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Abstract. Many different paradigms have been studied in the past to treat tree
structured data, including kernel and neural based approaches. However, both
types of methods have their own drawbacks. Kernels typically can only cope with
discrete labels and tend to be sparse. On the other side, SOM-SD, an extension
of the SOM for structured data, is unsupervised and Markovian, i.e. the represen-
tation of a subtree does not consider where the subtree appears in a tree. In this
paper, we present a hybrid approach which tries to overcome these problems. In
particular, we propose a new kernel based on SOM-SD which adds information
about the relative position of subtrees (the route) to the activation of the nodes in
such a way to discriminate even those subtrees originally encoded by the same
prototypes. Experiments have been performed against two well known bench-
mark datasets with promising results.
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1 Introduction

Recently, there has been a great interest in the study of techniques able to learn in struc-
tured domains with no need to represent data in vectorial form. For example, kernels
for structured domains (see [7] for an overview), allow for a direct exploitation of the
structural information obtaining very good results in practice.

However, kernel for structures have the well known disadvantage that, in the case
of large structures and many symbols, the feature space implicitly defined by these
kernels is very sparse [10]. In fact, these kernels are usually defined in terms of the
number of matching subparts and, whenever many different types of these parts can
be found in data, these matches tend to be barely observed. As a result, kernel based
learning methods like Support Vector Machines (SVM) [5] using these standard kernels
cannot be trained effectively. They will tend to generate several support structures thus
leading to a final model which is similar to the nearest neighbor rule. It is then clear that
any kernel machine cannot work well when used together with these kernels.

A completely different approach for the treatment of structured data has been pre-
sented in [8], a neural network based method, called SOM-SD. This is an unsupervised
learning algorithm which extends the SOM to structured domains. As SOMs, SOM-SD
organizes data (structures in this case) onto a topological discrete lattice. Moreover, the
neural approach is well suited to cope with structures having real valued labels, while
in the case of standard kernels for trees labels are assumed to be discrete.

The ability of the SOM-SD to represent the data onto a lattice preserving as much
as possible their topology in the original space provides a viable technique for defining
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similarity functions based on matching of non identical structures in the original space.
This idea has been exploited by the Activation Mask Kernels family of kernels (see
[3, 1]), defined on top of a SOM-SD with the aim of exploiting both its compression
and “topology” preserving capabilities. Experimental results with these kernels pro-
vided evidence that, when sparsity on the data was present, they were able to improve
the overall categorization performance over each method taken individually, i.e. either
SVM using tree kernels or SOM-SDs equipped with a 1-NN classification rule. This
also demonstrates that, neither tree kernels nor SOM-SDs are always able to retain all
the relevant information for classification.

One issue with the SOM-SD type of algorithms, and SOM-SD activation based
kernels consequently, is that they are computed by almost neglecting the contextual
information of substructures. More specifically, the path linking the root of a tree to the
root of the subtree we want to represent is not actually considered when training takes
place. This can be a problem when this type of information is relevant for a given task.

In this paper, we propose a new method which tries to fill this gap. The proposed
method can be though of as a hybrid method which combines the SOM-SD neural ap-
proach, and the Activation Mask kernels, in conjunction with a standard kernel for trees
devised in [2]. Specifically, we propose to add additional (contextual) information to
the activations of the nodes in such a way to discriminate between subtrees encoded by
the same prototypes. Then we propose to add a type of information which is orthogonal
to the one processed by the SOM-SD, i.e. information about the antecedents of the root
of a given subtree (here referred to as a route).

Experiments performed with this new kernel against two well known competition
datasets have shown a systematic improvement with respect to baseline approaches.

2 Background

In the following sections, the SOM-SD, an extension presented in [1, 3] of the Self
Organizing Maps for structured data, and the Activation Mask Kernel presented in [2],
are sketched. Please, see the referred paper for details on these algorithms.

