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Abstract. The definition of appropriate kernel functions is crucial for
the performance of a kernel method. In many of the state-of-the-art
kernels for trees, matching substructures are considered independently
from their position within the trees. However, when a match happens in
similar positions, more strength could reasonably be given to it. Here,
we give a systematic way to enrich a large class of tree kernels with this
kind of information without affecting, in almost all cases, the worst case
computational complexity. Experimental results show the effectiveness
of the proposed approach.
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1 Introduction

Kernel based methods are recognized to be very effective methods to cope with
data in non vectorial form. Indeed, many real world applications exist where data
are more naturally represented in structured form, including XML documents
for information retrieval tasks, protein sequences in biology, and parse trees in
natural language applications.

The design of this type of kernels is still a challenging problem as they should
be expressive enough (avoiding the loss of relevant structural information) while
remaining computationally not too demanding.

In this paper we focus on kernels for trees, for which several kernels have been
defined in the last few years. As an example, consider the Subtree kernel (ST)
[10] and the Subset tree kernel [2]: the former counts the number of matching
proper subtrees and the latter kernel extends this space by also considering
all subset trees. We noted that possibly relevant topological information about
the relative position in the trees of the matching substructures is not typically
taken into account in state-of-the-art kernels. In fact, common kernels for trees
can be considered position invariant kernels, that is, features represent parts of
the tree but do not maintain information about the position of the features in
the original tree. Our intuition is that a more satisfactory notion of similarity
on trees should give higher values to those structures which present the same
features also in the same positions. One example of a kernel that incorporates
this kind of information has been recently proposed in [1]. However, both the
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type of topological information and the local kernels involved are different from
the ones of the present paper (see section 3 for details).

Here we propose an operator which is applicable to a family of kernels for
trees and is able to enrich these kernels with topological information while main-
taining (with one exception) the same computational complexity in time. Ex-
perimental results obtained by this operator demonstrate its ability to improve
the performance of baseline kernels on various datasets when topological infor-
mation is really relevant for the domain at hand. More importantly, enriching
fast tree kernels (such as the ST and SST kernels) allow them to reach accuracy
values comparable to the ones of slower but more expressive tree kernels, such as
the Partial Tree Kernel (PT) [7] even if enriched ST and SST kernels are faster
to compute than PT.

The paper is organized as follows: section 2 gives a brief survey of kernels for
trees. Section 3 describes an operator for extending tree kernels with topological
information. Section 4 explains how to efficiently compute the novel kernels.
Section 5 gives experimental evidence of the effectiveness of the extended kernels.
Section 6 draws some conclusions and propose future extensions of the paper.

2 Kernels for Trees

This section describes some well known kernels for trees focusing on three of them
which will be used as baselines in the experimental section: ST [10], SST [2] and
PT [7] kernels. These kernels are all based on counting the number of parts (or
substructures) which are shared by two trees. However, different kernels define
in a different way the type of substructures that can be matched. Let us briefly
present the them in decreasing order of expressivity. The PT kernel counts the
number of matching subtrees, i.e. subsets of nodes of a tree (and edges that link
them) which form a tree. The SST counts the number of matching subset trees,
where subset trees are subtrees for which the following constraint is satisfied:
either all of the children of a node belong to the subset tree or none of them.
The ST kernel counts the number of matching proper subtrees, where proper
subtrees are here defined as subtrees rooted at a node v and comprising all of its
descendants. Note that all of the above kernels are members of the convolution
kernel framework [4], that is they can be computed resorting to the following
formula:

K(T1, T2) =
∑

v1∈T1

∑
v2∈T2

CK(v1, v2), (1)

whereK ∈ {ST, SST, PT} (see below). C(K) can be computed according to three
rules: i) if the productions1 at v1 and v2 are different then CK(v1, v2) = 0; ii)
if the productions at v1 and v2 are the same, and v1 and v2 have only leaf
children (i.e. they are pre-terminals symbols) then CK(v1, v2) = λ, where λ is
an external parameter which causes a downweighting of the influence of larger
substructure matches; iii) if the productions at v1 and v2 are the same, and v1

1 A production is defined as the label of a node plus the labels of its children (if any).
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and v2 are not pre-terminals, then the value of CK() depends on the kernel. If

K = ST then CST (v1, v2) = λ
∏nc(v1)

j=1 (C(chj [v1], chj [v2])), where nc(v1) is the
number of children of v1 and chj [v] denotes the j-th child of node v. If K = SST
then CSST (v1, v2) = λ

∏nc(v1)
j=1 (1 +C(chj [v1], chj [v2])). The computational com-

plexity in time of the above kernels is O(|T1||T2|), where |Ti| is the number of
nodes of the tree Ti. Nevertheless, a faster algorithm for computing the ST ker-
nel has also been proposed in [10] with complexity in time O(N logN), where
N = max{|T1|, |T2|}. Finally, for the PT kernel we have a slightly more complex
formulation, i.e.

