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Abstract— Category Ranking is a variant of the multi-label
classification problem, in which, rather than performing a
(hard) assignment to an object of categories from a predefirte
set, we rank all categories according to their estimated “dgree
of suitability” to the object. Category ranking has many ap-
plications, all pertaining to “interactive” classification contexts
in which the system, rather than taking a final categorizatin
decision, is simply required to support a human expert who is
in charge of taking this decision. Despite its high applicave
potential in information retrieval applications, and in text
categorization in particular, category ranking has mainly been
tackled by standard text categorization methods. In this paer,
we take a radically different stand to category ranking, i.e
one in which supervision is provided to the learner not in
the standard form of labels attached to training documents,
but in the form of preferences of type “category c; is to
be preferred to category ¢, for document d’. We apply to
this problem a recently proposed, very general model for
preferential learning, and show, through experiments perbrmed
on the standard Reuters-21578 benchmark, that this largely
outperforms support vector machines, the learning method
which has up to now proved the best-performing one in text
categorization comparative experiments.

I. INTRODUCTION

Category Ranking(CR) is a variant of the multi-label
classification problem, in which, rather than performing
(hard) assignment to a documentof a (possibly empty)
subset ofcategories(aka classey from a predefined set
C = {c1,...,cm}, We rank all categories i€ according
to their estimated “degree of suitability” té

Category ranking has many applications in Informatio

Retrieval, all pertaining tinteractiveclassification contexts.
In such contexts, differently frorautonomoudiext Catego-

final classification decision. However, a system that ranks

the available classes in terms of their estimated suitghioi

the document to be classified, is extremely useful to these

experts, since they can thus concentrate on the top-ranked
categories, pretty much as a Web searcher concentrates on th
top-ranked documents returned by a search engine following
a query.

Despite its high applicative potential, CR has not re-
ceived much attention from the Information Retrieval and
TC communities. This can be due to two different reasons:
(i) providing supervision in the form of rankings is more
onerous for a user with respect to providerisp membership
value to a document (i.e. being relevant or irrelevarnit); (
there are not ad hoc learning methods which can cope with
this task in a principled way.

For what concerns this second point, to the best of our
knowledge, there are only a few pioneering papers (e.g. [4]
and [7]) that tackles this problem as such. Up to now, the
dominant approach to category ranking has instead involved
the application of standard methods for multi-label TC. By
and large, this means training, for each categgra binary
classifier ®; that returnsconfidence-rated predictions.e.

coresd;(d) € R expressing the system’s confidence in the
act thatd € ¢;. Categories are then ranked based on the
confidence scores returned by the respective classifiera whe
asked to classifyi.

In this paper we take a radically different stand to CR, i.e.

Qne in which supervision is provided to the learning device

not in the “standard” form of labels attached to training
documents, but in the form gireferencesThese preferences

rization (TC) systems [12], the system, rather than taking ¢an be of two different types:

final categorization decision, is simply required to supgor

human expert who is in charge of taking this decision. This
is often the case in critical applications in which the categ
rization decision cannot be left to a machine. For instance,

in patent classification [6], [9], [10], experts at intetioatl
patent offices are presented with patent applications tiegt t

need to classify against a large, fine-grained, taxonoiyical
organized set of classes of existing patents, in order tokche
the novelty of the proposed invention. These experts deem
this classification operation simply too important to be lef

1) qualitative preferencesexpressing the relative suit-
ability of two categories for a given document; e.g.
“category ¢; is to be preferred to category,; for
documentd” (denotedc; >4 ¢;);

guantitative preferencegxpressing the degree of suit-
ability of a category for a given document; e.g. “the
degree of suitability of category; for documentd is

at leastr” (denotedc; >4 7), or similarly “the degree
of suitability of category; for documentd is at most
7" (denotedr >4 ¢;).

2)

to a machine, and they want to be in charge of taking thQote that training information of the standard form (i.e.
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labels attached to training documents) can be viewed ingerm
of preferences, by assuming that

1) whenever € ¢; andd ¢ c;, thenc; >4 ¢;;
2) wheneverd € ¢;, thene; >4 7, and wheneved ¢ ¢;,
thent >4 ¢;.



We apply to this problem a recently proposed, very genertd return a relevance function which is as much consistent
model for learning from preferences, called tReeference with these constraints as possible.

