
T	ext Indexing: using the "laws" of statistical linguistics Distributional characteristics of terms within docs and within
	the collection for estimating relevance
	ext pre-processing Removing noise (including stop words, prefixes, and suffixes) for a better (compact) representation of th 'meaning' of queries and docs
	exical resources for polysemy, omonymy, and synonymy
r	esolution "Normalising the (natural) language used in docs and queries in order to alleviate the vocabulary mismatch problem
	MatematicaF. Aiolli - Sistemi Informativi1Applicata2007/2008
Pura ed	
Pura ed	Applicata 2007/2008 Xt Indexing The choice of a representation for text means taking a stand on the issues of lexical semantics text semantics
Pura ed	Applicata 2007/2008 xt Indexing The choice of a representation for text means taking a stand on the issues of lexical semantics

TF and IDF

A Popular way to implement the previous considerations

(1.a) is implemented by making w_{ki} grow with the term frequency of t_k in d_i

$$tf(t_k, d_i) = \begin{cases} 1 + \log \#(t_k, d_i) & \text{if } \#(t_k, d_i) > 0\\ 0 & \text{otherwise} \end{cases}$$

(2.b) is implemented by removing from consideration all the terms which occurs in less than α docs (1 $\leq \alpha \leq$ 5)

(2.a) and (2.c) are implemented by making w_{ki} grow with the inverse document frequency of t_k

$$idf(t_k) = \log \frac{|C|}{\#c(t_k)} \tag{1}$$

Dip. di Matematica Pura ed Applicata 4

TFIDF

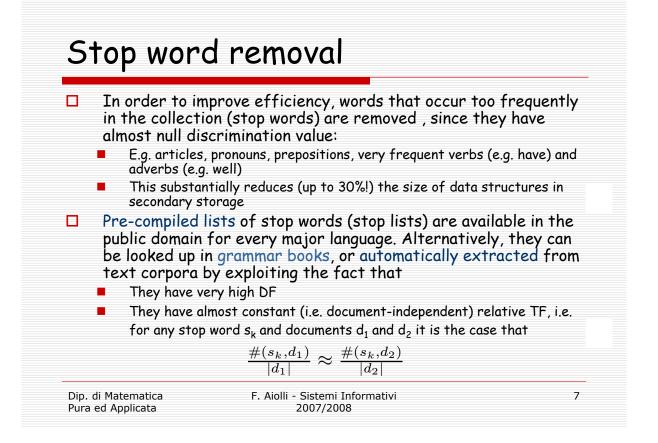
The final weights are obtained by normalizing by cosine normalization, i.e.

 $w_{ki} = \frac{tfidf(t_k, d_i)}{\sqrt{\sum_{s=1}^{n} tfidf(t_s, d_i)^2}} = \frac{tf(t_k, d_i) \cdot idf(t_k)}{\sqrt{\sum_{s=1}^{n} (tf(t_s, d_i) \cdot idf(t_s))^2}}$

Note that tf and tfidf equals 0 for terms ${\sf t}_k$ that not occur in ${\sf d}_i.$ This shows why the IREPs of documents and queries are sparse vectors

Several variants of the tfidf but they share (i) a tf-like component (ii) idf-like components and (iii) length normalization

TFIDF class of functions is the most popular class of weighting functions!


Dip. di Matematica Pura ed Applicata F. Aiolli - Sistemi Informativi 2007/2008

Text Pre-processing

Before document indexing, a pass of document pre-processing is usually performed in order to remove noise from the document, thus transforming a text into a list of terms
thus transforming a text into a list of terms
Text pre-processing consists in general of the following steps

- Text pre-processing consists in general of the following steps (among which steps 5,6,and 7 are optional)
 - 1. Reduction into ASCII format (e.g. removal of formatting/style characters, etc.)
 - 2. Conversion of uppercase into lowercase
 - 3. Identification of the 'words' (strings of contiguous characters delimited by blanks) within the text
 - Removal of punctuation from 'words'
 - 5. Removal of numbers
 - 6. Removal of stop words
 - 7. Grouping words (conflation), typically those that share the same morphological root (stemming)
- Note however that what is 'noise' to a given task may be information to another!

