
EasyMKL: a scalable multiple kernel learning algorithm

Fabio Aiolli, Michele Donini
University of Padova - Department of Mathematics Via Trieste, 63, 35121 Padova - Italy

a r t i c l e i n f o

Article history:
Received 1 July 2014
Received in revised form
18 October 2014
Accepted 5 November 2014

Keywords:
Multiple kernel learning
Kernel methods
Feature selection
Feature learning

a b s t r a c t

The goal of Multiple Kernel Learning (MKL) is to combine kernels derived from multiple sources in a
data-driven way with the aim to enhance the accuracy of a target kernel machine. State-of-the-art
methods of MKL have the drawback that the time required to solve the associated optimization problem
grows (typically more than linearly) with the number of kernels to combine. Moreover, it has been
empirically observed that even sophisticated methods often do not significantly outperform the simple
average of kernels. In this paper, we propose a time and space efficient MKL algorithm that can easily
cope with hundreds of thousands of kernels and more. The proposed method has been compared with
other baselines (random, average, etc.) and three state-of-the-art MKL methods showing that our
approach is often superior. We show empirically that the advantage of using the method proposed in
this paper is even clearer when noise features are added. Finally, we have analyzed how our algorithm
changes its performance with respect to the number of examples in the training set and the number of
kernels combined.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Large margin kernel based algorithms are recognized state-of-
the-art algorithms for data mining applications. Besides the good
performance they generally offer, the definition of a kernel allows
a convenient way to easily inject into the classifier any available
background knowledge one can have about a particular domain.
Any positive definite kernel matrix implicitly specifies an inner
product in a Hilbert space where large-margin techniques can be
used for learning.

Recently, there has been a growing interest of researchers
devoted to investigate on how these kernels can be learned from
data. This is a big challenge and can potentially lead to significant
improvements on a classifier. It is in fact quite established that the
choice of the right features (i.e. the kernel) dramatically influences
the performance of a classifier more than the classifier itself.

Kernel learning is a paradigm which is often adopted within a
semi-supervised learning setting [1,2]. The goal of kernel learning is to
learn the kernel matrix using available data (labeled and possibly
unlabeled examples) optimizing an objective function that enforces
the agreement between the kernel and the set of i.i.d. labeled data, e.
g., by maximizing their alignment [3]. On the other hand, unlabeled
data are typically used to regularize the generated models by con-
straining the discriminant function to be smooth (that is, it should not
vary too much on similar examples).

Multiple Kernel Learning (MKL), see for example [4] for a recent
and quite exhaustive survey, is a popular paradigm used to learn
kernels. The kernel computed by these techniques are (generally
linear) combinations of previously defined weak kernels. The main

rationale behind this kind of methods is that they can alleviate the
effort of the user on defining good kernels for a given problem.
Using the MKL framework, the algorithm itself can be able to select
the best combination among a battery of predefined and reasonable
weak kernels.

In this paper, we focus on multiple kernel learning with
positive and linear combination parameters, that is, MKL in the
form

K¼
XR
r ¼ 1

ηrKr ; ηrZ0:

This typology of algorithm is based on several theoretical results
that bound the estimation error (i.e. the difference between the
true error and the empirical margin error). These bounds exploit
the Rademacher complexity bounds for the linear combination of
kernels [5,6].

According to [4], the majority of existing MKL approaches can be
divided into the following two categories. Fixed or Heuristic rule
techniques apply some fix rule, like simple summation or product
of the kernels, or simple heuristic to find the combination para-
meters. The result usually obtained by these methods is scalable
with respect to the number of kernels combined but their effec-
tiveness will critically depend on the domain at hand. On the other
side, Optimization based approaches learn the combination para-
meters by solving an optimization problem that can be integrated in
the learning machine (e.g. structural risk based target function) or
formulated as a different model (e.g. alignment, or other kernel
similarity maximization).

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2014.11.078
0925-2312/& 2015 Elsevier B.V. All rights reserved.

Please cite this article as: F. Aiolli, M. Donini, EasyMKL: a scalable multiple kernel learning algorithm, Neurocomputing (2015), http:
//dx.doi.org/10.1016/j.neucom.2014.11.078i

Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078

Generally speaking, best performing approaches to MKL necessi-
tate of complex optimization including semidefinite programming
(SDP), or quadratically constrained quadratic programming (QCQP),
just to name a few, thus making these approaches unpractical when
the number of kernels to combine is large, say in the order of
hundreds. Further, these methods often need to keep in memory the
whole set of weak kernels, or at least the submatrices corresponding
to the training data pairs. This will exhaust the memory soon when
coping with hundreds of examples and hundreds of weak kernels.

The same MKL idea can be used in two different scenarios. In
the first and more popular case, a small number of strong kernels
have to be combined each representing a different (possibly
orthogonal) view of the same task. Typically these kernels are
individually well designed by experts and their optimal combina-
tion hardly leads to a significant improvement of the performance
with respect to, for example, a simple averaging combination.
Alternatively, the MKL paradigm can be exploited to combine a
very large set of weak kernels aiming at boosting their accuracy. In
this way, the final combination will represent a weighted combi-
nation of the different subsets of features. In this paper, we focus
on this second approach because, we think, at least in principle, it
can really boost the performance as it basically performs a data-
driven feature learning/selection/weighting.

With this second view in mind, we see that for MKL to be
effective we need to combine many kernels. For this reason, being
non-scalable becomes a stringent issue for a MKL method. On the
other side, simpler fixed rule algorithms are definitely more
scalable in general but they are far less flexible and tend to become
ineffective when coping with many kernels and noise. In this paper,
we propose a very efficient algorithm which is able to cope with
thousands of kernels efficiently and we empirically demonstrate the
effectiveness of the methods proposed that almost always is more
accurate than the baselines especially when noise is present in the
weak kernels.

