual given above. Moreover, when kernels are used, the scocédn for ther-th prototype and a
patternx can be formulated as in the single-prototype case as

n
() = (Me,000) = 5 yiafk(xx).
=

Thus, when patterns are statically assigned to the prototypes via corestéorsm, the convex-
ity of the associated MProtSVM problem implies that the optimal solution for the ppnodlem
in Eg. (8) can be found through the maximization of the Lagrangian as ingmolm Eq. (11).
Assuming an equal numberof prototypes per class, the dual involves m x q variables which
leads to a very large scale problem. Anyway, the independence of amtstamong the different
patterns allows for the separation of the variables disjoint sets oim x q variables.

The algorithms we propose for the optimization of the problem in Eq. (11) sm@red by
the ones already presented in (Crammer and Singer, 2000, 2001 )ticmnsisteratively selecting
patterns from the training set and greedily optimizing with respect to the Vesiassociated to
that pattern. In particular, the authors propose a fixed-point proedduthe optimization of the
reduced problem.
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In the following, we first show that the pattern related problem can bedudbcomposed until
the solution for a minimal subset of two variables is required. This is quite simildretcMO
procedure for binary SVM. Then, a training algorithm for this problem lsa defined by iterating
this basic step.

5.1 The Basic Optimization Step

In this section the basic step corresponding to the simultaneous optimizationksfet etivariables
associated to the same pattern is presented. Let paiiera fixed. Since we want to enforce the
linear constraintgre% ap+Ap=C, Ap > 0, from the second condition in Eq. (10), two elements
from the set of variablegal,, r € Ap} U {Ap} will be optimized in pair while keeping the solution
inside the feasible region. In particular, lgtand{, be the two selected variables, we restrict the
updates to the formd; < {3 +Vv and{, « {» — v with optimal choices fow.

In order to compute the optimal value forwe first observe that an additive updét, to the
prototyper will affect the squared norm of the prototype vedidyr of an amount

A[Mc[|? = [|AM, |[* +2(M;,AM).

Then, we examine separately the two ways a pair of variables can be ddtwadptimization.

(Case 1)We first show how to analytically solve the problem associated to an updateimy
a single variable,, r € A\, and the variablery. Note that, sincé, does not influence the value
of the objective function, it is possible to solve the associated problem vdgiect to the variable
ap anday’ in such a way to keep the constrairff = 3 reny, Op satisfied and afterwards to enforce
the constraintd, = C — zse% af; > 0. Thus, in this case we have:

r

Op

— ol +v andoy’ — o +V.
SinceAM; = —Vvxp, AMy, = VX, andAMs = 0 fors¢ {r,y,}, we obtain
A|IM|[? = Af|M| [+ A[[My, |2 = 207 |xp| [ + 29 (fy, (Xp) — fr (Xp))
and the difference obtained in the Lagrangian value will be
AL(v) = 20(1— fy, (xp) + fr (Xp) = V[Xp]|?).

Since this last formula is concavewvnit is possible to find the optimal value when the first derivative
is null, i.e.
1—fy,(Xp) + fr(Xp)
2[[xp| 2
If the values ofO(;J anda}’f’, after being updated, turn out to be not feasible for the constraints
0([) >0 andoﬁ,ﬁp < C, we select the unique value farsuch to fulfill the violated constraint bounds
at the limit @}, -+v = 0 oray +v = C respectively).

v = arg n\1}a>AL(v) = (12)

(Case 2)Now, we show the analytic solution of the associated problem with respetuipdate
involving a pair of varia\blesq)l,oﬂp2 such thaty,r, € Ap andry # ra. Since, in this case, the update
must have zero sum, we have:

0(?01 — 0([)1+v andcz(rp2 — 0(;)2—\)
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In this caseAM;, = —vXp, AM;, = vXp andAMs = 0 fors¢ {ry,r»}, thus
A|M{[2 = A[[Mry [+ A[[Mr, [ = 207 [xp| [* 4+ 2v(fr, (Xp) — fry (Xp))
leading to an Lagrangian improvement equals to
AL(v) = 2v(fr, (Xp) — fr, (Xp) = V][Xp||?).-
Since also this last formula is concavevint is possible to find the optimal value

fl’l (Xp) - frz (XD) 13
2% (13

vV =arg neaxAL(v) =

Similarly to the previous case, if the values of tii¢ anda 2, after being updated, turn out to be
not feasible for the constraintx:‘p1 >0 andoqo2 > 0, we select the unique value fersuch to fulfill
the violated constraint bounds at the limit (in this case, considdfitigy) < fr,(Xp) and thus) <0
with no loss in generality, we obtatln;)1 +v=0 oroq)2 —v = C respectively).

Note that, when a kernel is used, the norm in the feature space candtiélgatl with the diago-
nal component of the kernel matrix, i.gxp||2 = k(Xp, Xp) = Kpp While the scores can be maintained
in implicit form and computed explicitly when necessary.

To render the following exposition clearer, we try to compact the two casasenThis can be
done by defining the update in a slightly different way, that is, for eash(pary) € (PoUANp) x Np
we define:

ag — g +ygv andal? «— o —yPv
and hence the improvement obtained for the value of the Lagrangian is

1
V21 = 2 (505~ ¥5)  Fukp) T )~ K ) (14)
where the optimal value for theis

Lyt —y) — fra(Xp) + fry (Xp)

V= 2K(Xp,Xp)

subject to the constraints
1
ag+yEv >0, a —ypv >0, ay, + E(y’pa —yg)v<C.

The basic step algorithm and the updates induced in the scoring functierdgeseribed in
Figure 1 and Figure 2, respectively.

5.2 New Algorithms for the Optimization of the Dual

In the previous section we have shown how it is possible to give an exghiiihal solution of the
reduced problem obtained by fixing all the variables apart for the twiablas under consideration.

In this section, we analyze different algorithms that are based on theigéepadpove. The basic
idea is the same as SMO for SVM (Platt, 1998), that is to repeat a proces$scin w
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Basi cSt ep(p, ra, I'p)

3(YiR—yP) — fra (Xp)+ fr, (Xp)

V= Kop

aqla

if (alg +ygv <0)then v = —yga

if (0P —ypv < 0)then v =ypap

e Yp | 1ira _ HC-ap
if (0 + 5(Yg —y@)v >C) then v = m&pg

return v

Figure 1: The basic optimization step: explicit optimization of the reduced probfigh two vari-
ables, namelw;)a anda;,b.

Basi cUpdat e(p, ra, p, V)
ara = ara +y|’€v, Grb = al’b +yrp§°V,

fra(Xp) = fra(Xp) +Yi5VKpp;  fr, (Xp) = fr, (Xp) — Ve VKpp;

Figure 2: Updates done after the basic optimization step has been perfanchdae optimal solu-
tion found.Kp, denotes the-th element of the kernel matrix diagonal.

¢ a minimal subset of independent multipliers are selected

¢ the analytic solution of the reduced problem obtained by fixing all the vasdhlethe ones
we selected in the previous step is found.