5

In order to improve recall, words are reduced to their morphological root (stem) (e.g. comput*), of which they are inflected forms, in order to reduce the 'dispersion' effect due to
 Variants of a morphological (e.g. lexicon/lexical) or ortographical (e.g. judgment/judgementm realize, realise) nature Morphology-based antonyms (e.g. faithful, unfaithful) Abbreviations (e.g. internat.)
 In stemming, two possible pitfalls must be avoided: Overstemming: the stemmer returns too short a prefix, i.e. one that group also words that are not semantically related to each other (e.g. med*, which groups medical and media). Loss in precision! Understemming: the stemmer returns too long a prefix, i.e. one that fails to group words that are semantically related to each other (e.g. computer*, which does not group computers and computationsl). Loss in recall!

Stemming

There are two types of stemmers:

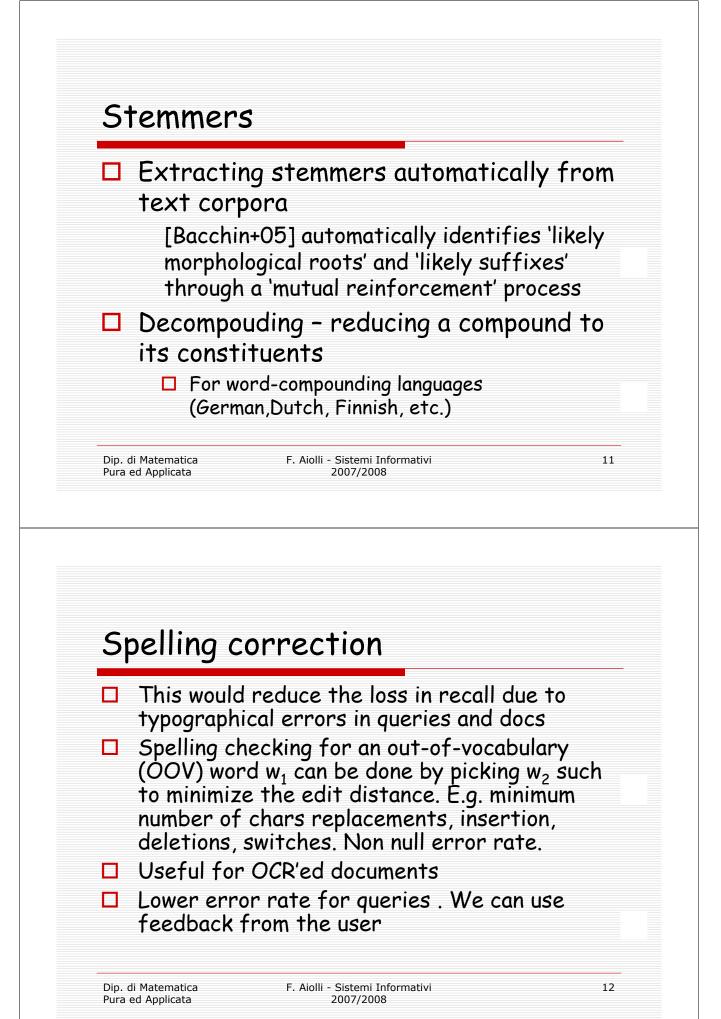
Algorithmic: incrementally reduce the word down to its stem computationalizations computationalization computationaliz* computational* computation*

- comput*
- Apt for languages with simple morphological structure.
- Non null error-rate

