
Multiple Graph-Kernel Learning

Fabio Aiolli, Michele Donini, Nicolò Navarin and Alessandro Sperduti
Department of Mathematics

University of Padova
via trieste 63, Padova, Italy

Email:{aiolli,mdonini,nnavarin,sperduti}@math.unipd.it

Abstract—Kernels for structures, including graphs,
generally suffer of the diagonally dominant grammatrix
issue, the effect by which the number of sub-structures,
or features, shared between instances are very few with
respect to those shared by an instance with itself. A
parametric rule is typically used to reduce the weights
of largest (more complex) sub-structures. The partic-
ular rule which is adopted is in fact a strong external
bias that may strongly affect the resulting predictive
performance. Thus, in principle, the applied rule should
be validated in addition to the other hyper-parameters
of the kernel. Nevertheless, for the majority of graph
kernels proposed in literature, the parameters of the
weighting rule are fixed a priori.
The contribution of this paper is two-fold. Firstly, we
propose aMultiple Kernel Learning (MKL) approach to
learn different weights of different bunches of features
which are grouped by complexity. Secondly, we define
a notion of kernel complexity, namely Kernel Spectral
Complexity, and we show how this complexity relates
to the well-known Empirical Rademacher Complexity
for a natural class of functions which include SVM.
The proposed approach is applied to a recently de-
fined graph kernel and evaluated on several real-world
datasets. The obtained results show that our approach
outperforms the original kernel on all the considered
tasks.

I. Introduction
Historically, the machine learning community has been

focused on data represented as vectors, because they are
a flexible and mathematically convenient representation.
However, in the last few years, there has been an increas-
ing interest for data represented in a structured form.
Indeed, in many application domains, it is easy to define
a representation for the data as a structure. For example,
XML files have a natural representation as trees, as well
as the tree of a sentence in natural language processing.
Unfortunately, it is not straightforward to define vectorial
representations that are general enough and that do not
force a loss of information. Graphs are a very convenient
way to store information, and they can encode concepts
and relationships from very different application domains
in a natural way. Recently, different ambitious projects
have started with the aim to build a graph database
that encodes (some of the) human knowledge, such as the
Google knowledge graph [23] or NELL [19]. In Chemoin-
formatics a chemical compound can be easily represented
as a graph, with nodes that represent atoms and edges that
represent bonds between atoms. In computer vision, recent
advances in image segmentation and semantic parsing gave

a viable way to construct a graph representation of an
image.

Kernel methods are a class of learning methods that
are theoretically grounded by statistical learning theory
and have been successfully applied on countless real-world
problems. They are composed by a learning algorithm
(that is commonly stated as a convex optimization prob-
lem) and the kernel function, that is a symmetric positive
semidefinite function that defines a similarity measure
between examples. A kernel function k(x1, x2) implicitly
maps two input examples in a feature space (namely,
Reproducing Kernel Hilbert Space or RKHS) via a func-
tion commonly referred as φ, and then computes the dot
product 〈φ(x1), φ(x2)〉 between the two representations.
Both these steps are performed implicitly, and the compu-
tational complexity of the kernel evaluation depends only
on the input space dimension, and not on the dimension of
the feature space which can be even infinite-dimensional.

Kernel methods are widely applied in machine learning
for structured data because, unlike the majority of machine
learning techniques, their application to any type of data
is painless as long as a kernel function for such data is de-
fined. Dealing with data represented as graphs is not sim-
ple, since even the basic operations can be computationally
expensive (see for example the graph isomorphism prob-
lem [21]). The approach that most graph kernels follow is
to compare two graphs with respect to the substructures
they share. In order to be computationally efficient, the
considered substructures are limited to particular types,
for which the computation of the isomorphism is efficient.
This comes at the cost of a reduced discriminative ability
of the kernel. Moreover, in order to control the complexity,
the kernels usually depend on a parameter that regulates
the size of the considered structures. In this way, they
balance the tradeoff between efficiency and expressiveness
of the kernel (i.e. how a kernel is able to discriminate
between similar examples). An open problem, when we
have to deal with kernels for structured data, is the weight
given to each feature. The particular weighting policy to
apply can strongly influence the predictive performance of
the kernel. At the moment, the policy is usually integrated
in the kernel definition, possibly including also strong
regularization terms, and not much work has been done
to evolve this methodology. In addition to that, among
the different graph kernels that have been proposed in
literature, usually it is not straightforward to decide which
one will be the most suited for a specific task.

The Multiple Kernel Learning (MKL) framework of-978-1-4799-7560-0/15/$31 c©2015 IEEE

fers a technique to learn the kernel directly from data.
Specifically, MKL learns a kernel consisting of a weighted
combination of different user-specified (or weak) kernels. In
this way, the user is no longer required to decide a priori
which kernel to use, but the MKL algorithm hopefully finds
the right combination of the available kernels, given a task.

Starting from the state-of-the-art ODDST kernel [8],
in our approach, a partition of the original feature space
of the kernel is created and a weak kernel is defined on
each partition. Features are grouped on the basis of their
complexity. Finally, the MKL paradigm is applied on the
weak kernels.