2.1 Self-Organizing Maps for Structured Data

The SOM-SD extends the Self Organizing Map (SOM) approach [9] by allowing to
process structured input. In this paper we are interested in structures in the form of
(positional) trees, where each node v of a tree T can have a label (e.g., a real valued
vector) v attached to it. Moreover, we assume that each child of a node v is associated
to a specific position out of a maximum number o of available positions (the maximum
out-degree of the trees we are interested in.) The i-th child of v will be denoted by
chi[v].

The SOM-SD can be understood as the recursive application of a standard SOM to
individual nodes in a tree T where the input is properly coded to take into consideration
the structural information. As for the standard SOM, the SOM-SD consists of a number
of neurons which are organized in a q-dimensional grid (usually q = 2). A codebook
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vector m is associated with each neuron. Given an input vector x, let yx denote the
coordinate vector of the winning neuron.

The network input for SOM-SD is a vector xv representing the information of a
node v ∈ T , and it is built through the concatenation of the data label v attached to
v and the coordinates obtained by the mapping of its child nodes on the same map, so
that xv = [v,yxch1[v] , . . . ,yxcho[v]

]. In this representation, the “impossible” coordinate
(−1,−1), is used to represent a missing child. As a result, the input dimension is n =
p + 2o, where p is the dimension of the data label and the constant 2 refers to the
number of dimensions of the map which is the most commonly used. The codebook
vectors m ≡ [mlabel,mch] are of the same dimension.

A number of parameters need to be set before starting the training of a SOM-SD.
These parameters (network dimension, learning rate, number of training iterations) are
problem dependent and are also required for the standard SOM. The weight value µ
introduced with the SOM-SD is an additional parameter which can be computed while
executing the training through a statistical analysis of the size and magnitude of the
data labels which typically remain constant during training, and the coordinate vectors
which can change during training. In other words, µ can be used to weight the input
vector components so as to balance their influence on the distance measure in Step 1.
In practice, however, it is often found that a smaller value for µ can help to improve the
quality of the mappings. This is due to the recursive nature of the training algorithm and
to the fact that a stronger focus on structural information helps to ensure that structural
information is passed on more accurately to all causally related nodes when processing
a tree.

The SOM-SD then is able to map structures in input onto a discrete low dimensional
lattice with the aim to preserve the topology of the input data. Structures which are
similar tend to be mapped onto closer neurons. This is a key property for the intuition
behind this paper. Figure 1 gives an examples of how trees are mapped into a SOM-SD.
One can note similar (sub)trees are mapped close each other.

2.2 The Activation Mask Kernel

The unsupervised SOM-SD model can also be used to define a kernel for trees [3, 1].
The idea is to define a feature space having one dimension associated to each neuron
of the map. Then a vectorial representation for a tree can be obtained by considering
which ones of these neurons are activated for the nodes of the tree. Once the above
representation has been computed for any pair of trees, a kernel can be promptly defined
as the dot product of these representations.

More formally, given a SOM-SD map, let neε[y(i)] denote the set of neurons (co-
ordinates) in the ε-neighborhood of neuron i, i.e. {y(j)|∆y(i)y(j) ≤ ε}, where y(i) =
(xi, yi) is the coordinate vector associated to neuron i, and ∆ is the topological dis-
tance defined on the 2-dimensional map. Given two trees T1 and T2, we define the set
of neurons (coordinates) shared by the two ε-neighbors related to nodes v1 ∈ T1 and
v2 ∈ T2 as

Iε(v1, v2) = neε[yxv1
] ∩ neε[yxv2

]. (1)
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Fig. 1. Example of a SOM-SD mapping of a set of trees and their subtrees.

Then, the Activation Mask Kernel is defined by taking:

Kε(T1, T2) =
∑
v1∈T1,
v2∈T2,

y∈Iε(v1,v2)

Qε(y,yxv1
)Qε(y,yxv2

), (2)

where Qε(y,y′) is inversely proportional to the distance ∆yy′ between map neurons
with coordinates y and y′ and Qε(y,y′) = 0 when the neurons are not in the ε-
neighborhood of each other, i.e. when ∆yy′ > ε. In [1], Qε(y,y′) is defined as

Qε(y,y′) =
{
ε− η∆yy′ if ∆yy′ ≤ ε

0 otherwise (3)

where 0 ≤ η ≤ 1 is a parameter determining how much the distance influences the
neighborhood activation.