A summary of the paper is the following. In Section 2 we show
the notation used in this paper for classification problems. In
Section 3, the Kernel Optimization of the Margin Distribution (KOMD)
classification algorithm, is presented. In Section 4 the proposed
multiple kernel learning algorithm, namely EasyMKL, is presented.
In Section 5, experiments are presented with respect to different
dimensions, namely, the effectiveness, the scalability, and the
stability of the method proposed against different baselines and
state-of-the-art methods. Finally, in Section 6 we draw conclusions.

2. Notation

Throughout this paper, we consider a classification problem with
training examples defined by fðx1; y1Þ; :::;ðxl; ylÞg, and test examples
defined by fðxlþ1; ylþ1Þ;…; ðxL; yLÞg; xiARm; yiAf�1; þ1g. We use
XARL�m to denote the matrix where examples are arranged in rows
and yARL the vector of labels. The matrix KARL�L denotes the
complete kernel matrix containing the kernel values of each (training
and test) data pair. Further, we indicate with an hat, like for example
X̂ARl�m; ŷARl, and K̂ARl�l, the submatrices (or subvectors)
obtained considering training examples only.

Given a training set, Γ̂ will denote the domain of probability
distributions γARl

þ defined over the sets of positive and negative
training examples. More formally:

Γ̂ ¼ γARl
þ j
X
iA �

γi ¼ 1;
X
iA⊖

γi ¼ 1

()
:

Note that any element γAΓ̂ corresponds to a pair of points, the
first in the convex hull of positive training examples and the
second in the convex hull of negative training examples.

3. Playing with margin and the KOMD algorithm

In [7] a game theoretic interpretation as a two-player zero-sum
game has been proposed for the problem of margin maximization
in a classification task. Specifically, the classification task has been
split into two phases. Firstly, in the ranking phase, a total order of
the examples is introduced. Secondly, the pure binary classifica-
tion is performed by applying a threshold to the ranking of the
examples obtained in the first phase.

In particular, in the ranking phase, the task is to learn a unitary
norm vector w such that

w> ðϕðx� Þ�ϕðx⊖ÞÞ40

for most of positive (x�) and negative (x⊖) instance pairs in the
training data. The game basically consists of one player that has to
choose one vector of unitary norm w and the other that picks pairs
of positive–negative examples according to two distributions γþ

and γ� over the positive and negative examples, respectively. The
value of the game is the expected margin obtained, that is
w> ðϕðxpÞ�ϕðxnÞÞ; xp � γþ ; xn � γ� . The goal of the first player is
to maximize this value while the second player wants to minimize
it. This problem is equivalent to the hard SVM and can be solved
efficiently by optimizing a simple linearly constrained convex
function on variables γAΓ̂ , namely,

minimize
γA Γ̂

γ> ŶK̂Ŷγ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
DðγÞ

:

It can be seen that the vector γnAΓ̂ minimizing DðγÞ identifies the
two nearest points in the convex hulls of positive and negative
examples, respectively, in the feature space of the kernel K.

Furthermore, a quadratic regularization over γ is introduced,
namely, RðγÞ ¼ γ> γ, that makes the player to prefer optimal
distributions (strategies) with low variance. In fact, let p (resp. n)
be the number of positive examples (resp. negative examples) in
the training set, then

E½γþ � ¼ 1=p and E½γ� � ¼ 1=n

is always true by construction, and E½v� denotes the expected value
of elements in a vector v. It follows that

Varðγþ Þ ¼ E½γ2þ ��E½γþ �2 ¼ ‖γþ ‖
2�p�2

Varðγ� Þ ¼ E½γ2� ��E½γ� �2 ¼ ‖γ� ‖
2�n�2;

obtaining RðγÞpVarðγþ ÞþVarðγ� Þ.
The final best strategy for γ will be given by solving the

optimization problem

min
γA Γ̂

ð1�λÞDðγÞþλRðγÞ:

Fig. 1. KOMD solutions of the first phase found using different λ in a simple toy
classification problem. The ranking among the examples is performed evaluating
the orthogonal projection of the examples over the line defined by the solution.

F. Aiolli, M. Donini / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎2

Please cite this article as: F. Aiolli, M. Donini, EasyMKL: a scalable multiple kernel learning algorithm, Neurocomputing (2015), http:
//dx.doi.org/10.1016/j.neucom.2014.11.078i

http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078

The regularization parameter λ has two critical points: λ¼ 0 and
λ¼ 1. When λ¼ 0, as we have shown before, there is no regular-
ization, so the solution is the same as the hard SVM one, whereas
when λ¼ 1 the minimization problem reduces to

min
γA Γ̂

RðγÞ

and the optimal solution is analytically defined by the vector of
uniform distributions over positive and negative examples, that is,
γui ¼ 1=p when yi ¼ þ1, and γui ¼ 1=n when yi ¼ �1. In this case,
the objective solution is the squared distance from the positive
and negative centroids in feature space. The external parameter
λA ð0;1Þ allows us to select the correct trade-off. Clearly, a correct
selection of this parameter is fundamental if we are interested in
finding the best performance for a classification task and this is
usually made by validating on training data. In Fig. 1, an example
of the solutions found by the above algorithm for a toy problem
varying the value of λ is depicted.