The benefits of our approach are twofold. Firstly, with
our approach, we do not need a parametric weighting
rule for the graph kernel. Instead, the MKL algorithm
will automatically tune the weight of different kernels.
Secondly, the performance of the resulting kernel empir-
ically improves with respect to the base kernel. Moreover,
the computational complexity of the resulting learning
procedure is the same as the classical approach (consisting
in the kernel computation and the application of an SVM).

The paper is organized as follows. In Section II we
introduce the kernels for graphs, with a focus on the one
we decided to start from. In Section III we introduce
the Multiple Kernel Learning framework, and the recently
defined MKL algorithm we adopted. Section IV details
how to generate the weak kernels starting from the original
graph kernel, and analyze the situation from a statistical
learning theory point of view. We show in Section V
experimental results on several real world graph datasets.
Finally, we draw some conclusions and the basics for future
works in Section VI.

A. Notation

In this paper, we consider the classical classifica-
tion problems and we define the training examples as
{(xi, yi)}li=1, and test examples as {(xi, yi)}Li=l+1, xi in
a generic set X , yi with values +1 or −1. The matrix
K ∈ RL×L is the complete kernel matrix containing the
values of the kernel of each (training and test) data pair.
Further, we indicate with an hat, like for example ŷ ∈ Rl
or K̂ ∈ Rl×l, the submatrices (or subvectors) obtained
considering training examples only.

Fixed a training set, Γ̂ will denote the domain of
probability distributions γ ∈ Rl+ defined over the sets of
positive and negative training examples:

Γ̂ = {γ ∈ Rl+ |
∑
i∈⊕

γi = 1,
∑
i∈	

γi = 1},

where ⊕ (resp.) is the set of the indices of the positive
examples (resp. negative examples). Note that any element
γ of the set Γ̂ corresponds to a pair of points, the first
in the convex hull of positive training examples and the
second in the convex hull of negative training examples.
In fact, γ defines the two points as x+ =

∑
i∈⊕ γixi and

x− =
∑
i∈	 γixi, respectively for the positive and negative

convex hulls of training examples.

In this paper, we consider the case where training
examples are graphs. A graph G = (VG, EG, LG) is a
triplet where VG is the set of vertices, EG the set of edges
and LG() a function mapping nodes to labels. A graph is
undirected if (vi, vj) ∈ EG ⇔ (vj , vi) ∈ EG, otherwise it
is directed. A path p(vi, vj) of length n in a graph G is a
sequence of nodes v1, . . . , vn, where v1 = vi, vn = vj and
(vk, vk+1) ∈ EG for 1 ≤ k < n. A cycle is a path for which
v1 = vn. A graph is acyclic if it has no cycles. A DAG is a
directed acyclic graph. A tree is a directed acyclic graph
where each node has at most one incoming edge. The root
of a tree T is represented by r(T). The children of a node
v ∈ VT are all the nodes v′ s.t. (v, v′) ∈ ET . chv[j] refers to
the j-th child of v. ρ is the maximum number of children
in a tree. A proper subtree rooted at node v comprises v
and all its descendants.

II. Graph kernels

The vast majority of kernels for structured data are
based on the convolution framework. The idea is to de-
compose a structure into a set of simpler structures (where
a base kernel between these structures is given) and to
define the kernel as a function of the base kernels. More
formally, let X be a space of objects (that are our data
points) and let each object x be associated with a finite
subset X ′x of a space X ′. Furthermore, assume that a kernel
over this domain k : X ′ × X ′ → R is defined. To define
an R − convolution kernel, Haussler [12] assumed a finite
relation R ⊆ X ′ ×X , and let

K(x, y) =
∑

(x′,x)∈R

∑
(y′,y)∈R

k(x′, y′).

Many recently defined graph kernels are members of this
general framework.

Many graph kernels depend on a parameter h that de-
fines the maximum depth of the considered substructures.
Usually, too small values of h do not allow the kernel
to capture enough global information about the structure
of the graphs, resulting in poor predictive performances.
In the same way, too high values of h tend to obfuscate
the contributions of the small substructures. Moreover,
the higher the h, the slower the calculation of the kernel
becomes.

A. Ordered Decomposition DAG Kernels for Graphs

This section briefly describes the framework of ODD-
Kernels for graphs, proposed in [8]. The idea of the ODD
kernel framework is to decompose the input graph into
a set of substructures for which the isomorphism can be
computed efficiently, i.e. subtrees.

In order to map the graphs into trees, two intermediate
steps are needed:

1) map the graph G into a multiset of DAGs
{DDvi

G |vi ∈ VG}, where DDvi

G is obtained by
keeping each edge in the shortest path(s) con-
necting vi with any vj ∈ VG. The Decomposition

DAGs kernel for graphs can be defined as

DDKKDAG
(G1, G2) =

=
∑

D1∈DDG1

∑
D2∈DDG2

KDAG(D1, D2).

2) Since the vast majority of DAG kernels are exten-
sions of kernels for ordered trees, a strict partial
order between DAG nodes in DDvi

G has been
defined yielding Ordered Decomposition DAGs
ODDvi

G . The ordering function considers the label
of the vertex L(v) and, recursively, the labels of
the children of v [8].

