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Abstract. In this paper, the preliminary study we have conducted on the Million
Songs Dataset (MSD) challenge is described. The task of the competition was to
suggest a set of songs to a user given half of its listening history and complete
listening history of other 1 million people. We focus on memory-based collab-
orative filtering approaches since they are able to deal with large datasets in an
efficient and effective way. In particular, we investigated on i) defining suitable
similarity functions, ii) studying the effect of the “locality” of the collaborative
scoring function, that is, how many of the neirest neighboors (and how much) they
influence the score computation, and iii) aggregating multiple ranking strategies
to define the overall recommendation. Using this technique we won the MSD
challenge which counted about 150 registered teams.

1 Introduction

The Million Song Dataset Challenge [9] was a large scale, music recommendation chal-
lenge, where the task was the one to predict which songs a user will listen to, provided
the listening history of the user. The challenge was based on the Million Song Dataset
(MSD), a freely-available collection of meta data for one million of contemporary songs
(e.g. song titles, artists, year of publication, audio features, and much more) [4]. About
one hundred and fifty teams participated to the challenge. The subset of data actually
used in the challenge was the so called Taste Profile Subset that consists of more than
48 million triplets (user,song,count) gathered from user listening histories. Data consists
of about 1.2 million users and covers more than 380,000 songs in MSD. The user-item
matrix is very sparse as the fraction of non-zero entries (the density) is only 0.01%.

The task of the challenge was to recommend the most appropriate songs for a user
given half of her listening history and the complete history of another 1 million users.
Thus, the challenge focused on the ordering of the songs on the basis of the relevance
for a given user, and this makes the particular problem different from the more classical
problem of predicting rates a user will give to unseen items [6, 11]. For example, pop-
ular tasks like the Netflix [3] and Movielens fall in this last case. A second important
characteristic of the MSD problem is that we do not have explicit or direct feedback
about what users like and how much they like it. In fact, we only have information of
the form “user u listened to song i” without any knowledge about wether user u ac-
tually liked song i or not. A third important aspect of the MSD data is the presence
of meta data concerning songs including title, artist, year of publication, etc. An inter-
esting question then was wether this additional information could help or not. Finally,



given the huge size of the datasets involved, time and memory efficiency of the method
used turned out to be another very important issue in the challenge.

Collaborative Filtering (CF) is a technology that uses the item by user matrix to
discover other users with similar tastes as the active user for which we want to make
the prediction. The intuition is that if other users, similar to the active user, already
purchased a certain item, then it is likely that the active user will like that item as well.
A similar (dual) consideration can be made by changing the point of view. If we know
that a set of items are often purchased together (they are similar in some sense), then, if
the active user has bought one of them, probably he/she will be interested to the other
as well. In this paper, we show that, even if this second view has been far more useful
to win the MSD competition, the first view also brings useful and diverse information
that can be aggregated in order to boost the performance of the recommendation.

In Section 2, collaborative filtering is described and proposed as a first approach to
solve the problem of MSD. In particular, we briefly discuss the most popular state-of-
the-art techniques: model based and memory based CF methods. In the same section,
we propose a variant of memory based CF particularly suitable to tasks with implicit
feedback and binary ratings, and we propose a new parameterized similarity function
that can be adapted to different applicative domains. Finally, in Section 3, empirical
results of the proposed techniques are presented and discussed.

2 A Collaborative Filtering approach to the MSD task

Collaborative Filtering techniques use a database in the form of a user-item matrix R
of preferences. In a typical Collaborative Filtering scenario, a set U of n users and a
set I of m items exist and the entries of R = {rui} ∈ Rn×m represent how much
user u likes item i. In this paper, we assume rui ∈ {0, 1} as this was the setting of the
MSD challenge1. Entries rui represent the fact that user u have listened to (or would
like to listen to) the song i. In the following we refer to items or songs interchangeably.
The MSD challenge task has been more properly described as a top-τ recommendation
task. Specifically, for any active user u, we want to identify a list of τ (τ = 500 in the
challenge) items Iu ⊆ I that he/she will like the most. Clearly, this set must be disjoint
with the set of items already rated (purchased, or listened to) by the active user.