In our case, a minimal set of two variables associated to the same exampkdemted at each
iteration. As we showed in the last section, each iteration leads to an inaeteeLagrangian.
This, together with the compactness of the feasible set guarantees tieegmoroe of the procedure.
Moreover, this optimization procedure can be considered incremental getise that the solution
we have found at one step forms the initial condition when a new subsatiables are selected
for optimization. Finally, it should be noted that for each iteration the scdréseqatterns in the
training set must be updated before to be used in the selection phase.effdralgoptimization
algorithm just described is depicted in Figure 3.

In the following, we present three alternative algorithms for the optimizatidgheproblem in
Eq. (11) which differ in the way they choose the pairs to optimize through theties, i.e. the
Optimi zeOnPat t er n procedure.

The first practical and very simple algorithm for solving the problem in Ef)) ¢an be derived
from the steps given above where at each iteration a pair of multipliers @egknd then optimized
according to the analytic solution given in the previous section until someecogence criterion
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OptimizeStati cProbl emdy)
repeat
Patt er nSel ecti on(p) // Heuristically choose an exampbebased on Eq. (14)
Opti mi zeOnPat t er n(p, ¢v)

until converge.

Figure 3: High-level procedure for the optimization of a statically assigndd-prototype SVM.
The parametedy is the tolerance when checking optimality in & i m zeOnPat t ern
procedure.

Basi cOpti m zeOnPat t ern(p, ¢v)
Heuristically choose two indexeg # r, based on Eq. (14)
v = Basi cStep(p,ra,rp)

Basi cUpdat e(p,ra,rp,V)

Figure 4: SMO-like algorithm for the optimization of statically assigned multi-prat$VM.

is fulfilled. Eq. (14) gives a natural method for the selection of the two keginvolved, i.e.
take the two indexes that maximize the value of that formula. Finally, once chasevariables
to optimize, the basic step in the algorithm in Figure 1 provides the optimal solutibis. véry
general optimization algorithm will be referred toBesi cOpt i mi zeOnPat t er n and itis illustrated
in Figure 4.

A second method to solve the optimization problem in Eq. (11) is given in the fiigpand
can be also considered as an alternative method to the Crammer and Siedgydint algorithm
for the optimization over a single example (Crammer and Singer, 2001). Thi®detmsists in
fixing an example and iterating multiple times the basic step described above onfpairgbles
chosen among that associated to the pattern into consideration until soneegeomoe conditions
local to the pattern under consideration are matched. Notice that this algoetjuines just a sin-
gle step in the binary single-prototype case. In Figure 5 the pseudo-€dlde proposed pattern
optimization algorithm referred to & | Pai r sQpt i mi zeOnPatt ern is presented. At each step,
the algorithm applies the basic step to then— 1) /2 pairs of variables associated with the pattern
chosen for optimization until a certain condition on the value of the incremahedfagrangian is
verified. Iterating multiple times the basic step described above on pairsiabla chosen among
that associated to a given pattern it is guaranteed to find the optimality condititirefpattern. The
optimization step of this reduced problem can require the optimization over ajfth@n—1)/2
pairs of variables not constrained to 0 associated with the selected pattersmthE complexity of
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Al'l Pai rsOptim zeOnPattern(p, ¢v)
t=0,V(0) =0.
do
t—t+1,V(t)=0
For eachry #r;
v =Basi cStep(p,ri,ra)
V() =V(t)+2v (¥ —Y2) — fr,(Xp) + frp(Xp) — VKpp)
Basi cUpdat e(p,rq,rz,v)
until (V' (t) < dv)

Figure 5: Algorithm for the incremental optimization of the variables associaiitda given pat-
tern of a staticallly assigned multi-prototype SVM

the optimization of the reduced problem@$(mq)?l) wherel is the number of iterations.

Now, we perform a further step by giving a third algorithm that is cleadyefathan the previous
versions having at each iteration a complexiiymag). For this we give an intuitive derivation of
three optimality conditions. Thus, we will show that if a solution is such that afie¢twnditions
are not fulfilled, then this solution is just the optimal one since it verifies the K&fditions.

First of all, we observe that for the variablgs},, A} associated to the pattexg to be optimal,
the valuev returned by the basic step must be 0 for each pair. Thus, we can cotigde/o cases
above separately. For the first case, in order to be able to apply thetstepecessary for one of
the following two conditions to be verified:

(W) (a0 <C)A(fy, (Xp) < MaXeny, fr(Xp) +1)

(W2) (o > 0) A(fy,(xp) > maX cag, aro fr(Xp) +1)
In fact, in Eq. (12), when there existsc A, such thatfy, (xp) < fr(xp) + 1, the conditiorv > 0
holds. In this case the paioiy ,a},) can be chosen for optimization. Thus, it mustd{é <Cin
order to be possible to increase the values of the pair of multipliers. Alteeﬂwtlf/a >0 and
there exists an indexsuch thai}, > 0 andfy, (xp) > fr(xp) +1 thenV < 0 and (at least) the pair

(of, o ) wherek = argmaxcy, o >0 fr (xp) can be chosen for optimization. Finally, from Eq. (13),
we can observe that in order to haweé 0, we need the last condition to be verified:

(W3)  (ag’ > 0) A (Maxeng fr(Xp) > Mincog ar.-0 fr(Xp))

In fact, in Eq. (13), if there exists a pafog,ai) such thatf, (xp) > fr,(Xp) andal? > 0O, the
conditionV > 0 holds for this pair and it can be chosen for optimization.
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Note that inW, andW5 the conditiorlo(},f)'D > 0 is redundant and serves to assure that the second
condition makes sense. In fact, when the first condition is not verifiedyowtd havea = 0 and
the second condition is undetermined.

Summarizing, we can give three conditions of non-optimality. This means tretevir at least
one among these conditions is verified the solution is not optimal. They are

(8) (o <C) A (fy,(Xp) < My, fr(Xp) +1)
(b) (ag >0)A(fy,(xp) > maX ¢ g, ar, >0 fr (Xp) +1) (15)
(©) (a)F/Jp >0)A (ma)?e% fr (Xp) > minre%,,o(?po fr (Xp))

Now we are able to demonstrate the following theorem showing that when e@fothese
conditions are satisfied the conditions of optimality (KKT conditions) are vdrifie

Theorem 1 Leta be an admissible solution for the dual problem in Eq. (11) not satisfying &ny o
the conditions in Eq. (15), themis an optimal solution.

Proof. We consider th&kuhn-Tuckertheorem characterizing the optimal solutions of convex
problems. We know from theoretical results about convex optimization dnat $olutiona to be
optimal a set of conditions are both necessary and sufficient. Thed#iona are the one reported
in Eq. (10) plus the so-calleldarush-Kuhn-Tucke(KKT) complementarity conditions that in our
case correspond to:

(@) Vp,re Py, a%(ep +1- E{O —fr(Xp)) =0
(b) Vp,re®, AE,=0 (16)
(©) Vp,veNp, op(fu(xp)—6p)=0.