3) Finally, any Ordered DAG (ODD) is mapped into
a multiset of trees. Let us define T (vi) as the
tree resulting from the visit of ODDvi

G starting
from node vi: the visit returns the nodes reachable
from vi in ODDvi

G . Note that if a node vj can
be reached more than once, more occurrences of
vj will appear in T (vi). Also, the tree visit T (vi)
can be stopped when the tree T (vi) reaches a
maximum height r. Such tree is referred to as
Tr(vi).

In [8] the Ordered Decomposition DAGs kernel is defined
as:

ODDK(G1, G2) = (1)∑
OD1∈ODDG1
OD2∈ODDG2

r∑
j=1

∑
v1∈VOD1
v2∈VOD2

C(r(Tj(v1)), r(Tj(v2))) (2)

where C() is a function defining a tree kernel. Among the
kernels for trees defined in literature, the one employed
in the paper is the Subtree Kernel [24], which counts the
number of shared proper subtrees between the two input
trees. In this case, the C function is defined as follows:

CST (v1, v2) =



λ if L(v1) = L(v2) and
ρ(v1) = ρ(v2) = 0

λΥ(v1, v2) if L(v1) = L(v2) and
ρ(v1) = ρ(v2)

0 otherwise

(3)

where λ is a weighting parameter, that will be discussed
in more detail in the next section, and Υ(v1, v2) =∏ρ(v1)
j=1 CST (chv1 [j], chv2 [j]). The resulting kernel will be

referred to as ODDST .
Summarizing, Ordered Decomposition DAGs kernel

consider as features all the proper subtrees of the trees
resulting from breadth-first visits starting from each node
in the graph. In [7] the authors have shown that it is
possible to efficiently compute the explicit feature space
representation for such a kernel. Let us assume that a
bijective function h mapping labeled trees to integers
is given (or equivalently, an enumeration of all possible
labeled trees). Then, given a value for r, the ith component
of φ(G) is defined as

φi(G) =
= |{h(Tj(v)) = i : j ≤ r, v ∈ D,D ∈ ODDG}| · λsize(h

−1(i)),

For ease of notation, size(G) = |VG|. Finally, it is im-
portant to note that the property h(s) = i is equivalent
to the isomorphism between trees, which can be solved in
polynomial time.

B. ODD kernels and feature weighting
The proposed approach exploits two handful consider-

ations:

1) when a tree is present in the feature space repre-
sentation of a graph, then all its proper subtrees
are in the same space as well;

2) the bigger is the tree, the higher is the number of
its subtrees that occur.

As a direct consequence, kernels that count common sub-
structures suffer an issue of diagonally dominant gram
matrix, i.e. the number of substructures shared by a graph
with itself (and thus the corresponding kernel value) is usu-
ally much higher than the number of shared substructures
between two different instances. This negatively affects
the support vector classifier, since the classification of an
instance may be dominated by the contribution of the most
similar example, leading to a behavior similar to a nearest
neighbor classifier. A possible solution for this issue is the
downweighting of big structural features. Usually this is
accomplished with a function of the size of a feature, i.e. to
the number of co-occurring features. The (down)weighting
function, firstly proposed for tree kernels [5], for a feature
f is defined as:

w(f) =
√
λsize(f) · freq(f), (4)

where freq(f) is the frequency of a feature in the consid-
ered example, and size(f) is the size of the sub-structure
associated to the feature f . Here, the weight of a feature
grows with its frequency in the example, and exponentially
decreases (if λ < 1) with its size. Note that the selection
of an appropriate λ parameter is a key step in the success-
ful application of this weighting scheme. This weighting
scheme intuitively makes sense, but there is no reason why
other schemes cannot be more suited for a specific task.
In a recent work [9], another weighting scheme for graph
kernels has been proposed:

w(f) = tanh(σ · freq(f) · size(f)). (5)

However, testing different weighting schemes is unpractical
for different reasons. Firstly, when we test different weight-
ing schemes we are adding a new parameter to validate.
In addition, it is not clear which weight distributions one
should test. Finally, in noisy datasets, where the selection
for the optimal parameters is a problem, the gap in
predictive performance between the different schemes may
be not enough to justify the added complexity. Moreover,
the kernel may be more prone to overfitting.

From a theoretical point of view, if enough examples
are available, the weighting policy should be irrelevant
because the weight of each feature should be adjusted by
the learning algorithm. However, especially when dealing
with real-world graph datasets, this is not the case, and the
dependencies among features makes the learning even more
difficult. For this reason, we still need to inject external

knowledge into the learning algorithm via strong biases,
for example providing a good feature weighting scheme. In
Section IV-A, we will present a method to learn the weight
associated to each feature directly from the available data.

III. Multiple Kernel Learning (MKL)
MKL [11] is one of the most popular paradigms used to

learn kernels in real world applications [4]. The kernels gen-
erated by these techniques are combinations of previously
defined weak kernels K1, ...,KR. The goal of MKL is to
alleviate the effort of the user in defining good kernels for
a given problem. We focus on MKL method with positive
and linear combination parameters, that is, MKL in the
form

K =
R∑
j=1

ηjKj , ηj ≥ 0.