Learning Model(PLM) [1], [2], [3]. While the PLM was  As a very simple example of how to model supervised
especially devised for learning from information that isproblems in PLM, let consider the (single-label) multisias
naturally expressed as preferences (e.g. when all we knogtoblem where a classifier has to predict the most relevant
about a document and two categories; andc; is thatc; is  categoryc, for a given documentd. This case can be
to be preferred te; for d without knowingvhetherd actually modelled by introducing for each training documehta
belongs toc; and/orc;), it can also be fruitfully applied set of preferencegc, >4 c;}e,c,. Note that, when testing

to contexts (such as CR) in which supervision is naturally new document, the prediction is given by the category
expressed in terms of labels attached to documents. In fagthich maximizes the relevance with respect to the testing
the strength of the PLM is that it is able to set its internafiocument, i.e. the unique category which satisfies all the as
parameters in a way that maximizes the effectiveness of tkeciated preferences. As a further example, the (mulé¥ab
category ranking produced for the training examples. Ia thimulticlass problem can be easily modeled by considering
way, effectiveness measures specific to category ranking cgreferences of the form

be brought to bear, and this (hopefully) allows the PLM to
outperform methods in which such effectiveness measures
cannot be plugged in.

Indeed, the PLM approach shares some similarities Witare - is a real valued reference threshattlis the set of
the approaches in [4] and [7]. However, [4] is based On afhteqories, andkel(d) C C is the set of relevant categories
on-line setting a_md is far less flexible than PLM. Similarlysor documentd. In this case, the set of relevant categories
the framework in [7] can be seen as a particular case gfe optained by comparing the associate relevance value
PLM_Wh|ch does not take conjunctions of preferences '_”tﬁgainst the (possibly category-dependent) threshold,isha
consideration. A feature that makes PLM far more attractive, category is considered relevant if and only if its releeanc

A. Outline of the paper with respect to the document is above this threshold. It

The paper is structured as follows. In Section Il w should be stressed that in PLM, any set of preferences can
describe the PLM and its application to Information Retaiev ate)oﬁst(r)]((:alarteel(:\tit\(/)e aradnok(i::mg?tt’wsoo é;t?eéﬁéz r:](z) m:g;g:[’:(ég
tasks. In Section Il we describe how both the multilabet tex 9 g ' P

. . . involving these two categories need to be inserted. This
categorization and the category ranking tasks for Inforonat allows to impose on the learner only constraints which are
Retrieval can be naturally modelled in the PLM framework P y

thus providing us with a principled solution to these sefin strictly necessary thus using the available informatioty on

. : ; > . which alone might be sufficient to solve the problem.
Section IV reports on our experiments, by briefly reviewing ) )
In the simpler version of PLM, the relevance of a category

theReuters-21578 benchmark we have used and the experi- , q ) dtoh i form:
ments we have conducted on it. Finally, Section V concludef" @ given document is assumed to have a linear form:

{(ci >a T)}cieRel(d) U{(T>q c,j)}CjEC\Rel(d)

[l. THE PREFERENCELEARNING MODEL r(d,c) = we - ¢(d) (1)

In short, in PLM we assume the existence of a real-valued
relevance function that for each documénand category: where ¢(d) € R* is one of the standard vectorial repre-
returns a scorey(d, c) (the relevance value), which “mea- sentations for the documents (“bag-of-word#-jdf, etc.),
sures” the degree to which categaryapplies to document or any other feature mapping, and. are weight vectors
d (and viceversa, how relevant the document is for thgparameters to learn) associated to the different categjori
category). Thus the relevance function, for each documei¢. ¢ € {c¢1,...,cn}. Interestingly, for this case, it is
d, induces a ranking among categories. A preference ispmssible to give effective algorithms which explicitlyextipt
constraint involving two categories that should be satisfieto minimize the number of wrong predictions in a given
by the relevance function. Specifically, PLM focuses otraining set. In fact, following equation (1), qualitatiaad
two types of preferencesjualitative preferences:;, >4 c5, quantitative preferences can be conveniently reformdlate
where a category;, is told to be preferred to a categoty linear constraints. Specifically, let consider the qutliea
(“categorycy, applies to documend more thancs does”), preferencey = (c; >4 ¢;). This preference imposes the con-
i.e.r(d,cx) > r(d, cs), andquantitativepreferences of type straintr(d,c;) > r(d, c;) on the relevance function, which
ct>4 7 (“the degree to which categoryapplies to document using equation (1) can be rewrittenwas, -¢(d) > w;-¢(d),
dis at leastr”), i.e. r(d,c) > 7, andr >4 ¢ (‘the degree to or (we, - ¢(d) — we, - ¢(d)) > 0. Similar transformations
which categoryc applies to document is at mostr”), i.e.  can be done for quantitative preferences. A uniform treatme
r(d,c) > T, wherer € R. of the preferences can then be obtained by concatenating

