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Abstract
Winner-take-all multiclass classifiers are built on the topof a set of prototypes each representing

one of the available classes. A pattern is then classified with the label associated to the most
‘similar’ prototype. Recent proposal of SVM extensions to multiclass can be considered instances
of the same strategy with one prototype per class.

The multi-prototype SVM proposed in this paper extends multiclass SVM to multiple proto-
types per class. It allows to combine several vectors in a principled way to obtain large margin
decision functions. For this problem, we give a compact constrained quadratic formulation and we
propose a greedy optimization algorithm able to find locallyoptimal solutions for the non convex
objective function.

This algorithm proceeds by reducing the overall problem into a series of simpler convex prob-
lems. For the solution of these reduced problems an efficientoptimization algorithm is proposed.
A number of pattern selection strategies are then discussedto speed-up the optimization process.
In addition, given the combinatorial nature of the overall problem, stochastic search strategies are
suggested to escape from local minima which are not globallyoptimal.

Finally, we report experiments on a number of datasets. The performance obtained using few
simple linear prototypes is comparable to that obtained by state-of-the-art kernel-based methods
but with a significant reduction (of one or two orders) in response time.

Keywords: multiclass classification, multi-prototype support vector machines, kernel ma-
chines, stochastic search optimization, large margin classifiers

1. Introduction

In multiclass classification, given a set of labelled examples with labels selectedfrom a finite set,
an inductive procedure builds a function that (hopefully) is able to map unseen instances to their
appropriate classes. In this work, we exclusively focus on thesingle-labelversion of the multiclass
classification problem in which instances are associated withexactly oneelement of the label set.
However, throughout this paper, we will refer to this problem simply as multiclass problem. Binary
classification can be considered a particular instance of the multiclass setting where the cardinality
of the label set is two.
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Multiclass classifiers are often based on thewinner-take-all(WTA) rule. WTA based classifiers
define a set of prototypes, each associated with one of the available classes from a setY . A scoring
function f : X ×M →R is then defined, measuring the similarity of an element inX with prototypes
defined in a spaceM . For simplicity, in the following, we assumeM ≡ X . When new instances are
presented in input, the label that is returned is the one associated with the most’similar’ prototype:

H(x) = C

(

argmax
r∈Ω

f (x,Mr)

)

(1)

whereΩ is the set of prototype indexes, theMr ’s are the prototypes andC : Ω→ Y the function
returning the class associated to a given prototype. An equivalent definition can also be given in
terms of the minimization of a distance or loss (these cases are often referredto asdistance-based
andloss-baseddecoding respectively).

1.1 Motivations and Related Work

Several well-known methods for binary classification, including neural networks (Rumelhart et al.,
1986), decision trees (Quinlan, 1993), k-NN (see for example (Mitchell,1997)), can be naturally
extended to the multiclass domain and can be viewed as instances of the WTA strategy. Another
class of methods for multiclass classification are the so calledprototype based methods, one of the
most relevant of which is thelearning vector quantization(LVQ) algorithm (Kohonen et al., 1996).
Although different versions of the LVQ algorithm exist, in the more generalcase these algorithms
quantize input patterns into codeword vectorsci and use these vectors for 1-NN classification. Sev-
eral codewords may correspond to a single class. In the simplest case, also known as LVQ1, at each
step of the codewords learning, for each input patternxi , the algorithm finds the elementck closest
to xi . If that codeword is associated to a class which is the same as the class of thepattern, thenck

is updated byck← ck +η(t)(xi−ck) thus making the prototype get closer to the pattern, otherwise
it is updated byck← ck−η(t)(xi − ck) thus making the prototype farther away. Other more com-
plicated versions exist. For example, in the LVQ2.1, lety be the class of the pattern, at each step
the closest codeword of classc 6= y and the closest codeword of classy are updated simultaneously.
Moreover, the update is done only if the pattern under consideration falls ina ”window” which is
defined around the midplane between the selected codewords.

When the direct extension of a binary method into a multiclass one is not possible, a general
strategy to build multiclass classifiers based on a set of binary classifiers is always possible, the
so callederror correcting output coding(ECOC) strategy, originally proposed by Dietterich and
Bakiri in (Dietterich and Bakiri, 1995). Basically, this method codifies each class of the multiclass
problem as a fixed size binary string and then solves one different binary problem for each bit of
the string. Given a new instance, the class whose associated string is most ’similar’ to the output
of the binary classifiers on that instance is returned as output. Extensionsto codes with values in
{−1,0,+1} (Allwein et al., 2000) and continuous codes (Crammer and Singer, 2000)have been
recently proposed.

Recently, large margin kernel-based methods have shown state-of-the-art performance in a wide
range of applications. They search for a large margin linear discriminant model in a typically very
high dimensional space, thefeature space, where examples are implicitly mapped via a function
x 7→ φ(x). Since kernel-based algorithms use only dot products in this space, it is possible to resort
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to the ’kernel trick’ when dot products can be computed efficiently by means of a kernel function
k(x,y) = 〈φ(x),φ(y)〉 defined in terms of the original patterns. Examples of kernel functions arethe
polynomial kernel

k(x,y) = (〈x,y〉+u)d,u≥ 0,d ∈ N

of which the linear case is just an instance (d = 1) and the radial basis function (RBF) kernel

k(x,y) = exp(−λ||x−y||2),λ≥ 0.

Kernel machines, and the SVM in particular, has been initially devised for thebinary setting.
However, extensions to the multiclass case have been promptly proposed (e.g. Vapnik, 1998; Weston
and Watkins, 1999; Guermeur et al., 2000; Crammer and Singer, 2000).

The discriminant functions generated by general kernel-based methods are implicitly defined
in terms of a subset of the training patterns, the so calledsupport vectors, on the basis of a linear
combination of kernel productsf (x) = ∑i∈SVαik(xi ,x). In the particular case of the kernel function
being linear, this sum can be simplified in a single dot product. When this is not the case, the
implicit form allows to elegantly deal with non linear decision functions obtained by using non
linear kernels. In this last case, the efficiency with respect to the time spentfor classifying new
vectors tends to be low when the number of support vectors is large. This has motivated some
recent works, briefly discussed in the following, whose aim was at building kernel-based machines
with a minimal number of support vectors.

The relevance vector machine(RVM) in (Tipping, 2001) is a model used for regression and
classification exploiting a probabilistic Bayesian learning framework. It introduces a prior over the
weights of the model and a set of hyperparameters associated to them. The form of the RVM pre-
diction is the same as the one used for SVM. Sparsity is obtained because the posterior distributions
of many of the weights become sharply peaked around the zero. Other interesting advantages of the
RVM are that it produces probabilistic predictions and that it can be appliedto general functions
and not only to kernel functions satisfying the Mercer’s condition. Theminimal kernel classifier
(MKC) in (Fung et al., 2002) is another model theoretically justified by linear programming pertur-
bation and a bound on the leave-one-out error. This model uses a particular loss function measuring
both the presence and the magnitude of an error. Finally, quite different approaches are those in
(Scḧolkopf et al., 1999; Downs et al., 2001) that try to reduce the number of support vectors after
the classifiers have been constructed.

The approach we propose here gives an alternative method to combine simple predictors to-
gether to obtain large margin multiclass classifiers. This can be extremely beneficial for two main
reasons. First, adding prototypes can produce higher margin decision functions without dramati-
cally increasing the complexity of the generated model. This can be trivially shown by considering
that the single-prototype margin is a lower bound on the margin for multi-prototypesince it can
be obtained when all the prototypes of the same class coincide. Second, combining several simple
models can be advisable when no a priori knowledge is available about the task at hand. In the
following, we will study only the linear version of the algorithm without exploring more complex
kernel functions, the rationale being that adding linear prototypes in the original space allows to
increase the expressiveness of the decision functions without requiring the (computationally expen-
sive) use of kernels. Moreover, linearity makes easier the interpretationof the produced models,
which can be useful in some particular tasks, and allows for an easier extension to the on-line set-
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ting since the explicit representation for the models can be used.

In Section 2 we give some preliminaries and the notation we adopt along the paper. Then, in
Section 3 we derive a convex quadratic formulation for the easier problemof learning one prototype
per class. The obtained formulation can be shown to be equivalent, up to a change of variables and
constant factors, to the one proposed by Crammer and Singer (2000). When multiple prototypes are
introduced in Section 4, the problem becomes not convex in general. However, in Section 5 we will
see that once fixed an appropriate set of variables, the reduced problem is convex. Moreover, three
alternative methods are given for this optimization problem and heuristics forthe ”smart” selection
of patterns in the optimization process are proposed and compared. Then,in Section 6 we give a
greedy procedure to find a locally optimal solution for the overall problem and we propose an ef-
ficient stochastic-search based method to improve the quality of the solution. In Section 7 we give
theoretical results about the generalization ability of our model. Specifically,we present an upper
bound on the leave-one-out error and upper bounds on the generalization error. Finally, the experi-
mental work in Section 8 compares our linear method with state-of-the-art methods, with respect to
the complexity of the generated solution and with respect to the generalization error.

This paper substantially extends the material contained in other two conference papers. Namely,
(Aiolli and Sperduti, 2003) which contains the basic idea and the theory of the multi-prototype SVM
together with preliminary experimental work and (Aiolli and Sperduti, 2002a)which proposes and
analyzes selection heuristics for the optimization of multiclass SVM.

2. Preliminaries

Let us start by introducing some definitions and the notation that will be used inthis paper. We
assume to have a labelled training setS = {(x1,c1), . . . ,(xn,cn)} of cardinalityn, wherexi ∈ X are
the examples in a inner-product spaceX ⊆ R

d andci ∈ Y = {1, . . . ,m} the corresponding class or
label. To keep the notation clearer, we focus on the linear case where kernels are not used. However,
we can easily consider the existence of a feature mappingφ : I → X . In this case, it is trivial to
extend the derivations we will obtain to non-linear mappingsx 7→ φ(x) of possibly non vectorial
patterns by substituting dot products〈x,y〉 with a suited kernel functionk(x,y) = 〈φ(x),φ(y)〉 and
the squared 2-norm||x||2 with k(x,x) consequently. The kernel matrixK ∈ R

n×n is the matrix
containing the kernel products of all pairs of examples in the training set, i.e.Ki j = k(xi ,x j).