MKL algorithms are supported by several theoretical re-
sults that bound the difference between the true error and
the empirical margin error (i.e. estimation error). These
bounds exploit the Rademacher complexity applied to the
combination of kernels [6], [14], [17].

The MKL optimization problem turned out to be a very
challenging task as, for example, doing better than the
simple average of the weak kernels is surprisingly difficult.
Moreover, the MKL algorithms have a high computational
complexity. More recently, scalable methods have been
proposed that can tackle thousands of kernels in a rea-
sonable time and memory space [15], [1]. Having MKL
algorithms which are scalable opens a new scenario for
MKL. In fact, standard MKL algorithms typically cope
with a small number of strong kernels and try to combine
them. In this case, these kernels are individually well
designed by experts and their optimal combination hardly
leads to a significant improvement of the performance with
respect to, for example, a simple averaging combination.
A second perspective is also possible, where the MKL
paradigm can be exploited to combine a large amount of
weak kernels. The weak kernels are then exploited boosting
their combined accuracy in a way similar to feature weight-
ing. This point of view highlights the existing connection
between MKL and feature learning [3]. In fact, we are able
to weight the information contained into bunch of features,
evaluated in different ways (i.e. using different kernels that
can consider different subsets of features) [2], [16].

A. EasyMKL
EasyMKL [1] is a flexible MKL algorithm that com-

bines a set of weak kernels solving a quadratic problem.
EasyMKL uses a fixed amount of memory and is linear in
the computation complexity with respect to the number
of kernels. The EasyMKL optimization problem is defined
as:

γ∗ = arg min
γ∈Γ

(1− Λ)γ>Ŷ(
R∑
j=1

K̂j)Ŷγ︸ ︷︷ ︸
Q(γ)

+Λ ||γ||22︸ ︷︷ ︸
R(γ)

. (6)

The minimization problem over the distributions in Γ is
composed by two parts. The two parts are balanced using

a parameter Λ ∈ [0, 1] that is the only hyper-parameter of
this algorithm. Specifically, EasyMKL minimizes a trade-
off between the following two quantities:

• Q(γ) = γ>Ŷ(
∑R
j=1 K̂j)Ŷγ and

• R(γ) = ||γ||22.

Considering only the function Q(γ) (i.e. Λ = 0), we
have to solve the problem defined by

γ∗ = arg min
γ∈Γ

γ>Ŷ(
R∑
j=1

K̂j)Ŷγ. (7)

It can be seen that the vector γ∗ ∈ Γ minimizing Q(γ)
identifies the two nearest points in the convex hulls of
positive and negative examples, respectively, in the feature
space of the kernel K̂sum =

∑R
j=1 K̂j .

K̂sum is a particular kernel and its Reproducing Kernel
Hilbert Space can be generated appending all the features
contained in the feature space of all the weak kernels
K̂1, . . . , K̂R [22].

On the other hand, considering only the quadratic reg-
ularization part R(γ) (i.e. Λ = 1), the problem becomes:

γ∗ = arg min
γ∈Γ
||γ||22. (8)

In this case, the optimal solution γ∗ ∈ Γ has an analytic
formula. Let p (resp. n) the number of positive examples
(resp. negative examples) in the training set. Then, the
optimal solution of the minimization problem γ∗ collapses
in the uniform distributions over positive and negative
examples: γ∗i = 1/p, ∀i ∈ ⊕ and γ∗j = 1/n,∀ j ∈ 	.

Fixed the hyper-parameter Λ, the optimal distribution
γ∗ for the kernel K̂sum can be exploited to define the
vector d(γ∗) as

dj(γ∗) = γ∗>ŶK̂jŶγ∗ ∀j = 1, . . . , R. (9)

The jth entry of the vector d(γ∗) represents the contribu-
tion to the margin between positive and negative examples
given by the jth kernel. Then, the vector of the weights
η∗ has a simple analytic solution:

η∗ = d(γ∗)
||d(γ∗)||2

.

Finally, the new kernel is defined as KMKL =
∑R
j=1 η

∗
jKj .

IV. Hierarchical structure of the weak
information

In this section, we introduce the general ideas of our
proposed method to generate a hierarchical set of weak
kernels from a single kernel. This is possible because of
the specific definition of some kernels for structured data.
In fact, we can apply these techniques directly in the
Reproducing Kernel Hilbert Space, defining simple rules to
group the generated features in a principled way. Several
different schemes for grouping features can be defined.
In the following section, we will present in more detail
the approach proposed in this work. However, there is
no theoretical motivation for hindering the application of

the proposed technique to any arbitrary grouping of the
features generated by any kernel. Our method does not
fix a specific weighting scheme. However, the way in which
the features are grouped defines a strong bias in the feature
weighting. In fact, we are forcing features belonging to the
same weak kernel to contribute with the same amount to
generate the final kernel.

