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Abstract—Magnetic resonance imaging (MRI) allows the ac-
quisition of high-resolution images of the brain. The diagno-
sis of various brain illnesses is supported by the distinguished
analysis of the different kind of brain tissues, which implytheir
segmentation and classification. Brain MRI is organized in vol-
umes composed by millions of voxels (at least 65.536 per slice,
for at least 50 slices), hence the problem of labeling of brain
tissue classes in the composition of atlases and ground truth
references, which are needed for the training and the valida-
tion of machine-learning methods employed for brain segmen-
tation. We propose a stacking classification scheme that does
not require any other anatomical information to identify th e 3
classes, gray matter (GM), white matter (WM) and Cerebro-
Spinal Fluid (CSF). We employed two different MR sequences:
fluid attenuated inversion recovery (FLAIR) and double inver-
sion recovery (DIR). The former highlights both gray matter
(GM) and white matter (WM), the latter highlights GM alone.
Features are extracted using a local multi-scale texture analysis,
computed for each pixel of the DIR and FLAIR sequences. The
9 textures considered are average, standard deviation, kurtosis,
entropy, contrast, correlation, energy, homogeneity, andskew-
ness, evaluated on a neighborhood of 3x3, 5x5, and 7x7 pixels. A
stacked classifier is proposed exploiting the a priori knowledge
about DIR and FLAIR features. Results highlight a significative
improvement in classification performance with respect to using
all the features in a state-of-the-art single classifier.
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I. INTRODUCTION

Magnetic resonance imaging (MRI) allows the acquisi-
tion of high-resolution images of the brain. The diagnosis
of various brain illnesses, is supported by the distinguished
analysis of the white matter (WM), gray matter (GM) and
cerebro-spinal fluid (CSF). In this work we present a semi-
supervised method to segment WM, GM, and CSF from MRI
data that combines DIR and FLAIR scans, without exploit-
ing any anatomical a priori information, and with the specific
objective of preserving the lesions belonging to their correct
tissue.

There exist widely available and commonly used brain tissue
segmentation software, such as the segmentation tool in SPM
[1] and FAST in FSL [2], which use both intensity and a pri-
ori anatomic information. However, having been designed for
general use, they are not necessarily optimized for specific
pulse sequences or for application to images from patients
with a specific disease. For example, as observed in [3, 4],
when used to segment MR images of MS patients, these
tools occur in misclassification of MS lesions as GM due to
overlapping intensities, which then requires time-consuming
manual editing and introduces operator variability into the
measurements.
Hence, manual delineation remains thegold standardproce-
dure in studies where brain segmentation of MR data sets is
required, especially when dealing with specific populations
(e.g. [5, 6, 7, 8, 9, 10]). However, it is expert dependent, ob-
server demanding and time consuming, and essentially not
transferable. Automated techniques are necessary to over-
come these obstacles, especially when large cohorts of data
sets are involved [5]. Moreover, given the growing interest
in translational studies in neuroscience, the need for build-
ing annotatedgold standardsegmentation and atlases on non
human data ([11, 12]) has further stressed the demand for au-
tomatic techniques or fast annotation methods.

We propose a supervised classification method that ex-
ploits the texture information of the brain tissue providedby
the two sequences FLAIR and DIR [13] (1). The former is
characterized by the suppression of CFS and by the conse-
quent enhancement of both GM and WM, which are however
difficult to be distinguished one from the other; the latter has
two inversion recoveries that allow suppressing the contri-
bution of both CSF and WM, thus enhancing GM. We thus
avoid using T1-w sequence, which, even if characterized by
high spatial resolution, proved inadequate for tissue segmen-
tation when brain lesions are present. In addition, the method
does not need population-derived location-based priors, reg-
istration to template space, or explicit bias field modeling.

II. M ATERIAL

Twenty-four slices (256× 256), fromz= 20 to z= 44,
from both DIR and FLAIR sequences acquired on a patient



Fig. 1: (Leftmost column) two slices of the DIR sequence; (central column) the corresponding FLAIR slices; (rightmost column) manual ground truth
segmentations provided by the experts

affected by MS [14], have been taken into account. In each
slide, the three classes GM, WM and CSF were manually la-
beled.

III. M ETHODS

A. Feature Extraction

The rationale of the feature extraction approach is to use
the peculiar texture characteristic of a pixel neighborhood
in order to obtain information about the pixel tissue class
[13]. Image texture analysis has been subject of intense study
and has been employed in a variety of applications; however,
there is no general agreement upon definition of texture. For
our specific application, we assume that a region in an image
has a constant texture if a set of local statistics or other local
properties of the picture function are almost constant.

Depending on the number of pixels defining the local
feature, the statistical methods can be respectively classi-
fied as 1st-order, 2nd-order and higher-order statistics. 1st-
order statistics measure the likelihood of observing a specific
gray value at a random location in the image (hence directly
computable from the image histogram). 2nd-order statistics
measure the likelihood of observing a specific pair of gray
values in a randomly placed dipole of pixels (computable
from the gray level co-occurrence matrices (GLCM) [15]).
Method proposed in [16] employed three 1st-order statistics:
skewness-, median-, and median absolute deviation-based
textures, which, on T1-w images, are approximately indepen-
dent of bias field and of scanner gain. In order to increase
the discriminability of the classes, and at the same time cou-
ple at best with the double source of information at disposal

(i.e., the DIR and the FLAIR sequences), we opted to employ
as features four 1st-order statistics and five 2nd-order statis-
tics. The 1st-order statistics considered in this work are mean,
standard deviation, skewness, and kurtosis, while the 2nd-
order ones are contrast, correlation, homogeneity, entropy
and energy.