We consider dot-product based WTA multiclass classifiers having the form

HM(x) = C

(

argmax
r∈Ω
〈Mr ,x〉

)

(2)

whereΩ is the set of prototype indices and the prototypes are arranged in a matrixM ∈ R
|Ω|×d and

C : Ω→ Y the function that, given an indexr, returns the class associated to ther-th prototype. We
also denote byyr

i , 1≤ i ≤ n, r ∈ Ω, the constant that is equal to 1 ifC (r) = ci and−1 otherwise.
Moreover, for a given examplexi , Pi = {r ∈ Ω : yr

i = 1} is the set of ’positive’ prototypes for the
examplexi , i.e. the set of prototype indices associated to the class ofxi , while Ni = Ω\Pi = {r ∈
Ω : yr

i =−1} is the set of ’negative’ prototypes, i.e. the set of prototype indices associated to classes
different from the class ofxi . The dot productfr(x) = 〈Mr ,x〉 is referred to as thesimilarity score
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(or simplyscore) of ther-th prototype vector for the instancex. Finally, symbols in bold represent
vectors and, as particular case, the symbol0 represents the vector with all components set to 0.

3. Single-Prototype Multi-Class SVM

One of the most effective multi-class extension of SVM has been proposedby Crammer and Singer
(2000). The resulting classifier is of the same form of Eq. (2) where each class has associated exactly
one prototype, i.e.Ω≡ Y and∀r ∈Ω, C (r) = r. The solution is obtained through the minimization
of a convex quadratic constrained function. Here, we derive a formulation that, up to a change of
variables, can be demonstrated to be equivalent to the one proposed by Crammer and Singer (see
Aiolli and Sperduti (2002a)). This will serve to introduce a uniform notation useful for presenting
the multi-prototype extension in the following sections.

In multiclass classifiers based on Eq. (2), in order to have a correct classification, the prototype
of the correct class is required to have a score greater than the maximum among the scores of the
prototypes associated to incorrect classes. The multiclass margin for the examplexi is then defined
by

ρ(xi ,ci |M) = 〈Myi ,xi〉−max
r 6=yi

〈Mr ,xi〉,

whereyi such thatC (yi) = ci , is the index of the prototype associated to the correct label for the
examplexi . In the single prototype case, with no loss of generality, we consider a prototype and the
associated class indices to be coincident, that isyi = ci . Thus, a correct classification of the example
xi with a margin greater or equal to 1 requires the condition

〈Myi ,xi〉 ≥ θi +1 whereθi = max
r 6=yi

〈Mr ,xi〉. (3)

to be satisfied. Note that, the condition above is implied by the existence of a matrixM̂ such that
∀r 6= yi , 〈M̂yi ,xi〉 > 〈M̂r ,xi〉. In fact, the matrixM can always be obtained by an opportune re-
scaling of the matrixM̂. With these premises, a set of examples is said to belinearly separableby
a multiclass classifier if there exists a matrixM able to fulfill the above constraints for every pattern
in the set.

Unfortunately, the examples in the training set can not always be separated and some exam-
ples may violate the margin constraints. We consider these cases by introducing soft margin slack
variablesξi ≥ 0, one for each example, such that

ξi = [θi +1−〈Myi ,xi〉]+,

where the symbol[z]+ corresponds to the soft-margin loss that is equal toz if z> 0 and 0 otherwise.
Note that the valueξi can also be seen as an upper bound on the binary loss for the examplexi , and
consequently its average value over the training set is an upper bound onthe empirical error.

Motivated by thestructural risk minimization(SRM) principle in (Vapnik, 1998; Scḧolkopf and
C. Burges and V. Vapnik, 1995), we search for a matrixM with small norm such to minimize the
empirical error over the training set. We use the 2-norm of the matrixM. We thus formulate the
problem in a SVM style by requiring a set of small norm prototypes to fulfill thesoft constraints
given by the classification requirements. Specifically, the single-prototype version of multiclass
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SVM (SProtSVM in the following) will result in:

minM,ξ,θ
1
2||M||2 +C∑i ξi

subject to:







∀i, r 6= yi , 〈Mr ,xi〉 ≤ θi ,
∀i, 〈Myi ,xi〉 ≥ θi +1−ξi ,
∀i, ξi ≥ 0

(4)

where the parameterC controls the amount of regularization applied to the model.
It can be observed that, at the optimum,θi will be set to the maximum value among the negative

scores for the instancexi (in such a way to minimize the corresponding slack variables) consistently
with Eq. (3).

The problem in Eq. (4) is convex and it can be solved in the standard way by resorting to the
optimization of the Wolfe dual problem. In this case, the Lagrangian is:

L(M,ξ,θ,α,λ) = 1
2||M||2 +C∑i ξi+

∑i,r 6=yi
αr

i (〈Mr ,xi〉−θi)+

∑i α
yi
i (θi +1−ξi−〈Myi ,xi〉)−

∑i λiξi

= 1
2||M||2−∑i,r yr

i αr
i (〈Mr ,xi〉−θi)+

∑i α
yi
i +∑i(C−αyi

i −λi)ξi ,

(5)

subject to the constraintsαr
i ,λi ≥ 0.

By differentiating the Lagrangian with respect to the primal variables and imposing the optimal-
ity conditions we obtain a set of constraints that the variables have to fulfill in order to be an optimal
solution:

∂L(M,ξ,θ,α,λ)
∂Mr

= 0 ⇔ Mr = ∑i y
r
i αr

i xi
∂L(M,ξ,θ,α,λ)

∂ξi
= 0 ⇔ C−αyi

i −λi = 0⇔ αyi
i ≤C

∂L(w,ξ,θ,α,λ)
∂θi

= 0 ⇔ αyi
i = ∑r 6=yi

αr
i

(6)

By using the factsαyi
i = 1

2 ∑r αr
i and ||M(α)||2 = ∑i, j,r yr

i y
r
jαr

i αr
j〈xi ,x j〉, substituting equalities

from Eq. (6) into Eq. (5) and omitting constants that do not change the solution, the problem can be
restated as:

maxα ∑i,r αr
i −||M(α)||2

subject to:

{
∀i, r, αr

i ≥ 0
∀i,αyi

i = ∑r 6=yi
αr

i ≤C

Notice that, when kernels are used, by the linearity of dot-products, the scoring function for the
r-th prototype and a patternx can be conveniently reformulated as

fr(x) = 〈Mr ,φ(x)〉=
n

∑
i=1

yr
i α

r
i k(x,xi).

The next section includes an efficient optimization procedure for the more general multi-prototype
setting that includes the single-prototype case as an instance.
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4. Multi-Prototype Multi-Class SVM

The SProtSVM model presented in the previous section is here extended to learn more than one
prototypes per class. This is done by generalizing Eq. (3) to multiple prototypes. In this setting, one
instance is correctly classified if and only ifat leastone of the prototypes associated to the correct
class has a score greater than the maximum of the scores of the prototypes associated to incorrect
classes.

A natural extension of the definition for the margin in the multi-prototype case is then

ρ(xi ,ci |M) = max
r∈Pi

〈Mr ,xi〉−max
r∈Ni

〈Mr ,xi〉.

and its value will result greater than zero if and only if the examplexi is correctly classified.
We can now give conditions for a correct classification of an examplexi with a margin greater

or equal to 1 by requiring that:

∃r ∈ Pi : 〈Mr ,xi〉 ≥ θi +1 andθi = max
r∈Ni

〈Mr ,xi〉. (7)

To allow for margin violations, for each examplexi , we introduce soft margin slack variables
ξr

i ≥ 0, one for each positive prototype, such that

∀r ∈ Pi , ξr
i = [θi +1−〈Mr ,xi〉]+.

Given a patternxi , we arrange the soft margin slack variablesξr
i in a vectorξi ∈ R

|Pi |. Let us now
introduce, for each examplexi , a new vector having a number of components equal to the number of
positive prototypes forxi , πi ∈ {0,1}|Pi |, whose components are all zero except one component that
is 1. In the following, we refer toπi as theassignmentof the patternxi to the (positive) prototypes.
Notice that the dot product〈πi ,ξi〉 is always an upper bound on the binary loss for the example
xi independently from its assignment and, similarly to the single-prototype case, the average value
over the training set represents an upper bound on the empirical error.

Now, we are ready to formulate the general multi-prototype problem by requiring a set of pro-
totypes of small norm and the best assignment for the examples able to fulfill the soft constraints
given by the classification requirements. Thus, the MProtSVM formulation can be given as:

minM,ξ,θ,π
1
2||M||2 +C∑i〈πi ,ξi〉

subject to:







∀i, r ∈Ni , 〈Mr ,xi〉 ≤ θi ,
∀i, r ∈ Pi , 〈Mr ,xi〉 ≥ θi +1−ξr

i ,
∀i, r ∈ Pi ,ξr

i ≥ 0
∀i,πi ∈ {0,1}|Pi |.

(8)

Unfortunately, this is a mixed integer problem that is not convex and it is a difficult problem to
solve in general. However, as we will see in the following, it is prone to an efficient optimization
procedure that approximates a global optimum. At this point, it is worth noticing that, since this
formulation is itself an (heuristic) approximation to the structural risk minimization principle where
the parameterC rules the trade-off between keeping the VC-dimension low and minimizing the
training error, a good solution of the problem in Eq. (8), even if not optimal,can nevertheless give
good results in practice. As we will see, this claim seems confirmed by the results obtained in the
experimental work.

In the following section we demonstrate that when the assignment is fixed for each pattern,
the problem results tractable and we are able to give an efficient procedure to solve the associated
problem.
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5. Optimization with Static Assignments

Let suppose that the assignments are kept fixed. In this case, the reduced problem becomes convex
and it can be solved as described above by resorting to the optimization of theWolfe dual problem.
In this case, the Lagrangian is:

Lπ(M,ξ,θ,α,λ) = 1
2||M||2 +C∑i〈πi ,ξi〉+
∑i,r∈Pi

αr
i (θi +1−ξr

i −〈Mr ,xi〉)−
∑i,r∈Pi

λr
i ξr

i +

∑i,r∈Ni
αr

i (〈Mr ,xi〉−θi),

(9)

subject to the constraintsαr
i ,λr

i ≥ 0.
As above, by differentiating the Lagrangian of the reduced problem and imposing the optimality

conditions, we obtain:

∂Lπ(M,ξ,θ,α,λ)
∂Mr

= 0 ⇔ Mr = ∑i y
r
i αr

i xi
∂Lπ(M,ξ,θ,α,λ)

∂ξr
i

= 0 ⇔ Cπr
i −αr

i −λr
i = 0⇔ αr

i ≤Cπr
i

∂Lπ(M,ξ,θ,α,λ)
∂θi

= 0 ⇔ ∑r∈Pi
αr

i = ∑r∈Ni
αr

i

(10)

Notice that the second condition requires the dual variables associated to (positive) prototypes
not assigned to a pattern to be 0. By denoting now asyi the unique indexr ∈Pi such thatπr

i = 1, once
using the conditions of Eq. (10) in Eq. (9) and omitting constants that do not change the obtained
solution, the reduced problem can be restated as:

maxα ∑i,r αr
i −||M(α)||2

subject to:







∀i, r, αr
i ≥ 0

∀i, αyi
i = ∑r∈Ni

αr
i ≤C

∀i, r ∈ Pi \{yi}, αr
i = 0.

