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Abstract

The preference learning model introduced in this paper
gives a natural framework and a large-margin principled
solution for a broad class of supervised learning problems
with structured predictions, including ranking-based pre-
dictions (label and instance ranking), hierarchical classifi-
cation, and ordinal regression. We show how all these prob-
lems can be cast as linear problems in an augmented space,
and we propose a stochastic gradient method to efficiently
solve them. Experiments performed on an ordinal regres-
sion task confirm the generality and the effectiveness of the
approach.

Keywords:Supervised Learning, Ranking, Ordinal Re-
gression, Preferences.

1 Introduction

Supervised learning deals with algorithms that give ma-
chines the ability to learn from experience. Many real-world
learning problems are characterized by heterogeneous tasks
which currently cannot be solved by general-purpose algo-
rithms. These include ranking-based problems (either label
or instance ranking) and ordinal regression. The typical ap-
proach followed to cope with these complex problems is
to map them into a series of simpler, well-known settings
and then to combine the resulting predictions. Often, these
solutions lack a principled theory and/or require too much
computational resources to be practical for data-mining ap-
plications.

Although some efforts have been recently made to gen-
eralize label ranking tasks [7, 5, 2], a general framework
and a theory encompassing all these supervised learning set-
tings is missing. In this paper we propose a quite detailed
taxonomy of supervised learning problems, based on the
different type of predictions and the supervision involved.
Then, we show how supervision can be seen as a set of or-
der preferences over the predictions of the learner. Finally,

we show how all these problems can be seen as linear bi-
nary problems defined on an augmented space, thus sug-
gesting very simple optimization procedures available for
the binary case.

Another contribution of this paper is to define a prefer-
ence model which is very flexible and allows a user to op-
timize the parameters on the basis of a proper evaluation
function. Often, while the goal of a problem in terms of its
evaluation function is clear, a crucial thing in the design of
learning algorithms is how to define them in such a way to
have some theoretical guarantee that a learning procedure
leads to the effective minimization of that particular cost
function. The model introduced in this paper gives a natural
and uniform way to encode the cost function of a supervised
learning problem and plug it into a learning algorithm.

In Section 2, starting from a definition of a detailed tax-
onomy of supervised learning tasks, the proposed learning
model is presented. Examples of instantiations of the model
to supervised learning problems is presented in Section 3.
In Section 4, we propose principled batch and efficient on-
line optimization procedures for training the model. Finally,
in Section 5 the experimental results are presented.

2 A Model for Supervised Learning

In supervised learning, we assume supervision is pro-
vided according to an unknown probability distributionD.
Generally, it consists of pairs, example and corresponding
correct prediction. For reasons that will be clearer in the
following, we prefer to consider supervision as (soft) con-
straints over the learner predictions, that is constraints whose
violation entails a cost for the solution. Specifically, assum-
ing a learner makes its predictions on the basis of a set of
parametersΘ, characterizing itshypothesis space, supervi-
sionS makes the learner suffering a costc(S|Θ). This sub-
sumes the case of supervision as pairs previously pointed
out. In fact, this is obtained when a unitary cost is given to
hypotheses generating an incorrect labeling.
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Two main settings of learning can be identified. In the
on-line paradigm, learning takes place in rounds. At each
step the learner receives supervision and updates its parame-
ters with the aim to minimize future costs. Inbatchlearning
a training setS = {S1, . . . , Sn} is available where theSi

are supposed to be drawni.i.d. from D and a single train-
ing session is made with the explicit goal to minimize the
expected cost on the true distributionD.

Different learning problems are often characterized by
different types of prediction and supervision. Nevertheless,
we will show that a broad set of them can be studied in a
common framework, whose general setting is as follows.
We consider a spaceX of instances and a spaceY of la-
bels (both sets possibly infinite). Moreover, we assume the
hypothesis space, based on which the learner makes its pre-
dictions, to consist ofrelevance functions

u : X × Y → R,

depending on some set of parametersΘ. The goal of the
learner is then to select a function̂u from its hypothesis
space, which is ”consistent” with the supervision in a sense
that will depend on the particular setting.

2.1 Prediction and Supervision

In this section, we present a detailed taxonomy of the
main supervised learning tasks organized on the basis of the
required predictions and supervision. To this end, we first
need to define order relations.