A. Generating the weak kernels
The general idea underpinning the generation of the

weak kernels starting from an explicit RKHS represen-
tation of a kernel is quite simple: it suffices to define a
function mapping features to a limited set of natural num-
bers, corresponding to buckets. Then, each weak kernel is
defined as the dot product that considers just the features
belonging to a particular bucket.

More formally, we recall that h has been defined as a
bijective function mapping features (trees in our scenario)
to natural numbers. Let us define a (possibly non injective)
function d : H → Σ, where H is the RKHS and Σ =
{0, 1, 2, . . . , n}, mapping trees to a finite set of buckets.
This function assigns each feature to a specific bucket.
Also, d will be used to define the weak kernels, i.e. features
that are mapped to the same value will be part of the same
kernel. Let us define the jth component of the ith weak
kernel in the sequence as: φij(G) = φj(G)δ(d(h−1(j)), i)
where δ is the Kronecker’s delta function.
Then we define the i-th weak kernel as Ki(G1, G2) =
〈φi(G1), φi(G2)〉.

Let us consider the ODDST kernel defined in Sec-
tion II-A and its corresponding explicit feature space rep-
resentation. Every feature in this space encodes a specific
labeled tree. Intuitively, the strategy we decided to employ
is to generate a weak kernel corresponding to each height of
the tree features, i.e. we group in a particular weak kernel
all the trees in the RKHS having the same height.

The motivation of such a choice is the following. The
features of ODDST are not independent because, as de-
tailed in Section II-A, if a tree is present in the explicit
feature space representation of a graph, also all its proper
subtrees are. This relation describes a partial order relation
between features, where a<̇b if and only if a is isomorphic
to a sub-tree of b. Figure 1 shows an example of some
features and draws the partial order relationship induced
by the “has as proper subtree” relationship. A necessary
condition for two features to be in the relationship is that
the height of the first feature must be greater than the
height of the second feature. Thus, the simplest way to
define a d() function in such a way that two dependent
features do not end up in the same bucket is to define
d(t) = height(t) where height(t) is a function returning
the height of a tree (that is the maximum distance between
the root and a leaf node).

Then, the j-th weak kernel Kj comprehends all the
tree-features with a fixed height j. Let us recall that
the original ODDST kernel depends on the r parameter,
determining the maximum height of the performed DAG
visits, and on a λ parameter, determining the weight of
the features as a function of their size. With our proposed

approach, for a fixed kernel, r weak kernels will be gen-
erated, indexed with h ∈ {0, 1, . . . , r}. The λ parameter
is no longer required, since the learning algorithm will
weight the different buckets of features. This formulation
is particularly convenient from a computational point of
view and the weak kernels can be generated from a slight
modification of the original kernel algorithm. The resulting
explicit feature space representation of the i-th kernel is:
φij(G) = φj(G)δ(height(h−1(j)), i).

This feature grouping scheme is simple, but it is de-
signed in order to behave in a very specific way. In fact,
each sub-kernel will have a weight assigned by exploiting
EasyMKL. This means that the features in the same
bucket will share the same weight. Since all the proposed
feature weighting schemes depend in some sense from
the size of the features, it is reasonable to maintain this
intuition in our bucketing function.

CN O S

C

C N

C

C O S

C

C

C N

C

C

C O S

Fig. 1. Example of hierarchy among tree features. Thick arrows
encodes the “has as proper subtree” relationship.

B. Complexity of the weak kernels
The hierarchical structure of the weak kernels is high-

lighted studying the complexity of the single kernel.
Firstly, we define the set of the vectors with fixed 1-norm

Ψ = {α ∈ RL s.t. ‖α‖1 = 1}. (10)

Then, the class of functions that we consider are linear
functions with bounded norm

{xj →
l∑
i=1

αiKi,j : αTKα ≤ B2, ∀α ∈ Ψ} ⊆ (11)

⊆ {xj → w · φ(xj) : ‖w‖2 ≤ B} = FB , (12)

where φ is the feature mapping for the kernel K. The
following theorem bounding the complexity of FB holds:
Theorem 1. ([22], Theorem 4.12). Given a kernel K,
evaluated over a set of points X , the Empirical Rademacher
Complexity of the class FB satisfies

R̂(FB) ≤ O(B
√
tr(K)). (13)

Equation 13 shows that the empirical Rademacher
complexity is proportional to the trace of the kernel. Now,
we introduce important observations about the value of

αTKα, for a general kernel K. Specifically, the following
proposition holds:
Proposition 1. Let K be a kernel matrix in RL×L with
eigenvalues λ1 ≥ · · · ≥ λL ≥ 0, then

∀α ∈ Ψ, αTKα ≤ λ1 ≤ ‖K‖F . (14)

and λ1 is the optimal bound.

Proof: We can exploit the spectral decomposition of a
kernel matrix and rewrite

αTKα =
L∑
i=1

λi(αTui)2, (15)

where ui is the eigenvector with eigenvalue λi. Then, it is
easy to see that:

(αTui)2 = cos(θα,ui
)2‖α‖22, (16)

where θα,ui
is the angle between the vector α and the

eigenvector ui. Using the properties of the norms (‖α‖22 ≤
‖α‖21 = 1) and the fact that the eigenvectors ui are an
orthonormal base, we can obtain the final result:

αTKα ≤
L∑
i=i

λi cos(θα,ui
)2‖α‖21 ≤ λ1 ≤

√√√√ L∑
i=1

λ2
i = ‖K‖F .