Then, we want to show that these KKT complementary conditions are satisfighe solution
ap for everyp e {1,...,n}. To this end let us fix an indeg and consider a solution where all the
conditions in Eq. (15) are not satisfied. We want to show that the KKTitond in Eq. (16) are
verified in this case.

First of all, we observe that for all the variables associated to a posittetgper € 2, not
assigned to the patterp, thatis such thati, = 0, from Eq. (10) we trivially haver, = 0 and\;, = 0
thus verifying all conditions in Eqg. (16).

Let now consider the case < 0(3,3" < C. In this case the non applicability of condition in
Eqg. (15)c says thdly = max,ca;, fv(Xp) andvv € Ap, o > 0= fu(xp) = Bp that is the condition
in Eq. (16)c holds. Moreover, the condition in Eqg. (15)a, if not satisfieglies fy (xp) > 0y +1,
thusa}’ = 0 andg}® = 0 thus satisfying the conditions in Eq. (16)a and Eq. (16)b.

Let now consider the cas%’) = 0. The conditions in Eq. (16)a and Eq. (16)c follow immedi-
ately. In this case, Eg. (15)b and Eqg. (15)c are not satisfied. Fdra@haerns the Eqg. (15)a it must
be the casdy, (Xp) > MaX,cq; fv(xp)+1 and soﬁ%" = 0 thus verifying the condition in Eq. (16)b.

Finally, in the case(%p =C, from Eq. (10) we hava = 0 and hence the condition in Eq. (16)b
is verified. Moreover, from the fact that Eq. (15)c is not satisfigde Ay : o)) > 0= 0p =
max cag, fr(Xp) < fu(Xp) = Bp = fu(xp) and the condition in Eq. (16)c holds. Moreover, from
condition in Eq. (15)b we obtaify, (xp) < 8p+1 andé}’ = 6+ 1— fy (Xp) thus implying the truth
of the condition in Eq. (16)d]
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Opt KKTOpt i mi zenPat t er n(Xp,dv)
vr, fri= fr(xp) = ZihaYiark(xi, Xp), Kpp = K(Xp, Xp);
do
if (a}f = 0) then {
r1:=argmaxeq, fr;
vy :=Basi cStep(p, Yp, r1); Vi i= 2v1(1— fy, + fr, —viKpp);
k:=1}
else{
r1i=argmaxcqg fri rai=argmaxcag ar o fri ra = argmineag or o fr;
v1 1= Basi cStep(p, yp, r1); Vi i= 2v1(1— fy, + fr, —viKpp);
V2 1= Basi cStep(p, Yp, r2); Va i= 2v2(1— fy, + fr, —vaKpp);
v3 = Basi cStep(p, r1, ra); Vs := 2v3(fr, — fr, — VaKpp);
k:=argmaxV;; }
casek of {
1: Basi cUpdat e(p,yp,r1,v1);
2: Basi cUpdat e(p,yp.r2,v2);
3: Basi cUpdat e(p,r1,ra,vs); }
until (Vk < ¢v);

Figure 6: Algorithm for the optimization of the variables associated with a gpegternx, and a
tolerancepy.

All the conditions in Eq. (15) can be checked in time linear with the number o$etadf none
of these conditions are satisfied, this means that the condition of optimality bagdend. This
consideration suggests an efficient procedure that is presented e Bigluat searches to greedily
fulfill these conditions of optimality and it is referred to s KKTOpt i m zeOnPat t er n. Briefly,
the procedure first checks if the conditiop = 0 holds. In this case, two out of the three conditions
do not make any sense and the choice of the pair to optimize is mandatorywi3thehree indexes
(r1,rz,r3) are found defining the conditions in Eq. (15). Then for every pair @ased to the
condition a basic step is performed and the pair obtaining the larger improvantke Lagrangian
is chosen for the effective update.
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5.3 Selection Criteria and Cooling Schemes

The efficiency of the general scheme in Figure 3 is tightly linked to the stré@ggd on which the
examples are selected for optimization.

The algorithm proposed in (Crammer and Singer, 2001) is just an instéttoe game scheme.
In that work, by using the KKT conditions of the optimization problem, the astderive a quan-
tity s > O for each example and show that this value needs to be equal to zeroggtitnem.
Thus, they use this value to drive the optimization process. In the baselinemewtation, the
example that maximizag; is selected. Summarizing, their algorithm consists of a main loop which
is composed of: if an example selection, via thlg quantity, (i) an invocation of a fixed-point
algorithm that is able to approximate the solution of the reduced pattern-relatbiem andi{i)
the computation of the new value @f for each example. At each iteration, most of the computa-
tion time is spent on the last step since it requires the computation of one row kdthel matrix,
that one relative to the pattern with respect to which they have just optimizgd.isTwhy it is so
important a strategy that tries to minimize the total number of patterns selectegtiimization.
Their approach is to maintain an active set containing the subset of pattesing ; > € wheree
is a suitable accuracy threshold. Cooling schemes, i.e. heuristics badedlgradual decrement of
this accuracy parameter, are used for improving the efficiency with lagselts.

In our opinion, this approach has however some drawbacks:

i) while i; =~ 0 gives us the indication that the variables associated to the pattemalmost opti-
mal and it would be better not to change them, the actual wgldees not give us information
about the improvement we can obtain choosing those variables in the optimjzation

i) cooling schemes reduce the incidence of the above problem but, as weesyilhey do not
always perform well;

iii) at each iteration, the fixed point optimization algorithm is executed from $cratd previously
computed solutions obtained for an example can't help when the same exarshlesen
again in future iterations; in addition, it is able to find justawproximatedsolution for the
associated pattern-related problem.

According to the above-mentioned considerations, it is not difficult to defimumber of criteria
to drive a 'good’ pattern selection strategy, which seem to be promising.on&der the following
three procedures which return a valjgthat we use for deciding if a pattern has to be selected for
optimization. Namely:

i) Original KKT as defined in Crammer and Singer’'s work (here denoted XKiTthis case, the
value ofV, corresponds to thgs,;

ii) Approximate Maximum Gain (here denoted AMG): in this case the valué,a computed
as: max,.r, Vit r,(V) as defined in Eq. (14). Notice that this is a lower bound of the total
increment in the Lagrangian obtained when the patteisiselected for optimization and the
optimization on the variables associated to it is completed;

iii) True Maximum Gain (here denoted BMG): in this case the value is computegl itesiatively
Eqg. (14) and it represents the actual increment in the Lagrangian otbtafren the patterp
is selected for optimization.
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At the begin of each iteration, a threshold for pattern seledpis computed. For each example
of the training set one of the above strategies is applied to it and the exampledged for opti-
mization if the value returned is greater than the threshold. The definition tfrggholddy can be
performed either by a cooling scheme that decreases its value as the itpratierds or in a data
dependent way. In our case, we have used a logarithmic cooling sclimeedlss is the one that
has shown the best results for the original Crammer and Singer appioaatidition, we propose
two new schemes for the computation of the valye MAX where the threshold is computed as
By = 1 max,Vp, 0 < pu < 1, and MEAN where the threshold is computedas= %zgzlvp.

