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ABSTRACT

In this paper, an effective collaborative filtering algorithm for top-
N item recommendation with implicit feedback is proposed. The
task of top-N item recommendation is to predict a ranking of items
(movies, books, songs, or products in general) that can be of inter-
est for a user based on earlier preferences of the user. We focus
on implicit feedback where preferences are given in the form of bi-
nary events/ratings. Differently from state-of-the-art methods, the
method proposed is designed to optimize the AUC directly within
a margin maximization paradigm. Specifically, this turns out in a
simple constrained quadratic optimization problem, one for each
user. Experiments performed on several benchmarks show that our
method significantly outperforms state-of-the-art matrix factoriza-
tion methods in terms of AUC of the obtained predictions.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous; H.3.3
[Information Storage and Retrieval]: Information Search and
Retrieval

Keywords

Collaborative Filtering; Top-N Recommendation; Implicit Feed-
back; AUC optimization

1. INTRODUCTION
Collaborative filtering aims at improving customer experience in

e-commerce applications. These techniques exploit the history of
user interactions to improve future recommendations to users. Dif-
ferent types of interactions can be stored and used. For example, a
user can be asked a vote, a rate, or a degree of satisfaction for some
of the items available. The system can also keep the history of user
purchases autonomously, browsing activity of the users, etc. The
former case is commonly called explicit feedback while the latter is
usually referred to as implicit feedback.

In a collaborative recommender system we have a set U of n
users, a set I of m items, and a user-item rating matrix R =
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{rui} ∈ R
n×m representing, for any user and item, how much

user u likes item i. In this paper, we assume implicit feedback and
binary ratings, that is rui ∈ {0, 1}. A value rui = 1 means that the
user u rated the item i, while a value rui = 0 means not availability
of information about whether user u likes item i.

There are two principal recognized approaches to collaborative
filtering [1]. On one hand, model-based collaborative filtering,
a.k.a. matrix factorization (MF) aims at constructing a model of
the matrix R. There are several proposed methods of this type, in-
cluding Bayesian models, clustering models, classification, and re-
gression models. On the other side, there are memory-based (MB)
collaborative filtering methods where similarities among users (or
items) are computed on the basis of the training ratings and the pre-
diction is made on the basis of these similarities.

As shown in this paper, the two approaches above can be seen
in the same optimization framework where a matrix factorization
has to be found. Specifically, in the memory based approaches,
like user-based and item-based nearest neighbors, particular factor-
izations are fixed a-priori and no actual train needs to be performed.

Despite MF is recognized to be the state-of-the-art technique in
collaborative filtering, typically much better than MB techniques,
MF has some drawbacks that made it impractical and unsuccessful
sometimes. First of all, training the corresponding model is compu-
tationally onerous and this fact is crucial when the size of the matrix
R is very large. Second, since MF is typically modelled as a regres-
sion problem, then it seems unsuitable for implicit feedback tasks
and some modifications to the original technique are needed [4].
Third, MF techniques typically solve the associated non convex
minimization problem by using gradient descent algorithms which
do not guarantee the convergence to a global minimum and, it is
well known, the rate of convergence is quite low when near to local
minima. Finally, the high number of parameters to optimize, the
sparsity of the rating matrix, and no apriori knowledge available
can possibly lead to overfitting and strong validation and/or early-
stopping of the stochastic gradient descent is often necessary.

In this paper we propose a solution lying midway between the
two extreme approaches of MB and MF. In particular, we cast
the problem into a instance ranking one and we propose a convex
quadratic optimization framework for the optimization of AUC.