Thus, the representation of a tree T into the feature space induced by the map is
defined as the vector φ(T ) with i-th component φi(T ) =

∑
v∈T Qε(y(i),yxv ).

Figure 2 gives an example of construction of the feature space representation of 3
trees according to the AM-kernel (ε = 2, η = 1). On the lower part of the image three
simple trees selected from the INEX 2005 dataset (see section 4.1) and on the right
part their activation masks referring to a 5 × 4 map. The height of each element of the
map corresponds to the value of the activation. Note that the tree at the left side is more
similar to the tree at the center than to the tree at the right side, and this is reflected in
the activation masks.

In [3, 1] it has been shown that the similarity functionKε(T1, T2) is a kernel for any
choice of Qε(y,y′) and that the complexity of its evaluation is O(a · b · (|T1|+ |T2|)),
where a · b is the size of the map. The overall computational complexity is not affected
by the required initial training of the SOM-SD as it is performed only once.
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Fig. 2. Example of feature space construction for the AM-Kernel (ε = 2, η = 1). The figure
presents three trees (bottom) and the corresponding feature mapping onto a 5× 4 map. Note that
the feature maps of the first two trees are quite similar while they both differ from the third one,
as expected.

3 Adding Route Information to the Activation Mask Kernel

In this section, we introduce the main contribution of the paper, i.e. the extension of
the feature space of the Activation Mask Kernel with features that are based on route
information. Intuitively, a route in a tree explicitly keeps information about the position
of the nodes with respect to adjacent nodes.

Definition 1 (Route). Let T be a (positional) tree, v1, v2 ∈ T any two nodes in the
tree, with v2 being a descendant of v1. Then the route from v1 to v2 in T , denoted by
π(v1, v2), is the sequence of indexes of edges connecting the consecutive nodes in the
path connecting nodes v1 and v2.

Figure 3 gives an example of a tree and a route computed between nodes a and e. The
nodes connected by red edges represent the path connecting nodes a and e. The route
connecting nodes a and e is represented by the sequence (2, 3), since node b is the
second child of a and node e is the third child of b. It must be pointed out that a route
is not a path, since a path can be understood as a route where we retain the information
about the label attached to each node belonging to the path.

The concept of route is useful for those tree domains where it may be important
to “recognize” that a specific subtree, or family of subtrees, occurs into a specific “lo-
cation” within a tree, e.g. at the end of a specific route, with no consideration of the
labels attached to nodes crossed by the route. It must be noticed that, because of the
causal style of processing, SOM-SD cannot discriminate among different occurrences
of the same subtree within the same or different trees. In fact, when computing the
winning neuron for a node in a tree, no information about the node’s ancestors is used
(see Fig. 4). It is true that the Activation Mask Kernel can actually exploit information
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Fig. 3. An example of a route connecting nodes labeled with a and e. The positional nature of the
tree is shown in the figure by representing missing edges by dashed lines and missing nodes by
black squares. Edges crossed by the route are colored in red. The route is formed by the sequence
2, 3 since node b is the second child of a and node e is the third child of b.
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Fig. 4. Since SOM-SD is a causal model, the different occurrences of subtree a(a, ,c) in the trees
T1, T2, T3, get the same winner.

about the node’s ancestors, since the activation map used by the kernel is obtained by
collecting the information about winners for all the nodes in the tree. However, this
information is heavily dependent on the label attached to each node. This can be easily
understood by recalling that the winner neuron is determined by combining the infor-
mation about labels and structure. Thus, the feature space exploited by the Activation
Mask Kernel does not possess single features based on route information.