Once the model is learned from training data, the evaluation on
a new generic example x is obtained by

f ðxÞ ¼w>ϕðxÞ ¼
X
i

yiγiKðxi; xÞ ¼KtrðxÞŶγ;

where KtrðxÞ ¼ ½Kðx1; xÞ;…;Kðxl; xÞ�> , i.e. the vector containing the
kernel values with the training examples for x.

When a pure binary classification is required, which is not the
case in our work, then the second phase of the algorithm is also
performed. The threshold is set corresponding to the point standing
in the middle between the optimal point in the convex hull of
positive examples and the one in the convex hull of negative
examples, that is

θ¼ 1
2

X
iA �

γif ðxiÞþ
X
iA⊖

γif ðxiÞ
 !

¼ 1
2

X
i

γif ðxiÞ ¼
1
2
γ> K̂Ŷγ:

Note that, when λ¼ 0 this choice corresponds exactly to the
optimal hyperplane of SVM. Finally, a new example x will be
classified according to signðf ðxÞ�θÞ.

In the following we will refer to the first phase of the algorithm
discussed in this section as KOMD (Kernelized Optimization of the
Margin Distribution).

4. EasyMKL

In MKL we want to find the best combination parameters for a
set of predefined kernel matrices. In our context, this is done by
learning a vector of coefficients η that forms the combined kernel
according to

K¼
XR
r ¼ 1

ηrKr ; ηrZ0:

Clearly, we must restrict the possible choices of such a matrix K
and this can be made by regularizing the learning process. So, we
pose the problem of learning the kernel combination as a min–
max problem over variables γ and η. Specifically, we propose to
maximize the distance between positive and negative examples
with a unitary norm vector η as the weak kernel combination
vector, that is

max
η: Jη J ¼ 1

min
γAΓ

ð1�λÞγ> Ŷ
XR

r
ηrK̂r

� �
Ŷγþλ‖γ‖2|ffl{zffl}

Q ðη;γÞ

:

Considering dðγÞ the vector with the rth entry defined as

drðγÞ ¼ γ> ŶK̂rŶγ;

we obtain that Q ðη; γÞ is equal to ð1�λÞη>dðγÞþλ‖γ‖22 and we can
rewrite the original problem as

min
γAΓ

max
η: Jη J ¼ 1

Q ðη; γÞ ¼min
γAΓ

max
Jη J ¼ 1

ð1�λÞη>dðγÞþλ‖γ‖22: ð1Þ

Now, it is possible to see that the vector ηn maximizing the
function Q ðη; γÞ above has a simple analytic solution:

ηn ¼ dðγÞ
‖dðγÞ‖2

:

Plugging this solution into the min–max problem, we obtain

min
γAΓ

Q ðηn; γÞ ¼min
γAΓ

ð1�λÞ‖dðγÞ‖2þλ‖γ‖22:

The optimal γ will be the (regularized) minimizer of the 2-norm of
the vector of distances. This minimizer is not difficult to find as
this is a convex function though not quadratic. In order to simplify
the problem further we prefer to minimize an upper-bound
instead corresponding to the 1-norm of the vector of distances,
thus obtaining

min
γAΓ

ð1�λÞ‖dðγÞ‖1þλ‖γ‖22 ¼min
γAΓ

ð1�λÞγ> Ŷ
XR
r

K̂r

 !
Ŷγþλ‖γ‖22:

ð2Þ
Interestingly, the obtained minimization problem is the same as
the KOMD problem where the kernel matrix has been replaced
with the simple sum of the weak kernel matrices. This will turn
out to be very important for the efficiency (especially in terms of
space) of the method as will be explained later on. In the
following, we refer to this algorithm as EasyMKL.

From a more theoretical point of view, modifying the original
problem using the 1-norm upper-bound, in fact, we are changing
the optimal solution ηn in the initial problem (Eq. (1)) with a new
~ηn , where

~ηn ¼ ηn‖dðγÞ‖1
‖dðγÞ‖2

:

Consequently, the problem that we are solving is

min
γAΓ

ð1�λÞ ~ηndðγÞþλ‖γ‖22 ¼min
γAΓ

ð1�λÞηn‖dðγÞ‖1
‖dðγÞ‖2

dðγÞþλ‖γ‖22: ð3Þ

From this new formulation, we note that, in fact, we have just
added a multiplicative coefficient ‖dðγÞ‖1=‖dðγÞ‖2 to the original
optimal solution ηn. From Hölder's inequality this coefficient is
bounded by the number of kernels and we have that

1r‖dðγÞ‖1
‖dðγÞ‖2

r
ffiffiffi
R

p
:

The value of the ratio between the 1-norm and the 2-norm tends to
1 if the vector dðγÞ is very sparse, while, it tends to

ffiffiffi
R

p
when the

values in the vector dðγÞ are similar. In other words, using the
proposed formulation, we are promoting sparse solutions of the
vector dðγÞ solving the minimum problem. Then, solving the problem
in Eq. (3), the vector of the weight ηn ¼ dðγÞ=‖dðγÞ‖2 will result
sparser than the solution of the original problem. Clearly, Eq. (3) has
the same solution as the EasyMKL minimum problem in Eq. (2).

A final consideration we can do here is that the quality of a
kernel does not change if it is multiplied by a positive constant.
However, our formulation makes particularly clear that, if kernels
with different traces are present in the combination, they have
unequal impact in the MKL optimization problem. In fact, most of
the bounds related to the difference between the true error and
the empirical margin error (i.e. estimation error) change linearly
with respect to the square root of the maximal trace among the

F. Aiolli, M. Donini / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 3

Please cite this article as: F. Aiolli, M. Donini, EasyMKL: a scalable multiple kernel learning algorithm, Neurocomputing (2015), http:
//dx.doi.org/10.1016/j.neucom.2014.11.078i

http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078

combined kernels. Moreover, if we have that (T40 such that

T2ZKrðx; xÞ 8r¼ 1;…;R 8x
the estimation error (fixed a specific task and without constants) is
OðTÞ [5,6]. Thus, if not differently motivated, different traces
should be avoided.