5.4 Experiments with Pattern Selection

Experiments comparing the proposed pattern selection approaches trersLrammer and Singer
one has been conducted using a dataset consisting of 10705 digitengidiken from the NIST-3
dataset. The training set consisted of 5000 randomly chosen digits.

The optimization algorithm has been chosen amanghe base-line Crammer and Singer orig-
inal fixed-point procedure (here denoted CiB);Al | Pai rsOpti ni zeOnPatterns (here denoted
ALL); iii) BasicOptinm zeOnPatterns (here denoted BAS). In the first experiments we used a
cache for the kernel matrix of size 3000 that was able to contain all the mawix associated
to the support vectors. For all the following experiments a AMD K6-11, I[d6, with 64MB of
memory has been used.
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Figure 7: The effect of the logarithmic cooling scheme on different sel@cjdimization strate-
gies.

In Figure 7 the effect of the application of the logarithmic scheme of coolingddliffierent
selection/optimization strategies is shown. It is possible to note that even ifdpegad selection
strategies largely improve the convergence rate, the optimal solution cha rezched. This clearly
shows how cooling schemes of the same family of that proposed in (Cramuh&iager, 2001)
are not suitable for these new proposed selection strategies. This is mostly the fact that the
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Figure 8: Comparison of different heuristics for the computation of theajufor the SMO-like

algorithm.

9000
8000
7000
6000

5000

| agrangi an

4000

3000

2000 Ff

1000 :

KKT/ ALL

I
500 1000
secs.

Figure 9: Comparison of different selection strategies using the heuri&aNv

logarithmic function is very slow to converge to zero, and because of treyaiue returned by
the strategies will be soon below the threshold. In particular the logarithmitidnemains on

a value of about @ for many iterations. While this value is pretty good for the accuracy of the
KKT solution, it is not sufficient for our selection schemes. In Figure 8dint heuristics for
the computation of the valug, of the selection strategy of the SMO-like algorithm are compared.
In this case the very simple heuristics MAX and MEAN reach similar performanbich is much
better than the baseline scheme. In Figure 9, given the heuristic MEARIaliffselection strategies

834



MULTICLASS CLASSIFICATION WITH MULTI-PROTOTYPESUPPORTVECTORMACHINES

8000

7000

6000

5000

4000

| agr angi an

3000

2000 | /7

1000 4 AMF ALL Cache 100 —— -
; BM& ALL Cache 100 -------

KKT/ ALL Cache 100 --------

BNG/BA§ Cache 100

I
0 500 1000 1500 2000
secs.

(@)

50

"KKT/ ALL Cache 100
' AMG/ ALL Cache 100 -------
45 | i

40 |
35+
30

25 |

test error

20 |

15

10

Il
0 1000 2000 3000 4000 5000 6000

Figure 10: The effect of the cache limitatiofa) Lagrangian value versus timéb) test perfor-
mance versus time.

are compared. In this case, the new strategies slightly outperform theasad bn Crammer and
Singer’s KKT conditions. Actually, as we will see in the following, this slight imy@ment is due
to the big size of the cache of kernel matrix rows that prevents the algoriifferiag of the large
amount of time spent in the computation of kernels that are not present inthe.c

In order to reproduce conditions similar to the ones occurring when deaiihdarge datasets,
the size of the cache of kernel matrix rows has been reduced to 100 Asnisis possible to see
in figure 10-a a decrease in the performance is evident for each metbwdyér, this decrease
becomes more evident when KKT conditions are used as the pattern sekcdimgy. From the
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same figure we can see also a quite poor performance when the baiin wéthe SMO-like is used
as a global optimization method. This demonstrates how important is to solve ttzdl pveblem
one pattern at time. In fact, this leads to a decrease of the total number ohpat&tected for
optimization and consequently to a decrease of the number of kernel cdiopsital his puts also
in evidence the amount of time spent in kernel computation versus the anfdimespent in the
optimization. Figure 10-b clearly shows that the same argument can be atgpttesirecognition
accuracy.

5.5 Brief Discussion

The type of strategies we have analyzed in earlier sections are very sinmhardgaes used by SMO
(Platt, 1998), modified SMO (Keerthi et al., 1999) and svmlight (Joachi®@@9)lalgorithms for
binary SVM. In these cases, linear constraints involving dual variabthéshvare related to different
patterns (derived by KKT conditions over the bias term) are presentettmwin our case, as in the
Crammer and Singer’s algorithm (Crammer and Singer, 2001), constraiolgardual variables
which are related to the same pattern (but over different prototypeis nTdkes a difference in the
analysis since it turns out that it is convenient to optimize as much as possbkdilinced problem
obtained for a single pattern as this optimization does not require the compuitiew kernels.
This claim is supported by our experimental results comparing BMG-ALIBXG-BAS in Figure
10.

Also, we have shown experimentally that the use of heuristics based onctlease of the
Lagrangian tend to be faster than KKT based ones, when used forpsgtection (compare BMG-
ALL vs. KKT-ALL in Figure 10). This can be due to the fact that the numbkdifferent patterns
selected along the overall optimization process tends to be smaller and thig Gamggpensates the
inefficiency derived by the computation of the increase of the Lagraradrthe thresholds. On
the other hand, according to the same experimental analysis, KKT condigmsvhen used for
the choice of pairs to optimize in the reduced problems obtained for a givempaAccording to
these considerations, this mixed approach has been adopted in the expethmefollow.

6. Optimization of General MProtSVM

By now, we have analyzed the (static) problem obtained when the assigisng@ren. In this sec-
tion, we describe methods for the optimization with respect to the assignmastsell. Naturally,
the full problem is no longer convex. So, we first present an effipemtedure that guarantees to
reach a stationary point of the objective function of the problem in Eqg8ciated to MProtSVM.
Then, we insert it in a stochastic search framework with the aim to improveutiléygof the solu-
tions we find.