2. TOP-N RECOMMENDATION
In the top-N recommendation setting, for each user u, there are

available a subset I(u) ⊂ I of items that have been rated by the user
and the task is to predict a ranking of the items not yet rated such



that most of another set Ī(u) ⊆ I− I(u) of items are in the first N
positions of the ranking. In this paper, we indicate as U(i) = {u ∈
U|i ∈ I(u)} ⊂ U the subset of users that have rated the item i in
the initial set and Ū(i) = {u ∈ Ū|i ∈ Ī(u)} ⊆ U−U(i) the subset
of users that have rated the item i in the test set. By construction,
the sets are chosen such that I(u) ∩ Ī(u) = φ. We also define
m+

u = |I(u)| and m−
u = m−m+

u .
In the following we indicate by R = {rui} ∈ R

n×m the initial
rating matrix such that rui = 1 whenever i ∈ I(u) and rui = 0
otherwise, and by R̄ = {r̄ui} ∈ R

n×m the test rating matrix such
that r̄ui = 1 whenever i ∈ Ī(u) and r̄ui = 0 otherwise.

3. COLLABORATIVE FILTERING
In this section, we consider a general framework where many

different approaches can be cast. Let the matrix W ∈ R
n×k

be the embedding of users in a factor space of dimension k with
users representations wu ∈ R

k as rows. Similarly, let the matrix
X ∈ R

k×m be the embedding of items in the same factor space
with items representations xi as columns. A recommendation is
performed on the basis of the ranking induced by the following
factorization:

R̂ = WX

The factorization parameters are typically computed minimizing a
functional

P(R,W,X) = L(R,WX) +R(W,X)

where L(R,WX) is the training loss, that is a measure of the dis-
crepancy between the initial rating matrix and the obtained approx-
imated matrix, and R(W,X) is a regularization term.

Now, we review well known state-of-the-art methods in the frame-
work above. We start with user-based NN and item-based NN pre-
diction although in these cases there is a fixed embedding and no
real training has to be performed.

User-based NN prediction.
In the user-based NN case the embedding is performed in R

n,
the space of users, according to:

w
(v)
u =

{
suv if v ∈ NN(u)
0 otherwise

, suv = cos(ru, rv) =
r⊤u rv

||ru||||rv ||

x
(v)
i =

rvi
||ri||

i.e. xi =
ri

||ri||

Item-based NN prediction.
In this case, the embedding is performed in R

m, the space of
items, according to:

w
(j)
u =

ruj
||ru||

i.e. wu =
ru

||ru||

x
(j)
i =

{
sij if j ∈ NN(i)
0 otherwise

and sij = cos(ri, rj) =
r⊤i rj

||ri||||rj ||

Weighted Regularized Matrix Factorization (WR-MF).

In WR-MF, both the user embedding and the item embedding
have to be trained. These embeddings are performed in a common
space of dimension k, which is an external parameter, and the opti-
mization problem consists of a regularized weighted squared loss

P(R,W,X) =
∑

u∈U

∑

i∈I

cui(r̂ui − 1)2 + λ(||W||2 + ||X||2)

where cui are apriori given weights for each (rated and unrated)
item. The coefficients of positive feedback typically gets a greater
value (see [6, 4]).

SLIM (Sparse Linear Method).
The method in [5] can be cast in our framework as well. In this

case, the embedding is performed in item space (k = m). SLIM
learns a sparse matrix X ∈ R

m×m by minimizing a least square
loss LS(R,XW) such that xij ≥ 0, xii = 0. Specifically, the
regularization term is R(W,X) = β

2
||X||2F +λ||X||1 where β, λ

are two external parameters. The matrix W is fixed (W = R).

Bayesian Personalized Ranking (BPR).
The method in [7] learns the two embeddings in a factor space

of dimension k (external parameter). The optimization problem is
obtained by a Bayesian interpretation of AUC maximization and it
is defined by:

P(R,W,X) =
∑

u∈U

∑

i∈I

ln(σ(r̂ui− r̂uj))+λw||W||2+λx||X||2

where σ(·) is the sigmoid function and λw, λx are external param-
eters. The problem is clearly not convex and the training is per-
formed by stochastic gradient descent.

