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Abstract. Recent results in theoretical machine learning seem to suggest that
nice properties of the margin distribution over a training set turns out in a good
performance of a classifier. The same principle has been already used in SVM
and other kernel based methods as the associated optimization problems try to
maximize the minimum of these margins.
In this paper, we propose a kernel based method for the direct optimization of
the margin distribution (KM-OMD). The method is motivated and analyzed from
a game theoretical perspective. A quite efficient optimization algorithm is then
proposed. Experimental results over a standard benchmark of 13 datasets have
clearly shown state-of-the-art performances.
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1 Introduction

Much of last-decade theoretical work on learning machines has been devoted to study
the aspects of learning methods that control the generalization performance. In essence,
two main features seem to be responsible for the generalization performance of a clas-
sifier, namely, keeping low the complexity of the hypothesis space (e.g. by limiting the
VC dimension) and producing models which achieve large margin (i.e. confidence in
the prediction) over the training set.

The good empirical effectiveness of two of the most popular algorithms, Support
Vector Machines (SVM) and AdaBoost, have been in fact explained by the high margin
classifiers they are able to produce. Specifically, hard margin SVMs return the hyper-
plane which keeps all the examples farest away from it, thus maximizing the minimum
of the margin over the training set (worst-case optimization of the margin distribution).
Similarly, AdaBoost, has been demonstrated to greedily minimize a loss function which
is tightly related to the distribution of the margins on the training set. Despite the Ad-
aBoost ability to optimize the margin distribution on the training set, it has been shown
in [1] that in certain cases, it can also increase the complexity of the weak hypotheses,
thus possibly leading to overfitting phenomena.

The effect of the margin distribution on the generalization ability of learning ma-
chines have been studied in [2] and [3], while algorithms trying to optimize explicitly
the margin distribution include [4], [5] and [6]. More recently, it has been shown [7]
that quite good effectiveness can even be obtained by the optimization of the first mo-
ment of the margin distribution (the simple average value over the training set). In this



2 F. Aiolli, G. Da San Martino, and A. Sperduti

case, the problem can be solved very efficiently, since computing the model has time
complexity O(n).

In this paper, we propose a kernel machine which explicitly tries to optimize the
margin distribution. Specifically, this boils down to an optimization of a weighted com-
bination of margins, via a distribution over the examples, with appropriate constraints
related to the entropy (as a measure of complexity) of the distribution.

In Section 1.1 some notation used through the paper is introduced. In Section 2 a
game-theoretical interpretation of hard margin SVM is given in the bipartite instance
ranking framework (i.e. the problem to induce a separation between positive and neg-
ative instances in a binary task) and the problem of optimizing the margin distribution
is studied from the same perspective. This game-theoretic analysis leads us to a simple
method for optimizing the distribution of the margins. Then, in Section 3, an efficient
optimization algorithm is derived. Experimental results are presented in Section 4. Fi-
nally, conclusions are drawn.

1.1 Notation and Background

In the context of binary calssification tasks, the aim of a learning algorithm is to return a
classifier which minimizes the error on a (unknown) distributionDX×Y of input/output
pairs (xi, yi), xi ∈ Rd, yi ∈ {−1, +1}. The input to the algorithm is a set of pre-
classified examples pairs S = {(x1, y1), . . . , (xN , yN )}. With S+ = {x+

1 , . . . ,x+
p }

we denote the set of p positive instances, where x+
i is the i-th positive instance in

S. Similarly S− = {x−1 , . . . ,x−n } denotes the set of n negative instances. Clearly,
N = n + p.
In this paper, we denote by Γm ⊆ Rm the set of m-dimensional probability vectors,
i.e. Γm = {γ ∈ Rm|∑m

i=1 γi = 1, γi ≥ 0}. The convex hull ch(C) of a set C =
{c1, . . . , cm|ci ∈ Rd}, is the set of all affine combinations of points in C such that the
weights γi of the combination are non-negative, i.e. ch(C) = {γ1c1 + · · ·+γmcm|γi ∈
Γm}. We also generalize this definition, by defining the η-norm-convex hull of a set
C ∈ Rd as the subset of ch(C) which has weights with (squared) norm smaller than a
given value η, i.e. chη(C) = {γ1c1 + · · · + γmcm ∈ ch(C)| ||γ||2 ≤ η, 1

m ≤ η ≤ 1}.
Note that, whenever η = 1

m , a trivial set consisting of a single point (the average of
points in C), is obtained, while whenever η = 1 this set will coincide with the convex
hull.