2.1 Model-based Collaborative Filtering

Model-based CF techniques construct a model of the information contained in the ma-
trix R. There are many proposed techniques of this type, including Bayesian models,
Clustering models, Latent Factor models, and Classification/Regression models.

In recent literature about CF, matrix factorization techniques [8] have become a
very popular and effective choice to implement the CF idea. In this kind of models one
tries to learn a linear embedding of both users and items into a smaller dimensional

1 Note that in this definition we neglet the information given by the count attribute of the triplets
indicating how many times the song has been listened to by a user. In fact, at the start of the
competition, the organizers warned us on the fact that this attribute could be unreliable and
absolutely not correlated with likings.



space. More formally, in its basic form, one needs to find two matrices P ∈ Rn×k and
Q ∈ Rk×m, such that R = PQ, in such a way to minimize a loss over training data. A
common choice for this loss is the root mean square error (RMSE).

Despite the fact that matrix factorization is recognized as a state-of-the-art technique
in CF, we note that it has some drawbacks that make it unsuitable for the MSD task.
First of all, learning the model is generally computationally very expansive and this is a
problem when the size of the matrix R is very large as it was in our case. Second, since
it is tipically modelled as a regression problem, it does not seem very good for implicit
feedback tasks. In this cases we only have binary values of relevance and the value 0
cannot properly be considered the same as unrelevant since the no-action on an item
can be due to many other reasons beyond not liking it (the user can be unaware of the
existence of the item, for example). Finally, baseline provided by the organizers of the
challenge and other teams entries, both based on matrix factorization techniques, have
shown quite poor results for this particular task, thus confirming our previous claims.

2.2 Memory-based Collaborative Filtering

In memory-based Collaborative Filtering algorithms, also known as Neighborhood Mod-
els, the entire user-item matrix is used to generate a prediction. Generally, given a new
user for which we want to obtain the prediction, the set of items to suggest are com-
puted looking at similar users. This strategy is typically referred to as user-based rec-
ommendation. Alternatively, in the item-based recommendation strategy, one computes
the most similar items for the items that have been already purchased by the active user,
and then aggregates those items to form the final recommendation. There are many dif-
ferent proposal on how to aggregate the information provided by similar users/items
(see [11] for a good survey). However, most of them are tailored to classical recom-
mendation systems and they are not promptly compliant with the implicit feedback
setting where only binary relevance values are available. More importantly, computing
the neirest neighbors requires the computation of similarities for every pair of users or
songs. This is simply infeasible in our domain given the huge size of the datasets in-
volved. So, we propose to use a simple weighted sum strategy the considers positive
information only. A deeper analysis of this simple strategy will allows us to highlight
an interesting duality which exists between user-based and item-based recommendation
algorithms.

In the user-based type of recommendation, the scoring function, on the basis of
which the recommendation is made, is computed by

hUui =
∑
v∈U

f(wuv)rvi =
∑
v∈U(i)

f(wuv),

that is, the score obtained on an item for a target user is proportional to the similarities
between the target user u and other users v that have purchased the item i (v ∈ U(i)).
This score will be higher for items which are often rated by similar users.

On the other hand, within a item-based type of recommendation [5, 10], the target
item i is associated with a score

hSui =
∑
j∈I

f(wij)ruj =
∑

j∈I(u)

f(wij),



and hence, the score is proportional to the similarities between item i and other items
already purchased by the user u (j ∈ I(u)).

Note that, the two formulations above do not have a normalization factor. A nor-
malization with the sum of the similarities with the neighbors is tipically performed in
neighboorhood models for tasks with explicit rates. In our case, we wanted to consider
positive information only in the model. As we see in the following, an effect similar to
the normalization is given by the function f(w). The proposed strategy seems appro-
priate in our setting and makes the prediction much faster as we only need to compute
pair similarities with only a few other (in the order of tens in our task) users/items.

The function f(w) can be assumed monotonic not decreasing and its role is to em-
phasize/deemphasize similarity contributions in such a way to adjust the locality of the
scoring function, that is how many of the nearest users/items really matter in the com-
putation. As we will see, a correct setting of this function turned out to be very useful
with the challenge data.