(11)

It can be trivially shown that this formulation is consistent with the formulation ofthe SProtSVM
dual given above. Moreover, when kernels are used, the score function for ther-th prototype and a
patternx can be formulated as in the single-prototype case as

fr(x) = 〈Mr ,φ(x)〉=
n

∑
i=1

yr
i α

r
i k(x,xi).

Thus, when patterns are statically assigned to the prototypes via constant vectorsπi , the convex-
ity of the associated MProtSVM problem implies that the optimal solution for the primal problem
in Eq. (8) can be found through the maximization of the Lagrangian as in problem in Eq. (11).
Assuming an equal numberq of prototypes per class, the dual involvesn×m×q variables which
leads to a very large scale problem. Anyway, the independence of constraints among the different
patterns allows for the separation of the variables inn disjoint sets ofm×q variables.

The algorithms we propose for the optimization of the problem in Eq. (11) are inspired by
the ones already presented in (Crammer and Singer, 2000, 2001) consisting in iteratively selecting
patterns from the training set and greedily optimizing with respect to the variables associated to
that pattern. In particular, the authors propose a fixed-point procedure for the optimization of the
reduced problem.
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In the following, we first show that the pattern related problem can be further decomposed until
the solution for a minimal subset of two variables is required. This is quite similar tothe SMO
procedure for binary SVM. Then, a training algorithm for this problem can be defined by iterating
this basic step.

5.1 The Basic Optimization Step

In this section the basic step corresponding to the simultaneous optimization of a subset of variables
associated to the same pattern is presented. Let patternxp be fixed. Since we want to enforce the
linear constraint∑r∈Np

αr
p + λp = C, λp ≥ 0, from the second condition in Eq. (10), two elements

from the set of variables{αr
p, r ∈ Np}∪{λp} will be optimized in pair while keeping the solution

inside the feasible region. In particular, letζ1 andζ2 be the two selected variables, we restrict the
updates to the formζ1← ζ1 +ν andζ2← ζ2−ν with optimal choices forν.

In order to compute the optimal value forν we first observe that an additive update∆Mr to the
prototyper will affect the squared norm of the prototype vectorMr of an amount

∆||Mr ||2 = ||∆Mr ||2 +2〈Mr ,∆Mr〉.

Then, we examine separately the two ways a pair of variables can be selected for optimization.

(Case 1)We first show how to analytically solve the problem associated to an update involving
a single variableαr

p, r ∈ Np and the variableαyp
p . Note that, sinceλp does not influence the value

of the objective function, it is possible to solve the associated problem with respect to the variable
αr

p andαyp
p in such a way to keep the constraintαyp

p = ∑r∈Np
αr

p satisfied and afterwards to enforce
the constraintsλp = C−∑s∈Np

αs
p≥ 0. Thus, in this case we have:

αr
p← αr

p +ν andαyp
p ← αyp

p +ν.

Since∆Mr =−νxp, ∆Myp = νxp and∆Ms = 0 for s /∈ {r,yp}, we obtain

∆||M||2 = ∆||Mr ||2 +∆||Myp||2 = 2ν2||xp||2 +2ν( fyp(xp)− fr(xp))

and the difference obtained in the Lagrangian value will be

∆L(ν) = 2ν(1− fyp(xp)+ fr(xp)−ν||xp||2).

Since this last formula is concave inν, it is possible to find the optimal value when the first derivative
is null, i.e.

ν̂ = argmax
ν

∆L(ν) =
1− fyp(xp)+ fr(xp)

2||xp||2
(12)

If the values ofαr
p andαyp

p , after being updated, turn out to be not feasible for the constraints
αr

p ≥ 0 andαyp
p ≤C, we select the unique value forν such to fulfill the violated constraint bounds

at the limit (αr
p +ν = 0 or αyp

p +ν = C respectively).

(Case 2)Now, we show the analytic solution of the associated problem with respect to an update
involving a pair of variablesαr1

p ,αr2
p such thatr1, r2 ∈Np andr1 6= r2. Since, in this case, the update

must have zero sum, we have:

αr1
p ← αr1

p +ν andαr2
p ← αr2

p −ν
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In this case,∆Mr1 =−νxp, ∆Mr2 = νxp and∆Ms = 0 for s /∈ {r1, r2}, thus

∆||M||2 = ∆||Mr1||2 +∆||Mr2||2 = 2ν2||xp||2 +2ν( fr2(xp)− fr1(xp))

leading to an Lagrangian improvement equals to

∆L(ν) = 2ν( fr1(xp)− fr2(xp)−ν||xp||2).

Since also this last formula is concave inν, it is possible to find the optimal value

ν̂ = argmax
ν

∆L(ν) =
fr1(xp)− fr2(xp)

2||xp||2
(13)

Similarly to the previous case, if the values of theαr1
p andαr2

p , after being updated, turn out to be
not feasible for the constraintsαr1

p ≥ 0 andαr2
p ≥ 0, we select the unique value forν such to fulfill

the violated constraint bounds at the limit (in this case, consideringfr1(xp)≤ fr2(xp) and thuŝν≤ 0
with no loss in generality, we obtainαr1

p +ν = 0 or αr2
p −ν = C respectively).

Note that, when a kernel is used, the norm in the feature space can be substituted with the diago-
nal component of the kernel matrix, i.e.||xp||2 = k(xp,xp) = Kpp while the scores can be maintained
in implicit form and computed explicitly when necessary.

To render the following exposition clearer, we try to compact the two cases inone. This can be
done by defining the update in a slightly different way, that is, for each pair (ra, rb)∈ (Pp∪Np)×Np

we define:
αra

p ← αra
p +yra

p ν andαrb
p ← αrb

p −yrb
p ν

and hence the improvement obtained for the value of the Lagrangian is

V p
ra,rb

(ν) = 2ν
(

1
2
(yra

p −yrb
p )− fra(xp)+ frb(xp)−νk(xp,xp)

)

(14)

where the optimal value for theν is

ν̂ =
1
2(yra

p −yrb
p )− fra(xp)+ frb(xp)

2k(xp,xp)

subject to the constraints

αra
p +yra

p ν > 0, αrb
p −yrb

p ν > 0, αyp +
1
2
(yra

p −yrb
p )ν≤C.

The basic step algorithm and the updates induced in the scoring functions are described in
Figure 1 and Figure 2, respectively.

5.2 New Algorithms for the Optimization of the Dual

In the previous section we have shown how it is possible to give an explicit optimal solution of the
reduced problem obtained by fixing all the variables apart for the two variables under consideration.

In this section, we analyze different algorithms that are based on the step given above. The basic
idea is the same as SMO for SVM (Platt, 1998), that is to repeat a process in which
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BasicStep(p, ra, rb)

ν =
1
2(yra

p −y
rb
p )− fra(xp)+ frb(xp)

2Kpp

if (αra
p +yra

p ν < 0) then ν =−yra
p αra

p

if (αrb
p −yrb

p ν < 0) then ν = yrb
p αrb

p

if (αyp
p + 1

2(yra
p −yrb

p )ν > C) then ν = 2 C−αyp
p

yra
p −y

rb
p

return ν

Figure 1: The basic optimization step: explicit optimization of the reduced problem with two vari-
ables, namelyαra

p andαrb
p .

BasicUpdate(p, ra, rb, ν)

αra = αra +yra
p ν; αrb = αrb +yrb

p ν;

fra(xp) = fra(xp)+yra
p νKpp; frb(xp) = frb(xp)−yrb

p νKpp;

Figure 2: Updates done after the basic optimization step has been performedand the optimal solu-
tion found.Kpp denotes thep-th element of the kernel matrix diagonal.

• a minimal subset of independent multipliers are selected

• the analytic solution of the reduced problem obtained by fixing all the variables but the ones
we selected in the previous step is found.

In our case, a minimal set of two variables associated to the same example are selected at each
iteration. As we showed in the last section, each iteration leads to an increaseof the Lagrangian.
This, together with the compactness of the feasible set guarantees the convergence of the procedure.
Moreover, this optimization procedure can be considered incremental in thesense that the solution
we have found at one step forms the initial condition when a new subset of variables are selected
for optimization. Finally, it should be noted that for each iteration the scores of the patterns in the
training set must be updated before to be used in the selection phase. The general optimization
algorithm just described is depicted in Figure 3.

In the following, we present three alternative algorithms for the optimization ofthe problem in
Eq. (11) which differ in the way they choose the pairs to optimize through the iterations, i.e. the
OptimizeOnPattern procedure.

The first practical and very simple algorithm for solving the problem in Eq. (11) can be derived
from the steps given above where at each iteration a pair of multipliers is selected and then optimized
according to the analytic solution given in the previous section until some convergence criterion
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OptimizeStaticProblem(ϕV )

repeat

PatternSelection(p) // Heuristically choose an examplep based on Eq. (14)

OptimizeOnPattern(p, ϕV)

until converge.

Figure 3: High-level procedure for the optimization of a statically assigned multi-prototype SVM.
The parameterϕV is the tolerance when checking optimality in theOptimizeOnPattern
procedure.

BasicOptimizeOnPattern(p, ϕV)

Heuristically choose two indexesra 6= rb based on Eq. (14)

ν = BasicStep(p, ra, rb)

BasicUpdate(p, ra, rb,ν)

Figure 4: SMO-like algorithm for the optimization of statically assigned multi-prototype SVM.

is fulfilled. Eq. (14) gives a natural method for the selection of the two variables involved, i.e.
take the two indexes that maximize the value of that formula. Finally, once chosen two variables
to optimize, the basic step in the algorithm in Figure 1 provides the optimal solution. This very
general optimization algorithm will be referred to asBasicOptimizeOnPattern and it is illustrated
in Figure 4.