We extract the local texture information at 3 different
scales from blocks ofN × N pixel, with N = 3, 5, and 7.
For each 2nd-order texture, 4 GLCMs are constructed, with
d = (dx,dy) ∈ {(0,1),(1,1),(1,0),(1,−1)}. Then, to make
the textures invariant to rotation, the obtained matrices are
averaged over the 4 angles. Since the feature extraction is
performed on both DIR and FLAIR images, the final feature
vector associated to each pixel is composed by 56 values (2
original sequence pixel values, plus 9 textures× 3 scales× 2
sequences).

B. Classification

State-of-the-art algorithms typically cast the multi-class
problem of classifying CSF, GM and WM with aone against
all technique. The classifier system consists of three binary
classifiers. The classifierhc is trained with all the available la-
beled examples giving a positive label to examples of classc
and a negative label to examples of other classes. All the fea-
tures for each image (DIR and FLAIR) are used to build these
three classifiers. The prediction is made by comparing the
scores of the three classifiers and predicting the class whose
corresponding classifier maximizes this score.

However, once considering thea priori knowledge we
have about our specific problem, thinking in this way can be
counter intuitive. In fact, using the approach described above,



Fig. 2: Upper row:8 textures extracted from the DIR slice.Lower row:8 textures extracted from the FLAIR slice.Columns, from left to right:mean,
standard deviation, skewness, kurtosis, contrast, homogeneity, entropy, energy. The scale employed is 5 (5×5 pixel block analysis). Original DIR and FLAIR

slices are the one in Fig. 1; the slice is atz= 33.

we are not exploiting the fact that different types of features
(DIR and FLAIR) contain diverse information and each one
is naturally tailored to a more specific task. FLAIR based
features highlight both gray matter (GM) and white matter
(WM), then they can be more useful to discriminate CSF and
not-CSF (GM or WM). On the other side, DIR based features
highlight GM alone and thus can be more useful to discrim-
inate between GM and WM when we already know that a
particular voxel is not of class CSF.

Here, we consider atwo-step stackedsystem that creates,
in a first step, a binary classifierhCSF using the FLAIR image
features only to select the subset of voxel corresponding to
CSF. In a second step, it creates a binary classifierhWM that
selects the WM from the not-CSF part of voxel. The remain-
ing part of voxels are classified as GM.

C. Experimental Setting

We compared three classification settings using a dataset
consisting of ten manually labeled slices. Specifically,

1. One-Against-All (OAA, [17]), where each binary classi-
fier is trained with all features (DIR and FLAIR)

2. Stacked All Features (SAF, [18]), where stacking is per-
formed as described above and all the features are used
in both levels

3. Stacked Disjoint Features (SDF), where stacking is per-
formed as described above. FLAIR features used in the
first level only and DIR features used in the second level.

An SVM-likeclassifier [19] withRBF kernel (γ = 0.01)
has been used for all different settings. On each experiment:

1. We randomly select few (5) labelled examples for each
class (CSF, GM and WM).

2. We train all SVM binary classifiers using these labeled
data as training data.

3. We classify all the unlabeled data.

We have repeated the steps above for 1000 times to in-
crease the significance of our experiments and we calculated
the average accuracy and standard deviation.

IV. RESULTS

Results for all the three settings are summarized in the fol-
lowing table.

Algorithm Accuracy StdDev
One against all 68.821% 0.05243
Two-step (all the features) 68.870% 0.04961
Two-step (a priori knowledge) 70.403% 0.05742

We can see that our two-step stacking algorithm has a sig-
nificantly better accuracy than state-of-the-art methods.We
have also demonstrated that a significant improvement can
be obtained by usinga priori knowledge on the task at hand.
Moreover, the baseline (OAA) method requires the training of
three binary classifiers and all the features, while our two-step
algorithm needs only two binary classifiers, each one work-
ing with a halved number features. The proposed approach
provided both better results and better computational perfor-
mance.

In order to support further our proposal on how to deal
with this kind ofa priori knowledge, another experiment was
performed reversing the order of the two classifiers in our
two-step algorithm. As expected, we obtained a significant
decrease in performance in this case.
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Fig. 3: Histogram of accuracy

V. D ISCUSSION ANDCONCLUSION

We have shown an effective way to inject a priori knowl-
edge about the different nature of MR sequences in a stacking
model for brain segmentation. In the future, we plan to im-
prove our two-step algorithm in two principal ways. Firstly,
by exploiting the existing topology among voxels given by
their physical closeness. For this task we can create a graph
representation of the brain containing the topological infor-
mation. Preliminary experiments have shown an improve-
ment in the results even using horizontal topological infor-
mation only. Secondly, we also plan to studyactive learning
algorithms to guide the initial selection of manual labeling.
For example, we could study an active learning algorithm that
selects the best voxels for manual labeling. The histogram in
Fig. 3 shows how the accuracy strongly depends on the ini-
tial choice of voxels. Interestingly, in our two-step algorithm,
we observe a larger number of cases in which the accuracy is
over 80% with respect to the other methods. So we hope to
give active learning algorithms able to choose the best voxels
eligible for the training set, in an unsupervised manner.
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