In this learning model, supervision for a document is giveall the w.’s, ¢ € {e1,...,em}, and all the thresholds
as a set of preferences (of any type). These preferencas...,r, involved in the formulation of the problem, i.e.
constitute contraints on the form of the relevance functiow = (wy,..., Wy, 71,...,7,) € R™**4 In the qualitative
which has to be learned. The aim of the learning process @sise, given the above preferencand assuming < s with



no loss in generality, we have is defined, where each preference gets a subset of[5].
Once the cost mapping is defined, the total cost suffered

W (u’¢(d)’u’ _¢(d)’u’u) >0, by an hypothesis for the supervisigh is defined as the
i-1 J—i=l m=j q number of preference sets which are not satisfied by the
+(p) current hypothesis. More formally, we have
. . qs
where 1)(p) € R™k*4 is the representation fop. In the . .
quantitative case, the preferences (c; >4 7;) can similarly cost(915]) = J:Zl[[gj]]' 2)

be expressed as
where [¢] is an operator which is equal to 1 when there

w-(0,...,0,¢(d),0,...,0,0,...,0,—1,0,...,0) > 0, e : o
( ¢(d) ) are const_ramts iy which are npt satisfied by the current
i—1 m—i j—1 a—j hypothesis-y (-, -), and O otherwise.
¥(p) B. Cost Mapping Examples
while preference = (1; >4 ¢;) is expressed as In order to better understand the PLM setting defined

above, in this section, we briefly present cost mapping exam-

W (u’ _¢(d>’u’ u’ 1’u) > 0. ples for a simple category ranking problem, giagle-label
i—1 m—i g1 q—J multi-class classification problem. This task can be consid
+(p) ered a category-ranking problem when, for each document,

- , we want only one of the categories (the most relevant) to
In general_, the supervision can be reduced into sets BE ranked over the others and returned. et {ci, cz, s},
particular linear constraints of the form - (p) > 0 Where andd a document which has to be classifieccasin PLM, a
W= (Wld"'_’r‘]”’%’ Ty ’;q) IS‘I tgle VﬁCtOL (I); WeIgNts \atural cost mapping for this problem corresponds to have a
augmented with the set of available thresholds ar(g) ?eference set likg[c1] — {{c1Baca, 1 >acs) ). The same
i

i; an o_pportune representation of the p_referencel under ¢ reference set can however be decomposed in two separate
sideration. As a consequence, any setting described by t Sference sets, thus obtainiph1] — {{c1 >a ca}, {1 B

theory can be seen as a (homogeneous) linear problem mca?r}\}. Note that, these mappings will induce different cost

(_)pportung gugr_nented space. Specifically, any algorithm_ f?unctions. For example, let the current hypothesis such tha
linear optimization (e.g. perceptron or a linear programgni ro(d, c3) > 1w (d, ca) > rw(d, c1) then we have a cost equal

package) can be used to solve it, provided the problem hﬁ‘)gl in the first case and a cost 8fin the second. In fact,

a ZOI?“O”' . th ¢ oref using the last definition of cost, two preference sets are not
i n ortunate_ Y.t he Sito pre erlen_ces mayl_genelrate abset tisfied. Specifically, in the first case, we count an error
inear constraints that have no solution (not linearly sapl when there is a category different from the correct one on

by an hyperplane pa§sing from the origin), i.e. there is Nfhe top. Viceversa, in the second case, we count the number
weight w able to fulfill all the constraints induced by the ¢\, rect categories which are ranked over the correzt on

preferences in the training set. To deal with training &0l The two examples above give a rough idea of the flexibility
we may resort to the Structural Risk Minimization (SRM) s 1,0 preference learning model

theory [13]. This is made by considering the minimization
of an objective function which aims at minimizing theC. Learning in the PLM
number of unfulfilled preferences (the training error) whil |, earlier sections we have discussed how a cost function
maximizing the margin (the inverse of the weights norm); general supervised learing problems can be modeled
See Section II-C. using preference sets. Now, we see how to give a general
A Evaluation and PLM learning glgorlthm Wh|ch is able tollearn fr_om .prleferences.
] o ] ] Supervised learning algorithms aim at minimizing thee