A second method to solve the optimization problem in Eq. (11) is given in the following and
can be also considered as an alternative method to the Crammer and Singer fixed-point algorithm
for the optimization over a single example (Crammer and Singer, 2001). This method consists in
fixing an example and iterating multiple times the basic step described above on pairsof variables
chosen among that associated to the pattern into consideration until some convergence conditions
local to the pattern under consideration are matched. Notice that this algorithmrequires just a sin-
gle step in the binary single-prototype case. In Figure 5 the pseudo-code of the proposed pattern
optimization algorithm referred to asAllPairsOptimizeOnPattern is presented. At each step,
the algorithm applies the basic step to them(m−1)/2 pairs of variables associated with the pattern
chosen for optimization until a certain condition on the value of the increment ofthe Lagrangian is
verified. Iterating multiple times the basic step described above on pairs of variables chosen among
that associated to a given pattern it is guaranteed to find the optimality condition for the pattern. The
optimization step of this reduced problem can require the optimization over all theq2m(m−1)/2
pairs of variables not constrained to 0 associated with the selected pattern. Thus the complexity of
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AllPairsOptimizeOnPattern(p, ϕV)

t = 0,V(0) = 0.

do

t← t +1,V(t) = 0

For eachr1 6= r2

ν = BasicStep(p, r1, r2)

V(t) = V(t)+2ν
(

1
2(yr1

p −yr2
p )− fr1(xp)+ fr2(xp)−νKpp

)

BasicUpdate(p, r1, r2,ν)

until (V(t)≤ ϕV)

Figure 5: Algorithm for the incremental optimization of the variables associatedwith a given pat-
tern of a staticallly assigned multi-prototype SVM

the optimization of the reduced problem isO((mq)2I) whereI is the number of iterations.

Now, we perform a further step by giving a third algorithm that is clearly faster than the previous
versions having at each iteration a complexityO(mq). For this we give an intuitive derivation of
three optimality conditions. Thus, we will show that if a solution is such that all these conditions
are not fulfilled, then this solution is just the optimal one since it verifies the KKTconditions.

First of all, we observe that for the variables{αr
p,λp} associated to the patternxp to be optimal,

the valueν returned by the basic step must be 0 for each pair. Thus, we can consider the two cases
above separately. For the first case, in order to be able to apply the step,it is necessary for one of
the following two conditions to be verified:

(Ψ1) (αyp
p < C)∧ ( fyp(xp) < maxr∈Np

fr(xp)+1)

(Ψ2) (αyp
p > 0)∧ ( fyp(xp) > maxr∈Np,αr

p>0 fr(xp)+1)

In fact, in Eq. (12), when there existsr ∈ Np such thatfyp(xp) < fr(xp)+ 1, the conditionν̂ > 0
holds. In this case the pair(αyp

p ,αr
p) can be chosen for optimization. Thus, it must beαyp

p < C in
order to be possible to increase the values of the pair of multipliers. Alternatively, if αyp

p > 0 and
there exists an indexr such thatαr

p > 0 and fyp(xp) > fr(xp)+1 thenν̂ < 0 and (at least) the pair
(αyp

p ,αk
p) wherek = argmaxr∈Np,αr

p>0 fr(xp) can be chosen for optimization. Finally, from Eq. (13),
we can observe that in order to haveν̂ 6= 0, we need the last condition to be verified:

(Ψ3) (αyp
p > 0)∧ (maxr∈Np

fr(xp) > minr∈Np,αr
p>0 fr(xp))

In fact, in Eq. (13), if there exists a pair(αra
p ,αrb

p ) such thatfra(xp) > frb(xp) and αrb
p > 0, the

conditionν̂ > 0 holds for this pair and it can be chosen for optimization.
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Note that inΨ2 andΨ3 the conditionαyp
p > 0 is redundant and serves to assure that the second

condition makes sense. In fact, when the first condition is not verified, wewould haveα = 0 and
the second condition is undetermined.

Summarizing, we can give three conditions of non-optimality. This means that whenever at least
one among these conditions is verified the solution is not optimal. They are

(a) (αyp
p < C)∧ ( fyp(xp) < maxr∈Np

fr(xp)+1)

(b) (αyp
p > 0)∧ ( fyp(xp) > maxr∈Np,αr

p>0 fr(xp)+1)

(c) (αyp
p > 0)∧ (maxr∈Np

fr(xp) > minr∈Np,αr
p>0 fr(xp))

(15)

Now we are able to demonstrate the following theorem showing that when no one of these
conditions are satisfied the conditions of optimality (KKT conditions) are verified:

Theorem 1 Let α be an admissible solution for the dual problem in Eq. (11) not satisfying any of
the conditions in Eq. (15), thenα is an optimal solution.

Proof. We consider theKuhn-Tuckertheorem characterizing the optimal solutions of convex
problems. We know from theoretical results about convex optimization that for a solutionα to be
optimal a set of conditions are both necessary and sufficient. These conditions are the one reported
in Eq. (10) plus the so-calledKarush-Kuhn-Tucker(KKT) complementarity conditions that in our
case correspond to:

(a) ∀p, r ∈ Pp, αr
p(θp +1−ξr

p− fr(xp)) = 0
(b) ∀p, r ∈ Pp, λr

pξr
p = 0

(c) ∀p,v∈Np, αv
p( fv(xp)−θp) = 0.

(16)

Then, we want to show that these KKT complementary conditions are satisfiedby the solution
αp for everyp∈ {1, . . . ,n}. To this end let us fix an indexp and consider a solution where all the
conditions in Eq. (15) are not satisfied. We want to show that the KKT conditions in Eq. (16) are
verified in this case.

First of all, we observe that for all the variables associated to a positive prototyper ∈ Pp not
assigned to the patternxp, that is such thatπr

p = 0, from Eq. (10) we trivially haveαr
p = 0 andλr

p = 0
thus verifying all conditions in Eq. (16).

Let now consider the case 0< αyp
p < C. In this case the non applicability of condition in

Eq. (15)c says thatθp = maxv∈Np
fv(xp) and∀v∈Np, αv

p > 0⇒ fv(xp) = θp that is the condition
in Eq. (16)c holds. Moreover, the condition in Eq. (15)a, if not satisfied, implies fyp(xp) ≥ θp +1,
thusαyp

p = 0 andξyp
p = 0 thus satisfying the conditions in Eq. (16)a and Eq. (16)b.

Let now consider the caseαyp
p = 0. The conditions in Eq. (16)a and Eq. (16)c follow immedi-

ately. In this case, Eq. (15)b and Eq. (15)c are not satisfied. For what concerns the Eq. (15)a it must
be the casefyp(xp)≥maxv∈Np

fv(xp)+1 and soξyp
p = 0 thus verifying the condition in Eq. (16)b.

Finally, in the caseαyp
p = C, from Eq. (10) we haveλp = 0 and hence the condition in Eq. (16)b

is verified. Moreover, from the fact that Eq. (15)c is not satisfied∀v ∈ Np : αv
p > 0⇒ θp =

maxr∈Np
fr(xp) ≤ fv(xp)⇒ θp = fv(xp) and the condition in Eq. (16)c holds. Moreover, from

condition in Eq. (15)b we obtainfyp(xp)≤ θp+1 andξyp
p = θp+1− fyp(xp) thus implying the truth

of the condition in Eq. (16)a.�
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OptKKTOptimizeOnPattern(xp,ϕV)

∀r, fr := fr(xp) = ∑n
i=1yr

i αr
i k(xi ,xp), Kpp = k(xp,xp);

do

if (αyp
p = 0) then {

r1 := argmaxr∈Np
fr ;

ν1 := BasicStep(p, yp, r1); V1 := 2ν1(1− fyp + fr1−ν1Kpp);

k := 1}

else{

r1 := argmaxr∈Np
fr ; r2 := argmaxr∈Np,αr

p>0 fr ; r3 := argminr∈Np,αr
p>0 fr ;

ν1 := BasicStep(p, yp, r1); V1 := 2ν1(1− fyp + fr1−ν1Kpp);

ν2 := BasicStep(p, yp, r2); V2 := 2ν2(1− fyp + fr2−ν2Kpp);

ν3 := BasicStep(p, r1, r3); V3 := 2ν3( fr1− fr3−ν3Kpp);

k := argmaxj Vj ; }

casek of {

1: BasicUpdate(p,yp,r1,ν1);

2: BasicUpdate(p,yp,r2,ν2);

3: BasicUpdate(p,r1,r3,ν3); }

until (Vk ≤ ϕV);

Figure 6: Algorithm for the optimization of the variables associated with a givenpatternxp and a
toleranceϕV .

All the conditions in Eq. (15) can be checked in time linear with the number of classes. If none
of these conditions are satisfied, this means that the condition of optimality has been found. This
consideration suggests an efficient procedure that is presented in Figure 6 that searches to greedily
fulfill these conditions of optimality and it is referred to asOptKKTOptimizeOnPattern. Briefly,
the procedure first checks if the conditionαp = 0 holds. In this case, two out of the three conditions
do not make any sense and the choice of the pair to optimize is mandatory. Otherwise, three indexes
(r1, r2, r3) are found defining the conditions in Eq. (15). Then for every pair associated to the
condition a basic step is performed and the pair obtaining the larger improvement in the Lagrangian
is chosen for the effective update.
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5.3 Selection Criteria and Cooling Schemes

The efficiency of the general scheme in Figure 3 is tightly linked to the strategybased on which the
examples are selected for optimization.

The algorithm proposed in (Crammer and Singer, 2001) is just an instance of the same scheme.
In that work, by using the KKT conditions of the optimization problem, the authors derive a quan-
tity ψi ≥ 0 for each example and show that this value needs to be equal to zero at theoptimum.
Thus, they use this value to drive the optimization process. In the baseline implementation, the
example that maximizesψi is selected. Summarizing, their algorithm consists of a main loop which
is composed of: (i) an example selection, via theψi quantity, (ii ) an invocation of a fixed-point
algorithm that is able to approximate the solution of the reduced pattern-relatedproblem and (iii )
the computation of the new value ofψi for each example. At each iteration, most of the computa-
tion time is spent on the last step since it requires the computation of one row of the kernel matrix,
that one relative to the pattern with respect to which they have just optimized. This is why it is so
important a strategy that tries to minimize the total number of patterns selected for optimization.
Their approach is to maintain an active set containing the subset of patternshavingψi ≥ ε whereε
is a suitable accuracy threshold. Cooling schemes, i.e. heuristics based onthe gradual decrement of
this accuracy parameter, are used for improving the efficiency with large datasets.