2 Game theory, learning and margin distribution

A binary classification problem can be viewed from two different points of view. Specif-
ically, let h ∈ H be an hypothesis space, mapping instances on real values. In a first
scenario, let call it instance classification, a given hypothesis is said to be consistent
with a training set if yih(xi) > 0 (classification constraints) for each example of the
training set. In this case, the prediction on new instances can be performed by using the
sign of the decision function.
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In a second scenario, which we may call bipartite instance ranking, a given hypoth-
esis is said consistent with a training set if h(x+

i ) − h(x−j ) > 0 (order constraints) for
any positive instance x+

i and any negative instance x−j . Note that when an hypothesis
is consistent, then it is always possible to define a threshold which correctly separates
positive from negative instances in the training set. In this paper, we mainly focus on
this second view, even if a similar treatment can be pursued for the other setting.

In the following, we give an interpretation of the hard-margin SVM as a two players
zero-sum game in the bipartite instance ranking scenario presented above. First of all,
we recall that, in the classification context, the formulation of the learning problem is
based on the maximization of the minimum of the margin in the training set. Then, we
propose to slightly modify the pay-off function of the game in order to have a flexible
way to control the optimization w.r.t. the distribution of the margin in the training set.

2.1 Hard Margin SVM as a zero-sum game

Consider the following zero-sum game defined for a bipartite instance ranking scenario.
Let PMIN (the nature) and PMAX (the learner) be the two players. On each round
of the game, PMAX picks an hypothesis h from a given hypotheses space H, while
(simultaneously) PMIN picks a pair of instances of different classes z = (x+,x−) ∈
S+ × S−. PMAX wants to maximize its pay-off defined as the achieved margin ρh(z)
on the pair of examples which, in this particular setting, can be defined by h(x+) −
h(x−). Note that the value of the margin defined in this way is consistent with the
bipartite instance ranking setting since it is greater than zero for a pair whenever the
order constraint is satisfied for the pair, and less than zero otherwise.
Considering the hypothesis space of hyperplanes defined by unit-length weight vectors

H = {h(x) = w>x − θ| w ∈ Rds.t. ||w|| = 1, and θ ∈ R},
the margin is defined by the difference of the scores of the instances, that is

ρw(x+,x−) = w>x+ − θ −w>x− + θ = w>(x+ − x−)

Let now be given a mixed strategy for the PMIN player defined by γ+ ∈ Γp, the proba-
bility of each positive instance to be selected, and γ− ∈ Γn the correspondent probabil-
ities for negative instances. We can assume that these probabilities can be marginalized
as the associated events are independent. In other words, the probability to pick a pair
(x+

i ,x−j ) is simply given by γ+
i γ−j . Hence, the value of the game, i.e. the expected

margin obtained in a game, will be:

V ((γ+, γ−),w) =
∑

i,j γ+
i γ−j w>(x+

i − x−j )
= w>(

∑
i γ+

i x+
i (

∑
j γ−j )−∑

j γ−j x−j (
∑

i γ+
i ))

= w>(
∑

i γ+
i x+

i −
∑

j γ−j x−j )

Then, when the player PMIN is left free to choose its strategy, we obtain the following
problem which determines the equilibrium of the game, that is

min
γ+∈Γp,γ−∈Γn

max
w∈H

w>(
∑

i

γ+
i x+

i −
∑

j

γ−j x−j )
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Now, it easy to realize that a pure strategy is right available to the PMAX player. In fact,
it can maximize its pay-off by setting

ŵ =

{
any w ∈ H if v(γ+, γ−) = 0
v(γ+,γ−)
||v(γ+,γ−)|| otherwise

, where v(γ+, γ−) =
∑

i

γ+
i x+

i −
∑

i

γ−i x−i

Note that the condition v(γ+, γ−) = 0 implies that the (signed) examples yixi are
not linearly independent, i.e. there exists a linear combination of these instances with
not all null coefficients which is equal to the null vector. This condition is demonstrated
to be necessary and sufficient for the non linear separability of a set (see [8]).
When the optimal strategy forPMAX has been chosen, the expected value of the margin
according to the probability distributions (γ+, γ−), i.e. the value of the game, will be:

E[ρŵ(x+,x−)] = ŵ>v(γ+, γ−) = ||v(γ+, γ−)||

Note that the vector v(γ+, γ−) is defined by the difference of two vectors in the
convex hulls of the positive and negative instances respectively, v+ =

∑
i γ+

i x+
i ∈

ch(S+) and v− =
∑

i γ−i x−i ∈ ch(S−). Moreover, when γ+ and γ− are uniform
on their respective sets, the vector v(γ+, γ−) will be the difference between average
points of the sets (a.k.a. their centroids).