CPT (v1, v2) = λ
(
µ2 +

∑
J1,J2,|J1|=|J2|

µd(J1)+d(J2) ·
|J1|∏
i=1

(1 + CPT (chsv1 [J1i], chsv2 [J2i]))
)

,

where J11, J12, . . . J21, J22, . . . are sequences of indexes associated with the or-
dered sequences of children chsv1 and chsv2 respectively, J1i and J2i point to
the i-th child in the two sequences and |J1| denotes the length of the sequence
J1. Finally, d(J1) = J1|J1|−J11 and d(J2) = J2|J2|−J21 (see [7] for details). The
parameter µ penalizes subtrees built on subsequences of children that contain
gaps. From this formulation one can see that the ST and SST kernels can be
seen as special cases of the PT kernel. The Partial tree kernel can be evaluated
in O(ρ3|T1||T2|), where ρ is the maximum out-degree of the two trees.

3 Injecting Positional Information into Tree Kernels

Tree kernels, such as ST, SST, and PT, are position invariant kernels, i.e. any
match between two subtrees t1 ∈ T1 and t2 ∈ T2 does not consider where t1 and t2
occur within T1 and T2, respectively. While this feature may turn useful to avoid
too sparse kernels (kernels in which matches barely occur), it may generate an
unsatisfactory kernel matrix from the point of view of structural similarity. This
point is illustrated in Fig. 1 where KST (T1, T3) = KST (T2, T3), while clearly
a better representation of the similarity among the trees would prescribe the
constraint K(T1, T3) > K(T2, T3) to hold. Then, a nice tradeoff aiming at using
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Fig. 1. Using the ST kernel we have KST (T1, T3) = KST (T2, T3) = 3, however it seems
to be more reasonable to have K(T1, T3) > K(T2, T3) since the matching subtrees
(i.e. the leaf labeled c, the leaf labeled e, and the subtree b(c,e)) occur in the same
positions within T1 and T3, while this is not the case for T2.
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this topological information while keeping low the sparsity of a kernel could be
to extend the original feature space with new positional dependent features. We
refer to the extended version of the kernels by applying the prefix PAK (Position
Aware Kernel) to their names: PAK-ST, PAK-SST, PAK-PT. One simple way to
do that is to define a kernel K() which is the sum of local kernel k() evaluations
obtained for each pair of subtrees of the two trees sharing the same route. A
route for a node v ∈ T , denoted by π(v), is the sequences of indices of edges
connecting the consecutive nodes in the path between root(T ), the root of the
tree T , and v (for a more detailed description refer to [1]). The index of an edge
is its position with respect to its siblings. The idea of the PAK extension is
exemplified in Fig. 2 where the same color in the two trees correspond to those
subtrees for which the kernel k() have to be computed, i.e. those sharing the
same route. Just to give an example, if we refer to trees T1 and T3 in Fig. 1, by

TT1 2

Fig. 2. A representation of which kernels k() have to be computed to evaluate the
kernel K(). Subtrees for which the kernel k() is computed are the ones of the same
color.

using the ST kernel KST , we would have

K(T1, T3) = KST (c, c)+KST (e, e)+KST (b(c,e),b(c,e)) +KST (g,b)+
+KST (a(b(c,e),g),a(b(c,e),b)).

(2)

Each route has associated its depth d(v) where d(root(T )) = 1 and d(v) is
1 + d(parent(v)). The formal definition of the kernel is the following:

Kk(T1, T2) =
∑

v1∈T1,v2∈T2

γd(v1)δ (π(v1), π(v2)) k(tv1 , tv2), (3)

where δ() is a function whose value is 1 whether the two input routes are identical,
0 otherwise. When γ = 0 computing eq. (3) is equivalent to computing the
baseline kernel.

Eq. (3) considers topological similarity while avoiding to have a too sparse
kernel since the computation of the position invariant kernel between the two
trees is included. Moreover, from a computational point of view, the repeated
computation of the same kernel on subtrees can be done efficiently by reusing
the already performed calculations. The kernel of eq. (3) is different from the
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ones described in [1] in both the local kernel (simple kernels on the nodes in [1]
compared to tree kernels in this paper) and the kernel on the route considered.
Fig. 2 shows that the local kernel k between two subtrees is computed as many
times as the length of the longest common prefix of their routes. For example in
Fig. 1 the longest common prefix between the routes of nodes e ∈ T1 and e ∈ T3
is 2, the one between nodes e ∈ T1 and e ∈ T2 is 0, the one between nodes e ∈ T1
and c ∈ T3 is 1. On the contrary, in [1] the computation of the local kernel is
repeated as many times as the length of the longest common suffix of the routes.