5. Experiments and results

In this section, the experiments we have performed to validate
the EasyMKL approach are presented. First of all, an introduction
of the experimental setting is given in Section 5.1. In Section 5.2
we show some results confirming that the maximization of the
separation in feature space is a good criterion to pursue to obtain
effective kernels. Moreover, an overview of the baselines and
state-of-the-art methods is given in Section 5.3. In Section 5.4
we compare our algorithm against other methods with respect to
the AUC over ranking tasks. In Section 5.5 we perform experi-
ments concerning time and memory performance of EasyMKL. We
tested the stability of EasyMKL by adding different amounts of
noise in the data in Section 5.6. In Section 5.7 we analyze how the
cardinality of the training set influences our algorithm. Finally, in
Section 5.8 we describe experiments that we have performed to
understand the difference in performance obtained by changing
the number of weak kernels.

5.1. Experimental setting

Experiments have been performed comparing the proposed
methods with other state-of-the-art MKL algorithms with respect
to accuracy and computational performance. A total of 7 bench-
mark datasets with different characteristics and 7 different MKL
methods have been considered. Namely, the datasets considered
are Diabetes [8] (8 features, 768 examples), Australian [8] (14
features, 690 examples), German [8] (24 features, 1000 examples),
Splice [8] (60 features, 1000 examples), Batch2 [9] (128 features,
1244 examples), Mush [8] (112 features, 2000 examples), Gisette
[10] (5000 features, 13,500 examples), that Table 1. Data have been
scaled to the ½�1; þ1� interval and the number of training
examples selected for the training part is approximately 10% of
the dataset. We decided to use relatively small training sets
obtaining a final accuracy less influenced by the classifier (on
which the combined kernel is applied) and more influenced by the
real quality of a kernel. Further, we preferred having larger test
sets and many different splits of each single dataset aimed at
improving the significance of the overall evaluation.

In this work we want to demonstrate that we can efficiently
perform a kind of feature selection/weighting via MKL and this can
be done by selecting a very large set of weak kernels each one
individually defined using a small subset of the original features.

Let dAN and β40 be two parameters, then the rth kernel is
constructed by random picking of a bag (replica is allowed) of

features Fr, such that jFr jrd, and constructing an RBF based weak
kernel defined according to

Krðxi; xjÞ ¼ ∏
f A Fr

e�β=j Fr j ðxðf Þi �xðf Þj Þ2 :

5.2. Is data separation a good criterion to maximize?

In this section, we present results showing that the maximiza-
tion of the distance between positive and negative examples is a
good criterion to pursue as it is positively correlated with the AUC
obtained in a binary ranking task.

In particular, we designed a simple greedy algorithm which
constructs a series of kernels with monotonically increasing data
separation. For reader's convenience, we recall the formula of
separation:

min
γA Γ̂

γ> ŶK̂Ŷγ:

The algorithm starts with a null kernel and considers sequentially
the available weak kernels. At each iteration, the current kernel is
updated with a weak kernel only if this addition increases the
separation of training data. Note that, this algorithm corresponds to
have ηrAf0;1g. The algorithm is described in detail in Appendix A.

Fig. 2, an example of a plot obtained applying the greedy
algorithm on the Splice dataset, using 10,000 weak kernels and
generated as described in Section 5.1 (d¼5), is given. This experi-
ment clearly shows the strong correlation between the data separa-
tion and the AUC obtained in the test set using the produced kernel.

5.3. Methods

We have then considered three baseline methods for our
experiments. The first method SVM is the classical SVM trained
with all the features. This is only reported for the sake of
completeness and just to give an idea of the difficulty of the
datasets. Note that, the feature space in this case is different from
MKL methods and results are not comparable. The second method,
called Random Kernel (Random), consists of random picking from
available kernels, which is equivalent to set only one ηr equal to
1 and all the others equal to 0. We decided to add this baseline as
an indicator of how much information is brought from single
kernels. Intentionally, the performance of this baseline could be
really poor. Finally, the last baseline method is the Average Kernel
(Average) where the same weight ηr is given to all the available
weak kernels. Despite its simplicity, it is known (see [11]) that this

Table 1
Datasets information: name, source, number of features, number of examples and
cardinality of the training set.

Data set Source Features Examples Ntr

Diabetes UCI 8 768 77
Australian Statlog 14 690 69
German Statlog 24 1000 100
Splice UCI 60 1000 100
Batch2 UCI 128 1244 124
Mush UCI 112 2000 200
Gisette NIPS03 5000 13,500 1350 Fig. 2. Value of the quality function (separation) versus the AUC obtained using the

greedy algorithm over the Splice dataset.

F. Aiolli, M. Donini / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎4

Please cite this article as: F. Aiolli, M. Donini, EasyMKL: a scalable multiple kernel learning algorithm, Neurocomputing (2015), http:
//dx.doi.org/10.1016/j.neucom.2014.11.078i

http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078

is a strong baseline that beats other more advanced techniques
quite often and can obtain very good results. We have then
considered three state-of-the-art algorithms of MKL with SVM.
All these three algorithms are in the optimization based family of
MKL methods. A MATLAB implementation1 of these methods by
Mehmet Gönen and Ethem Alpaydin [4] has been used.