Now, we are able to show that the best strategy for PMIN is the solution obtained
by an SVM. For this, let us rewrite the vector v(γ+, γ−) using a single vector of pa-
rameters,

v(γ+, γ−) ≡ v(γ) =
N∑

i

yiγixi

which can be obtained by a simple change of variables

γi =
{

γ+
r if xi is the r-th positive example

γ−r if xi is the r-th negative example

Using the fact that minimizing the squared norm is equivalent to minimize the norm
itself, we may formulate the optimization problem to compute the best strategy for
PMIN (which aims to minimize the value of the game):

min
γ+∈Γp,γ−∈Γn

||v(γ+, γ−)|| =
{

minγ ||v(γ)||2
s.t.

∑
i:yi=y γi = 1, ∀y ∈ {−1, +1}, and γi ≥ 0

(1)
As already demonstrated in [9] the problem on the right of Eq. 1 is the same as hard

margin SVM when a bias term is present. Specifically, the bias term is chosen as the
score of the point standing in the middle between the points v+ and v−, i.e.

θ =
1
2
ŵ>(v+ + v−).

Then, the solutions of the two problems are the same. Specifically, the solution
maximizes the minimum of the margins in the training set. Clearly, when the training
set is not linearly separable, the solution of the problem in Eq.1 will be v(γ) = 0.
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2.2 Playing with Margin Distributions

The maximization of the minimum margin is not necessarily the optimal choice when
dealing with a classification task. In fact, many recent works, including [4, 3], have
demonstrated that the generalization error depends more properly on the distribution of
(lowest) margins in the training set.

Our main idea is then to construct a problem which makes easy to play with the
margin distribution. Specifically, we aim at a formulation that allow us to specify a
given trade-off between the minimal value and the average value of the margin on the
training set.

For this, we extend the previous game considering a further cost for the player
PMIN . Specifically, we want to penalize, to a given extent, too pure strategies in such
a way to have solutions which are robust with respect to different training example dis-
tributions. In this way, we expect to reduce the variance of the best strategy estimation
when different training sets are drawn from the true distribution of examples DX×Y . A
good measure of the complexity of PMIN behavior would certainly be the normalized
entropy of its strategy which can be defined by

E(γ) =
1
2

(
1

log(p)

∑

i

γ+
i log

1
γ+

i

+
1

log(n)

∑

i

γ−i log
1

γ−i

)

which has maximum value 1 whenever γ is the uniform distribution on both sets (com-
pletely unpredictable startegy) and is 0 when the distribution is picked on a single ex-
ample per set (completely predictable pure strategy).

However, a (simpler) approximate version of the entropy as defined above, can be
obtained by considering the 2-norm of the distribution. In fact, it is well known that, for
any distribution γ ∈ Γm it always holds that ||γ||2 ≤ ||γ||1. Moreover, ||γ||2 is minimal
whenever γ is a uniform distribution and is equal to 1 whenever γ is a pure strategy.
Specifically, we can consider the following approximation:

E(γ) ≈ m

m− 1
(1− ||γ||22)

Considering the squared norm of the distribution, we can reformulate the strategy
of PMIN as a trade-off between two objective functions, with a trade-off parameter λ:

min
γ+∈Γp,γ−∈Γn

(1− λ)||v(γ)||2 + λ||γ||2 (2)

It can be shown that the optimal vector v(γ̂) which is solution of the problem above,
represents the vector joining two points, v+ into the positive norm-restricted convex
hull, i.e. v+ ∈ chη(S+), and v− into the negative norm-restricted convex hull, i.e.
v− ∈ chη(S−), for opportune η.

Similarly to the hard margin SVM, the threshold is defined as the score of the point
which is in the middle between these two points, i.e. θ = 1

2ŵ
>(v+ + v−).