6.1 Greedy Optimization of MProtSVM

In the following, an algorithm for the optimization of the problem in Eq. (8) isctibed. The
algorithm consists of two steps: a step in which, fixed the values for thd gatiablesa, we select

the assignmentg's in such a way to minimize the primal value, followed by a step in which the
optimization of the variablea is performed once fixed the assignments. Each of these steps will
lead to an improvement of the objective function thus guaranteeing thergemee to a stationary
point.
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Let suppose to start by fixing an initial assignmerit) for the patterns. As we have already
seen, the associated problem is then convex and can be efficiently solvedample by using
the general scheme in Figure 3. Once that the optimal value for the primaay{d:tﬁa , has
been reached, we can easily observe that the solution can be furthe@vedgry updating the
assignments in such a way to associate each pagtéora positive prototype having associated the
minimal slack value, i.e. by setting the vect@(2) so to have the unique 1 corresponding to the
best performing positive prototype. However, with this new assignmg)t the variablesx may
no longer fulfill the second admissibility condition in Eq. (10). If this is the ¢c#ts@mply means
that the current solutioll (o) is not optimal for the primal (although still admissible). Furthermore,
o cannot be optimal for the dual given the new assignment since it notaglrissible. Thus, a
Lagrangian optimization, done by keeping the constraints dictated by the #allityssonditions
in Eq. (10) satisfied for the new assignment, is guaranteed to obtain a meth a better optimal
primal vaIueP,’i[(2>, i.e. P,’i[(2> < P,’fm). For the optimization algorithm to succeed, however, KKT
conditions ona have to be restored in order to return back to a feasible solution and ttadly fin
resuming the Lagrangian optimization with the new assignnmé®t. Admissibility conditions
can be simply restored by settiog = 0 whenever there exists amye & such that the condition
aj > 0A T =0 holds. Note that, when the values assigned to the slack variables allowrie defi
a new assignment far corresponding to a new problem with a better optimal primal value, then,
because of convexity, the Lagrangian of the corresponding dulaleggmowill have an optimal value
that is strictly smaller than the optimal dual value of the previous problem.

Performing the same procedure over different assignments, eachiaiesal from the previous
one by the procedure described above, implies the convergence dftrihen to a fixed-point
consisting of a stationary point for the primal problem when no improvemeetsassible and the
KKT complementarity conditions are all fulfilled by the current solution.

One problem with this procedure is that it can result onerous when deetim¢arge datasets or
when using many prototypes since, in this case, many complete Lagrangiieaizapons have to
be performed. For this, we can observe that for the procedure tq afekch step, it is sufficient to
stop the optimization of the Lagrangian when we find a value for the primal viftobtter than the
last found value and this is going to happen for sure since the last soluti®fionrnd not optimal.
This requires only a periodic check of the primal value when optimizing thedragan.

6.2 Stochastic Modifications for MProtSVM Optimization

Another problem with the procedure given in the previous section is thaadisléo a stationary
point (either a local minima or a saddle point) that can be very far from thegmssible solution.
Moreover, it is quite easy to observe that the problem we are solving isinatokial. In fact, since
the induced problem is convex for each possible assignment, then theexisfla unique optimal
primal valueP* (1t o* (1)) associated with optimal solutiows (1) for the assignments. Thus, the
overall problem can be reduced to find the best among all possible assig; However, when
assuming an equal numbeof prototype vectors for each class, theregpossible solutions with
many trivial symmetries.

Given the complexity of the problem we are trying to optimize, we propose tatessiochastic
search techniques. Specifically, the approach we suggest candidazed an instance of Iterated
Local Search (ILS). ILS is a family of general purpose metaheuristicirfiding good solutions
of combinatorial optimization problems (Lourenco et al., 2002). These itligts are based on
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building a sequence of solutions by first perturbing the current solutiohtizen applying local
search to that modified solution.

In the previous section, a way to perform approximated local seardbdeasgiven. Let us now
consider how to perturb a given solution. We propose to perform arpaitan that is variable with
time and is gradually cooled by a simulated annealing like procedure.

For this, let us view the value of the primal as an energy function

1 2
E(m) = 5[IM]] +Clz<ﬂi,2i>-
Let suppose to have a pattetnhaving slack variable§ , r € B, and suppose that the probability
for the assignment to be in the state of natsifee. with thes-th component set to 1) follows the
law

D (S) 0 e—AES/T

whereT is the temperature of the system akies = C(£° — &) the variation of the system energy
when the pattern; is assigned to theth prototype. By multiplying every termp;(s) by the nor-
malization terme® &' —&)/T where&? = min,.4 & and considering that probabilities over alternative
states must sum to one, i, pi(r) = 1, we obtain

1 ceE-E)
T

pi(s)

with Z = 5., € C&-8)/T the partition function.

Thus, when perturbing the assignment for a patkgreach positive prototypgwill be selected
with probability pi(s). From Eq. (17) it clearly appears that, when the temperature of the sistem
low, the probability for a pattern to be assigned to a prototype different fr@ one having minimal
slack value tends to 0 and we obtain a behavior similar to the deterministic vefsrenadgorithm.
The simulated annealing is typically implemented by decreasing the temperattire rasnber of
iterations increases, by a monotonic decreasing fundtienT (t, Tp).

Summarizing, an efficient realization of the ILS-based algorithm is obtaipedlbstituting the
true local optimization with one step of the algorithm in Section 6.1 and is given uréitl.

7. Generalization Ability of MProtSVM

In this section, we give a theoretical analysis of the generalization abilityedfifarotSVM model.
For simplicity, we consider MProtSVM with a fixed numberof prototypes per class. We first
assume training data being separated by a MProtSVM model and we giveganrhased upper
bound on the error that holds with high probability on a independently geatkset of examples.
Then, we give a growth-function based bound on the error which tlassume linear separability
of training data.

Margin based generalization bound Let us suppose that am.d. sampleS$ of n examples and a
modelM are given such that the condition in Eq. (7) holds for every exampfe ire.

V(xi,¢) € S,Ir € B: (M,X;) > 6 +1 and; = max (M,,X;).

reaf
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AnnealedMProtSVM()
T := To; randomly initializery(1);
compute the primak (1) := Pry1)(0);
fort =1,..,tmax
do for all the exampleg, € S
ap = OptimizeOnPatterng , £);
until Py (o) < E(t);
compute a new assignmem(t + 1) usingT (t, To) in Eq. (17);
compute the new prima& (t + 1) := Py 1) (Q);
restore KKT conditions on /*see Section 6*/

end;

Figure 11: Fast annealed algorithm for the optimization of MProtSVM.

With this assumption, fixing a pattery, there will be at least one slack variat&l{g associated
with it, equal to zero. In fact, the conditidfy = O is true at least in the case= yp, wherey, is the
positive prototype associated to the pattegni.e. such tharP{)" > 0.

To give the margin-based bound on the generalization error, we usarnietechnique as in
an(Platt et al., 2000) for general Perceptron DBA&nd thus SVM-DAG also), i.e. we show how
the original multiclass problem can be reduced into one made of multiple binaryiates. The
structure of our proof resembles the one given in (Crammer and Sir@f#d) Bor single-prototype
multiclass SVM.

A Perceptron DDAG is a rooted binary DAG with leaves labelled by the classes where each
of theK = m(m— 1) internal nodes is associated with a perceptron able to discriminate between two
classes. The nodes are arranged in a triangle with the single root nthdetap, two nodes in the
second layer and so on until the final layemofeaves. The-th node in layerj < mis connected
to thei-th and(i + 1)-st node in the j + 1)-st layer. A Perceptron DDAG based classification can
also be though of as operating on a list of classes with associated a setepons, one for each
different pair of classes in the list. The evaluation of new patterns is madedbyating the pattern
with the perceptron discriminating the classes in the first and in the last positite tist. The
losing class between the two is eliminated from the list. This process is repedtednly one
class remains in the list and this class is returned.