A partial order is a pair(P,º) whereP is a set andº
is a reflexive, antisymmetric and transitive binary relation.
A partial rankingof lengthr is a partial order where the set
P can be partitioned inr setsP1, . . . ,Pr such thatz ∈ Pi,
z′ ∈ Pj , i < j, impliesz º z′ and no further information is
conveyed about the ordering within subsetsPk. A full order
onP is defined as a partial ranking of length|P|. We denote
by PO(P), PR(P), andFO(P) the set of partial orders,
partial rankings and full orders over the setP, respectively.

2.1.1 Label Rankings

A first important family of supervised learning tasks is re-
lated to the ordering of the classes on the basis of their rele-
vance for an instance. This family of problems is referred to
aslabel rankings. Problems in this family take supervision
in the form of general partial orders over the classes. In our
notation, givenx ∈ X , Y ⊆ Y, we haveS ∈ PO(Y ) and
predictions are inFO(Y ). A few well-known instances are
listed in the following:

Category Ranking (CR) In this setting, the goal is to order
categories on the basis of their relevance for an instance. As

an example, in a collaborative filtering setting, users could
correspond to our instances and the different movies to our
classes. Then, one could be interested into the ordering (by
relevance) of the set of movies based on user preferences.
This is trivially a particular case of label ranking where su-
pervision is given as full orders overY .

Bipartite Category Ranking (BCR) In this task, supervi-
sion is given as two groups of classes and it is required
to predict full orders in which the first group of classes is
ranked over the second. As a leading example, in infor-
mation retrieval, given a document, one might have to rank
the available topics with the aim to return the most relevant
topics on the top of the list. This is again a specific case of
label ranking where supervision is given as partial rankings
of length two. This task has been also referred to as cate-
gory ranking in literature [4]. Here a different terminology
is adopted to avoid confusion between these two different
tasks.1

Sometimes, we are also interested in predictions consist-
ing of the most relevant classes, that is, of a prefix of the full
order induced by the relevance functionu(x, y). This fam-
ily of tasks is commonly referred to asclassificationprob-
lems. They can however be considered as subcases of the
BCR ranking task. A few examples of this kind of prob-
lems, listed by increasing specificity, is given here:

q-label classification (QC) In this task, the goal is to se-
lect theq most appropriated classes for a given instance,
with q fixed. The supervision here is a partial ranking of
length two where a set of exactlyq labels are preferred over
the rest.

Single-label classification (SC) In this well-known clas-
sification task, the goal is to select exactly one class (the
most relevant) for an instance. This is a trivial subcase of
QC with q = 1.

2.1.2 Instance Rankings

Another interesting family of tasks isinstance rankingswhere
the goal is to order instances on the basis of the relevance
of a given class. In our notation, giveny ∈ Y, X ⊆ X , pre-
diction is in FO(X) and supervision is given in the form
S ∈ PO(X).

The duality with respect to label rankings is self-evident.
In principle, a corresponding problem setting could be de-
fined for each of the label ranking settings. We can easily

1Note that this task and the two that follow, are conceptually different
from the task to decide about the membership of an instance. Here, super-
vision only givesqualitative information about the fact that some classes
are more relevant than others.
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see that the well-known task, commonly known as(Bipar-
tite) Instance Ranking(IR), corresponds to BCR and is the
one to induce an order such that a given set of instances
is top-ranked. A natural application of this kind of predic-
tion is in information retrieval, e.g. when listing the results
returned by a search engine. Similarly to BCR, here su-
pervision consists of partial rankings (this time over the set
X) of length two. Another interesting task which can be
considered in this family is the one to learn preference re-
lations from a given set of ranked instances. For example,
an information retrieval task is that to learn the preference
relations on the basis of basic preferences given as pairs of
documents [8].

The two families of tasks above can be consideredqual-
itative taskssince they are concerned with order relations
between instance-class pairs. On the other side,quantita-
tive tasksare the ones which are more concerned with the
absolute values of the relevance of instance-class pairs.

2.1.3 Quantitative Predictions

Sometimes there is the necessity to do quantitative predic-
tions about data at hand. For example, in binary classifica-
tion, one has to decide about the membership of an instance
to a class as opposed to rank instances by relevance. These
settings are not directly subsumed by the settings presented
above. As we will see this can be overcome by adding a set
of thresholds and doing predictions based on these thresh-
olds.