Finally, it is straightforward to see that this method generalizes (when λ = 1), the
baseline method presented in [10] where the simple difference between the centroid of
positives and the centroid of negatives is used as the weight vector, and obviously it
generalizes the hard-margin SVM for λ = 0.
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3 Optimization Algorithm

We now propose a very simple method to optimize the problem in Eq. (1). The proposed
method optimizes the objective function by a SMO-like procedure which maintains a
feasible solution γ at each step, starting from a feasible γinit. Specifically, in order
to maintain the solution in the feasible set, at each step, it chooses a pair of variables
(γr, γq) associated to examples of the same class, let say y, and imposes an update of
the form:

γ′r ← γr + ε, γ′q ← γq − ε

With this update, we can exactly measure the extent of the change which occurs to the
vector v(γ), i.e.

∆v(γ) = v(γ′)− v(γ) = yε(xr − xq)

To improve the readability of the following derivations, let us denote by sj(γ) the quan-
tity sj(γ) =

∑
i yiγix>i xj . Now, we are able to evaluate how much, and how, the up-

date on the γ’s modifies the objective function.
Let us begin from the first term G(γ) = ||v(γ)||2. In this case, we have:

G(γ′) = ||v(γ′)||2 = ||v(γ) + ∆v(γ)||2 = ||v(γ)||2 + ||∆v(γ)||2 + 2v(γ)∆v(γ)

and hence the variation can be obtained by

∆G(γ) = G(γ′)−G(γ) = ||∆v(γ)||2 + 2v(γ)>∆v(γ)

where ||∆v(γ)||2 = ε2||xr − xq||2 and v(γ)>∆v(γ) = εy(sr(γ)− sq(γ)).
Summarizing, we have

∆G(γ) = ε2||xr − xs||2 + 2εy(sr(γ)− sq(γ))

For what concerns the second term H(γ) = ||γ||2, we have

H(γ′) = ||γ + ∆γ ||2 = ||γ||2 + ||∆γ ||2 + 2γ>∆γ = ||γ||2 + 2ε2 + 2ε(γr − γq)

and thus
∆H(γ) = H(γ′)−H(γ) = 2ε2 + 2ε(γr − γq)

Thus the overall objective function L(γ) = (1 − λ)||v(γ)||2 + λ||γ||2 will vary of an
amount

∆L(γ) = L(γ′)− L(γ) = (1− λ)∆G(γ) + λ∆H(γ)

= (1− λ)(ε2||xr − xq||2 + 2yε(sr(γ)− sq(γ))) + 2λ(ε2 + ε(γr − γq))
= ((1− λ)||xr − xq||2 + 2λ)ε2 + 2((1− λ)y(sr(γ)− sq(γ)) + λ(γr − γq))ε

(3)
Finally, setting the derivative of ∆L(γ) w.r.t. to ε, to zero, we are able to find the

point of minimum (or maximum improvement):

∂∆L(γ)(ε)
∂ε

= 2ε((1− λ)||xr − xq||2 + 2λ) + 2((1− λ)(ρr − ρq) + λ(γr − γq)) = 0
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thus obtaining

ε̂ =
λ(γq − γr) + (1− λ)y(sq(γ)− sr(γ))

2λ + (1− λ)||xr − xq||2 (4)

In order to maintain the solution in the feasibility set, the constraints ε̂ < −γr, and
ε̂ < γq must be enforced. This is made by simply doing a cut with the formula:

ε̂ = min{ε̂,−γr, γq}.

3.1 The Algorithm

In the following a pseudo-code of the proposed algorithm is presented.

input:
training set S = {(xi, yi)}i=1,...,N

the convergence tolerance δ > 0
initialize:

γi = 1
p if yi = 1, γi = 1

n if yi = −1, {sj =
∑

i yiγix>i xj}j=1,...,N

repeat
for each pair (γr, γq) associated to examples of a same class y

compute ε̂ = ε̂(γr, γq) as in Eq. 4
set ε̂ = min(ε̂,−γr)
set ε̂ = min(ε̂, γq)
compute the delta loss ∆L(γ) as in Eq. 3
if ∆L(γ)(ε̂) > δ then (update step)

γr = γr + ε, γq = γq − ε
sj = sj + ε(x>r xj − x>q xj), j = 1, . . . , N

end if
end for

until no update steps have been performed in this iteration
compute the threshold θ = 1

2

∑
j sj

return the vector γ, and the threshold θ.