� Simple MKL (SMKL): An iterative algorithm by Rakotomamonjy
[12] that implements a linear approach with kernel weights in
a simplex. Basically SMKL works by repeating two main steps:
○ A SVM optimization problem defined on current weights.
○ Updating of the kernel weights using a gradient function.

� Generalized MKL (GMKL): The second algorithm, by Varma and
Babu [13], is called generalized multiple kernel learning
(GMKL). GMKL exploits a nonlinear approach and tackles the
problem with a technique that regularizes both the hyperplane
weights and the kernel combination weights. This algorithm

Table 2
AUC results on three datasets of SVM (RBF all features).

Average AUC (RBF all features)

Algorithm Diabetes Australian German

SVM 80.39% 91.37% 70.79%

Average AUC (RBF all features)

Algorithm Splice Batch2 Mush

SVM 86.12% 95.20% 98.52%

Table 3
AUC7 std results on three datasets of various MKL methods and baselines (RBF feature subset d¼ 5).

Average AUC (RBF subset d¼ 5)

Algorithm Diabetes Australian German

Random 62:1376:20% 65:56721:32% 49:59711:68%

Average 63:0170:41% 92:0970:51% 73:0470:37%

SMKL 77:5272:11% 91:6473:18% 69:7172:78%

GMKL 75:4373:23% 90:3774:01% 69:5373:87%

GLMKL 70:9572:75% 85:2773:56% 68:6173:02%

EasyMKL 79:9170:13% 92:1770:11% 72:7170:21%

Average AUC (RBF subset d¼ 5Þ

Algorithm Splice Batch2 Mushrooms

Random 52:61710:22% 81:14711:83% 28:58724:56%

Average 86:5670:25% 95:3570:43% 98:4570:49%

SMKL 83:4872:15% 94:8272:18% 97:4973:41%

GMKL 83:7074:24% 92:5373:99% 97:3974:89%

GLMKL 85:3671:98% 94:5473:34% 96:3874:72%

EasyMKL 87:8770:18% 98:9870:21% 97:9170:24%

Table 4
AUC7 std results on three datasets of various MKL methods and baselines (RBF feature subset d¼ 10).

Average AUC (RBF subset d¼ 10)

Algorithm Diabetes Australian German

Random 71:4477:05% 70:36712:59% 56:9377:14%

Average 71:9470:34% 92:1170:42% 73:3370:36%

SMKL 75:2173:41% 87:9472:12% 70:9272:56%

GMKL 72:0175:76% 86:8873:17% 70:8973:01%

GLMKL 71:8575:01% 84:8072:09% 69:7572:78%

EasyMKL 79:6170:16% 92:1770:11% 73:2170:11%

Average AUC (RBF subset d¼10)

Algorithm Splice Batch2 Mushrooms

Random 56:7678:52% 85:3078:24% 44:58737:26%

Average 90:4270:34% 94:7070:53% 98:8670:19%

SMKL 86:8473:42% 95:0774:87% 97:4872:37%

GMKL 84:4876:02% 94:9276:97% 96:9974:32%

GLMKL 86:4175:51% 94:1876:09% 95:2573:12%

EasyMKL 91:1970:18% 97:0870:16% 98:2970:12%

1 http://www.cmpe.boun.edu.tr/�gonen/mkl.

F. Aiolli, M. Donini / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 5

Please cite this article as: F. Aiolli, M. Donini, EasyMKL: a scalable multiple kernel learning algorithm, Neurocomputing (2015), http:
//dx.doi.org/10.1016/j.neucom.2014.11.078i

http://www.cmpe.boun.edu.tr/~gonen/mkl
http://www.cmpe.boun.edu.tr/~gonen/mkl
http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078

tries to optimize a non-convex problem, different from SMKL
but, in general, with better results [4].

� Lasso-based MKL (GLMKL): The third algorithm used as baseline
is called Lasso-based MKL algorithm by Kloft [14] and Xu [15].
GLMKL considers a regularization of kernel weights with 1-
norm and finds the kernel weights by solving a small QP
problem at each iteration.

� SMO Projected Gradient Descent Generalized MKL (SPG-GMKL):
The last algorithm is inspired by the GMKL and learns simulta-
neously both kernel and SVM parameters. This particular
algorithm [16] exploits an efficient and highly scalable imple-
mentation and is a state-of-the-art method with respect to the
computational performance.

The validation of the methods was performed before each type
of experiment. A subset of examples (validation set) was selected
for each method and dataset and was only used to select the best
hyperparameters. The kernel machines (SVM and KOMD) were

validated using the same subset of data to obtain a fair compar-
ison. The performance of SVM and KOMD was similar in most of
the cases, thus confirming the findings in [7].

5.4. AUC comparisons

The quality of the different combined kernels has been eval-
uated by means of AUC (Area Under Curve), which measures how
good the induced ranking order is with respect to the target
classification task. In this way, we do not necessitate of a threshold
setting which is an additional, and useless, degree of freedom
when evaluating kernels performance. Weak kernels have been
generated according to the method depicted in Section 5.1. A
number of 10,000 weak kernels have been constructed for each
dataset. Two different values for d, that is dAf5;10g, have been
used in the generation algorithm with the RBF parameter β0
obtained by model selection on a standard SVM. The experimental
setting is summarized below:

1. Repeat for r¼1 to R¼10,000: pick a random pAf1;…; dg and
generate a weak kernel Kr using p features picked randomly
(with replacement).