Multivariate Ordinal Regression(MOR) There are many
settings where it is natural to rank instances according to an
ordinal scale, including collaborative filtering, where there
is the need to predict people ratings on unseen items. Bor-
rowing the movie-related application introduced above, suit-
able ranks for movies could be given as ’bad’, ’fair’, ’good’,
and ’recommended’. With no loss in generality, we can con-
sider the target space as the integer setZ = {0, . . . , R− 1}
of R available ranks. Following an approach similar to the
one in [10], ranks are made corresponding to intervals of
the real line. Specifically, a set of thresholdsT = {τ0 =
−∞, τ1, . . . , τR−1, τR = +∞} is defined and the predic-
tion is based on the rule

ẑ = {i : u(x, y) ∈ (τi−1, τi)}.

Given the target labelz, a correct prediction will be con-
sistent with the conditions:u(x, y) > τi wheni < z and
u(x, y) < τi wheni ≥ z.

The well-known(Univariate) Ordinal Regression(OR)
[9, 12] task is a trivial subcase of MOR when a single class
is available.

Multi-label Classification (MLC) In this task, it is re-
quired to classify instances with a subset (the cardinality of
which is not specified) of the available classes. For us, it is
convenient to consider this task as a MOR problem where
only two ranks are available, relevant and irrelevant, and
Z = {0, 1}.

The well-knownBinary Classification(BC) can be con-
sidered a subcase of OR with two ranksZ = {0, 1}. Note
that this task is considered here conceptually different from
SC with two classes.

Clearly, the taxonomy presented above is not exhaustive
but highlights how many different kinds of structured super-
vision can be seen as simple constraints over the predictions
of a learner. Specifically, they consist of constraints in con-
junctive form (here referred to aspreference sets, or p-sets)
where each basic preference is defined over the scoring val-
ues and/or some threshold value.

In particular, we can differentiate between two types of
order preferences:qualitativepreferences in the form

(u(xi, yr), u(xj , ys))

telling that the value ofu(xi, yr) should be higher than the
value ofu(xj , ys), andquantitativepreferences in the form

(u(x, y), τ) or (τ, u(x, y)), τ ∈ R

relating the value ofu(x, y) to a given thresholdτ .
In Table 1, a summary of supervision obtained for the

most general settings are presented. Particular instantiations
to more specific problems are immediate anyway.

Setting Supervision P-sets
LR {(u(x, yr), u(x, ys))}(x,yr)ºS(x,ys)

IR {(u(xi, y), u(xj , y))}(xi,y)ºS(xj ,y)

MOR {(u(x, y), τi)}i<z ∪ {(τi, u(x, y))}i≥z

Table 1. Supervision of problems in Section
2.1. Label and instance rankings (LR and IR
respectively), have a preference for each or-
der relation induced by the supervision S. In
ordinal regression (MOR), a preference is as-
sociated to each threshold and z ∈ Z is the
rank given by the supervision.

2.2 A Model for the Learner

In the following, we will focus on a particular form of
the relevance function, that is

u(x, y) = w · φ(x, y)
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whereφ(x, y) ∈ Rd is a joint representation of instance-
class pairs andw ∈ Rd is a weight vector [11]. Note that
this form encompasses the more standard formu(x, y) =
wy ·φ(x) which has a weight vector for each different label.
In fact, if |Y| = m, we can write:

w = (w1, . . . , wm)

and
φ(x, y) = (0, . . . ,0︸ ︷︷ ︸

y−1

, φ(x),0, . . . ,0).

With this assumption, it is possible to conveniently re-
formulate an order constraint as a linear constraint. Let
T = {τ1, . . . , τR−1} be the available thresholds, in the
qualitative case, givena ≡ (u(xi, yr), u(xj , ys)), we ob-
tain

u(xi, yr) > u(xj , ys) ⇔
(w, τ1, . . . , τR−1) · (φ(xi, yr)− φ(xj , ys), 0, . . . , 0︸ ︷︷ ︸

R−1

)

︸ ︷︷ ︸
ψ(a)

> 0

Viceversa, in the quantitative case, givenδ ∈ {−1, +1},
we have

δ(u(x, y)− τr) > 0 ⇔
(w, τ1, . . . , τR−1) · (δφ(x, y), 0, . . . , 0︸ ︷︷ ︸

r−1

,−δ, 0, . . . , 0︸ ︷︷ ︸
R−r−1

)

︸ ︷︷ ︸
ψ(a)

> 0.