4 Algorithmic Issues

This section describes how to efficiently implement the kernel described in eq. 3.
In fact, we will see that when using the SST or PT kernel as the “local” kernel
k, the computational complexity of the extended kernel, i.e. eq. (3), is the same
as the one of the local kernel. Unfortunately, the same idea would alter the
complexity of ST, thus for the moment we’ll focus on SST and PT.

Considering eq. (3), there are at most n = min(|T1|, |T2|) routes for which
δ (πT1(v1), πT2(v2)) = 1. A naive algorithm listing all the common routes and
computing k for each of them, would have a complexity of n · Q, where Q is
the worst case complexity of the local kernel. Let us assume k is a convolution
kernel, i.e. it can be written in the form of eq. (1). All C values can be computed
in Q time, where Q = O(|T1| · |T2|) for SST and Q = O(ρ3 · |T1| · |T2|) for
PT. We show that, by aggregating subsets of C values, it is actually possible to
efficiently compute eq. (3). In fact, for each v1 ∈ T1 and v2 ∈ T2, let us define
S(v1, v2) =

∑
v
′
2∈tv2

C(v1, v
′

2). By exploiting the recursive definition of C, it is

easy to see that S can be computed as follows:

S(v1, v2) = C(v1, v2) +

nc(v2)∑
j=1

S(v1, chj(v2)). (4)

Note that, when v2 is a leaf nc(v2) = 0 and the second term of eq. (4) is 0.
Assuming to have precomputed the C values, computing all of the S values
related to a node v1 requires O(|T2|). Thus computing all the S values for a
pair of trees requires O(|T1| · |T2|), i.e. their computation does not affect the
complexity of the SST and PT kernels. Plugging eq. (4) into eq. (3), we obtain:

Kk(T1, T2) =
∑

v1∈T1,v2∈T2

γd(v1)δ (π(v1), π(v2))
∑

v
′
1∈tv1

S(v
′

1, v2). (5)

Since, as already noted, there are at most min(|T1|, |T2|) common routes between
T1 and T2 and those routes can be identified in min(|T1|, |T2|) steps by a simulta-
neous visit of both trees, the complexity of the kernel depends on the complexity
of computing C and S values. Since the complexity of S is not greater than the
complexity of computing C for SST and PT, the kernel we described in eq. (3)
can be computed without altering the worst-case complexity of both kernels.
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The ST kernel has O(N log(N)) time complexity [10], thus computing S values
as described in this section, would alter the total complexity of the kernel. We
have derived an algorithm for computing PAK-ST which is faster than O(N2),
but it won’t be described here due to lack of space.

5 Experiments

Experiments were performed to test the effectiveness of the proposed operator
in conjunction with the ST, SST and the PT kernels. The SVM-Light software
has been used for the experiments [5, 8]. Our approach has been tested on the
INEX 2005 dataset [3], the INEX 2006 dataset [3], the Propbank dataset [6].

The INEX 2005 dataset is a reduced version of the one used for the 2005
INEX competition [3] (for details of the preprocessing see [9]). It consists of
9, 640 xml documents describing movies from the IMDB database. The total
number of tree nodes in the dataset is 247, 128, the average number of nodes in
a tree is 25.63. The maximum outdegree of a node is 32. The task is an 11-class
classification problem. The training and validation sets consist of 3397 and 1423
documents, respectively. The test set is formed by 4820 documents.

The INEX 2006 dataset [3] is derived from the IEEE corpus composed of
12000 scientific articles from IEEE journals in XML format. The total number
of tree nodes in the dataset is 218, 537 and the average number of nodes in a
tree is 18.05. The maximum outdegree of a tree is 66. In this case the training,
validation and test sets consisted of 4237, 1816 and 6054 documents, respectively.
The task is an 18-class classification problem.

The Propbank dataset [6] is derived from the Penn Tree Bank II dataset,
which, in turns, consists of material from a set of Dow-Jones news articles. The
corpus is divided into sections. In order to reduce the computational complex-
ity of the task, we derived the training and validation sets from section 24 by
selecting randomly, with uniform probability, a subset of 7000 and 2000 exam-
ples, respectively. The test set has been derived selecting randomly, with uniform
probability, a subset of 6000 examples from section 23. The total number of tree
nodes in the dataset are 209, 251 and the average number of nodes in a tree is
13.95. The maximum outdegree is 15. The task is a binary classification prob-
lem. The dataset is very unbalanced: the percentage of positive examples in each
set is approximately 7%. Thus the F1 measure has been used for selecting the
parameters on the validation set.