2. Combine fKrgRr ¼ 1 with a MKL algorithm to obtain a kernel K.
3. Rank test examples using K and SVM (KOMD for the proposed

method) and evaluate the quality of the ranking with the AUC
metric.

Table 5
Average AUC7 std on the Gisette (NIPS2003 feature selection challenge) of EasyMKL
(with RBF subset) and comparison with the Average baseline.

Algorithm RBF d¼ 5 RBF d¼ 10 RBF d¼ 20

Average 95:5270:15% 94:7270:13% 93:6570:13%

EasyMKL 95:8370:12% 95:4070:10% 94:6470:11%

Fig. 3. Time and memory used by SPG-GMKL and EasyMKL with different amounts of kernels combined. The kernels are created using all the features of the Splice dataset.
The experiment with 500 kernels of SPG-GMKL is not reported as it exceeds the limit of 2 GB of memory.

F. Aiolli, M. Donini / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎6

Please cite this article as: F. Aiolli, M. Donini, EasyMKL: a scalable multiple kernel learning algorithm, Neurocomputing (2015), http:
//dx.doi.org/10.1016/j.neucom.2014.11.078i

http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078

The same experiments have been repeated 1000 times averaging
the AUC results in order to improve the significance of the
evaluation. Aiming at setting our experiments as fair as possible,
the KOMD algorithm has been used with the kernel produced by
our MKL method, while SVM has been used on all the others. For
what concerns the SVM baseline, RBF kernels with all the features
have been used in this case. The obtained results are summarized
in Table 2.

The results obtained with the MKL algorithms are summarized
in Tables 3 and 4 (for d¼5 and d¼10) showing that standard MKL
methods do not have performances significantly better than the
simple kernel averaging. On the other side, EasyMKL has signifi-
cantly better AUC in four out of six datasets. Also, EasyMKL has a
small standard deviation (std) with respect to the other methods
and this fact highlights the stability of our algorithm. This trend is
confirmed in Table 5 where the proposed method is always
significantly better than the average baseline. Unfortunately, given
the relatively large number of examples of the Gisette dataset, it
was not possible to run state-of-the-art MKL methods on this data
without running out the memory.

5.5. Performance in time and memory

We have also performed experiments2 to evaluate the compu-
tational time and the memory used by EasyMKL. We compared
our algorithm with a state-of-the-art algorithm called SPG-GMKL
[16]. A Cþþ implementation of SPG-GMKL provided by the
authors3 has been used. SPG-GMKL with this implementation is
more than 100 times faster than SimpleMKL [16]. The Splice
dataset has been selected for this experiment with 100 training
examples. A variable number of RBF kernels have been generated
with a parameter β picked randomly in ð0;1Þ and using all the 60
features of the Splice dataset. We have studied the performance in
time and memory, fixed an upper bound of 2 GB for the memory.
Results are reported in Fig. 3.

Fig. 4. AUC comparisons with standard deviation of EasyMKL against the Average Kernel algorithm with respect to different percentages of additional noise features using
different datasets (Splice, Batch2 and Mush) and two different values of d (5 and 10).

2 For these experiments we used a CPU Intel Core i7-3632QM @ 2.20GHz
2.20GHz.

3 http://www.cs.cornell.edu/�ashesh/pubs/code/SPG-GMKL/download.html

F. Aiolli, M. Donini / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 7

Please cite this article as: F. Aiolli, M. Donini, EasyMKL: a scalable multiple kernel learning algorithm, Neurocomputing (2015), http:
//dx.doi.org/10.1016/j.neucom.2014.11.078i

http://www.cs.cornell.edu/~ashesh/pubs/code/SPG-GMKL/download.html
http://www.cs.cornell.edu/~ashesh/pubs/code/SPG-GMKL/download.html
http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078

Based on our experiments, the time complexity of SPG-GMKL is
linear with the number of kernels, with a constant of 0.15 s per
kernel. EasyMKL has a linear increase in time too, with 0.17 s per
kernel. The memory used by SPG-GMKL has a sub-linear growth
with the number of kernels and has reached 2 GB with only 400
kernels. Vice versa, the memory used by our algorithm is inde-
pendent from the number of kernels to combine. This is due to the
fact that the optimization in our algorithm consists of a simple
KOMD optimization on the sum of kernels. The computation of
this sum of matrices can be easily implemented incrementally and
only two kernel matrices need to be stored in memory. It follows
that, with our method, we can use an unlimited number of
different kernels with only a small memory requirement (e.g.
47 MB for the Splice dataset).

5.6. Stability with noise features

In this set of experiments we injected artificial noise features,
that is, features uncorrelated with the label of the example, to
study the robustness of EasyMKL with respect to the Average
Kernel method.

Similar to [17], given a dataset of L examples, each new noise
feature h is created using three simple steps:

1. Pick a feature f randomly from the set of the original features.
2. Let F ¼ fxðf Þi : i¼ 1;…; Lg be the list of values of f (with replica).
3. For each example xi with i¼ 1;…; L, define the value of xðhÞi as a

randomly picked value from F .

Using this method we have created features with a distribution
that is similar to the original features but uncorrelated with the
labels. We have generated noise features in different percentages
of the original features. With these new datasets we have repeated
the same experiments described in Section 5.4 with the RBF weak
kernels created using d equals to 5 and 10 and three datasets:
Splice, Batch2, and Mush. We have fixed the percentages of noise
features pAf0;50;100;150;…;900;950;1000g. Finally, we com-
pared EasyMKL against the Average Kernel algorithm.