In general, we can see that supervision constraints of all
the problems discussed above, can be reduced into sets of
particular linear preferences of the formw ·ψ(a) > 0 where
w = (w, τ1, . . . , τR−1) is the vector of weights augmented
with the set of available thresholds andψ(a) is an opportune
representation of the preference under consideration.

The quantity

ρA(a|w) = w · ψ(a)

will be also referred to as the margin of the hypothesis w.r.t.
the preference. Note that this value is greater than zero
when the preference is satisfied and less than zero other-
wise. We will say that a preferencea is consistentwith an
hypothesis whenρA(a|w) > 0 (and we writea @ w). The
margin of an hypothesis w.r.t. the whole supervisionS, can
be consequently defined as the minimum of the margins of
preferences ing[S], i.e.

ρ(g[S]) = min
a∈g[S]

ρA(a).

This definition turns out to be consistent with definitions
of the margin commonly used in different problems. In par-
ticular, the margin is positive if and only if the prediction is
consistent with the supervision.

Summarizing, all the problems defined in the taxonomy
in Section 2.1 can be seen as an homogeneous linear binary
problem in a opportune augmented space. Specifically, any
algorithm for linear classification (e.g. perceptron or linear
programming) can be used to solve it, provided the problem
has a solution.

2.3 Evaluation and GPLM

The mere consistency of supervision constraints is not
necessarily the ultimate goal of a supervised learning set-
ting. Rather, cost functions are often preferred measuring
the disagreement between the current hypothesis and the
supervision. These functions may either depend on the par-
ticular structure of the prediction or other factors.

In [2] a general model for label rankings has been pro-
posed. Here, we extend the same idea to general super-
vised settings by mapping supervision into sets of prefer-
ences with costs. We will refer to this method asGeneral-
ized Preference Learning Model(or simply GPLM).

Definition 2.1 Preference Sets w/ CostsA (conjunctive)
preference set with costs, or simply”cp-set”, is a p-set where
preferences have costs associated. Preferences of a cp-set
will be denoted byaγ(a). When the cost is not indicated
γ(a) = 1 will be considered.

With this definition in mind, given a cp-setg, an hypoth-
esis suffers a cost which is defined as the maximum among
the costs of its unfulfilled preferences, i.e.

c(g|w) = max
a∈g,a 6vw

γ(a). (1)

In GPLM, we consider supervisionS as a p-setg[S] and
we consider a cost mapping

G : g[S] 7→ {g1(S), . . . , gqS (S)}

where each cp-setgi(S) is a subset ofg[S] with some costs
assigned to the preferences.

Once the cost mappingG is fixed, the total cost suffered
by an hypothesisw for the supervisionS is defined as the
cumulative cost of cp-sets, i.e.

c(g[S]|w) =
qS∑

j=1

c(gj(S)|w). (2)

Let gp be a p-set, natural mappings already proposed in
[5] for preference graphs can be easily adapted to our set-
ting. This is made by considering classes of equivalence
among preferences and by defining mappings in which a
different cp-set is built for each partition. Specifically, let
a ≡ (as, ae) anda′ ≡ (a′s, a′e) denote a pair of preferences,
we have the following:
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(i) theidentity mapping, denoted byGI , wheregp is mapped
on a single cp-setgc. This corresponds to define the
trivial equivalence relation(as, ae) ≡ (a′s, a

′
e);

(ii) thedomination mapping, denoted byGD, wheregp is
split into a set of cp-sets on the basis of the equiva-
lence relation(as, ae) ≡ (a′s, a

′
e) ⇔ as = a′s;

(ii) thedominated mapping, denoted byGdom, wheregp is
split into a set of cp-sets on the basis of the equiva-
lence relation(as, ae) ≡ (a′s, a

′
e) ⇔ ae = a′e;

(iv) thedisagreement mapping, denoted byGd, wheregp is
split into a set of cp-sets on the basis of equivalence
relations(as, ae) ≡ (a′s, a

′
e) ⇔ as = a′s ∧ ae = a′e.

3 Examples of GPLM Cost Mappings

In this section, a set of examples of supervised learning
problems and suitable GPLM cost mappings are discussed.
In particular, we show how general the models is and how
many common cost functions can be defined with the tools
offered by our model.