The mere consistency of supervision constraints is N@hg; that is the expected value of the cost according to the
r_lecessarlly the uItlmate_ goal of a supervised learning S&lue distribution of data, i.eR,[w] = Es.plc(S|w)]. The
ting. Rather, cost functions are often preferred measuringstribution D is typically unknown, while it is available a
the disagreement between the current prediction and tﬂ%lining setS = {S1, ..., S,} with supervision drawr.i.d.

target supervision. These functions may either depend @pm D. An empirical approximation of the true cost, also
the particular structure of the prediction or other factéi® | oferred to as thempirical cost is defined by

example, the evaluation of a non-perfect category ranking .
result can be better described as the number of categories 1

: . . : ) R [S|w] = — Si|w).
which are misordered instead of simply as an error. For this, elStwl ;C( iw)
in [2] supervision is mapped into sets of preferences.

Specifically, supervisiors is described by a preference. Similarly., in PLM, the aim is to mini.mize costs, as defined
set, denoted[S], and a cost mapping in Eqg. (2), induced by the cost mappings performed over the
' ' training setS. Unfortunately, these functions are not contin-

G:9lS]—{g1,---,9qs} uous with respect to the parametevsand hence not easily



treatable. To overcome this problem, consider the quantity Since the solution is expressed by dot products only, then
p(p|lw) = w-1(p) as a degree of satisfaction of a preferencany kernel function can be used in place of dot products.
p given the hypothesisv. This value is greater than zero Thus, this method constitutes a new kernel method which is
when the hypothesis nsistentvith the preference and less able to solve any problem defined by preferential infornratio
than zero otherwise. Now, an approximation to the error igee [1] for details). Moreover, changing the cost function
obtained by introducing the soft-margin loss, the contimio means to redefine the cost mapping but still keeping the same
non-increasing functiof(p) = [1 — p]+ = max(0,1 — p), solver.
which upper-bounds the indicator functidiip) which is 1

. - . ) Ill. FROM CATEGORIZATION TO RANKING
whenp > 0 and 0 otherwise. Specifically, this approximated

cost will be A well-known baseline approach to category ranking,
when categorical supervision is available, is to train &la
c(Slw) = Z max[1l — p(p|w)]+. sifier independently for each class by using the supervjsion
9€G(g(S)) © and then to rank categories based on the confidence of the

Given the assumptions above, one can notice that tiputput of diffe_rent cla_ssifiers. In PLM this approach can be
function (S|w) upper-bounds the empirical cost over thdnodelled by introducing a preference >4 7 wheneverd

whole training set and the general problem can be formulat&d Member of class and a preference t4 ¢ when this is
as in the follows not the case. Moreover, the very common cost function used

for multi-label categorization, computed as the number of
document-category pairs which are not correctly classified
V(S) = U glS1={91,..-,9n} can be obtained in PLM by defining a mapping which takes
ses all the preferencesr>,; 7 andr >4 ¢ independently.
of N preference sets describing the supervision given to tHd€ (bipartite) category ranking task, however, is slighit-
algorithm, we want to find a set of parametevsin such a ferent since in this case it is required to produce a full orde

Given a set

way to minimize the functional such that some classes are ranked over the remaining classes
One can note that if a set of examples is correctly categbrize
Q(w) = R(w) +vL(V(S)w) (3) (thus having cost zero in the previous cost mapping), the

produced ranking is correct. The other way around is not
necessarily true. In fact, given a correct ranking, it could
be impossible to find an optimal threshold determining the

where L(V(S)|w) = > g5 ¢(S|w) is related to the em-

pirical cost, R(w) is a regularization term over the set of

parameters, and the trade-off parameter. o
correct target categorization.