The results are summarized in Fig. 4. We can note that our
algorithm obtains good results even with a 1000% of additional
noise features and it outperforms the baseline algorithm. EasyMKL
increases the gap from the baseline monotonically with respect to
the increase of the percentage of noise features. However, quite

Fig. 5. AUC comparisons (left) with standard deviation (right) of EasyMKL against the Average Kernel algorithm with respect to different cardinality of the training set using
the Gisette dataset and three different values of d (5,10 and 20).

F. Aiolli, M. Donini / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎8

Please cite this article as: F. Aiolli, M. Donini, EasyMKL: a scalable multiple kernel learning algorithm, Neurocomputing (2015), http:
//dx.doi.org/10.1016/j.neucom.2014.11.078i

http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078

surprisingly, these results confirm that the Average Kernel algo-
rithm is still a very strong baseline.

5.7. Performance with respect to different cardinalities of the
training set

In this section we have analyzed how the size of the training set
influences the performance of EasyMKL. We compared our results
against the Average Kernel method, that is used as baseline. We
performed these experiments over the Gisette dataset using the
same experimental setting as in Section 5.4 but with different
sizes of the training set. Specifically, we have selected the size of
the training set varying from 10 to 200 examples. For each size,
Fig. 5 has been obtained by evaluating the average on a large
number of runs.

From these results, it is clear that our algorithm outperforms
the Average Kernel algorithm when the training set is sufficiently
large. This is due to the fact that EasyMKL effectively uses the
training set to learn which features are more important (see
experiments in Section 5.6) and, when data are abundant, it can
exploit this information to outperform the baseline. Not surpris-
ingly, when the size of the training set is small the two algorithms
perform similarly (and the standard deviation is too big to claim
any result).

5.8. Performance changing the number of weak kernels

We also performed experiments analyzing the performance of
EasyMKL against the Average Kernel method using different
numbers of weak kernels. The kernels have been generated using
the same setting described in Section 5.4. The number of gener-
ated kernels R was selected ranging from R¼ 10 to R¼ 200 (with a
step of 10 kernels). We performed the experiments fixing d¼ 5
(i.e. very weak kernels) and using two datasets: Splice and German.

The experiments have been repeated several times for each
value of R and the results are reported in Fig. 6. We can observe
that EasyMKL outperforms the Average Kernel method and these
experiments confirm that our algorithm also works well when
combining a small number of weak kernels. In particular, EasyMKL
obtains a steeper gain in performance with the first weak kernels
(i.e. from 10 to 30 weak kernels).

6. Conclusion

In this paper we have proposed the EasyMKL algorithm which
is able to cope efficiently with a very large number of different
kernels. The experiments we reported have shown that the
proposed method is more accurate than MKL state-of-the-art

Fig. 6. AUC comparisons with standard deviation of EasyMKL against the average kernel algorithm with respect to different number of weak kernels using the German
dataset (24 features) and the Splice dataset (60 features) with d¼5.

F. Aiolli, M. Donini / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 9

Please cite this article as: F. Aiolli, M. Donini, EasyMKL: a scalable multiple kernel learning algorithm, Neurocomputing (2015), http:
//dx.doi.org/10.1016/j.neucom.2014.11.078i

http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078

methods. We have also discussed time and memory requirements
with respect to the number of combined kernels showing that
EasyMKL uses only a constant amount of memory and it has only a
linear time complexity. Finally, EasyMKL seems also quite robust
with respect to the noise introduced by features which are not
informative and works well even if used with a small number of
weak kernels.

Appendix A. Greedy Algorithm

In this appendix we present in detail the greedy algorithm
(Algorithm 1) used in Section 5.2.

Algorithm 1. A greedy MKL algorithm which aims at greedily
maximizing the separation of positive and negative examples in
the training set.

Require: λA ½0;1�
Ensure: A kernel matrix Kn and a vector γn

Kn ¼ 0; c¼ 0; dn ¼ 0
for r¼ 1 to rmax do
pick a new Kr such that trðKrÞ ¼ k
set K¼ 1

cþ1ðKnþKrÞ
set γn ¼ KOMDðK̂; λÞ
compute current distance d¼ γn> ŶK̂Ŷγn

if d4dnthen
dn ¼ d, Kn ¼KnþKr , c¼ cþ1

end if
end for
Kn ¼ 1

cK
n, now trðKnÞ ¼ k

return Kn, γn ¼ KOMDðK̂n

; λÞ

References

[1] Semi-Supervised Learning, in: O. Chapelle, B. Schölkopf, A. Zien (Eds.), MIT
Press, Cambridge, MA, 2006, URL 〈http://www.kyb.tuebingen.mpg.de/
ssl-book〉.

[2] X. Zhu, A.B. Goldberg, Introduction to Semi-Supervised Learning, Synthesis
Lectures on Artificial Intelligence and Machine Learning, Morgan & Claypool
Publishers, 2009.

[3] G.R.G. Lanckriet, N. Cristianini, P.L. Bartlett, L.E. Ghaoui, M.I. Jordan, Learning
the kernel matrix with semidefinite programming, J. Mach. Learn. Res. 5
(2004) 27–72.

[4] M. Gönen, E. Alpaydin, Multiple kernel learning algorithms, J. Mach. Learn.
Res. 12 (2011) 2211–2268.

[5] C. Cortes, M. Mohri, A. Rostamizadeh, Generalization bounds for learning
kernels, in: Proceedings of the 27th International Conference on Machine
Learning (ICML-10), June 21–24, 2010, Haifa, Israel, 2010, pp. 247–254. URL
〈http://www.icml2010.org/papers/179.pdf〉.