Interestingly, in both cases, we can decompose the user and item contributions in a
linear way, that is, we can write hUui = w>u ri, wu ∈ Rn, and hSui = w>i ru, wi ∈ Rm.
In other words, we are defining an embedding for items (in user based recommendation
systems) and for users (in item based recommendation systems). In the specific case
above, this corresponds to choose the particular vector ri as the vector with n entries
in {0, 1}, where r

(u)
i = rui. Similarly, for the representation of users in item-based

scoring, we choose ru as the vector withm entries in {0, 1}, such that r(i)u = rui. In the
present paper we mainly focus on exploring how we can learn the vectors wi and wu in
a principled way by using the entire user-item preference matrix on-the-fly when a new
recommendation has to be done. Alternatively, we could also try to learn the weight
vectors from data by noticing that a recommendation task can be seen as a multilabel
classification problem where songs represent the labels and users represent the exam-
ples. We have performed preliminary experiments in this sense using the preference
learning approach described in [1]. The results were promising but the problem in this
case was the computational requirements of a model-based paradigm like this. For this
reason we decided to postpone a further analysis of this setting to future works.

2.3 User-based and Song-based similarity

In large part of CF literature the cosine similarity is the standard measure of correlation
and not much work has been done until now to adapt the similarity to a given problem.
Our opinion is that it cannot exist a single similarity measure that can fit all possible
domains where collaborative filtering is used. With the aim to bridge this gap, in this
section, we try to define a parametric family of user-based and item-based similarities
that can fit different problems.

In the challenge, we have not relevance grades since the ratings are binary values.
This is a first simplification we can exploit in the definition of the similarity functions.
The similarity function that is commonly used in this case, both for the user-based case
and the item-based case, is the cosine similarity. In the case of binary grades the cosine
similarity can be simplified as in the following. Let I(u) be the set of items rated by a



generic user u, then the cosine similarity between two users u, v is defined by

wuv =
|I(u) ∩ I(v)|
|I(u)| 12 |I(v)| 12

and, similarly for items, by setting U(i) the set of users which have rated item i, we
obtain:

wij =
|U(i) ∩ U(j)|
|U(i)| 12 |U(j)| 12

.

The cosine similarity has the nice property to be symmetric but, as we show in
the experimental section, it might not be the better choice. In fact, especially for the
item case, we are more interested in computing how likely it is that an item will be
appreciated by a user when we already know that the same user likes another item. It
is clear that this definition is not symmetric. As an alternative to the cosine similarity,
we can resort to the conditional probability measure which can be estimated with the
following formulas:

wuv = P (u|v) = |I(u) ∩ I(v)|
|I(v)|

and

wij = P (i|j) = |U(i) ∩ U(j)|
|U(j)|

Previous works (see [7] for example) pointed out that the conditional probability
measure of similarity, P (i|j), has the limitation that items which are purchased fre-
quently tend to have higher values not because of their co-occurrence frequency but
instead because of their popularity. In our opinion, this might not be a limitation in
a recommendation setting like ours. Perhaps, this could be an undesired feature when
we want to cluster items. In fact, this correlation measure has not to be thought of as
a real similarity measure. As we will see, experimental results seem to confirm this
hypothesis, at least in the item-based similarity case.

Now, we are able to propose a parametric generalization of the above similarity
measures. This parametrization permits ad-hoc optimizations of the similarity function
for the domain of interest. For example, this can be done by validating on available data.
Specifically, we propose to use the following combination of conditional probabilities:

wuv = P (v|u)αP (u|v)1−α wij = P (j|i)αP (i|j)1−α (1)

where α ∈ [0, 1] is a parameter to tune. As above, we estimate the probabilities by
resorting to the frequencies in the data and derive the following:

wuv =
|I(u) ∩ I(v)|
|I(u)|α|I(v)|1−α

wij =
|U(i) ∩ U(j)|
|U(i)|α|U(j)|1−α

. (2)

It is easy to note that the standard similarity based on the conditional probability
P (u|v) (resp. P (i|j)) is obtained setting α = 0, the other inverted conditional P (v|u)
(resp. P (j|i)) is obtained setting α = 1, and, finally, the cosine similarity case is ob-
tained when α = 1

2 . This analysis also suggests an interesting interpretation of the
cosine similarity on the basis of conditionals.