In our opinion, this approach has however some drawbacks:

i) while ψi ≈ 0 gives us the indication that the variables associated to the patternxi are almost opti-
mal and it would be better not to change them, the actual valueψi does not give us information
about the improvement we can obtain choosing those variables in the optimization;

ii) cooling schemes reduce the incidence of the above problem but, as we will see, they do not
always perform well;

iii) at each iteration, the fixed point optimization algorithm is executed from scratch, and previously
computed solutions obtained for an example can’t help when the same example ischosen
again in future iterations; in addition, it is able to find just anapproximatedsolution for the
associated pattern-related problem.

According to the above-mentioned considerations, it is not difficult to define a number of criteria
to drive a ’good’ pattern selection strategy, which seem to be promising. Weconsider the following
three procedures which return a valueVp that we use for deciding if a pattern has to be selected for
optimization. Namely:

i) Original KKT as defined in Crammer and Singer’s work (here denoted KKT): in this case, the
value ofVp corresponds to theψp;

ii) Approximate Maximum Gain (here denoted AMG): in this case the value ofVp is computed
as: maxr1 6=r2 V p

r1,r2(ν̂) as defined in Eq. (14). Notice that this is a lower bound of the total
increment in the Lagrangian obtained when the patternp is selected for optimization and the
optimization on the variables associated to it is completed;

iii) True Maximum Gain (here denoted BMG): in this case the value is computed using iteratively
Eq. (14) and it represents the actual increment in the Lagrangian obtained when the patternp
is selected for optimization.
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At the begin of each iteration, a threshold for pattern selectionθV is computed. For each example
of the training set one of the above strategies is applied to it and the example is selected for opti-
mization if the value returned is greater than the threshold. The definition of thethresholdθV can be
performed either by a cooling scheme that decreases its value as the iterationproceeds or in a data
dependent way. In our case, we have used a logarithmic cooling scheme since this is the one that
has shown the best results for the original Crammer and Singer approach. In addition, we propose
two new schemes for the computation of the valueθV : MAX where the threshold is computed as
θV = µ·maxpVp, 0≤ µ≤ 1, and MEAN where the threshold is computed asθV = 1

n ∑n
p=1Vp.

5.4 Experiments with Pattern Selection

Experiments comparing the proposed pattern selection approaches versus the Crammer and Singer
one has been conducted using a dataset consisting of 10705 digits randomly taken from the NIST-3
dataset. The training set consisted of 5000 randomly chosen digits.

The optimization algorithm has been chosen among:i) The base-line Crammer and Singer orig-
inal fixed-point procedure (here denoted CS);ii) AllPairsOptimizeOnPatterns (here denoted
ALL); iii) BasicOptimizeOnPatterns (here denoted BAS). In the first experiments we used a
cache for the kernel matrix of size 3000 that was able to contain all the matrix rows associated
to the support vectors. For all the following experiments a AMD K6-II, 300MHz, with 64MB of
memory has been used.
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Figure 7: The effect of the logarithmic cooling scheme on different selection/optimization strate-
gies.

In Figure 7 the effect of the application of the logarithmic scheme of cooling to the different
selection/optimization strategies is shown. It is possible to note that even if the proposed selection
strategies largely improve the convergence rate, the optimal solution can notbe reached. This clearly
shows how cooling schemes of the same family of that proposed in (Crammer and Singer, 2001)
are not suitable for these new proposed selection strategies. This is mostly due to the fact that the
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Figure 8: Comparison of different heuristics for the computation of the value θV for the SMO-like
algorithm.
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Figure 9: Comparison of different selection strategies using the heuristic MEAN.

logarithmic function is very slow to converge to zero, and because of that, the value returned by
the strategies will be soon below the threshold. In particular the logarithmic function remains on
a value of about 0.1 for many iterations. While this value is pretty good for the accuracy of the
KKT solution, it is not sufficient for our selection schemes. In Figure 8 different heuristics for
the computation of the valueθV of the selection strategy of the SMO-like algorithm are compared.
In this case the very simple heuristics MAX and MEAN reach similar performance, which is much
better than the baseline scheme. In Figure 9, given the heuristic MEAN, different selection strategies
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Figure 10: The effect of the cache limitation:(a) Lagrangian value versus time;(b) test perfor-
mance versus time.

are compared. In this case, the new strategies slightly outperform the one based on Crammer and
Singer’s KKT conditions. Actually, as we will see in the following, this slight improvement is due
to the big size of the cache of kernel matrix rows that prevents the algorithm suffering of the large
amount of time spent in the computation of kernels that are not present in the cache.

In order to reproduce conditions similar to the ones occurring when dealingwith large datasets,
the size of the cache of kernel matrix rows has been reduced to 100 rows. As it is possible to see
in figure 10-a a decrease in the performance is evident for each method, however, this decrease
becomes more evident when KKT conditions are used as the pattern selectionstrategy. From the
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same figure we can see also a quite poor performance when the basic version of the SMO-like is used
as a global optimization method. This demonstrates how important is to solve the overall problem
one pattern at time. In fact, this leads to a decrease of the total number of patterns selected for
optimization and consequently to a decrease of the number of kernel computations. This puts also
in evidence the amount of time spent in kernel computation versus the amount of time spent in the
optimization. Figure 10-b clearly shows that the same argument can be appliedto the recognition
accuracy.

5.5 Brief Discussion

The type of strategies we have analyzed in earlier sections are very similar tothe ones used by SMO
(Platt, 1998), modified SMO (Keerthi et al., 1999) and svmlight (Joachims, 1999) algorithms for
binary SVM. In these cases, linear constraints involving dual variables which are related to different
patterns (derived by KKT conditions over the bias term) are present. However, in our case, as in the
Crammer and Singer’s algorithm (Crammer and Singer, 2001), constraints involve dual variables
which are related to the same pattern (but over different prototypes). This makes a difference in the
analysis since it turns out that it is convenient to optimize as much as possible the reduced problem
obtained for a single pattern as this optimization does not require the computationof new kernels.
This claim is supported by our experimental results comparing BMG-ALL vs.BMG-BAS in Figure
10.

Also, we have shown experimentally that the use of heuristics based on the increase of the
Lagrangian tend to be faster than KKT based ones, when used for pattern selection (compare BMG-
ALL vs. KKT-ALL in Figure 10). This can be due to the fact that the numberof different patterns
selected along the overall optimization process tends to be smaller and this largely compensates the
inefficiency derived by the computation of the increase of the Lagrangianand the thresholds. On
the other hand, according to the same experimental analysis, KKT conditionshelp when used for
the choice of pairs to optimize in the reduced problems obtained for a given pattern. According to
these considerations, this mixed approach has been adopted in the experiments that follow.

6. Optimization of General MProtSVM

By now, we have analyzed the (static) problem obtained when the assignment is given. In this sec-
tion, we describe methods for the optimization with respect to the assignmentsπ as well. Naturally,
the full problem is no longer convex. So, we first present an efficientprocedure that guarantees to
reach a stationary point of the objective function of the problem in Eq. (8)associated to MProtSVM.
Then, we insert it in a stochastic search framework with the aim to improve the quality of the solu-
tions we find.

6.1 Greedy Optimization of MProtSVM

In the following, an algorithm for the optimization of the problem in Eq. (8) is described. The
algorithm consists of two steps: a step in which, fixed the values for the set of variablesα, we select
the assignmentsπ’s in such a way to minimize the primal value, followed by a step in which the
optimization of the variablesα is performed once fixed the assignments. Each of these steps will
lead to an improvement of the objective function thus guaranteeing the convergence to a stationary
point.
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Let suppose to start by fixing an initial assignmentπ(1) for the patterns. As we have already
seen, the associated problem is then convex and can be efficiently solvedfor example by using
the general scheme in Figure 3. Once that the optimal value for the primal, let say P∗π(1), has
been reached, we can easily observe that the solution can be further improved by updating the
assignments in such a way to associate each patternxi to a positive prototype having associated the
minimal slack value, i.e. by setting the vectorπi(2) so to have the unique 1 corresponding to the
best performing positive prototype. However, with this new assignmentπ(2), the variablesα may
no longer fulfill the second admissibility condition in Eq. (10). If this is the case, it simply means
that the current solutionM(α) is not optimal for the primal (although still admissible). Furthermore,
α cannot be optimal for the dual given the new assignment since it not evenadmissible. Thus, a
Lagrangian optimization, done by keeping the constraints dictated by the admissibility conditions
in Eq. (10) satisfied for the new assignment, is guaranteed to obtain a newα with a better optimal
primal valueP∗π(2), i.e. P∗π(2) ≤ P∗π(1). For the optimization algorithm to succeed, however, KKT
conditions onα have to be restored in order to return back to a feasible solution and then finally
resuming the Lagrangian optimization with the new assignmentπ(2). Admissibility conditions
can be simply restored by settingαi = 0 whenever there exists anyr ∈ Pi such that the condition
αr

i > 0∧πr
i = 0 holds. Note that, when the values assigned to the slack variables allow to define

a new assignment forπ corresponding to a new problem with a better optimal primal value, then,
because of convexity, the Lagrangian of the corresponding dual problem will have an optimal value
that is strictly smaller than the optimal dual value of the previous problem.

Performing the same procedure over different assignments, each one obtained from the previous
one by the procedure described above, implies the convergence of the algorithm to a fixed-point
consisting of a stationary point for the primal problem when no improvements are possible and the
KKT complementarity conditions are all fulfilled by the current solution.

One problem with this procedure is that it can result onerous when dealingwith large datasets or
when using many prototypes since, in this case, many complete Lagrangian optimizations have to
be performed. For this, we can observe that for the procedure to work, at each step, it is sufficient to
stop the optimization of the Lagrangian when we find a value for the primal whichis better than the
last found value and this is going to happen for sure since the last solution was found not optimal.
This requires only a periodic check of the primal value when optimizing the Lagrangian.