4. MARGIN AND AUC OPTIMIZATION
As seen in the previous sections, typical approaches to collabo-

rative filtering cast the problem of item recommendation as a reg-
ularized regression problem [4, 6, 5]. This means that they try to
fit the matrix R with a regularized function that should predict val-
ues close to 1 for rated items and values close to 0 for unrated
items. For the regression case, a natural choice of a loss to opti-
mize is the least square loss. Even if this choice has been shown to
be very good for explicit feedback, where the evaluation is usually
performed with RMSE, this seems less suited to the implicit feed-
back setting where different ranking-based evaluation measure, like
AUC, mean average precision, etc., are preferred.

In this paper, we propose a different paradigm inspired to prefer-
ence learning and instance ranking [3] by considering preferences
on pairs of items of a user. In particular, we consider a user pre-
ferring an item i over an item j (i ≻u j) whenever the user u has
rated item i but we have not information about the user preference
on item j. Moreover, we assume that users act independently, that
is, the fact that a user has ranked or not an item gives no additional
information about what other users do. With this hypothesis any
user can be modeled independently.

In our model a user ranks items based on the usual scoring func-
tion r̂ui = w⊤

u xi but with the additional constraint that the vectors
wu and xi are enforced to be unitary norm vectors. Note that, given
this assumption, we have |r̂ui| ≤ 1 since |r̂ui| ≤ ||wu|| · ||xi|| = 1
always holds.

In the following, we focus on a fixed item representation, namely
the same used by user-based NN method, i.e. xi = ri/||ri||.

Given a user, we define the margin for a item pair (i, j) such that
i ≻u j, and we denote it by ρ(i ≻u j), as in the following:

ρ(i ≻u j) =
1

2
(r̂ui − r̂uj) =

1

2
w

⊤
u (xi − xj).

Note that −1 ≤ ρ(i ≻u j) ≤ +1 holds for any pair of items.
The function ρ(i ≻u j) well approximates the indicator function
Jr̂ui > r̂ujK having value 1 when a pair is correctly ranked or 0
otherwise. In particular, we have that the margin is a non trivial



lower bound of the indicator function:

−1 ≤ ρ(i ≻u j) ≤ Jr̂ui > r̂ujK ≤ +1.

Following the same line as in [2] we consider for each user u the
following game. Let Pmin (the nature), and Pmax (the player). On
each round of the game, Pmax picks an hypothesis wu such that
||wu|| = 1, and simultaneously Pmin picks a preference i ≻u j.
Pmax wants to maximize its pay-off defined as the achieved margin
on the pair of items which, in our setting, is defined by ρ(i ≻u j).

Let now be given a mixed strategy for the Pmin player defined
by two probability distributions: α+

u , the probability of each posi-
tive item to be selected, and α

−
u the corresponding probabilities for

negative items. We can assume these probabilities can be marginal-
ized as the associated events are independent. In other words, the
probability to pick the pair (i ≻u j) is simply given by α+

uiα
−
uj .

Hence, the value of the game, i.e. the expected margin obtained in
a game, will be:

Eα[ρ] =
1

2

∑

i∈I(u),j /∈I(u)

α+
uiα

−
uj(w

⊤
u xi −w

⊤
u xj)

When the player Pmin is free to choose any possible strategy, the
following problem is obtained that determines the equilibrium of
the game, that is

(w∗
u,α

∗
u) = arg max

||wu||=1
min

α∈C(u)
Eα[ρ]

where C(u) = {α|αi ≥ 0,
∑

i∈I(u) αi = 1,
∑

i/∈I(u) αi = 1}.
The expected margin can now be reformulated as follows:

Eαu
[ρ] =

1

2

∑

i∈I(u)

∑

j /∈I(u)

αuiαuj(r̂ui − r̂uj)

=
1

2
(
∑

i∈I(u)

αuir̂ui
∑

j /∈I(u)

αuj

︸ ︷︷ ︸

=1

−
∑

j /∈I(u)

αuj r̂uj
∑

i∈I(u)

αui

︸ ︷︷ ︸

=1

)

=
1

2

∑

i∈I

yuiαuir̂ui =
1

2

∑

i∈I

yuiαuiw
⊤
u xi

=
1

2
w

⊤
u XYuαu

where we set

yu : yui =

{
+1 if i ∈ I(u)
−1 if i /∈ I(u)

and Yu = diag(yu).