The use of a regularization term on a problem of thi n PLM, however, considering all the documents for which

type has many different motivations, including the theor ] S -
gr? re uIarizatign networks (see e.g. [5]) More%ver we caxr‘{e have categorical supervision in the training set, a com-
g 9. . ’ lete preference set can be built as the union of all the pref-

see the.lt by choosing a convex loss func_tlon and a ConVg)r(ences derivable by them through transitivity closurdsTh
regularization term (let say the quadratic teR(w) =

%HWHQ) it warranties the convexity of the function@(w) set highlights additional information which is not dirgctl

in Eq. (3) and then the solution does not have the problem 8f<pressed in the original categorical form. For example,

e . ) . we have new relations/preferences liker>, c¢; whenever
local minima. In our particular case, we obtain the follogvin N

. ! d belongs toc, and d does not belong te,. This high-
constrained quadratic problem

lights that categorization information subsumes infoiorat

min ¢ 5||wl|? +CZ§V & over document and category rankings which is not self-
biectto: ] W P(p)>1-¢&, Vie{l,..N},Vpeg; evidentwhen single documents or single classes are treated
subject to: & >0, Vie{l,..,N} independently. An interesting point now is how to use this

(4) additional information to improve over current methods for
This formulation resembles the SVM formulation wherecategorization and category ranking.
we have a constraint for each preference. However, in thisIn this paper, we focus our exposition on the experi-
case, a single slack variable is present binding multiplmental comparison of the SVM baseline approach versus
constraints associated to the same preference set. Intieeed, an approach that uses category ranking information only
is a generalization of SVM to more general cost functionby considering independently those preferences which are

which are defined by preferences. defined over different documents and not considering the
Moreover, one can show that the solutierof the previous thresholdr. Specifically, the following cost mappings will
problem will take the (sparse) form: be considered. Thalisagreement mappingDIS), which
. considers each prefereneg >, ¢s, wheneverd € ¢,. and
w= Zo‘id’(pi) d ¢ ¢, independently. As an alternative cost mapping, the

domination mappindDOM) will be considered. The basic
wherea] € R, andp! is the r-th preference of thé-th idea underpinning the use of the domination mapping is that
example, Similarly to SVM, the final solution will have only for each input document we prescribe that the score assigned
a fewa] > 0 (support vectors). by the predictor to any positive class should be higher than



the score obtained by any negative class, and the cost w(iiue and false) positive labels @f. Microaveraged precision
be non-zero whenever any negative class gets a score abfdenoted byr™) is obtained by averaging; values across
the score of the considered positive class. Costs suffeyed &ll the test documentd;, i.e. 7™ = ‘—}| > j=1 ™, and
positive classes are cumulated. A dual cost mapping, whi@ncodes the basic intuition that each document has the same
we consider for completeness, is tdeminated mapping importancé. Microaveraged precision can be evaluated at
(DME), where the roles of positive and negative examplesach rank position (this is denoted by-™(r)). However, as
described above are exchanged, while keeping the scoresnoich, this measure has problems, due to the fact that, when
positive examples to be higher. It should be clear that usirig higher than the number; of the true labels ofl;, a perfect
either thedomination mappingr the dominated mapping classifier (i.e. the one that has ranked thelabels ofd; at
does not exploit all the possible ranking information wehe firstn; rank positions) would not achieve the theoretical
have available. In fact, in this way we give more emphasisiaximum precision value of 1, since the remaining n;
to supervision concerning positive, or negative, classes flabels would be false positives anyway. As a result, as our
single documents, respectively. Interestingly, we maytary final effectiveness measure we adafit(r), which we define
compound these two cost mappings in a jalemination- as thex™(r) of our classifier, normalized by the™(r) of
dominated mappingdDOM-DME) which simply cumulates the ’ideal’ ranker.
the cost obtained for the two separately. Effectiveness is thus plotted on a graph (see Figurel) in
It is worthwhile to recall that all these cost mappings arevhich the z axis is the rank position, ranging between 1
plugged into the same algorithm. A single learning algonith and 115 (the number of categories in our benchmark); the
is able to cope with all these cost functions in a very moduldrigher the plot, the better. Note that all CR systems have the
way. same effectiveness value far = 115; this corresponds to
the notion that, after scanning the ranked list of labelsrmdow
to the bottom, the user has encountered all true labels and
A. Experimental setting all false labels irrespectively of the category-rankingteyn