6.2 Stochastic Modifications for MProtSVM Optimization

Another problem with the procedure given in the previous section is that it leads to a stationary
point (either a local minima or a saddle point) that can be very far from the best possible solution.
Moreover, it is quite easy to observe that the problem we are solving is combinatorial. In fact, since
the induced problem is convex for each possible assignment, then there willexist a unique optimal
primal valueP∗(π,α∗(π)) associated with optimal solutionsα∗(π) for the assignmentsπ. Thus, the
overall problem can be reduced to find the best among all possible assignments. However, when
assuming an equal numberq of prototype vectors for each class, there areqn possible solutions with
many trivial symmetries.

Given the complexity of the problem we are trying to optimize, we propose to resort to stochastic
search techniques. Specifically, the approach we suggest can be considered an instance of Iterated
Local Search (ILS). ILS is a family of general purpose metaheuristics for finding good solutions
of combinatorial optimization problems (Lourenco et al., 2002). These algorithms are based on
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building a sequence of solutions by first perturbing the current solution and then applying local
search to that modified solution.

In the previous section, a way to perform approximated local search hasbeen given. Let us now
consider how to perturb a given solution. We propose to perform a perturbation that is variable with
time and is gradually cooled by a simulated annealing like procedure.

For this, let us view the value of the primal as an energy function

E(π) =
1
2
||M||2 +C∑

i

〈πi ,ξi〉.

Let suppose to have a patternxi having slack variablesξr
i , r ∈ Pi , and suppose that the probability

for the assignment to be in the state of natures (i.e. with thes-th component set to 1) follows the
law

pi(s) ∝ e−∆Es/T

whereT is the temperature of the system and∆Es = C(ξs
i −ξyi

i ) the variation of the system energy
when the patternxi is assigned to thes-th prototype. By multiplying every termpi(s) by the nor-
malization termeC(ξyi

i −ξ0
i )/T whereξ0

i = minr∈Pi ξr
i and considering that probabilities over alternative

states must sum to one, i.e.∑r∈Pi
pi(r) = 1, we obtain

pi(s) =
1
Zi

e−
C(ξs

i −ξ0
i )

T (17)

with Zi = ∑r∈Pi
e−C(ξr

i−ξ0
i )/T the partition function.

Thus, when perturbing the assignment for a patternxi , each positive prototypeswill be selected
with probability pi(s). From Eq. (17) it clearly appears that, when the temperature of the systemis
low, the probability for a pattern to be assigned to a prototype different from the one having minimal
slack value tends to 0 and we obtain a behavior similar to the deterministic version of the algorithm.
The simulated annealing is typically implemented by decreasing the temperature, asthe number of
iterations increases, by a monotonic decreasing functionT = T(t,T0).

Summarizing, an efficient realization of the ILS-based algorithm is obtained by substituting the
true local optimization with one step of the algorithm in Section 6.1 and is given in Figure 11.

7. Generalization Ability of MProtSVM

In this section, we give a theoretical analysis of the generalization ability of the MProtSVM model.
For simplicity, we consider MProtSVM with a fixed numberq of prototypes per class. We first
assume training data being separated by a MProtSVM model and we give a margin based upper
bound on the error that holds with high probability on a independently generated set of examples.
Then, we give a growth-function based bound on the error which do not assume linear separability
of training data.

Margin based generalization bound Let us suppose that ani.i.d. sampleS of n examples and a
modelM are given such that the condition in Eq. (7) holds for every example inS , i.e.

∀(xi ,ci) ∈ S ,∃r ∈ Pi : 〈Mr ,xi〉 ≥ θi +1 andθi = max
r∈Ni

〈Mr ,xi〉.
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AnnealedMProtSVM()

T := T0; randomly initializeπ(1);

compute the primalE(1) := Pπ(1)(0);

for t = 1, .., tmax

do for all the examplesxp ∈ S

αp = OptimizeOnPattern(xp , ε);

until Pπ(t)(α) < E(t);

compute a new assignmentπ(t +1) usingT(t,T0) in Eq. (17);

compute the new primalE(t +1) := Pπ(t+1)(α);

restore KKT conditions onα /*see Section 6*/

end;

Figure 11: Fast annealed algorithm for the optimization of MProtSVM.

With this assumption, fixing a patternxp, there will be at least one slack variableξr
p, associated

with it, equal to zero. In fact, the conditionξr
p = 0 is true at least in the caser = yp, whereyp is the

positive prototype associated to the patternxp, i.e. such thatπyp
p > 0.

To give the margin-based bound on the generalization error, we use the same technique as in
an(Platt et al., 2000) for general Perceptron DDAG1 (and thus SVM-DAG also), i.e. we show how
the original multiclass problem can be reduced into one made of multiple binary decisions. The
structure of our proof resembles the one given in (Crammer and Singer, 2000) for single-prototype
multiclass SVM.

A Perceptron DDAG is a rooted binary DAG withN leaves labelled by the classes where each
of theK = m(m−1) internal nodes is associated with a perceptron able to discriminate between two
classes. The nodes are arranged in a triangle with the single root node atthe top, two nodes in the
second layer and so on until the final layer ofm leaves. Thei-th node in layerj < m is connected
to thei-th and(i +1)-st node in the( j +1)-st layer. A Perceptron DDAG based classification can
also be though of as operating on a list of classes with associated a set of perceptrons, one for each
different pair of classes in the list. The evaluation of new patterns is made byevaluating the pattern
with the perceptron discriminating the classes in the first and in the last position of the list. The
losing class between the two is eliminated from the list. This process is repeated until only one
class remains in the list and this class is returned.

Similarly, MProtSVM classification can be thought of as operating on a list. Suppose the index
of prototypesr ∈ R = {1, . . . ,mq} are ordered according to their classC (r) ∈ {1, . . . ,m}. Then,

1. Note that the term ”perceptron” here simply denotes a linear decision function which is not necessarily produced by
the ”perceptron algorithm”.
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given a new pattern, we compare the scores obtained by the two prototypesin the head and in the
tail of the list and the loser is removed from the list. This is done until only prototypes of the same
class remain on the list and this is the class returned for the pattern under consideration. It is easy
to show that this procedure is equivalent to the rule in Eq. (2).

In the following, we will refer to the following theorem giving a bound on the generalization
error of a Perceptron DDAG:

Theorem 2 (Platt et al., 2000) Suppose we are able to classify a random sample of labelled exam-
ples using a Perceptron DDAG on m classes containing K decision nodes withmarginγi at node i,
then we can bound the generalization error with probability greater than1−δ to be less than

1
n
(130R2D′ log(4en) log(4n)+ log(

2(2n)K

δ
))

where D′ = ∑K
i=1 γ−2

i , and R is the radius of a ball containing the support of the distribution.

Note that, in this theorem, the marginγi for a perceptron(wi ,bi) associated to the pair of classes
(r,s) is computed asγi = mincp∈{r,s} |〈wi ,xp〉 − bi |. Moreover, we can observe that the theorem
depends only on the number of nodes (number of binary decisions) and does not depend on the
particular architecture of the DAG.

Going back to MProtSVM, for the following analysis we define the hyperplane wrs = Mr −Ms

for each pair of prototypes indexesr,ssuch thatC (r) < C (s). and thesupportof the hyperplanewrs

as the subset of patterns

Γrs = {i ∈ {1, . . . ,n} : (r ∈ Pi ∧πr
i > 0)∨ (s∈ Pi ∧πs

i > 0)} .

Now, we can define the margin of the classifierhrs(x) = 〈wrs,x〉 as the minimum of the (geo-
metrical) margins of the patterns associated to it, i.e.

γrs = min
i∈Γrs

|hrs(xi)|
||wrs||

(18)

Note that, from the hypothesis of separation of the examples and from the way we defined the
margin, we have|hrs(xi)| ≥ 1 and hence the lower bound on the marginγrs≥ ||wrs||−1.

Now, we can show that the maximization of these margins leads to a small generalization error
by demonstrating the following result.

Lemma 3 Suppose we are able to classify a random sample of labelled examples using aMProtSVM
with q prototypes for each of the m classes with marginγrs whenC (r) < C (s), then we can bound
the generalization error with probability greater than1−δ to be less than

1
n
(130R2D log(4en) log(4n)+ log(

2(2n)K

δ
))

where D= ∑r,s: C (r)<C (s) γ−2
rs , K = 1

2q2m(m−1), and R is the radius of a ball containing the support
of the distribution.
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Proof. First of all, we show that an MProtSVM can be reduced to a Perceptron DDAG. Let
be given prototype indicesr ∈ R= {1, . . . ,mq} ordered according to their classC (r) ∈ {1, . . . ,m}.
Consider two cursorsr ands initially set to the first and the last prototype inR, respectively. Now,
we build a DAG node for(r,s) based on the classifierhrs. Then, recursively, left and right edges are
built associated to nodes(r,s−1) and(r +1,s) respectively. This is made until the conditionC (r) =
C (s) = t holds. When this is the case, a leaf node is built instead with labelt. This construction is
based on the fact that there is not need to compare the scores obtained byprototypes associated to
the same class.

We show now that the number of nodes in the skeleton of a DAGD which is built in this way is
exactlyK = 1

2q2m(m−1). In fact, consider the DAGD′ obtained by keeping on constructing DAG
nodes(r,s) until the conditionr = s holds, instead of justC (r) = C (s). This graph would be the
same that would have been obtained by consideringmqclasses with one prototype each. Note that
D′ is balanced and it consists of1

2mq(mq−1) nodes. It follows that, to obtain the DAGD, for each
classy, we subtract the subDAG constructed by considering all possibleky = q(q−1)/2 pairs of
prototypes associated to that class.

Summarizing, the number of nodes of the DAGD is the number of nodes of the balanced DAG
D′ minus the total number ofmky subDAG nodes. That is we get:

K =
1
2

mq(mq−1)−m(
1
2

q(q−1)) =
1
2

q2m(m−1).

Now, we can apply Theorem 2, by considering a Perceptron DDAG withK nodes associated to pairs
r,s : C (r) < C (s) and the margin for the node(r,s) defined as in Eq. (18).�

By now, we have demonstrated that the minimization of the termD = ∑r,s: C (r)<C (s) γ−2
rs propor-

tional to the margin of the nodes of the Perceptron DDAG we have constructed, leads to a small
generalization error. This result can then be improved by showing how these margins are linked to
the norm of the MProtSVM matrixM and finally proving the following theorem.

Theorem 4 Suppose we are able to classify a random sample of n labelled examples using a
MProtSVM with q prototypes for each of the m classes and matrix M, then we can bound the gener-
alization error with probability greater than1−δ to be less than

1
n

(

130R2q(m−1+q)||M||2 log(4en) log(4n)+ log(
2(2n)K

δ
)

)

where K= 1
2q2m(m−1) and R is the radius of a ball containing the support of the distribution.