(17)
The bound is reached when the kernel matrix K has
only one eigenvalue different from zero, its eigenvector is
parallel to the vector α and α is such that ‖α‖2 = ‖α‖1.

Finally, from the previous results the following corol-
lary holds:
Corollary 1. Let K be a kernel matrix in RL×L and Ψ
the set defined in Eq. 10, then

∀α ∈ Ψ, αTKα
‖K‖F

≤ 1. (18)

From Proposition 1 and using Theorem 1, given a
kernel with Frobenius norm equal to 1, we have that
the upper bound of the empirical Rademacher complexity
becomes R̂(FB) ≤ O(

√
tr(K)) when setting B2 = B = 1.

Then, the trace of unitary Frobenius Norm kernels is a
good estimator for their empirical Rademacher complexity.

Now, we exploit the results above to give a principled
definition for a complexity of a kernel. We call this measure
spectral complexity.

The Spectral complexity is defined by the ratio between
the trace norm and the Frobenius norm of a matrix. Note
that, it can be also computed by resorting to the eigenvalue
decomposition, that is:

R(K) =
∑L
i=1 λi√∑L
i=1 λ

2
i

= tr(K)
||K||F

= tr(K)√∑
ij K2

ij

, (19)

where we used the fact that, for positive definite matrices,
the Frobenius norm is equal to the 2-norm of the eigenval-
ues.

h/data CAS CPDB AIDS NCI1 GDD
r∗ = 3 r∗ = 3 r∗ = 8 r∗ = 4 r∗ = 2

0 0.002 0.008 0.004 0.001 0.005
1 0.006 0.025 0.009 0.004 0.183
2 0.021 0.080 0.023 0.012 0.999
3 0.151 0.480 0.110 0.089
4 0.229 0.368
5 0.306
6 0.375
7 0.468
8 0.683

Ksum 0.015 0.051 0.074 0.017 0.061
KMKL 0.095 0.215 0.275 0.165 0.281

TABLE I. Spectral complexity of the weak kernels, for
each dataset and for each value of h ≤ r∗ compared to the

spectral complexity of Ksum and KMKL.

The Spectral Complexity is not the first complexity
measure for kernels that exploits the trace [18]. Tipically,
the trace of a kernel is used as (part of the) bound for
the generalization error. On the other hand, the simple
trace is not a good measure for the estimation of the
kernel expressivity. In particular, if two kernels differ only
for a multiplicative constant, they have different traces,
but equal expressivity. Our Spectral complexity solves this
issue applying the normalization of the Frobenious norm.

In fact, Spectral complexity has the following interesting
properties:

• the identity matrix IL has maximum complexity
with R(I) =

√
L,

• the kernel K = 11> has the least complexity with
R(K) = R(11>) = 1 and

• R(K) = R(c ·K), ∀c > 0.

An equivalent standardized version can also be used
with values in the interval [0, 1], that is

Rn(K) = R(K)− 1√
L− 1

∈ [0, 1]. (20)

For all the weak kernels combined using EasyMKL
we have evaluated the normalized version of the spectral
complexity. For each dataset, the weak kernels evaluated
are K1, . . . ,Kr∗ , where r∗ is the best hyper-parameter r
obtained in validation. The results are shown in Table I
and Figure 2. The results highlight how our segmentation
of the features induces a hierarchical list of kernels with
respect to the spectral complexity. In fact, the h parameter
of the single weak kernel is monotonically connected to the
spectral complexity. This result is correlated to the pop-
ularity1 of the features among the graphs of the dataset.
In general, sub-structures that are simpler (i.e with low
r) exist among a larger number of graphs with respect to
features that are more complex (i.e. with high r).

The kernel Ksum uses all the features contained in the
weak kernels with the same weight and it obtains a very
low spectral complexity. Table I shows that the difference
between Ksum and KMKL is large in terms of spectral
complexity. Specifically, for all the datasets the spectral
complexity of KMKL is bigger with respect to the one

1The popularity is an estimation of the probability of the existence
of a specific feature in a randomly picked example from the dataset.

0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

h

Sp
ec
tr
al

C
om

pl
ex
ity

CAS CPDB AIDS
NCI1 GDD

Fig. 2. Spectral complexity of the weak kernels, for each dataset and
for each value of h ≤ r∗.

of Ksum and is lower than the one of the weak kernel
Kr∗ (i.e. R(Kr∗) > R(KMKL) > R(Ksum)). We have
empirically proved that neither using all the weak kernels
summed with the same weight nor using only the more
complex features (contained in Kr∗) is the optimal solution
given a specific task. EasyMKL allows us to select a trade-
off between the complexity, optimizing the weights with
respect to the specific task.

V. Experiments
In this section, we compare our proposed ODD-MKL

approach to the ODDST kernel that we considered as
the base kernel. This kernel has shown state-of-the-art
predictive performances [8]. Moreover, as baseline of the
grouping method of the features, we created random splits
of features of ODDST generating weak kernels without any
hierarchical structure. We compared the MKL results ob-
tained using this family of weak kernels with our proposed
method that, on the other hand, adopts a principled way
to split the features among the different weak kernels.