In our experiments we have used thReuters-21578, USed: o _
Distribution 1.0” corpus, currently the most widely used Note that, unlike in standard multilabel TC, we do not
benchmark in text categorization resedrdReuters-21578 ~ US€ F1 (the harmonic mean of precision and recall) or
consists of a set of 12,902 news stories, partitioned (aecorvarants thereof. In particular, we dispense with expicit
ing to the “ModApté” split we have adopted) into a trainingcons'de”_”_g recall, since precision, when computed at ai_flxe
set of 9,603 documents and a test set of 3,299 documents. V@K positionr, already “contains a recall component” (i.e.
have discarded the categories that have no training exampl@t  fixed rank:, an improvement of precisiostrictly entails
leaving us with 115 categories with at least one training" improvement in recall).
example. We have also discarded all the (training and te
documents that have no label (originally, these documents
were meant to be considered legitimate negative examplesThe aim of the experimental work was to compare the
for all categories); note in fact that any CR system woulgherformance obtainable with different PLM mappings and to
perform equally well on test documents of this type undegompare the PLM setting as a whole against the standard
any reasonable evaluation metric (namely, it would return anultilabel SVM. For each document, the ranking produced
ordered list of 115 false positive labels). This leaves uf wi by PLM is the one induced by its relevance function, while,
a training setS consisting of 7,775 documents and a test sdor the SVM case, the signed scores obtained as outputs by
T of 3,019 documents. The average number of categorigize multilabel SVM, have been used instead.
per document is 1.08, ranging from 1 to 16; the number of In order to fairly evaluate the different techniques, we-per
positive examples per category ranges from 1 to 3964. formed model-selection by cross-validation. Specificathg

In all the experiments discussed in this section, stop wordiining set was split in 5 different folders. Then, eacluéol
have been removed using the stop list provided in [11, pagbas been used as a test sample for the model trained with
117-118]. Punctuation has been removed, letters have beexamples from the remaining folders only, for parameters
converted to lowercase, numbers have been removed, ane- 107, z = {—2,...,+2}. Each model has been evaluated
stemming has been performed by means of Porter's stemmier.this phase by means of its own cost function. Finally,

We have measured effectiveness in termaofmalized a complete training session has been performed for each
microaveraged precision as a function of ragk™(r)), an method over the whole training set using the corresponding
adaptation of thenicroaveraged precisiofr™) measure to optimal parameter. The results reported in the graph refer t
category ranking. Let us introduce this measure in stepthe evaluation of the obtained model over the test sample.
Precision wrt document; (denoted byr;) is defined as the ~ From the analysis of results one can evince that the multi-
proportion of true positive labels faf; out of the total of label SVM based method is largely worse than preference-

IV. EXPERIMENTS

Experimental Methodology

1The Reuters-21578 corpus is freely available for experimen- 2The alternative notion ofmacroaveraged precisioencodes the notion
tation  purposes  from www. davi ddl ewi s. com r esour ces/ that documents count proportionally to the number of categdoy which
testcol | ecti ons/reuters21578/ they are labelled.



0.99

0.98

0.97

(normalized) micro-averaged precision

0.96 |
DOM ——
0.95 DOM —— |
DOM-DME -
DIS
SVM -----
0.94 I ) . . .
’ 20 40 60 80 100
at rank

Fig. 1.

Normalized micro-averaged “precision at rank” aied for the baseline multi-label SVM, and different PLM rpams: disagreement (DIS),

domination (DOM), dominated (DME) and their combinationQ®-DME). For each position, the proportion of true posisivie reported.

based methods on the category ranking problem under cong]
sideration. Specifically, we may observe that DIS and DOM-
DME have a similar behavior along the whole range of[3]
available ranks, while DOM seems to slightly predominate
over lower ranks and DME dominates over higher ranks.

V. CONCLUSION [4]

In this paper we have shown how the Preference Learn-
ing Model, a general framework for learning from training
information expressed in preferential form, can be applied5]
to the task of category ranking, and can outperform learning
methods that are current top performers in the text categde]
rization task. This is achieved by exploiting the abilitytbé
PLM to explicitly maximize effectiveness functions thaear [7]
specific of ranking tasks, i.e. optimize its internal parsere
so that these functions, rather than “generic” effectigsne
functions aimed at standard multilabel text categorizgtio [g]
are maximized. The model allows to codify cost functions as
preferences and naturally plug them into the same training
shell. Furthermore, it gives a tool for comparing different
methods and cost functions on a same learning problem. [9]

We are currently extending this new paradigm to tasks in
which, unlike in the present setting, supervisinaturally |10
comes in preferential form. In text categorization, thishie
case e.g. of applications, such as classifying medicallesti [11]
in the OHSUMED collection [8] or classifying patents in the
WIPO-alpha collection [6], in which training documents are
labelled with “primary” and “secondary” categories. (12]
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