The procedure followed for the experiments on each dataset is the following.
We first selected the best parameters of the baseline kernel on the validation
set. Then, keeping them fixed, we applied the operator proposed in the paper
selecting γ on the validation set. Finally, a model learned with the parameter
setting on the union of the training and validation sets was tested on the test
set. In the case of multiclass classification tasks, i.e. INEX 2005 and INEX 2006,
the one against all methodology has been employed. Table 1 summarizes the
results obtained. Note that the application of the operator always improves the
accuracy of the baseline kernel on INEX 2005 and the improvement is impres-



Extending Tree Kernels with Topological Information 7

Table 1. Comparison between the classification error of ST, SST, PT and their version
with the proposed operator. The columns represent the lowest classification error on
validation and the corresponding classification error on the test set. The performance
measure employed for the Propbank dataset is the F1. In bold the best result between
the baseline and the PAK extension on the test set.

Kernel
INEX 2005 INEX 2006 Propbank

valid. test valid. test valid. test
error % error % error % error % F1 (error %) F1 (error %)

ST 12.94 11.11 57.27 60.04 0.5078 (6.30) 0.5170 (6.60)
PAK-ST 3.52 3.44 57.27 60.04 0.5447 (5.85) 0.5359 (6.23)

SST 12.51 11.17 57.72 60.40 0.5130 (5.60) 0.5420 (5.72)
PAK-SST 3.59 3.31 57.72 60.40 0.5431 (5.55) 0.5477 (5.92)

PT 2.96 2.96 58.11 58.69 0.5488 (6.00) 0.5161 (7.00)
PAK-PT 2.96 2.85 57.55 58.85 0.5636 (5.65) 0.5787 (6.07)

sive for the ST and SST kernels. For what concerns INEX 2006, in the case of
ST and SST, adding positional information to the matchings does not improve
the accuracy. The PT kernel improves its accuracy on the validation set, but
it does not on the test set. This may be due to the fact that, in order to re-
duce the time required for the whole experimentation, we do not reselect the
c together with γ. The application of the operator improves the F1 of each of
the baseline kernels for the Propbank dataset. Although the worst-case compu-
tational complexity of PAK-SST and PAK-PT is the same with respect to the
corresponding baselines, we computed the execution time overhead due to the
PAK extension. The comparison has been performed with respect to the time
(in seconds) required for computing the kernel matrices on a Intel(R) Xeon(R)
2.33GHz processor. All PAK extensions has been implemented as modules of the
SVM-Light Software [8]. Table 2 reports the ratio between execution times and
the ratio between test errors (F1 in the case of Propbank) of the PAK extensions
with respect to the baseline kernels. While a ratio lower than 1 for the execution
time or the test error means that the first method is better than the second, in
the case of the F1, a ratio higher than 1 means that the first method is better
than the second. Notice that the execution time ratios of both PAK-ST/PT and
PAK-SST/PT are always lower than 1, thus PAK-ST and PAK-SST are faster,
up to 4.76 times (0.21−1), than PT. While being faster, PAK-SST has only
slightly worse test error on INEX 2006, with ratio 1.03, and better performances
on INEX 2005 and Propbank, (with ratios 0.29 and 1.06, respectively).

6 Conclusion and Future Work

In this paper we proposed a general operator for extending convolution tree
kernels with positional features. It has quadratic computational complexity in
time and thus does not alter the worst-case complexity of most of state-of-the-
art tree kernels. Experimental results show that, when positional information is
relevant for a specific task, this extension significantly improves on the baseline
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Table 2. Ratio between the execution times and the test errors or the F1 of the PAK
extensions with respect to the baseline kernels.

PAK-ST PAK-SST PAK-PT
ST SST PT ST SST PT ST SST PT

INEX 2005 time 2.33 2.29 0.21 2.33 2.31 0.21 14.06 13.86 1.32
err 0.30 0.30 1.16 0.29 0.28 0.29 0.25 0.25 0.96

INEX 2006 time 2.5 2.42 0.54 2.65 2.44 0.54 6.21 6.04 1.34
err 1 0.99 1.02 1.01 1 1.03 0.98 0.97 1.01

Propbank time 2.63 2.63 0.71 2.65 2.65 0.72 5.83 5.82 1.59
err 1.03 0.98 1.03 1.05 1.01 1.06 1.12 1.06 1.12

kernels. Moreover, less effective tree kernels, if enriched with topological infor-
mation, may achieve accuracy values comparable to ones of the most effective
tree kernels, while being faster to compute. Future works will study the injection
of other kinds of relationships which can be defined on substructures and the
application of the same operator to other convolution kernels.
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