Similarly, MProtSVM classification can be thought of as operating on a listp&#gthe index
of prototypesr € R= {1,...,mq} are ordered according to their clag¢r) € {1,...,m}. Then,

1. Note that the term "perceptron” here simply denotes a linear decismmtidn which is not necessarily produced by
the "perceptron algorithm”.
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given a new pattern, we compare the scores obtained by the two protatyieshead and in the
tail of the list and the loser is removed from the list. This is done until only prpastyof the same
class remain on the list and this is the class returned for the pattern unchideration. It is easy
to show that this procedure is equivalent to the rule in Eqg. (2).

In the following, we will refer to the following theorem giving a bound on trengralization
error of a Perceptron DDAG:

Theorem 2 (Platt et al., 2000) Suppose we are able to classify a random sample ditldlegam-
ples using a Perceptron DDAG on m classes containing K decision nodemaitiny; at node i,
then we can bound the generalization error with probability greater thard to be less than

2(2n)K
5 )

%(130?2D’ log(4en) log(4n) + log(

where D = ziK:lyfz, and R is the radius of a ball containing the support of the distribution.

Note that, in this theorem, the margjrfor a perceptroriw;, b;) associated to the pair of classes
(r,s) is computed ag; = ming ¢ (s [(Wi,Xp) — bi|. Moreover, we can observe that the theorem
depends only on the number of nodes (number of binary decisions)a@eslrebt depend on the
particular architecture of the DAG.

Going back to MProtSVM, for the following analysis we define the hypemplag = M, — Ms
for each pair of prototypes indexes such thatC(r) < C(s). and thesupportof the hyperplanevs
as the subset of patterns

Ms={ic{l,....,n}:(re BAT >0)V(SEBATT >0)}.

Now, we can define the margin of the classifief(x) = (ws,X) as the minimum of the (geo-
metrical) margins of the patterns associated to it, i.e.

=min 18
yrS iels HWrsH ( )

Note that, from the hypothesis of separation of the examples and from thevevdefined the
margin, we havehs(x;)| > 1 and hence the lower bound on the mangin> ||ws|| 2.

Now, we can show that the maximization of these margins leads to a small gestévalizrror
by demonstrating the following result.

Lemma 3 Suppose we are able to classify a random sample of labelled examples iiRTQtS VM
with q prototypes for each of the m classes with maxgirwhen(C(r) < C(s), then we can bound
the generalization error with probability greater thdn- 6 to be less than

%(13CRZD log(4en) log(4n) + log( Z(ZQ)K )

where D=3 ¢ r(r)<c(s Vis2» K= 30Pm(m— 1), and R is the radius of a ball containing the support

of the distribution.
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Proof. First of all, we show that an MProtSVM can be reduced to a Perceptroh@Det
be given prototype indicese R= {1,...,mq} ordered according to their clag¥r) € {1,...,m}.
Consider two cursorsands initially set to the first and the last prototypeR) respectively. Now,
we build a DAG node fofr,s) based on the classifigfs. Then, recursively, left and right edges are
built associated to nod¢s s— 1) and(r + 1, s) respectively. This is made until the conditioxr) =
C(s) =t holds. When this is the case, a leaf node is built instead with taldéiis construction is
based on the fact that there is not need to compare the scores obtaipextdiypes associated to
the same class.

We show now that the number of nodes in the skeleton of a DAghich is built in this way is
exactlyK = %qzm(m— 1). In fact, consider the DA®' obtained by keeping on constructing DAG
nodes(r,s) until the conditionr = s holds, instead of just’(r) = C(s). This graph would be the
same that would have been obtained by considarigglasses with one prototype each. Note that
D’ is balanced and it consists éfnq(mq— 1) nodes. It follows that, to obtain the DABG, for each
classy, we subtract the subDAG constructed by considering all poskjbteq(q—1)/2 pairs of
prototypes associated to that class.

Summarizing, the number of nodes of the DAGs the number of nodes of the balanced DAG
D’ minus the total number ofik, subDAG nodes. That is we get:

K= %mQ(mq— 1) - m(%q(q ~1)) = %qzm(m— 1).

Now, we can apply Theorem 2, by considering a Perceptron DDAGKvitbdes associated to pairs
r,s: C(r) < C(s) and the margin for the node, s) defined as in Eq. (18)]

By now, we have demonstrated that the minimization of the @rmy s (1)< Y2 propor-
tional to the margin of the nodes of the Perceptron DDAG we have congiruetals to a small
generalization error. This result can then be improved by showing hase thargins are linked to
the norm of the MProtSVM matri¥ and finally proving the following theorem.

Theorem 4 Suppose we are able to classify a random sample of n labelled examplgsausin
MProtSVM with g prototypes for each of the m classes and matrix M, thenmieazand the gener-
alization error with probability greater thad — o to be less than

% <13CR2q(m— 1+ q)|[M||?log(4en) log(4n) + log( 2(2n)” )>

0
where K= %qzm(m— 1) and R is the radius of a ball containing the support of the distribution.

Proof. First of all, note that we havg.? < ||wis||? = ||M; — Mg||2 and 5, M; = 0. The second
condition can be easily verified. In fact, from conditions in Eq. (10),llbfes

SM =Y S vialx = 3 (3 yialx =0
r ro r

0

Now, we have
Zr,s: C(r)<C(s) HMF - MS| |2 = Q(m_ 1) 2r ||Mr | ‘2 - 22r,s:C(r)<C(s)<Mra |V|5>. (19)
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The second term of the equation above is

zrs c(r (Mr,l\/l > = (er<'\/|r» > zrs c(r <Mr,|\/| >)
er c(r <Mr>M > (20)
(ZrHM H +Zr5£s C(r :C(s)<Mr7Ms>)~

where the following inequality holds

Zr;és, C(r):C(s)<MrvMS> ZJ 1Zr;és C(r)=C(s)= (Mr,l\/l >
q Zy—lHMyH (21)

o 3 |IM]?

once we sely = argmax. c(n=y|IMr||. Finally, substituting back Eg. (21) in Eq. (20) and Eq. (20)
in Eg. (19) we obtain:

ININ A

D<q(m—-1+0q) y [|M||?
r

and the theorem easily follows. Note that this bound nicely generalizessketaingle prototype
per class already shown in (Crammer and Singer, 2000).

Growth function based generalization bound In the following, we give another kind of analysis
of the generalization capability of our model based on the growth functiorder to do that, it
is convenient to show that our multi-prototype model is equivalent to a tayee-network of per-
ceptrons where the weights of the second and third layer are decidme keirning. Thus, the free
parameters of the network are only the weights of perceptrons in the ¥iest las before, with no
loss of generality, we assume to hayprototypes for each clagsc .