Proof. First of all, note that we haveγ−2
rs ≤ ||wrs||2 = ||Mr −Ms||2 and∑r Mr = 0. The second

condition can be easily verified. In fact, from conditions in Eq. (10), it follows

∑
r

Mr = ∑
r

∑
i

yr
i α

r
i xi = ∑

i

(∑
r

yr
i α

r
i

︸ ︷︷ ︸

0

)xi = 0.

Now, we have

∑r,s: C (r)<C (s) ||Mr −Ms||2 = q(m−1)∑r ||Mr ||2−2∑r,s:C (r)<C (s)〈Mr ,Ms〉. (19)
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The second term of the equation above is

∑r,s: C (r)<C (s)〈Mr ,Ms〉 = 1
2(∑r,s〈Mr ,Ms〉−∑r,s, C (r)=C (s)〈Mr ,Ms〉)

= −1
2 ∑r,s: C (r)=C (s)〈Mr ,Ms〉

= −1
2(∑r ||Mr ||2 +∑r 6=s: C (r)=C (s)〈Mr ,Ms〉).

(20)

where the following inequality holds

∑r 6=s, C (r)=C (s)〈Mr ,Ms〉 ≤ ∑m
j=1 ∑r 6=s: C (r)=C (s)= j〈Mr ,Ms〉

≤ q2 ∑m
y=1 ||M̃y||2

≤ q2 ∑r ||Mr ||2
(21)

once we setM̃y = argmaxr: C (r)=y ||Mr ||. Finally, substituting back Eq. (21) in Eq. (20) and Eq. (20)
in Eq. (19) we obtain:

D≤ q(m−1+q)∑
r
||Mr ||2

and the theorem easily follows. Note that this bound nicely generalizes the case of single prototype
per class already shown in (Crammer and Singer, 2000).�

Growth function based generalization bound In the following, we give another kind of analysis
of the generalization capability of our model based on the growth function. In order to do that, it
is convenient to show that our multi-prototype model is equivalent to a three-layer network of per-
ceptrons where the weights of the second and third layer are decided before learning. Thus, the free
parameters of the network are only the weights of perceptrons in the first layer. As before, with no
loss of generality, we assume to haveq prototypes for each classc∈ Y .

Given a MProtSVMHM(·), the corresponding networkNHM is constructed as follows (we as-
sume threshold perceptrons(w,θ) with outputo(x) = sign(〈w,x〉−θ)):

First layer:∀r,s∈ Ω, C (r) < C (s), define the perceptronh(1)
rs with weight vectorw(1)

rs = Mr −Ms

andθ(1)
rs = 0;

Second layer (AND):∀u∈ Y = {1, . . . ,m}, ∀v∈ Ω : C (v) = u define the perceptronh(2)
uv , taking

input from allh(1)
rs such thatr = v or s= v and connection equal to 1 ifr = v, −1 otherwise;

set threshold to the valueθ(2)
uv = q(m−1)−0.5 (”on” if all the inputs are 1).

Third layer (OR):∀w suchthat w∈ Y = {1, . . . ,m} define the perceptronh(3)
w , taking input from

all h(2)
uv suchthat w= u and connections all equal to 1; set the threshold to the valueθ(3)

w = 1/2
(”on” if any input is 1).

See Figure 12 for an example of network construction whenq = 2 andm= 3. Notice that, by
construction, for any input there will be no two activated perceptronsh(2)

uv andh(2)
ûv̂ such thatu 6= û.

So, only one out of the perceptrons at the third layer will be activated, and its index will correspond
to the predicted class.

The constructed network hasσ = q2m(m−1)
2 perceptrons at the first layer. Since only these per-

ceptrons have trainable weights, the VC-dimension of the network only depends on these free pa-
rameters (apart for the hard-threshold functions).

We are now ready to state the following result.
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Figure 12: Example of network construction whenq = 2 andm= 3. With this setting, prototypes
M1 andM2 are associated with class 1, prototypesM3 andM4 are associated with class
2, and prototypesM5 andM6 are associated with class 3.

Theorem 5 For any0 < δ < 1, any MProtSVM HM(·) with q prototypes for each of the m classes,
givenS a sample of size n drawn i.i.d. fromDRd×{1,...,m}, with probability at least1−δ

errD(HM)≤ errS (HM)+

√

4
1+(qm+ 1

2)ln(qm)+ dq2m(m−1)
2 ln(2en/d)− ln(δ/4)

n
+

1
n
.

Proof. By the above construction, the class of functions computable by a MProtSVMwith q pro-
totypes for each of them classes is contained in the class of functions computable by three-layer
perceptrons defined as above. This class of functions is completely characterized by the set of col-
lective states that theσ perceptrons at the first layer can assume. It is well known (Kearns and
Vazirani, 1994) that, by Sauer Lemma, the growth function of a single perceptron (with 0 threshold)
is bounded from above by the quantity(en/d)d, and so the growth function of our class of networks
is bounded from above by the quantity(en/d)dσ.

This bound, however, does not consider that not all the possible configurations ofσ bits can
be generated by the first layer. In fact, by construction of the network,we have that ifh(1)

rs (x) = 1
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andh(1)
sŝ (x) = 1, then for sureh(1)

rŝ (x) = 1, as well as, ifh(1)
rs (x) = 0 andh(1)

sŝ (x) = 0, then for sure

h(1)
rŝ (x) = 0. This is the result of the fact that, given an input vectorx, the outputs of the first

layer perceptrons are fully determined by the total order over the MProtSVM prototypes induced
by the score functionsfr(·). Thus we can compute an upper bound on the proportion of ’legal’
configurations by considering all possible permutations of theqmprototypes divided by all possible
configurations, i.e., 2σ. Notice that this is an upper bound since when considering prototypes of the
same class, we do not care about their relative order.

So we can bound the growth function of our class of networks by

(qm)!
2σ (en/d)dσ <

√

2πqm(qm/e)qme
1

12qm2−σ(en/d)dσ,

where the last inequality has been obtained by using Stirling’s formula.
Making explicit the value ofσ, the right term of the above inequality can be written as

√
2π(qm)qm+ 1

2 (n/d)
dq2m(m−1)

2 e
6q3m2(m−1)(d−ln(2))−12q2m2+1

12qm .

Now, we can apply Theorem 4.1 in (Vapnik, 1998) (involving the logarithm of the growth function
for a sample of dimension 2n) obtaining

errD(HM(·)) ≤ errS (HM(·))+

+

√

4
ln(
√

2π(qm)qm+ 1
2 (2n

d )
dq2m(m−1)

2 e
6q3m2(m−1)(d−ln(2))−12q2m2+1

12qm )− ln( δ
4)

n
+

1
n

≤ errS (HM(·))+

√

4
1+(qm+ 1

2)ln(qm)+ dq2m(m−1)
2 ln2en

d − ln δ
4

n
+

1
n

�

8. Experimental Results

In the following, we report experiments we have done for testing the complexity and the general-
ization performance of the MProtSVM model with respect to other state-of-the-art algorithms. We
choose to compare our model against results already published in literatureon different datasets
instead of doing experiments with those methods directly. This is because we have not available the
code for all those methods and hence a re-implementation would be necessary. This can potentially
introduce errors or uncorrect use of the methods and it is far more onerous for us. For this, we
experimented on our model trying to replicate the initial conditions of published results as much as
possible in such a way to obtain fair comparisons.

For all the following experiments, the linear kernelK(x,y) = (〈x,y〉+1) has been used. More-
over, the annealing process required by MProtSVM has been implemented by decreasing the tem-
perature of the system with the exponential law:

T(t,T0) = T0(1− τ)t

wheret is the current iteration, 0< τ < 1 andT0 > 0 are external parameters. We usedT0 = 10 for all
the following experiments. In addition, the only free parameterC of MProtSVM has been selected
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by performing validation of the model on a subset of the training set with values C = {10k,k =
−2, ..,2}.

Initially, we tested our model against three multiclass datasets that we briefly describe in the
following:

NIST: it consists of a 10-class task of 10705 digits randomly taken from the NIST-3 dataset. The
training set consists of 5000 randomly chosen digits, while the remaining 5705digits are used
in the test set.

USPS:it consists of a 10-class OCR task (digits from 0 to 9) whose input are the pixels of a scaled
digit image. There are 7291 training examples and 2007 test examples.

LETTER: it consists of a task with 26 classes consisting of alphabetic letters A-Z. Inputs are
measures of the printed font glyph. The first 15000 examples are used for training and the
last 5000 for testing.

q LVQ2.1 Error % MProtSVM Error %

1 7.43 6.45
5 4.68 3.63
10 4.35 3.28
15 3.52 2.80

Table 1: Comparison of generalization performances between MProtSVM and LVQ with increas-
ing number of prototypes/codewords (NIST dataset,τ = .05,β = 0.002×q).

q USPS Error (%)

1 8.12
3 6.13
5 5.83
10 5.48
15 5.23
20 5.00

q LETTER Error (%)

1 21.36
3 9.64
5 6.42
10 4.84
15 3.16
20 2.94

Table 2: (a) Test error of MProtSVM on the USPS dataset (τ = .05, β = 0.00137× q), with an
increasing number of prototypes; (b) Test error of MProtSVM on the LETTER dataset
(τ = .05,β = 0.00043×q), with an increasing number of prototypes.

A first set of experiments have been performed to compare the generalization performance of
our (linear) model versus LVQ (Kohonen et al., 1996), which seemed to us the most comparable
model, into an OCR task. For this, we have reported the results obtained by theLVQ2.1 version of
the algorithm in (Sona et al., 2000) on the NIST problem. Configurations with ahigher number of
codewords started to overfit the data. As it can be seen in Table 1, MProtSVM performs significantly
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better with the same number of parameters. This can be due to the more effective control of the
margin for our model w.r.t. LVQ models. On the same dataset, the tangent-distance based TVQ
algorithm (Aiolli and Sperduti, 2002b) has obtained the best result, a remarkable 2.1% test error,
and polynomial SVM’s have obtained a 2.82% test error. These last results should not surprise since
their models are well suited for OCR tasks. Here and in the following experiments we report the
value of the factorβ = (m×q)/n defined as the number of prototypes produced as a fraction of the
cardinality of the training set. This represent a sort of factor of compression in the model.