2.4 Locality of the Scoring Function

In Section 2 we have seen how the final recommendation is computed by a scoring
function that aggregates the scores obtained using individual users or items. So, it is
important to determine how much each individual scoring component influences the
overall scoring. This is the role of the function f(w). In the following experiments we
use the exponential family of functions, that is f(w) = wq where q ∈ N. The effect
of this exponentiation is the following. When q is high, smaller weights drop to zero
while higher ones are (relatively) emphasized. At the other extreme, when q = 0, the
aggregation is performed by simply adding up the ratings. We can note that, in the user-
based type of scoring function, this corresponds to take the popularity of an item as its
score, while, in the case of item-based type of scoring function, this would turn out in a
constant for all items (the number of ratings made by the active user).

2.5 Ranking Aggregation

There are many sources of information available regarding songs. For example, it could
be useful to consider the additional meta-data which are also available and to construct
alternative rankings based on that. It is always difficult to determine a single strategy
which is able to correctly rank the songs. An alternative is to use multiple strategies,
generate multiple rankings, and finally combine those rankings. Typically, these differ-
ent strategies are individually precision oriented, meaning that each strategy is able to
correctly recommend a few of the correct songs with high confidence but, it may be that,
other songs which the user likes, cannot be suggested by that particular ranker. Hope-
fully, if the rankers are different, then the rankers can recommend different songs. If
this is the case, a possible solution is to predict a final recommendation that contains all
the songs for which the single strategies are more confident. The stochastic aggregation
strategy that we used in the challenge can be described in the following way. We assume
we are provided with the list of songs, not yet rated by the active user, given in order
of confidence, for all the basic strategies. On each step, the recommender randomly
choose one of the lists according to a probability distribution pi over the predictors
and recommends the best scored item of the list which has not yet been inserted in the
current recommendation. In our approach the best pi values are simply determined by
validation on training data.

3 Experiments and Results

In the MSD challenge we have: i) the full listening history for about 1M users, ii)
half of the listening history for 110K users (10K validation set, 100K test set), and we
have to predict the missing half. Further, we also prepared a ”home-made” validation
subset (HV) of the original training data of about 900K users of training (HVtr, with
full listening history). The remaining 100K user’s histories has been split in two halves
(HVvi the visible one, HVhi the hidden one).

The experiments presented in this section are based on this HV data and compare
different similarities and different approaches. The baseline is represented by the simple



popularity based method which recommends the most popular songs not yet listened to
by the user. Besides the baseline, we report experiments on both the user-based and
song-based scoring functions, and an example of the application of ranking aggrega-
tion. Given the size of the datasets involved we do not stress on the significance of the
presented results. This is confirmed by the fact that the presented results do not differ
significantly from the results obtained over the indipendent set of users used as the test
set in the challenge.

3.1 Taste Profile Subset Stats

For completeness, in this section, we report some statistics about the original training
data. In particular, the following table shows the minimum, maximum, and average,
number of users per song and songs per user. The median value is also reported.

Data Statistics min max ave median
users per song 1 110479 125.794 13
songs per user 10 4400 47.45681 27

We can see that the large majority of songs have only few users which listened to it
(less than 13 users for half of the songs) and the large majority of users have listened to
few songs (less than 27 for half of the users). These characteristics of the dataset make
the top-τ recommendation task quite challenging.

3.2 Truncated Mean Average Precision

Conformingly to the challenge, we used the truncated mAP (mean average precision) as
the evaluation metric [9]. Let y denote a ranking over items, where y(p) = i means that
item i is ranked at position p. The mAP metric emphasizes the top recommendations.
For any k ≤ τ , the precision at k (πk) is defined as the proportion of correct recom-
mendations within the top-k of the predicted ranking (assuming the ranking y does not
contain the visible songs),

πk(u, y) =
1

k

k∑
p=1

ruy(p)

For each user the (truncated) average precision is the average precision at each recall
point:

AP (u, y) =
1

τu

τ∑
p=1

πk(u, y)ruy(p)

where τu is the smaller between τ and the number of user u’s positively associated
songs. Finally, the average of AP (u, yu)’s over all users gives the mean average preci-
sion (mAP).