Given a MProtSVMHy (), the corresponding networky,, is constructed as follows (we as-
sume threshold perceptrofs, 8) with outputo(x) = sign((w,x) — 0)):

First layer:Vr,se Q, C(r) < C(s), define the perceptrdm(S with weight vecton/v%) =M, — Mg
andeﬁg) =0;

Second layer (AND)Yue 9 ={1,...,m}, Vv e Q : C(v) = u define the perceptronf,), taking
input from aIIhEQ such thar = vor s= v and connection equal to 11if=v, —1 otherwise;
set threshold to the valﬁf,) =qg(m—1)—0.5 ("on” if all the inputs are 1).

Third layer (OR):¥w suchthat we 9 = {1,...,m} define the perceptrdm(,f), taking input from
all h{Z) suchthat w= u and connections all equal to 1; set the threshold to the Bifle- 1/2
("on” if any input is 1).

See Figure 12 for an example of network construction wdpen2 andm = 3. Notice that, by
construction, for any input there will be no two activated percepthﬁﬁsand hf]%) such thau # Q.

So, only one out of the perceptrons at the third layer will be activatadlitaindex will correspond
to the predicted class.

The constructed network has= M perceptrons at the first layer. Since only these per-
ceptrons have trainable weights, the VC dimension of the network onlyndspmn these free pa-
rameters (apart for the hard-threshold functions).

We are now ready to state the following result.
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Figure 12: Example of network construction whga- 2 andm = 3. With this setting, prototypes
M1 andM, are associated with class 1, prototypésandM, are associated with class
2, and prototypeMs andMg are associated with class 3.

Theorem 5 For any0 < & < 1, any MProtSVM I, (-) with q prototypes for each of the m classes,
givens a sample of size n drawn i.i.d. frofiza, (1 ), With probability at leastL—

3y

1+ (gqm+ 1)In(qm) + 4E™-D 1y 2en/d) — In(5/4) 1

- =

errp(Hw) < errg(Hu) + \/4

Proof. By the above construction, the class of functions computable by a MProtsNg pro-
totypes for each of then classes is contained in the class of functions computable by three-layer
perceptrons defined as above. This class of functions is completelctbdred by the set of col-
lective states that the perceptrons at the first layer can assume. It is well known (Keards an
Vazirani, 1994) that, by Sauer Lemma, the growth function of a single peore(with 0 threshold)

is bounded from above by the quantisn/d)?, and so the growth function of our class of networks
is bounded from above by the quantign/d)d°.

This bound, however, does not consider that not all the possiblegowafions ofo bits can

be generated by the first layer. In fact, by construction of the netwegkyave that ifng> (x)=1
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andhg) (x) =1, then for surehg)(x) =1, as well as, ihy (x)=0 andhg) (x) = 0, then for sure
hg) (x) = 0. This is the result of the fact that, given an input vectpthe outputs of the first
layer perceptrons are fully determined by the total order over the MPMtBMtotypes induced

by the score functiond;(-). Thus we can compute an upper bound on the proportion of ’legal’
configurations by considering all possible permutations ofjth@rototypes divided by all possible
configurations, i.e.,2 Notice that this is an upper bound since when considering prototypes of th
same class, we do not care about their relative order.

So we can bound the growth function of our class of networks by

(qu)! (er/d)® < \/2rgm(qm/e)Metm2-% (en/d)%°,

where the last inequality has been obtained by using Stirling’s formula.
Making explicit the value 06, the right term of the above inequality can be written as

dfm(m-1)  6q3m2(m—1)(d—In(2)—12¢2nmP+1

V2r(gm)I™ 3 (n/d) T e e

Now, we can apply Theorem 4.1 in (Vapnik, 1998) (involving the logaritliine growth function
for a sample of dimensiom obtaining

errp(Hu(:)) < errs(Hu(-))+

+\/4ln<ﬁr<qm>qm+%<%>

dePmm-1) 6a3m2(m-1)(d-In(2))-12q2mP+1
2 12m )=In(§) 1

1+ (gm+ 1)in(gm) + ML jn2en_nd g
< errS(HM('))+\/4 (am-+ 3)In(am - 2 4 4+ﬁ

g

8. Experimental Results

In the following, we report experiments we have done for testing the compkexd the general-
ization performance of the MProtSVM model with respect to other stateesthalgorithms. We
choose to compare our model against results already published in litecstiéferent datasets
instead of doing experiments with those methods directly. This is becausereraditzavailable the
code for all those methods and hence a re-implementation would be ngcds$saican potentially
introduce errors or uncorrect use of the methods and it is far mor@asdor us. For this, we
experimented on our model trying to replicate the initial conditions of publisbgualts as much as
possible in such a way to obtain fair comparisons.

For all the following experiments, the linear keri&lx,y) = ((X,y) + 1) has been used. More-
over, the annealing process required by MProtSVM has been implementigtieasing the tem-
perature of the system with the exponential law:

T(t,To) =To(1—1)

wheret is the current iteration, & 1 < 1 andTp > 0 are external parameters. We u3ge- 10 for all
the following experiments. In addition, the only free param€&tef MProtSVM has been selected
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by performing validation of the model on a subset of the training set with s&lue {10¢ k =
-2,..,2}.

Initially, we tested our model against three multiclass datasets that we brisflyiloe in the
following:

NIST: it consists of a 10-class task of 10705 digits randomly taken from the Ri@&dtaset. The
training set consists of 5000 randomly chosen digits, while the remainingdigi®®are used
in the test set.

USPS:it consists of a 10-class OCR task (digits from 0 to 9) whose input are tiéspgika scaled
digitimage. There are 7291 training examples and 2007 test examples.

LETTER: it consists of a task with 26 classes consisting of alphabetic letters A-Ztslrgpa
measures of the printed font glyph. The first 15000 examples are aséaihing and the
last 5000 for testing.

| g | LVQ2.1 Error % | MProtSVM Error %|

1 7.43 6.45
5 4.68 3.63
10 4.35 3.28
15 3.52 2.80

Table 1: Comparison of generalization performances between MProtSMMI\&Q with increas-
ing number of prototypes/codewords (NIST dataset,.05, 3 = 0.002x q).

| o | USPSError (%)|| g | LETTER Error (%)

1 8.12 1 21.36
3 6.13 3 9.64
5 5.83 5 6.42
10 5.48 10 4.84
15 5.23 15 3.16
20 5.00 20 2.94

Table 2: (a) Test error of MProtSVM on the USPS dataset (05, = 0.00137x ), with an
increasing number of prototypes; (b) Test error of MProtSVM on th@ TER dataset
(t=.05,3 = 0.00043x q), with an increasing number of prototypes.