Our proposal is to enrich the feature space of the Activation Mask Kernel by intro-
ducing explicit information about routes. Let v be a node belonging to a tree T , and let
πTv be the route associated to it. Then, we define neπε [yxv ] = {πTu |u ∈ T, ∆yxv ,yxu

≤ ε}.
Notice that for ε = 1, neπε [yxv ] just contains routes of nodes of T that share the same
winning neuron with coordinate vector yxv , i.e. if πTv ∈ neπ0 [yxv ] and πTu ∈ neπ0 [yxv ],
with u 6= v, then yxv = yxu . Given two trees T1 and T2, we define the set of routes
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shared via SOM-SD by the two π-ε-neighbors related to nodes v1 ∈ T1 and v2 ∈ T2 as

Iπε (v1, v2) = neπε [yxv1
] ∩ neπε [yxv2

]. (4)

Then, we define the kernel contribution of the routes as:

Kπ
ε (T1, T2) =

∑
v1∈T1,v2∈T2

yxv1
=yxv2

π′∈Iπε (v1,v2)

Qε(yxv1
,yxπ′|T1

)Qε(yxv2
,yxπ′|T2

), (5)

where π′|Ti refers to the node reached by following route π′ starting from the root of
Ti. Note that eq. 5 can be computed efficiently by explicitly representing each feature
since the number of distinct routes for a tree is at most |T |.

The final kernel is defined as K̂ε(T1, T2) = Kε(T1, T2) +Kπ
ε (T1, T2).

In Fig. 5 we give an example of how routes are exploited.
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Fig. 5. In the proposed representation, the activation mask for each tree is enriched by associat-
ing to each neuron the routes to (sub)trees for which the neuron is a winner. In the figure, two
examples are shown, where only the contribution of subtree a(a, ,c) is reported.

4 Experiments and Results

In order to test the effectiveness of the proposed approach, two experiments on multi-
class classification problems were performed. The datasets considered are derived from
the INEX 2005 and INEX 2006 competitions [6], respectively.
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4.1 Data Description and Experimental Setting

The INEX 2005 Competition dataset is formed by XML documents describing movies
from the IMDB site1. The dataset employed in the experiments is obtained from the (m-
db-s-0) corpus of INEX 2005 after a preprocessing phase. It consists of 9631 documents
containing XML tags only. The data are divided into 11 classes. The preprocessing is
described in detail in [11]. The choice of such preprocessing is motivated by the need to
obtain input structures of manageable size and to compare to the techniques which won
the competition. The mean size of the input structures has been reduced from 684191
vertices with maximum out-degree 6418 to 124359 vertices with maximum outdegree
32. The data are divided into training, validation and test sets containing 3397, 1423
and 4811 documents, respectively. The dataset is unbalanced and sparse with respect to
two of the most popular kernels for trees: the Subtree (ST) and the Subset tree kernels
(SST) [4]. Their sparsity index, computed as the proportion of example pairs in the
dataset whose kernel value is 0, is 0.54 (see [1] for details).

The INEX 2006 dataset is derived from the IEEE corpus and it’s composed of 12107
scientific articles from IEEE journals in XML format. It includes XML formatted doc-
uments, each from one of 18 different journals. Each different journal corresponds to
one class. The data have been preprocessed with the same methodology used for INEX
2005. The data is again split into training, validation and test sets containing 4251,
1802 and 6054 documents, respectively. The dataset is unbalanced and non sparse with
respect to ST and SST kernels. In fact, their sparsity index is 0.002489.

Experiments proceeded as follows. First, for each dataset, five maps were trained
with the SOM-SD software2. The maps were chosen among the 45 described in [1] by
sorting them in ascending order according to the classification error, computed with a
1-NN procedure, and then selecting one map every 11. This choice allows us to investi-
gate the dependency of the error of our kernel from the map. Only 5 maps were selected
because of the need to reduce the duration of the experiments. The maps selected for
INEX 2005 and INEX 2006 are listed in table 1 and table 2, respectively. The parame-
ters not listed in the two tables are kept fixed: α = 1, neighbourhood radius=18, type of
α decrease=sigmoidal, map topology=hexagonal. Given a map, the set of features of the
activation mask kernel with information about the routes, were computed as described
in sections 2.2 and 3. Experiments with the SVM3 and the proposed kernel, AMπ, were
performed by selecting, on the validation set, the ε of the AM kernel and the c of the
SVM among these values: 1 ≤ ε ≤ 6, c ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000}. The
parameter η of the AM kernel is set to 1. Finally, the performance of the best parameter
setting, for each map, was checked on the test set. The classification of a tree according
to the SOM-SD is the one of the neuron representing the root of the tree. The class of
a neuron is the most frequent class of the trees of the training set represented by such
neuron.