[6] Z. Hussain, J. Shawe-Taylor, Improved loss bounds for multiple kernel learning,
in: Proceedings of the Fourteenth International Conference on Artificial

Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11–13,
2011, 2011, pp. 370–377. URL 〈http://www.jmlr.org/proceedings/papers/v15/
hussain11a/hussain11a.pdf〉.

[7] F. Aiolli, G.D.S. Martino, A. Sperduti, A kernel method for the optimization of
the margin distribution, in: ICANN (1), 2008, pp. 305–314.

[8] K. Bache, M. lichman, Uci machine learning repository (2013). URL 〈http://
archive.ics.uci.edu/ml〉.

[9] A. Vergara, S. Vembu, T. Ayhan, M.A. Ryan, M.L. Homer, R. Huerta, Chemical gas
sensor drift compensation using classifier ensembles, 2012.

[10] I. Guyon, S. Gunn, A. Ben-Hur, G. Dror, Result analysis of the nips 2003 feature
selection challenge, in: L.K. Saul, Y. Weiss, L. Bottou (Eds.), Advances in NIPS 17,
MIT Press, Cambridge, MA, 2005, pp. 545–552.

[11] X. Xu, I.W. Tsang, D. Xu, Soft margin multiple kernel learning, IEEE Trans.
Neural Netw. Learn. Syst. 24 (5) (2013) 749–761.

[12] A. Rakotomamonjy, F.R. Bach, S. Canu, Y. Grandvalet, Simplemkl, J. Mach.
Learn. Res. 9 (2008) 2491–2521.

[13] A.P. Danyluk, L. Bottou, M.L. Littman (Eds.), Proceedings of ICML 2009,
Montreal, Quebec, Canada, June 14–18, 2009, vol. 382 of ACM International
Conference Proceeding Series, ACM, 2009.

[14] M. Kloft, U. Brefeld, S. Sonnenburg, A. Zien, Non-sparse regularization and
efficient training with multiple kernels, CoRR abs/1003.0079.

[15] Z. Xu, R. Jin, H. Yang, I. King, M.R. Lyu, Simple and efficient multiple kernel
learning by group lasso, in: ICML, 2010, pp. 1175–1182.

[16] A. Jain, S.V.N. Vishwanathan, M. Varma, Spg-gmkl: generalized multiple kernel
learning with a million kernels, in: Proceedings of the ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining, 2012.

[17] I. Guyon, A.B. Hur, S. Gunn, G. Dror, Result analysis of the nips 2003 feature
selection challenge, in: Advances in Neural Information Processing Systems 17,
MIT Press, Vancouver, British Columbia, Canada, 2004, pp. 545–552.

F. Aiolli received a Master's Degree and a PhD in
Computer Science both from the University of Pisa.
He was Post-doc at the University of Pisa, Paid Visiting
Scholar at the University of Illinois at Urbana-
Champaign (IL), USA, and Post-doc at the University
of Padova. He is currently Assistant Professor at the
University of Padova. His research activity is mainly in
the area of Machine Learning and Information
Retrieval.

M. Donini received his Bachelor's degree and Master's
degrees in Mathematics from the University of Padova
in 2010 and 2012, respectively. He is currently a PhD
student in Machine Learning at the University of
Padova. His research interests include kernel methods,
multiple kernel learning and machine learning in
general.

F. Aiolli, M. Donini / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎10

Please cite this article as: F. Aiolli, M. Donini, EasyMKL: a scalable multiple kernel learning algorithm, Neurocomputing (2015), http:
//dx.doi.org/10.1016/j.neucom.2014.11.078i

http://www.kyb.tuebingen.mpg.de/ssl-book
http://www.kyb.tuebingen.mpg.de/ssl-book
http://refhub.elsevier.com/S0925-2312(15)00365-3/sbref2
http://refhub.elsevier.com/S0925-2312(15)00365-3/sbref2
http://refhub.elsevier.com/S0925-2312(15)00365-3/sbref2
http://refhub.elsevier.com/S0925-2312(15)00365-3/sbref2
http://refhub.elsevier.com/S0925-2312(15)00365-3/sbref3
http://refhub.elsevier.com/S0925-2312(15)00365-3/sbref3
http://refhub.elsevier.com/S0925-2312(15)00365-3/sbref3
http://refhub.elsevier.com/S0925-2312(15)00365-3/sbref4
http://refhub.elsevier.com/S0925-2312(15)00365-3/sbref4
http://www.icml2010.org/papers/179.pdf
http://www.jmlr.org/proceedings/papers/v15/hussain11a/hussain11a.pdf
http://www.jmlr.org/proceedings/papers/v15/hussain11a/hussain11a.pdf
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0925-2312(15)00365-3/sbref10
http://refhub.elsevier.com/S0925-2312(15)00365-3/sbref10
http://refhub.elsevier.com/S0925-2312(15)00365-3/sbref10
http://refhub.elsevier.com/S0925-2312(15)00365-3/sbref11
http://refhub.elsevier.com/S0925-2312(15)00365-3/sbref11
http://refhub.elsevier.com/S0925-2312(15)00365-3/sbref12
http://refhub.elsevier.com/S0925-2312(15)00365-3/sbref12
http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1016/j.neucom.2014.11.078

	EasyMKL: a scalable multiple kernel learning algorithm
	Introduction
	Notation
	Playing with margin and the KOMD algorithm
	EasyMKL
	Experiments and results
	Experimental setting
	Is data separation a good criterion to maximize?
	Methods
	AUC comparisons
	Performance in time and memory
	Stability with noise features
	Performance with respect to different cardinalities of the training set
	Performance changing the number of weak kernels

	Conclusion
	Greedy Algorithm
	References