3.1 Cost functions for Label Rankings.

Basic mappings for rankings and classification can be
found in [2] and can be reproduced with the model proposed
in this paper. In fact, it can be shown quite easily that, for
label rankings, PLM preference graphs and GPLM cp-sets
with unitary costs are equivalent.

Applying these simple mappings we are able to repro-
duce many of the different losses used for ranking prob-
lems. For example, the cost mappingGD seems particularly
suitable for q-label classification since it gives a ’soft’ indi-
cation ofhow manyrelevant labels are wrongly classified as
irrelevant. On the other side, theGI mappings gives a cost
function which returns a binary value indicating if any of
the relevant labels are wrongly classified as irrelevant. The
multiclass loss commonly used for single-label classifica-
tion can be obtained using theGI mapping. Note that, using
theGd mapping would have lead to a cost function which re-
turns the number of incorrect classes which have a relevance
higher than the relevance of the correct class. Another ex-
ample is the so calledranking lossthat has been proposed
in [4] for the binary category ranking problem. This cost
function corresponds to the number of pairs which are not
correctly ordered and corresponds to the cost mappingGd.

However, the extension presented here introduces far more
flexibility on the choice of the cost function for label rank-
ings because of the use of cp-sets in place of preference
graphs.

A typical example is classification where misclassifica-
tions can have different costs. This can be the case in single-
label classification when categories are not represented with

the same frequencies in the training and the test set. Another
interesting case is when there is some structure between the
available classes and a different metric for misclassification
costs is introduced. For example, in hierarchical classifi-
cation, it makes sense to pay costs proportional to the path
length in the tree between the true class and the predicted
one. In all these cases, a cost matrix∆ is used to have a
better control over the learning algorithm, where the ele-
ment∆(yr, ys) represents the cost of classifying a pattern
asyr when it is actually inys. In our model, the same can be
easily obtained by associating costs to cp-sets of the GPLM
mapping.

3.2 Cost functions for Instance Rankings

A common loss function used in IR is the so called AUC
(Area under ROC curve) measure. It can be shown that it
directly derives using the cost mappingGd. Interestingly,
our model suggests new possible settings and loss defini-
tions one might use for the tasks in the family of instance
rankings.

3.3 Cost functions for Ratings

A brief review of standard loss functions used for rating
tasks and the implementation in our model is now presented.

Ordinal Regression Recalling the natural definition of
cost for ordinal regression problems, i.e.c = |ẑ(x)−z(x)|,
where ẑ(x) is the rank given as output by the hypothesis
andz(x) the correct rank, we would like to define a cost
mapping for GPLM consistent with the same cost function.

At least two different cost mappings have this property.
The easiest one is the mappingGd. In this case, the re-
sulting cost will be the number of thresholds which are not
correctly ordered w.r.t.u(x, y). This is exactly the cost as
given before. A second possibility is to define a mapping
GI followed by an assignment of costs where ther-th pref-
erence is set to(u(x, y), τr)z−i+r wheneverr ≤ z, and
(τr, u(x, y))r−z otherwise.

As an example of this second situation, consider aR = 4
univariate ordinal regression problem. Then, we have three
thresholdsT = {τ1, τ2, τ3} and cost mappings defined as
in the following:

G(g[0]) = {(τ1, u(x, y))1, (τ2, u(x, y))2, (τ3, u(x, y))3}
G(g[1]) = {(u(x, y), τ1)1, (τ2, u(x, y))1, (τ3, u(x, y))2}
G(g[2]) = {(u(x, y), τ1)2, (u(x, y), τ2)1, (τ3, u(x, y))1}
G(g[3]) = {(u(x, y), τ1)3, (u(x, y), τ2)2, (u(x, y), τ3)1}

It is easy to verify that this mapping respects the costs as
they could be obtained by the natural cost definition given
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above. For example, considering the instancex with tar-
get rank1 being ranked3. Then, it means that the scoring
function is such thatu(x, y|Θ) ∈ (τ3, +∞), i.e.

−∞ ≤ τ1 ≤ τ2 ≤ τ3 ≤ u(x, y|Θ) ≤ +∞,

and hence the cost suffered by the hypothesis is correctly
computed byc(g[1]|Θ) = max{0,+1, +2} = +2.

Binary Classification The natural cost function for BC
problems is trivially obtained by usingGI , i.e. by setting
(u(x, y), τ) whenx is a positive example for the class, and
(τ, u(x, y)) otherwise.