Setting vu = XYuαu, then the wu maximizing the expected
margin is simply defined by w∗

u = cvu, where c = ||vu||
−1. Note

that, since c depends on the user only, then the ranking of items
induced by w∗

u is the same as the one induced by vu. Substituting
back the obtained solution for wu, we obtain:

Eαu
[ρ] =

1

2

∑

i∈I

yuiαuiw
⊤
u xi

=
1

2||vu||

∑

i∈I

yuiαuiv
⊤
u xi

=
v⊤
u vu

2||vu||
=

1

2
||vu||

Every element of the set C(u) represents two points, one in the con-
vex hull of positive items, that isx+ =

∑

i∈I(u) αuixi, and another

in the convex hull of negative items, that is x− =
∑

j /∈I(u) αujxj ,
for any given user. It is possible to show that vu corresponds to the

vector starting from x− and ending in x+, that is vu = x+ − x−.
As shown above, the expected margin is proportional to the length
of this vector.

Given the game defined above, we see now that the expectation
of the margin is also a lower bound of the expected AUC obtained
in the game for that user. In fact, given the probability distributions
α ∈ C(u) we get:

AUCα(u) =
∑

i∈I(u),j /∈I(u)

αuiαujJr̂ui > r̂ujK

≥
∑

i∈I(u),j /∈I(u)

αuiαujρ(i ≻u j) = Eαu
[ρ]

As discussed in [2] for the classification case, the pure maxi-
mization of the minimum margin is not necessarily the best choice.
Especially in our case, noise is always present in the negative set of
items. For this, we consider two quadratic regularization terms that
give a bias towards uniform solutions for α, namely αui = 1/m+

u

whenever i ∈ I(u) and αuj = 1/m−
u whenever j /∈ I(u). In the

experiments we will see that an imbalanced setting of these regu-
larization parameters is crucial for the effectiveness of our method.

For each user, we define the following optimization problem
with the aim to maximize the expected margin and the AUC lower
bound:

min
αu∈C(u)

Q(αu) +R(αu)

where

Q(αu) = ||vu||
2 = α

⊤
uYuX

⊤
XYuαu

R(αu) = λp

∑

i∈I(u)

α2
ui + λn

∑

i/∈I(u)

α2
ui

Rearranging the terms in matrix form we obtain:

α
∗
u = arg min

αu∈C(u)
α

⊤
u

(

YuX
⊤
XYu +Λ

)

αu

where the diagonal matrix Λ is defined as follows:

Λ : Λ(i, j) =







λp if i = j and i ∈ I(u)
λn if i = j and i /∈ I(u)
0 otherwise

This problem is convex quadratic and can be optimized with any
tool for convex optimization. For our experiments, we used Python
and the CVXOPT package1 .

Note that, when λp, λn = +∞, it is possible to show that the
optimization problem has a closed form solution, that is

wu ∝
1

m+
u

∑

i∈I(u)

xi −
1

m−
u

∑

j /∈I(u)

xj .

5. EXPERIMENTS
The datasets used for the evaluation have been extracted from

MovieLens1M (ML1M), NetFlixSmall (NFS), BookCrossing (BX).
All these datasets correspond to multi-value ratings that we con-
verted into binary ratings (rated/non-rated). In particular we used
the following three datasets2:

1M. S. Andersen, J. Dahl, and L. Vandenberghe. CVXOPT: A
Python package for convex optimization, version 1.1.6. Available
at cvxopt.org, 2013.
2http://www.math.unipd.it/~aiolli/DATA/RECSYS14/



Dataset Our Method WRMF

ML1M (3850,2273) 0.89886 0.88630
NFS (2979,2544) 0.89550 0.87309
BX (1609,1629) 0.74200 0.73932

Table 1: AUC comparisons. Our method vs. WRMF (in parenthe-
sis the number of users and items of the subset).