For the original ODDST kernel, we adopted an SVM
classifier [20] given its state-of-the-art predictive perfor-
mances. The C parameter has been selected in the range
{0.001, 0.01, . . . , 10000}, and the parameters of the kernel
h ∈ {1, 2, . . . , 8}, λ ∈ {0.5, 0.6, . . . , 1.6}. As for the
methods adopting the MKL approach, the Λ parameter
of EasyMKL has been validated in {0, 0.1, 0.2, . . . , 1.0}.

A. Datasets description
We compared the different methods on five real-world

graph datasets from bioinformatics. CAS2, CPDB [13],
AIDS [26], NCI1 [25] and GDD [10]. The first four datasets
represent chemical compounds: nodes represent atoms and
are labeled according to the atom type, and edges represent

2http://www.cheminformatics.org/datasets/bursi

Data/Kernel ODDST ODD-MKL
CAS 0.8982±0.0017 0.9049±0.0008
CPDB 0.8442±0.0067 0.8564±0.0056
AIDS 0.8262±0.0052 0.8515±0.0031
NCI1 0.9069±0.0010 0.9144±0.0008
GDD 0.8473±0.0038 0.8498±0.0026

TABLE II. Average AUC results (± standard deviation)
of the original ODDST kernel and the proposed ODD-MKL

kernel, in nested 10-fold cross validation.

Data/Kernel ODDST ODD-MKL ODD-MKL-random
CAS 0.8983 0.9049 0.8762
CPDB 0.8576 0.8676 0.8386
AIDS 0.8401 0.8706 0.8480
NCI1 0.9085 0.9159 0.8782
GDD 0.8426 0.8507 0.8299

TABLE III. Average AUC results of the original ODDST

kernel, the proposed ODD-MKL kernel, and the random
split MKL kernel in 10-fold cross validation.

bonds between atoms. GDD is a dataset of proteins. In this
case, each node in a graph represents an amino acid and is
labeled according to the amino acid type. In GDD, there is
an edge connecting two nodes if the corresponding amino
acids are less than 6Å apart in the 3-dimensional folding
of the protein. All the datasets encode binary classification
problems.

B. Results

Table II reports the AUC results of the base kernel
(ODDST) and our proposed MKL approach in nested 10-
fold cross validation, where the hyper-parameters of the
different methods are selected using the training dataset
only, using an inner 10-fold cross validation for each split
of the 10-fold. The whole procedure has been repeated 10
times, and we reported the average and standard deviation
of the 10 runs. From the table emerges that the proposed
approach is able to improve the predictive performance
with respect to the baseline in all the considered datasets.

In order to investigate if the proposed bucketing func-
tion makes sense, or if the performance improvements are
due just to the fact that the algorithm has more degrees
of freedom, we compared the proposed feature grouping
method with a random method. We set, for each dataset,
the best performing kernel parameter r∗ (i.e. the param-
eter that defines the maximum height of the extracted
tree). We computed a new feature bucketing function that
randomly assigns each feature to one of the buckets. We
repeated the experiment with different random seeds in
order to mitigate the fluctuations in performance due to
the random assignments of the features. Table III reports
the results of such an experiment. In all the datasets
the random approach performs worse than our proposed
method, and in 4 out of 5 datasets it performs worse than
the base kernel. These results confirm that the hierarchical
relationship in the feature grouping criterion is a key factor
in the definition of the weak kernels to successfully apply
MKL.

VI. Conclusions and future work

In this paper, we proposed a way to improve the predic-
tive performance of graph kernels. We have generated a set

of weak kernels from a graph kernel (ODDST) grouping the
feature space in a principled way, and then applied MKL to
the weak kernels. We have proved that our weak kernels are
generated in a hierarchical manner with respect to a new
measure of complexity (called spectral complexity) strictly
connected to the empirical Rademacher complexity.

From the experimental results, we can claim that the
new kernels outperform the base kernels with respect to
the AUC measure. It is important to highlight that this
result is reached using our principled grouping of the
features injected to the weak kernels. In fact, using random
bunches of features the new kernels obtained from the
MKL algorithm have unsatisfying performances (that are
even worse than the base kernel).

As a side effect, our proposed method has been able
to learn the weight of each bunch of features without any
new hyper-parameter. Then, the proposed method has one
parameter less than the original methodology.

Future research lines include, for example, the applica-
tion of the proposed method to other graph kernels, a more
complete analysis of the complexity of the generated kernel
matrices and the generation of deeper kernels combining
more shattered sets of features in order to exploit the full
potentiality of the MKL.

Acknowledgments

This work was supported by the University of Padova
under the strategic project BIOINFOGEN.

References
[1] F. Aiolli and M. Donini. Easymkl: a scalable multiple kernel

learning algorithm. Neurocomputing, 2015.
[2] F. R. Bach. Exploring large feature spaces with hierarchical

multiple kernel learning. In D. Koller, D. Schuurmans, Y. Ben-
gio, and L. Bottou, editors, Advances in Neural Information
Processing Systems 21, pages 105–112. Curran Associates, Inc.,
2009.