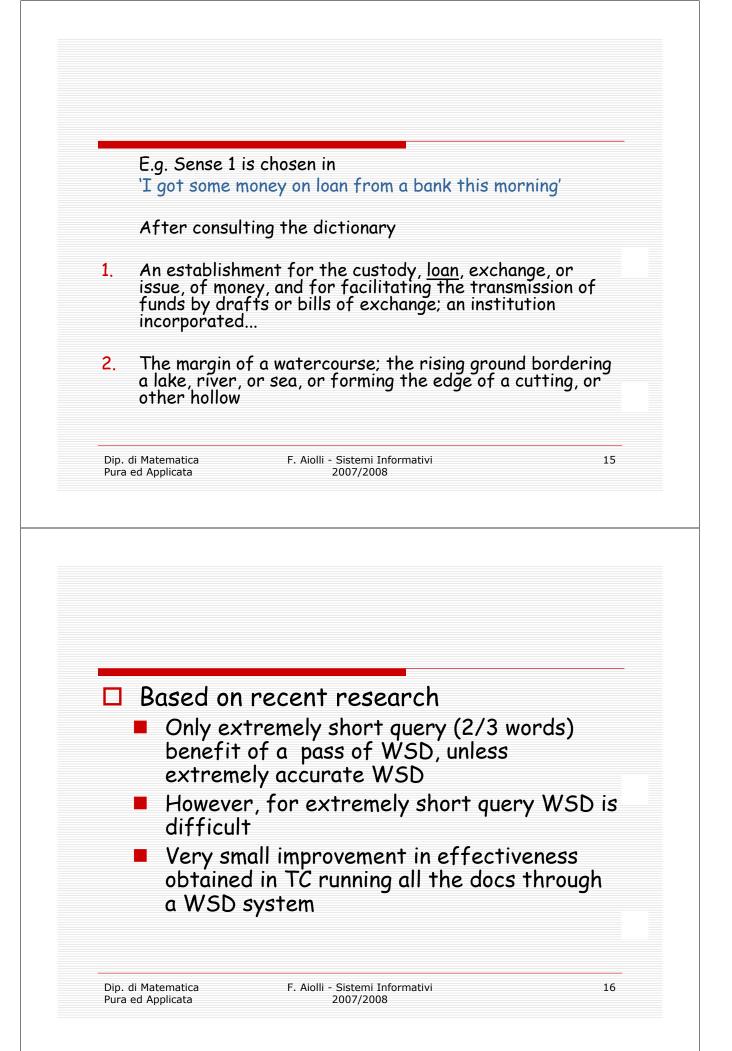
Tabular: table of n pairs <word,stem>

- Huge!
- Apt for languages with complex morphological structure.
 - Better precision, smaller efficiency