λp \ λn 1 10 100 1000 10000

0.01 0.87751 0.89714 0.89768 0.89631 0.89612
0.1 0.87809 0.89762 0.89792 0.89646 0.89626
1 0.87961 0.89886 0.89779 0.89584 0.89557

10 0.87926 0.89764 0.89376 0.89065 0.89023
100 0.87897 0.89692 0.89178 0.88813 0.88763
1000 0.87903 0.89685 0.89151 0.88777 0.88727

Table 2: ML1M AUC results varying the external parameters

1. ML1M. The ML1M3 dataset is a subset of the MovieLens1M
movie-related data corresponding to users who rated from 20
to 500 items and items being rated by from 20 to 500 users.

2. NFS. The NFS dataset4 is a subset of the NetFlixSmall movie-
related data corresponding to users who rated from 20 to 500
items and items being rated by from 5 to 500 users.

3. BX. The BX5 dataset is a subset of the BookCrossing book-
related data corresponding to users who rated from 10 to 500
items and items being rated by from 10 to 500 users.

To evaluate the performance of the proposed method, and com-
pare it with other methods, 5-fold cross-validation has been em-
ployed. We first compared all the state-of-the-art methods described
in this paper (UserBased and ItemBased NN, WRMF, SLIM, and
BPR). MyMediaLite6 implementations of these methods has been
used. WRMF performed similar to BPR and better than SLIM and
it has been selected for direct comparison with our method (see
Table 1). Note that this partially contradicts results presented in
the original paper [5] where they were presented in terms of HR
(leave-one-out). Worse performance of SLIM can be due to the fact
that it is based on least-square/regression and does not weights dif-
ferently positive (unambiguous) and negative (ambiguous) implicit

3http://grouplens.org/datasets/movielens/
4http://www.netflixprize.com/
5http://www.informatik.uni-freiburg.de/~cziegler/BX/
6http://mymedialite.net/

λp \ λn 1 10 100 1000 10000

0.01 0.85428 0.88473 0.89414 0.89466 0.89469
0.1 0.85400 0.88490 0.89440 0.89489 0.89492
1 0.85396 0.88590 0.89507 0.89547 0.89550

10 0.85220 0.88412 0.89388 0.89416 0.89415
100 0.85159 0.88357 0.89319 0.89469 0.89337
1000 0.85290 0.88358 0.89309 0.89327 0.89326

Table 3: NFS AUC results varying the external parameters

λp \ λn 1 10 100 1000 10000

0.01 0.69457 0.72075 0.73837 0.74087 0.74114
0.1 0.69483 0.72106 0.73867 0.74112 0.74175
1 0.69473 0.72165 0.73925 0.74175 0.74200

10 0.69244 0.71965 0.73751 0.74012 0.74039
100 0.69179 0.71893 0.73683 0.73939 0.73966
1000 0.69184 0.71897 0.73676 0.73931 0.73957

Table 4: BX AUC results varying the external parameters

feedback. From the table we can note that our method outperforms
the state-of-the-art method in terms of AUC. We observed the same
trend when using other top-N measures (e.g. map@10).

Further analysis has been done to demonstrate the robustness of
the proposed method with respect to the setting of external param-
eters. In Tables 2,3,4, the results obtained with different settings
show that λp ≈ 1, λn ≈ 1000 always give good results and this is a
great advantage of our method with respect to other state-of-the-art
methods that typically are more sensitive to the external parameter
setting and often require heavy parameter tuning to work well.

Finally, we can note that the results of our method tend to get
worse for big λp values or small λn values. In the case of λp

(unambiguous information parameter), smaller values allows the
model to (safely) optimize the minimum margin in the training set.
In the case of λn, small values tend to make the ambiguous infor-
mation to be too relevant in the construction of the model and this
introduces erroneous information in the final model estimate. On
the other side, larger λn values tend to mitigate the negative ef-
fect of ambiguous information on the constructed model and this
explains why so high values of λn are preferable in our context.

6. CONCLUSIONS AND FUTURE WORK
We presented an effective method for AUC optimization of top-

N recommendation with implicit feedback. Future work will ex-
tend the method to learn in a principled way the user and item em-
beddings simultaneously.
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