Very similar examples, omitted for space reasons, can be
given for the multi-variate versions of ratings problems.

4 Learning in GPLM

In earlier sections we have discussed the structure behind
the supervision and how it can be modelled using cp-sets.
Now, we see how to give learning algorithms for the batch
and the on-line settings.

In GPLM we propose to minimize costsc(S|w). Since
these are not continuous w.r.t.w, we approximate them by
introducing a continuous non-increasing functionl : R →
R+ approximating the indicator function. Then, we define
the approximate cost

c̃(S|w) =
∑

g∈G(g[S])

max
a∈g

γ(a)l(ρA(a|w)).

Examples of losses one can use are presented in Table 2.

Methods l(ρ)
Perceptron max(0,−ρ)
β-margin max(0, β − ρ)
Exponential e−ρ

Sigmoidal (1 + eλ(ρ−θ))−1

Table 2. Approximation losses as a function
of the margin. β > 0, λ > 0, θ ∈ R are external
parameters.

4.1 Batch Learning for GPLM

The goal in batch learning is to find the parametersw
such to minimize the expected cost overD, the actual dis-
tribution ruling the supervision feed, which is defined by

Rt[w] = ES∼D[c(g[S]|w)].

AlthoughD is unknown, we can still try to minimize this
function by exploiting the same structure of supervision and
as much of the information we can gather from the training
set. The general problem can be given as in the following:

• Given a setV(S) =
⋃

S∈S g[S] of cp-sets

• Find a set of parametersw in such a way to minimize
the functional

Q(w) = L(V(S)|w) + µR(w) (3)

whereL(V(S)|w) =
∑

S∈S c̃(S|w) is related to the
empirical cost andR(w) is a regularization term over
the set of parameters. Note that, for the solution to
be admissible when multiple thresholds are used and
there are constraints defined over their values (as in
the ordinal regression settings), these constraints should
be explicitly enforced.

The use of a regularization term on a problem of this type
has many different motivations, including the theory on reg-
ularization networks (see e.g. [6]). However, given the huge
amount of data available in many data-mining applications,
this term can usually be disregarded without affecting the
performance.

Moreover, we can see that by choosing a convex loss
function and a convex regularization term (let say the quadratic
termR(w) = 1

2 ||w||2) it warranties the convexity of the
functionalQ(w) in Eq. 3 and then the uniqueness of the
solution. Indeed, current kernel-based approaches defined
for basic supervised learning tasks can be seen in this form
when using theβ-margin withβ = 1. This suggests a new
universalkernel method which is able to solve many com-
plex learning tasks [1].

Given the large amount of examples in data-mining ap-
plications, a drawback of this learning setting is the oner-
ous computational requirements. In the following section, a
principled stochastic approximation is presented aiming at
minimizing the same functional efficiently.

4.2 Stochastic On-line Learning for GPLM

As already pointed out, in on-line learning, supervision
becomes available one by one and each time the learner up-
dates the hypothesis to minimize future costs. A suitable
measure of performance afterm rounds is thecumulative
costfunction

Rm
t [w] =

m∑

i=1

c(g[Si]|wi)

wherewi is the hypothesis obtained after seeing supervi-
sionS1, . . . , Si−1.

Following a typical approach for on-line learning, we
propose to perform a stochastic gradient descent [13] with
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respect to the instantaneous costQ(wt) = c̃(St|wt)+µR(wt).
Then, assumingR(w) = 1

2 ||w||2, the update will be in the
form wt = wt − λQ′w and

Q′w = w +
∑

g∈G(g[St])
γ(â[g])l′ρ(ρ(â[g]))ρ′w(â(g))

= w +
∑

g∈G(g[St])
γ(â[g])l′ρ(ρ(â[g]))ψ(â[g])

whereâ[g] = arg maxa∈g γ(a)l(ρ(a)) andf ′x(v) stands
for the gradient off w.r.t. the parametersx evaluated inv.

It can be easily shown that this update rule makes the
weight vectorw taking the (sparse) form:

w =
∑

i,r

αr
i φ(xi, yr)

whereαr
i ∈ R, thus obtaining an (sparse) implicit represen-

tation of the relevance function as:

u(x, y) =
∑

i,r

αr
i φ(xi, yr)φ(x, y).