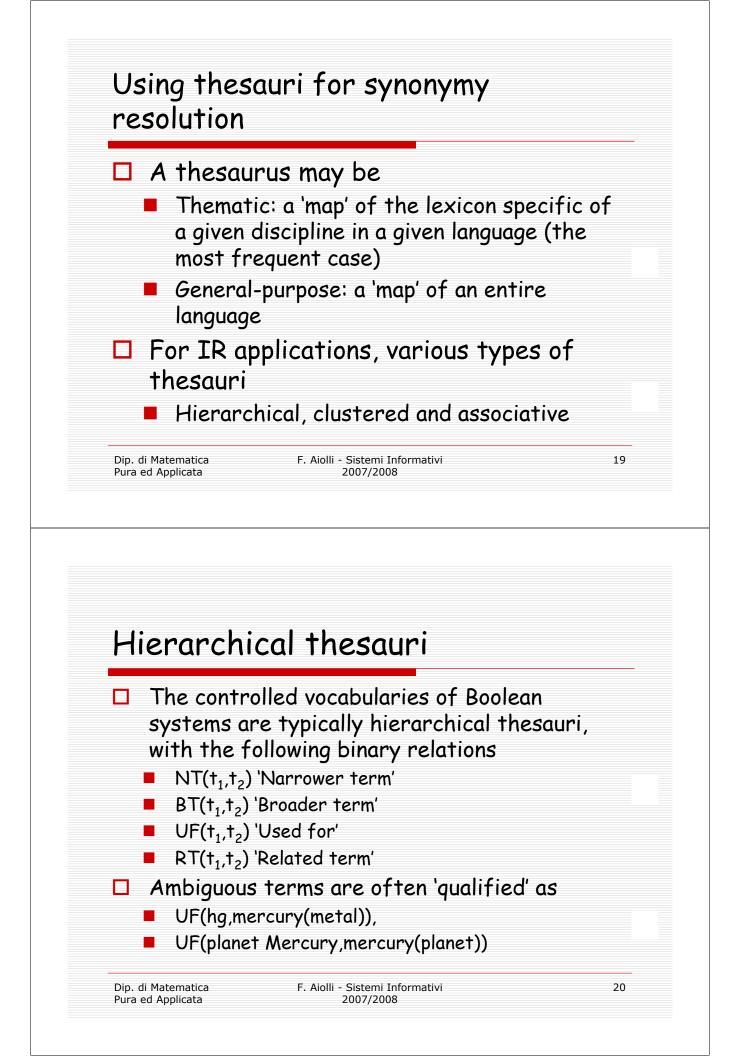
Dip. di Matematica Pura ed Applicata

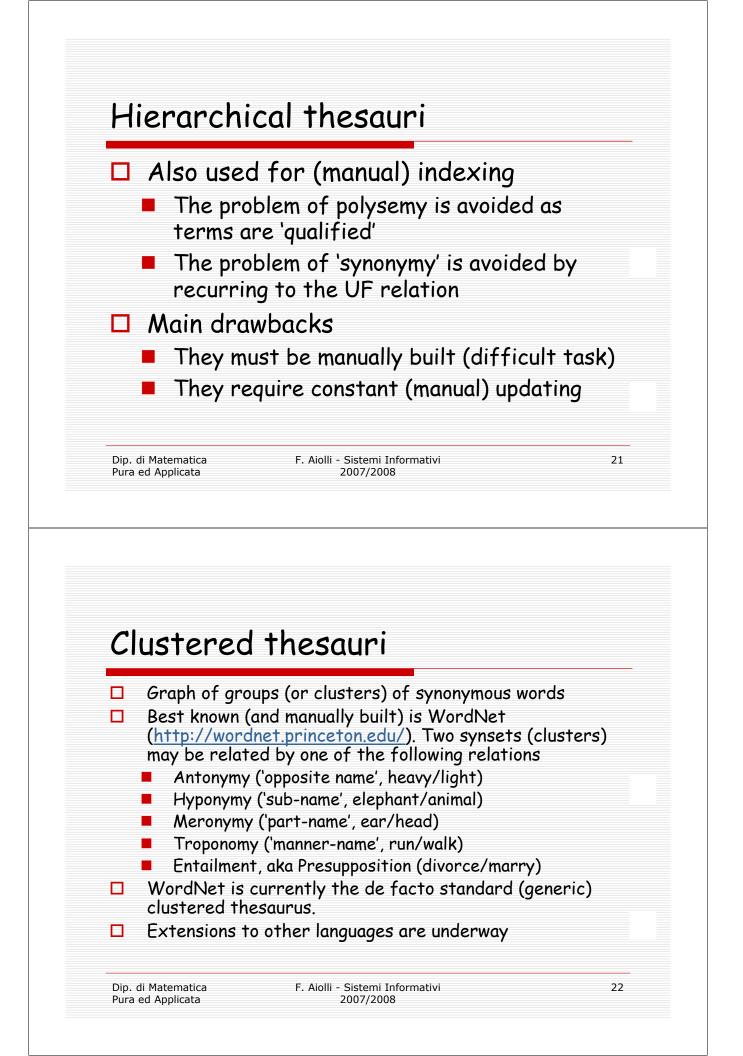

Pura ed Applicata

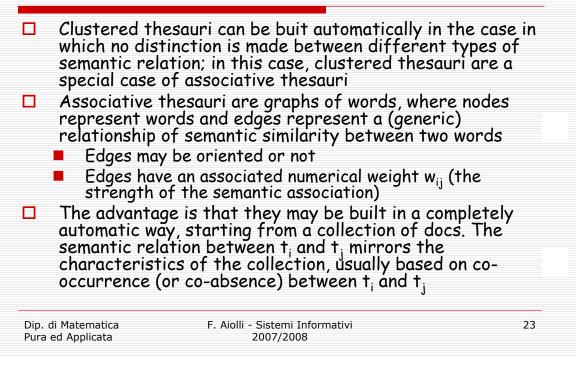
F. Aiolli - Sistemi Informativi 2007/2008