1 http://www.imdb.com
2 http://www.uow.edu.au/∼markus/apods/software.html
3 http://disi.unitn.it/moschitti/Tree-Kernel.htm
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Table 1. Characteristics of the SOM-SD maps trained on the INEX 2005 dataset and classification
error for the SOM-SD, AM and AMπ kernels.

Map # Size
Learning

µ
SOM-SD error % AM error % AMπ error %

Iterations test valid test valid test
1 110 x 80 128 0.85 8.65 6.33 6.41 3.45 3.48
2 110 x 80 32 0.05 12.62 5.77 5.60 3.59 3.16
3 77 x 56 32 0.65 18.62 8.22 7.18 3.52 3.14
4 55 x 40 128 0.85 22.51 7.38 7.24 3.45 3.23
5 55 x 40 32 0.25 32.49 9.84 9.36 3.45 3.39

Table 2. Characteristics of the SOM-SD maps trained on the INEX 2006 dataset and classification
error for the SOM-SD, AM and AMπ kernels.

Map # Size
Learning

µ
SOM-SD error % AM error % AMπ error %

Iterations test valid test valid test
1 110 x 80 128 0.05 60.77 59.22 61.07 57.72 60.16
2 110 x 80 32 0.85 61.98 58.77 59.93 57.22 59.67
3 77 x 56 128 0.85 63.45 59.22 61.37 58.50 59.49
4 55 x 40 64 0.05 66.25 59.94 61.75 60.44 61.73
5 55 x 40 32 0.45 67.66 59.55 61.77 57.50 59.26

4.2 Results and Discussion

Table 1 summarizes the results on the INEX 2005 dataset. Note that the results of the
AM kernel differ from those in [1] because a newer version of the SVMlight software
has been employed. The AMπ kernel show a clear improvement for all maps both on
validation and test with respect to the SOM-SD alone and the AM kernel. The mean
classification error of the AM kernel is 7.508 with standard deviation 1.610 on the vali-
dation set and 7.158 with standard deviation 1.4 on the test set. The mean classification
error of the AMπ kernel on validation is 3.492 with standard deviation 0.062, and 3.28,
with standard deviation 0.148, on the test set. The low values of the mean and standard
deviations for the AMπ kernel suggests that the accuracy of the kernel does not seem
to depend on the employed map.

The results on the INEX 2006 dataset are summarized in table 2. Except for one
case on the validation set, the AMπ kernel always improves with respect to the AM
kernel and always improves with respect to the SOM-SD alone. The mean classification
error of the AM kernel is 59.34 with standard deviation 0.435 on the validation set and
61.178 with standard deviation 0.755 on the test set. The mean classification error of
the AMπ kernel on validation is 58.276 with standard deviation 1.299, and 60.062, with
standard deviation 0.989, on the test set. Although AMπ kernel shows more variability
on the results, on average an improvement of 1.116 is obtained on the test set.

5 Conclusions

The Activation Mask Kernel is a tree kernel based on SOM-SD. Here we have proposed
an extension of the Activation Mask Kernel which adds to the feature space information
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about routes, i.e. how to reach a specific node in a tree by starting from its root. In our
proposal, the contribution to the kernel of two trees given by the sharing of a specific
subtree is reinforced if the root of the subtree can be reached by the same route in
both trees. The SOM-SD is basically enriched with information about routes, and the
new kernel computed by adding to the Activation Mask Kernel the contribution due
to routes. This extension is supposed to be particularly effective when the tree domain
is such that the relative location of a subtree, or family of subtrees, within the tree is
important for the task. Experimental results obtained on XML datasets seem to confirm
the usefulness of the proposed approach.
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