A first set of experiments have been performed to compare the gengaaliparformance of
our (linear) model versus LVQ (Kohonen et al., 1996), which seemea theimost comparable
model, into an OCR task. For this, we have reported the results obtained by@i1 version of
the algorithm in (Sona et al., 2000) on the NIST problem. Configurations witgreer number of
codewords started to overfit the data. As it can be seen in Table 1, MRVgiBrforms significantly

845



AIOLLI AND SPERDUTI

better with the same number of parameters. This can be due to the more effamstivol of the
margin for our model w.rt. LVQ models. On the same dataset, the tangent-didiased TVQ
algorithm (Aiolli and Sperduti, 2002b) has obtained the best result, a kalar2.1% test error,
and polynomial SVM’s have obtained a 2.82% test error. These lastgshould not surprise since
their models are well suited for OCR tasks. Here and in the following expetéwes report the
value of the factofy = (mx q)/n defined as the number of prototypes produced as a fraction of the
cardinality of the training set. This represent a sort of factor of consfrersn the model.

A second set of experiments have been performed to test the MProtSVH against state-of-
the-art methods on two well known datasets: UCI Irvine USPS and LETTER obtained results
are reported in Table 2. As it is possible to see, by combining a reasonghlyptmber of linear
prototypes, we have been able to obtain performances almost compartbtberones obtained
using non-linear models. In fact, on the USPS dataset, we obtainé@%4rror using an our own
SProtSVM implementation with polynomial kernel of degree 3 and without fupheprocessing
of the data. Finally, a. 83% test error performance has been obtained using 1-NN. Congéehain
LETTER dataset, the results should be compared to versus @b&olobtained in (Crammer and
Singer, 2001) by SProtSVM with exponential kernel and to t13d% obtained by 1-NN. Although
obtained with a slightly different split of the LETTER dataset (16000 examfue training and
4000 for test), we would like to mention the results reported in (Michie et al4188ere LVQ
yielded a 79%.

From these experiments it is clear that MProtSVM returns far more compaleiseith respect
to state of the art non-linear kernel methods allowing a (one or two oreéuced response time in
classification while preserving a good generalization performance.ctntfee above experiments
have shown very low values for the compression faft¢e.g. 26x 20 prototypes in the LETTER
dataset give = 0.013 and 10« 20 prototypes for USPS givgs= 0.0274). Notice thafi can be
directly compared with the fraction of support vectors in kernel machifless, MProtSVMs also
give us a way to decide (before training) the compression factor wetovafitain.

— Vectors — ——Frrors

Dataset SVM RVM | SVM RVM MProtSVM

g=1 q=3 g=5 g=10
Banana 1352 114} 109 108 46.0 128 [11.0] 110
Breast Cancer 116.7 6.3 | 26.9 29.9 282 269 275 [27.0]
German 4112 125 226 222 [23.6] 238 235 23.7
Image 166.6 34.6| 3.0 3.9 15.0 3.2 2.7 2.5]
Titanic 93.7 653 221 23.0 [225] 222 222 22.2
Waveform 146.4 14.6| 10.3 10.9 13.3 108 10.0 [10.2]

Table 3: Comparison of solution complexity and generalization error of kRMdl with respect
to SVM and Tipping’s RVM on a set of UCI binary datasets. The results guoteSVM
and RVM are taken from (Tipping, 2001). Values in brackets are the ohtined using
the model suggested by model selection performed over the number dfypeto

To further validate our claim, we made a comparison of our technique agdirats that ex-
plicitly try to obtain compact models. In Table 3 we reported the results obtaiitadsix binary
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Dataset # Features | Train Size | Test Size|
Banana 2 400 4900
Breast Cancer 9 200 77
German 20 700 300
Image 18 1300 1010
Titanic 3 150 2051
Waveform 21 400 4600

Table 4: General information about the UCI binary datasets used in tlesieents.

problems (see Table 4 for general information about these datasets)Hfedbenchmark of &sch
available over the web exactly the ones used by (Tipping, 2001) of which we are reporting the
obtained results for RVM and SVM. They correspond to averagesthedirst 10 splits of the col-
lection. For each dataset, it is reported the average number of sugotots generated by SVM
and RVM, the generalization error obtained with these two methods and thitsrelstained using
four very simple MProtSVM configurations, namely made of 1, 3, 5 and 1@®fypes per class

(2, 6, 10 and 20 vectors in total, respecti®lyit is possible to see how very compact and simple
models performs as good as (sometimes better than) state-of-the-art metabdss in brackets
represent the error value obtained using the model suggested by thetivalidrocedure we have
performed over the number of models per class.

Finally, in Table 5 we report an example of the values obtained for the olgeftinction of
the primal problem in Eg. (8) along with their corresponding test errotgimdd using different
configurations and lowering the simulated annealing parametethe USPS dataset. As expected,
once fixed a raw in the table, better values for the primal can generally taéneth with lower
values oft. Moreover, as the number of prototypes per class increases, the cdi@mallt tends
to be more crucial. Anyway, higher values fgrand thus not optimal values for the primal, can
nevertheless lead to good generalization performances. Notice thatHeofact that the primal
value is just a way to approximate the theoretical SRM principle and from theptimality of the
parametelC in these experiments, better values for the primal does not necessarigmand to
better values for the test error.

9. Conclusions

We have proposed an extension of multiclass SVM able to deal with sevetatypes per class.
This extension defines a hon-convex problem. We suggested to solvedahism by using a novel
efficient optimization procedure within an annealing framework where teeggrfunction corre-
sponds to the primal of the problem. Experimental results on some populelnrhbarks demon-
strated that it is possible to reach very competitive performances by usingrfear models per
class instead of a single model per class with kernel. This allows the uset t@ryecompact
models which are very fast in classifying new patterns. Thus, accotditige computational con-
straints, the user may decide how to balance the trade-off between bettea@cand speed of

2.http://ida.first.gmd. de/ ~raetsch
3. When one prototype per class is used in a binary problem, as in thisvBsetSVM actually generates two vectors
that are the same with sign inverted. Thus, they can be compacted intectoe @nly with no loss of information.
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q 1=0.2 1=0.1 1=0.05 1=003 |

3 | 7.44626 (6.33%) 7.28049 (6.03%) 7.08138 (6.13%) 7.04274 (6.48%)
5 | 7.49136 (6.08%) 7.27318 (5.63%) 7.10498 (5.83%) 7.00946 (5.58%)
10| 7.82233 (5.58%) 7.51780 (5.88%) 7.27596 (5.48%) 7.12517 (5.23%)
15 | 7.82222 (5.33%) 7.57009 (5.73%) 7.38722 (5.33%) 7.22250 (5.53%)
20 | 7.78410 (5.48%) 7.79388 (5.72%) 7.49125 (5.38%) 7.21303 (5.53%)

Table 5: Primal values and generalization error obtained with differarfigrorations varying the
parameter for the USPS dataset.

classification. Finally, it should be noted that the proposed approacharemfavorably versus
LVQ, a learning procedure that, similarly to the proposed approachnsetuset of linear models.
Preliminary experiments with kernels have shown negligible improvements thagsnuskto
consider this extension not worthwhile of further investigations. An alteranore interesting
extension would be to try to combine different types of kernels together isattme model.
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