3.3 Results

The result obtained on the HV data with the baseline (recommendation by popularity) is
presented in Table 1(a). With this strategy, each song i simply gets a score proportional
to the number of users |U(i)| which listened to the song.

In Table 1, we also report on experiments that show the effect of the locality param-
eter q for different strategies: item based and user based (both conditional probability
and cosine versions). As we can see, beside the case IS with cosine similarity (Table
1c), a correct setting of the parameter q drammatically improves the effectiveness on
HV data. We can clearly see that the best performance is reached with the conditional
probability on an item based strategy (Table 1b).

Method mAP@500
Baseline (Recommendation by Popularity) 0.02262

(a)

IS (α = 0) mAP@500
q=1 0.12224
q=2 0.16581
q=3 0.17144
q=4 0.17004
q=5 0.16830

(b)

IS (α = 1
2

) mAP@500
q=1 0.16439
q=2 0.16214
q=3 0.15587
q=4 0.15021
q=5 0.14621

(c)

US (α = 0) mAP@500
q=1 0.08030
q=2 0.10747
q=3 0.12479
q=4 0.13298
q=5 0.13400
q=6 0.13187
q=7 0.12878

(d)

US (α = 1
2

) mAP@500
q=1 0.07679
q=2 0.10436
q=3 0.12532
q=4 0.13779
q=5 0.14355
q=6 0.14487
q=7 0.14352

(e)
Table 1: Results obtained by the baseline, item-based (IS) and user-based (US) CF
methods varying the locality parameter (exponent q) of the similarity function.

In Figure 1, results obtained fixing the parameter q and varying the parameter α for
both user-based and item-based recommendation strategies are given. We see that, in
the item-based case, the results improve when setting a non-trivial α. In fact, the best
result has been obtained for α = 0.15.

Finally, in Table 2, two of the best performing rankers are combined, and their
recommendation aggregated, by using the stochastic algorithm described in Section 2.5.
In particular, in order to maximize the diversity of the two rankers, we aggregated an
item-based ranker with a user-based ranker. We can see that the combined performance
improves further on validation data. Building alternative and effective rankers based on
available meta-data is not a trivial task and it was not the focus of our current study. For
this we decided to postpone this additional analysis to a near future.

3.4 Comparison with other approaches

We end this section by comparing our with other approaches that have been used in
the challenge. Best ranked teams all used variants of memory based CF, besides the
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Fig. 1: Results obtained by item-based (IS) and user-based (US) CF methods varying
the α parameter.



(IS, α = 0.15, q = 3) (US, α = 0.3, q = 5) mAP@500
0.0 1.0 0.14098
0.1 0.9 0.14813
0.2 0.8 0.15559
0.3 0.7 0.16248
0.4 0.6 0.16859
0.5 0.5 0.17362
0.6 0.4 0.17684
0.7 0.3 0.17870
0.8 0.2 0.17896
0.9 0.1 0.17813
1.0 0.0 0.17732

(a)
Table 2: Results obtained aggregating the rankings of two different strategies, item-
based (IS, α = 0.15, q = 3) and user-based (US, α = 0.3, q = 5), with different
combinations.

5-th ranked team that used the Absorption algorithm by YouTube [2] which is a graph
based method that performs a random walk on the rating graph to propagate preferences
information over the graph. On the other side, matrix factorization based techniques
showed a very poor performance on this task and people working on that faced serious
memory and time efficiency problems. Finally, some teams tried to inject meta data
information in the prediction process with scarse results. In our opinion, this can be due
to the fact that there is a lot of implicit information contained in the user’s history and
this is much more than explicit information one can get from metadata. We conclude
that meta data information can be more effectively used in a cold start setting.

4 Conclusion

In this paper we have presented the technique we used to win the MSD challenge.
The main contributions of the paper are: a novel scoring function for memory based
CF that results particularly effective (and efficient) on implicit rating settings and a
new similarity measure that can be adapted to the problem at hand. In the near future
we want to investigate on the possibility of using metadata information to boost the
performance and in a more solid way to aggregate multiple predictions.
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