[3] V. Bolon-Canedo, F. Aiolli, and M. Donini. Feature and kernel
learning. In 23th European Symposium on Artificial Neural
Networks, ESANN 2015, Bruges, Belgium, April 22-24, 2015,
2015.

[4] S. S. Bucak, R. Jin, and A. K. Jain. Multiple kernel learning
for visual object recognition: A review. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 36(7):1354–1369,
2014.

[5] M. Collins and N. Duffy. Convolution Kernels for Natural
Language. ADVANCES IN NEURAL INFORMATION PRO-
CESSING SYSTEMS, 14:625–632, 2001.

[6] C. Cortes, M. Mohri, and A. Rostamizadeh. Generalization
bounds for learning kernels. In Proceedings of the 27th Inter-
national Conference on Machine Learning (ICML-10), June
21-24, 2010, Haifa, Israel, pages 247–254, 2010.

[7] G. Da San Martino, N. Navarin, and A. Sperduti. A memory
efficient graph kernel. In The 2012 International Joint Confer-
ence on Neural Networks (IJCNN). Ieee, June 2012.

[8] G. Da San Martino, N. Navarin, and A. Sperduti. A Tree-Based
Kernel for Graphs. In Proceedings of the Twelfth SIAM Inter-
national Conference on Data Mining, pages 975–986, 2012.

[9] G. Da San Martino, N. Navarin, and A. Sperduti. Exploiting
the ODD framework to define a novel effective graph kernel.
In 23th European Symposium on Artificial Neural Networks,
ESANN 2015, Bruges, Belgium, April 22-24, 2015, 2015.

[10] P. D. Dobson and A. J. Doig. Distinguishing Enzyme Structures
from Non-enzymes Without Alignments. Journal of Molecular
Biology, 330(4):771–783, 2003.

[11] M. Gönen and E. Alpaydin. Multiple kernel learning algo-
rithms. Journal of Machine Learning Research, 12:2211–2268,
2011.

[12] D. Haussler. Convolution Kernels on Discrete Structures.
Technical report, Department of Computer Science, University
of California at Santa Cruz, 1999.

[13] C. Helma, T. Cramer, S. Kramer, and L. De Raedt. Data
mining and machine learning techniques for the identification of
mutagenicity inducing substructures and structure activity re-
lationships of noncongeneric compounds. Journal of Chemical
Information and Computer Sciences, 44(4):1402–1411, 2004.

[14] Z. Hussain and J. Shawe-Taylor. Improved loss bounds for
multiple kernel learning. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statis-
tics, AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011,
pages 370–377, 2011.

[15] A. Jain, S. V. N. Vishwanathan, and M. Varma. Spg-gmkl:
Generalized multiple kernel learning with a million kernels. In
Proceedings of the ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, August 2012.

[16] P. Jawanpuria, M. Varma, and S. Nath. On p-norm path follow-
ing in multiple kernel learning for non-linear feature selection.
In T. Jebara and E. P. Xing, editors, Proceedings of the 31st
International Conference on Machine Learning (ICML-14),
pages 118–126. JMLR Workshop and Conference Proceedings,
2014.

[17] M. Kloft and G. Blanchard. The local rademacher complexity
of lp-norm multiple kernel learning. In Advances in Neural
Information Processing Systems, pages 2438–2446, 2011.

[18] G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui,
and M. I. Jordan. Learning the Kernel Matrix with Semidefinite
Programming. J. Mach. Learn. Res., 5:27–72, 2004.

[19] T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Betteridge,
A. Carlson, B. D. Mishra, M. Gardner, B. Kisiel, J. Krish-
namurthy, N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole,
E. Platanios, A. Ritter, M. Samadi, B. Settles, R. Wang,
D. Wijaya, A. Gupta, X. Chen, A. Saparov, M. Greaves, and
J. Welling. Never-Ending Learning, 2015.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine Learning in Python. Journal of Machine Learning Re-
search, 12:2825–2830, 2011.

[21] R. C. Read and D. G. Corneil. The graph isomorphism disease.
Journal of Graph Theory, 1(4):339–363, 1977.

[22] J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern
analysis. Cambridge university press, 2004.

[23] A. Singhal. Introducing the Knowledge Graph: things, not
strings, 2012.

[24] S. V. N. Vishwanathan and A. J. Smola. Fast Kernels for String
and Tree Matching. In NIPS, pages 569–576, 2002.

[25] N. Wale, I. Watson, and G. Karypis. Comparison of descrip-
tor spaces for chemical compound retrieval and classification.
Knowledge and Information Systems, 14(3):347–375, 2008.

[26] O. S. Weislow, R. Kiser, D. L. Fine, J. Bader, R. H. Shoemaker,
and M. R. Boyd. New soluble-formazan assay for HIV-1 cyto-
pathic effects: application to high-flux screening of synthetic
and natural products for AIDS-antiviral activity. Journal of
the National Cancer Institute, 81(8):577–586, 1989.