As in the batch setting, here we have the problem to en-
force thehardconstraints defined over the thresholds. How-
ever, this is a far less stringent issue in a stochastic method.
In our implementation, this is made by projecting the values
of the thresholds back into the constraint after each itera-
tion.

5 Experiments

To demonstrate the flexibility and validate the general
model proposed in this paper, we performed a set of exper-
iments on a synthetic dataset. The explicit purpose was the
one to try different cost mappings and loss functions in a
relatively self-contained task in such a way to have a better
control and to do fair comparisons between different con-
figurations.

In particular, we have considered an ordinal regression
problem (|Y| = 1) in the online paradigm. Since|Y| = 1,
in this case we have that the relevant function isu(x) =
w ·φ(x). Moreover, since we dealt with kernels, the implicit
representationu(x) =

∑
t,r αr

t K(xt,x) is actually used.
Finally, no regularization has been performed, i.e.µ = 0.

5.1 Experimental Setting and Results

The experimental setting is the same used in [3]. The
dataset is synthetic. Pointsx = (x1, x2) are uniformly dis-
tributed in the unit square[0, 1]2. The ranks are then as-
signed basing on the following rule:

r ∈ {0, . . . , 4} : 10(x1 − 0.5)(x2 − 0.5) + ε ∈ (br, br+1)

whereb = {b0, . . . , b5} = {−∞,−1,−0.1, 0.25, 1, +∞}
and ε is a normally distributed noiseε ∼ N(0, σ). We

generated 100 sequences of 100,000 examples each. More-
over, a non-homogeneous second order polynomial kernel
K(x1,x2) = φ(x1) ·φ(x2) = (x1 ·x2 +1)2 has been used.
The performance on a sequence is obtained by feeding all
the instances of the sequence and computing thecumulative
costat each iterationm ascm =

∑m
t=1 |r̂t − rt|. Finally,

the obtained costs are averaged over the 100 sequences to
obtain higher statistical significance.

Experiments have been performed using configurations
produced according to three dimensions:

• Cost Mapping: Three cost mappings have been used.
Two of them are the ones presented in Section 3.3, i.e.
the mappingGI with costs (denotedGc

I ) and the map-
ping Gd. The last mapping is basically the mapping
GI where the cost assignment is not performed. Note
that, this mapping represents the cost function which
gives a unitary cost for uncorrect predicted ranks.

• Complexity of the task: Different values of the stan-
dard deviationσ ∈ {0, 0.125, 0.5, 1.0} have been used.
A greaterσ leads to a more difficult task.

• Preference Loss: Two losses from the ones in Table
2 have been used, i.e. the Perceptron loss, and the
sigmoidal loss with parameterλ = 1, θ = −1.

One may notice that the configuration(Gd, ·, PLoss) is
equivalent to the PRank algorithm proposed in [3].

In Fig. 1, the curves of cost obtained for the three map-
pings andσ = 0.5 are shown. Different plots refer to the
two preference losses. In Table 3 a detail of results after
10000 presentations is shown. Results show that the base-
line cost mappingGI is consistently worse than the other
two, while the performance ofGc

I andGd ar quite similar.
Interestingly, a far larger improvement is obtained for the
sigmoidal loss and this can be due to the better approxima-
tion of the true cost.

—– Perc. Loss —– —– Sigm. Loss —–
σ GI Gc

I Gd GI Gc
I Gd

0.000 0.369 0.339 0.317 0.326 0.259 0.236
0.125 0.502 0.470 0.452 0.454 0.384 0.364
0.500 1.148 1.062 1.057 1.104 0.944 0.910
1.000 1.661 1.575 1.620 1.626 1.474 1.447

Table 3. Costs for different methods and task
complexities.
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Figure 1. Curves of the cost obtained for
σ = 0.5 with different cost mappings. (a) Per-
ceptron loss, (b) Sigmoidal loss.

6 Conclusion

We have proposed a general preference model for super-
vised learning and its application to on-line and batch algo-
rithms. The model allows to codify cost functions as prefer-
ences and naturally plug them into the same training algo-
rithm. In this view, the role of the cost functions here resem-
bles the role of kernels in kernel-machines. Furthermore,
the proposed method gives a tool for comparing different
methods and cost functions on a same learning problem.
Experiments performed on an ordinal regression problem
have confirmed the validity of the approach and highlighted
the important role of the loss functions used for training.
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