A second set of experiments have been performed to test the MProtSVM model against state-of-
the-art methods on two well known datasets: UCI Irvine USPS and LETTER. The obtained results
are reported in Table 2. As it is possible to see, by combining a reasonably high number of linear
prototypes, we have been able to obtain performances almost comparable with the ones obtained
using non-linear models. In fact, on the USPS dataset, we obtained a 4.63% error using an our own
SProtSVM implementation with polynomial kernel of degree 3 and without furtherpreprocessing
of the data. Finally, a 5.63% test error performance has been obtained using 1-NN. Concerning the
LETTER dataset, the results should be compared to versus the 1.95% obtained in (Crammer and
Singer, 2001) by SProtSVM with exponential kernel and to the 4.34% obtained by 1-NN. Although
obtained with a slightly different split of the LETTER dataset (16000 examples for training and
4000 for test), we would like to mention the results reported in (Michie et al., 1994) where LVQ
yielded a 7.9%.

From these experiments it is clear that MProtSVM returns far more compact models with respect
to state of the art non-linear kernel methods allowing a (one or two order) reduced response time in
classification while preserving a good generalization performance. In fact, the above experiments
have shown very low values for the compression factorβ (e.g. 26×20 prototypes in the LETTER
dataset givesβ = 0.013 and 10×20 prototypes for USPS givesβ = 0.0274). Notice thatβ can be
directly compared with the fraction of support vectors in kernel machines.Thus, MProtSVMs also
give us a way to decide (before training) the compression factor we wantto obtain.

— Vectors — ——————– Errors ———————–
Dataset SVM RVM SVM RVM MProtSVM

q=1 q=3 q=5 q=10
Banana 135.2 11.4 10.9 10.8 46.0 12.8 [ 11.0 ] 11.0
Breast Cancer 116.7 6.3 26.9 29.9 28.2 26.9 27.5 [ 27.0 ]
German 411.2 12.5 22.6 22.2 [ 23.6 ] 23.8 23.5 23.7
Image 166.6 34.6 3.0 3.9 15.0 3.2 2.7 [2.5 ]
Titanic 93.7 65.3 22.1 23.0 [ 22.5 ] 22.2 22.2 22.2
Waveform 146.4 14.6 10.3 10.9 13.3 10.8 10.0 [ 10.2 ]

Table 3: Comparison of solution complexity and generalization error of MProtSVM with respect
to SVM and Tipping’s RVM on a set of UCI binary datasets. The results quoted for SVM
and RVM are taken from (Tipping, 2001). Values in brackets are the ones obtained using
the model suggested by model selection performed over the number of prototypes.

To further validate our claim, we made a comparison of our technique againstothers that ex-
plicitly try to obtain compact models. In Table 3 we reported the results obtained with six binary
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Dataset # Features Train Size Test Size

Banana 2 400 4900
Breast Cancer 9 200 77
German 20 700 300
Image 18 1300 1010
Titanic 3 150 2051
Waveform 21 400 4600

Table 4: General information about the UCI binary datasets used in the experiments.

problems (see Table 4 for general information about these datasets) from the benchmark of R̈atsch
available over the web2, exactly the ones used by (Tipping, 2001) of which we are reporting the
obtained results for RVM and SVM. They correspond to averages overthe first 10 splits of the col-
lection. For each dataset, it is reported the average number of support vectors generated by SVM
and RVM, the generalization error obtained with these two methods and the results obtained using
four very simple MProtSVM configurations, namely made of 1, 3, 5 and 10 prototypes per class
(2, 6, 10 and 20 vectors in total, respectively3). It is possible to see how very compact and simple
models performs as good as (sometimes better than) state-of-the-art methods. Values in brackets
represent the error value obtained using the model suggested by the validation procedure we have
performed over the number of models per class.

Finally, in Table 5 we report an example of the values obtained for the objective function of
the primal problem in Eq. (8) along with their corresponding test errors obtained using different
configurations and lowering the simulated annealing parameterτ on the USPS dataset. As expected,
once fixed a raw in the table, better values for the primal can generally be obtained with lower
values ofτ. Moreover, as the number of prototypes per class increases, the choice of smallτ tends
to be more crucial. Anyway, higher values forτ, and thus not optimal values for the primal, can
nevertheless lead to good generalization performances. Notice that fromthe fact that the primal
value is just a way to approximate the theoretical SRM principle and from the non-optimality of the
parameterC in these experiments, better values for the primal does not necessarily correspond to
better values for the test error.

9. Conclusions

We have proposed an extension of multiclass SVM able to deal with several prototypes per class.
This extension defines a non-convex problem. We suggested to solve this problem by using a novel
efficient optimization procedure within an annealing framework where the energy function corre-
sponds to the primal of the problem. Experimental results on some popular benchmarks demon-
strated that it is possible to reach very competitive performances by using few linear models per
class instead of a single model per class with kernel. This allows the user to get very compact
models which are very fast in classifying new patterns. Thus, accordingto the computational con-
straints, the user may decide how to balance the trade-off between better accuracy and speed of

2. http://ida.first.gmd.de/∼raetsch
3. When one prototype per class is used in a binary problem, as in this case, MProtSVM actually generates two vectors

that are the same with sign inverted. Thus, they can be compacted into one vector only with no loss of information.
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q τ = 0.2 τ = 0.1 τ = 0.05 τ = 0.03

3 7.44626 (6.33%) 7.28049 (6.03%) 7.08138 (6.13%) 7.04274 (6.48%)
5 7.49136 (6.08%) 7.27318 (5.63%) 7.10498 (5.83%) 7.00946 (5.58%)
10 7.82233 (5.58%) 7.51780 (5.88%) 7.27596 (5.48%) 7.12517 (5.23%)
15 7.82222 (5.33%) 7.57009 (5.73%) 7.38722 (5.33%) 7.22250 (5.53%)
20 7.78410 (5.48%) 7.79388 (5.72%) 7.49125 (5.38%) 7.21303 (5.53%)

Table 5: Primal values and generalization error obtained with different configurations varying the
parameterτ for the USPS dataset.

classification. Finally, it should be noted that the proposed approach compares favorably versus
LVQ, a learning procedure that, similarly to the proposed approach, returns a set of linear models.

Preliminary experiments with kernels have shown negligible improvements that makes us to
consider this extension not worthwhile of further investigations. An alternative more interesting
extension would be to try to combine different types of kernels together in thesame model.

Acknowledgments

This work has been developed when Fabio Aiolli was a PhD student and postdoc at the Department
of Computer Science, Univ. of Pisa. The research was partially supported by Italian MIUR project
2003091149005. We would like to thank Y. Singer, K. Crammer, and the anonymous reviewers for
their valuable suggestions on how to improve the paper.

References

F. Aiolli and A. Sperduti. An efficient SMO-like algortihm for multiclass SVM. In Proceedings of
IEEE workshop on Neural Networks for Signal Processing, pages 297–306, 2002a.

F. Aiolli and A. Sperduti. A re-weighting strategy for improving margins.Artificial Intelligence
Journal, 137/1-2:197–216, 2002b.

F. Aiolli and A. Sperduti. Multi-prototype support vector machine. InProceedings of International
Joint Conference of Artificial Intelligence (IJCAI), 2003.

E. Allwein, R. Schapire, and Y. Singer. Reducing multiclass to binary: A unifying approach for
margin classifiers.Journal of Machine Learning Research, 2000.

K. Crammer and Y. Singer. On the learnability and design of output codes for multiclass problems.
In Proceedings of the Thirteenth Annual Conference on Computational Learning Theory, pages
35–46, 2000.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based machines.
Journal of Machine Learning Research, 2(Dec):265–292, 2001.

T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error correcting output
codes.Journal of Artificial Intelligence Research, 2:263–286, 1995.

848



MULTICLASS CLASSIFICATION WITH MULTI -PROTOTYPESUPPORTVECTORMACHINES

T. Downs, K. E. Gates, and A. Masters. Exact simplification of support vector solutions.Journal of
Machine Learning Research, 2:293–297, 2001.

G. M. Fung, O. L. Mangasarian, and A. J. Smola. Minimal kernel classifiers. Journal of Machine
Learning Research, 3:303–321, 2002.

Y. Guermeur, A. Elisseeff, and H. Paugam-Moisy. A new multi-class SVM based on a uniform
convergence result. InProceedings of the IJCNN, 2000.

T. Joachims. Making large-scale SVM learning practical. InAdvances in Kernel Methods - Support
Vector Learning. B. Schlkopf and C. Burges and A. Smola (ed.), MIT Press, 1999.

M. J. Kearns and U. V. Vazirani.An Introduction to Computational Learning Theory. MIT Press,
1994.

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy.Improvements to platt’s smo
algorithm for SVM classifier design. Technical Report CD-99-14, Control Division, Dept. of
Mechanical and Production Engineering, National University of Singapore, 1999.

T. Kohonen, J. Hynninen, J. Kangas, J. Laaksonen, and K. Torkkola. Lvq pak: The learning vec-
tor quantization program package. Technical Report A30, Helsinki University of Technology,
Laboratory of Computer and Information Science, January 1996. http://www.cis.hut.fi/nnrc/nnrc-
programs.html.

H. R. Lourenco, O. C. Martin, and T. Stutzle. Iterated local search.Handbook of Metaheuristics,
Ed. F. Glover and G. Kochenberger, International Series in Operations Research & Management
Science(57):321–353, 2002.

D. Michie, D. Speigelhalter, and C. Taylor.Machine Learning, Neural and Statistical Classification.
Ellis Horwood, 1994.

T. Mitchell. Machine Learning. McGraw Hill, 1997.

J. Platt, N. Cristianini, and J. Shawe Taylor. Large margin DAGs for multiclassclassification. In
S. A. Solla, T. K. Leen, and K. R. Muller, editors,Advances in Neural Information Processing
Systems. MIT Press, 2000.

J. C. Platt. Fast training of support vector machines using sequential minimaloptimization. Ad-
vances in Kernel Methods - Support Vector Learning, 1998.

J. R. Quinlan.C4.5: Programs for Empirical Learning. Morgan Kaufmann, San Francisco, CA,
1993.

D. E. Rumelhart, G. E. Hinton, and R.J Williams. Learning internal representation by error prop-
agation. InParallel Distributed Processing - Explorations in the Microstructure of cognition,
chapter 8, pages 318–362. MIT Press, 1986.
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