4 Experiments and Results

The proposed approach has been tested against a popular benchmark consisting of 13
binary datasets1. For each dataset, there are 100 different training/test splits of the same
data. The classification error is computed as the average error among all these realiza-
tions. For a detailed description of the datasets see [11]. In order to have a fair compar-
ison with the results in [11], the same model selection methodology has been used: the
best parameter setting for each of the first 5 realizations has been obtained using 5-fold
cross validation. Then, the final value of the parameters, namely λ and γ (for the RBF
kernel), is selected as the median of the 5 best values obtained in validation. With these
parameters, our method has been run again on each training data and then tested for all
100 realizations.
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Fig. 1. Classification error (y-axis) with respect to lambda values (x-axis) for each dataset. The
vertical dotted line represent the lambda value selected on validation.
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SVM KM-OMD Best in [11] [12]
banana 0.11530 (± 0.0660) 0.10660 (± 0.0150) 0.10730 (± 0.0430)
breast-cancer 0.26040 (± 0.0474) 0.30792 (± 0.1206) 0.24770 (± 0.0463)
diabetis 0.23530 (± 0.0173) 0.24883 (± 0.0455) 0.23210 (± 0.0163)
flare-solar 0.32430 (± 0.0182) 0.33115 (± 0.0489) 0.32430 (± 0.0182)
german 0.23610 (± 0.0207) 0.24970 (± 0.0570) 0.23610 (± 0.0207)
heart 0.15950 (± 0.0326) 0.15850 (± 0.0915) 0.15950 (± 0.0326)
image 0.02960 (± 0.0060) 0.03198 (± 0.0106) 0.02670 (± 0.0061)
ringnorm 0.01660 (± 0.0012) 0.01536 (± 0.0046) 0.01490 (± 0.0012)
splice 0.10880 (± 0.0066) 0.11025 (± 0.0142) 0.09500 (± 0.0065)
thyroid 0.04800 (± 0.0219) 0.04585 (± 0.0475) 0.04200 (± 0.0207)
titanic 0.22420 (± 0.0102) 0.24570 (± 0.1288) 0.22420 (± 0.0102)
twonorm 0.02960 (± 0.0023) 0.02548 (± 0.0042) 0.02610 (± 0.0015)
waveform 0.09880 (± 0.0043) 0.09685 (± 0.0110) 0.09790 (± 0.0081)

Table 1. Classification error of SVM and KM-OMD (our method) on 13 datasets. Between brack-
ets the standard deviation. Best method is in bold. When underlined, the method improves the best
result, according to [11] and [12], obtained for the dataset (which is reported in the third column).

Table 1 summarizes the obtained results and compare them against the ones reported
in [11] and [12]. Note that the proposed algorithm is better than SVM on 6 datasets.
Moreover, on 4 datasets, our method improves over the best performing method.

Figure 1 shows how the error rate varies with respect to λ. Generally speaking,
the error rate tends to decrease towards the optimum, and then increase again when λ
approaches 1. On the other hand, Figure 2 shows how the training time is affected by
λ values. This is only plotted for 2 datasets, namely Image and Waveform, since the of
curves we obtained for the other datasets were similar. The two plots clearly show that
learning with low λ values requires more training time, whereas models for higher λ
values are faster to compute. It is worth noting that, in most cases, even high λ values
(for which the models are much faster to train) give anyway good performances, or at
least acceptable when the computational time is an issue.

5 Conclusions

We have addressed the problem of optimizing the distribution of the margins from a
game-theoretical perspective. A simple method has been proposed which consist in
optimizing a trade-off between two extreme optimization tasks: the maximization of the
minimum margin and the maximization of the average of the margin. The experimental
results have shown state-of-the-art performances for some datasets.

In future work, we would like to study under which conditions (e.g. conditions re-
lated to the data distribution) our method is to prefer to other state-of-the-art methods.
Moreover, the very simple algorithm we have proposed in this paper is not optimized

1 All datasets can be downloaded from: http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
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Fig. 2. Training time (y-axis) in seconds with respect to lambda values (x-axis) for Image and
Waveform datasets. The vertical dotted line represent the lambda value selected on validation.

and its optimization could be another direction of our future research. When an opti-
mized version of the algorithm will be available, fair time comparisons with state-of-
the-art software for SVM, including SVMLight, will be possible.
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