9

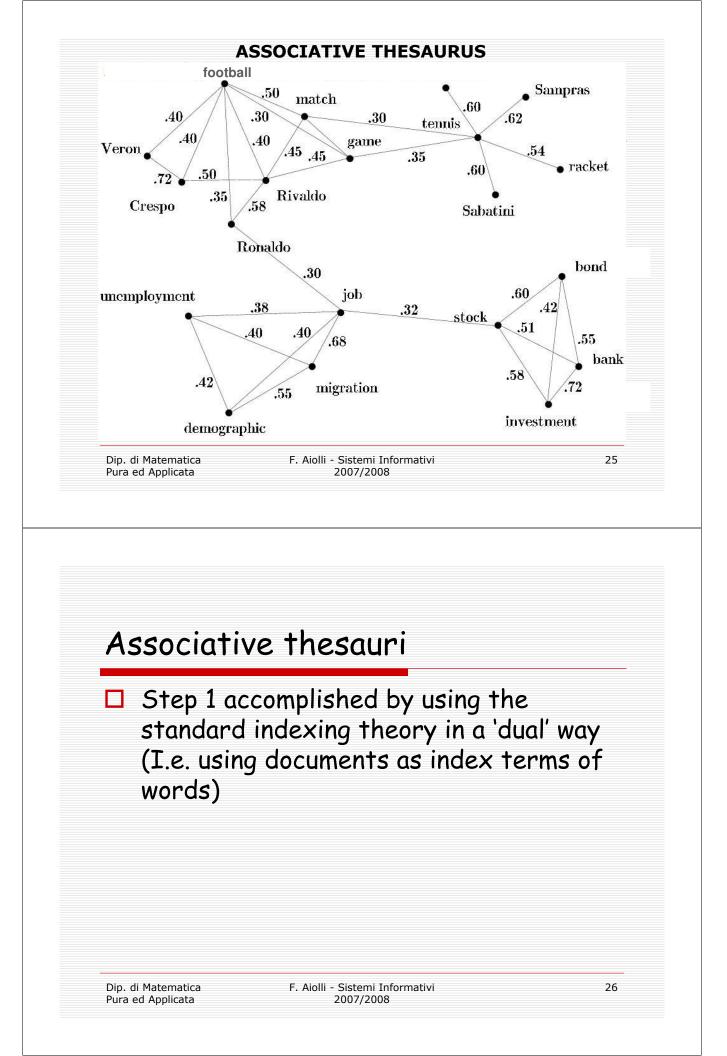
Stemmers There are various stemmers to English Different algorithms, same effectiveness Best known Porter's stemmer (http://www.tartarus.org/~martin/PorterStemmer/inde x.html) Lovins' stemmer Snowball project (http://snowball.tartarus.org/) Public-domain algorithmic stemmers for a variety of languages Together with stop word removal, stemming is the only truly language dependent factor in IR systems F. Aiolli - Sistemi Informativi 10 Dip. di Matematica


2007/2008





	The mismatch between terminology used by users/intermediaries within queries and by authors/indexers within docs (vocabulary mismatch) is the major cause of insufficient recall		
	The query can be expanded trough the use of a thesaurus		
	li Matematica F. Aiolli - Sistemi Informativi 17 ed Applicata 2007/2008		
Us	ed Applicata 2007/2008 Sing thesauri for synonymy		
Us	ad Applicata 2007/2008 Sing thesauri for synonymy solution		
Us	ed Applicata 2007/2008 Sing thesauri for synonymy		


Associative thesauri

]	Т	he general construction process of an ssociative thesaurus is the following
	as	ssociative thesaurus is the following
	1.	Generate a matrix of term-term similarity values s_{ij} , using an appropriate function
		using an appropriate function

- 2. Apply a threshold value z to this matrix, in such a way that s_{ii} is put to 0 when $s_{ii} \le z$
- 3. In the resulting graph, individuate possible clusters (e.g. cliques)
- 4. With the same method as step 1, generate the cluster-cluster similarity values, and go trough a step analogous to step 2
- Step 3 and 4 are optional. Step 1 is critical.

Abstract Indexing Theory

Let $f_r \in F$ (features), $i_s \in I$ (items)

Let $#(f_r, i_s)$ the number of times f_r occurs in i_s Feature frequency is given by

 $ff(f_r, i_s) = \begin{cases} 1 + \log \#(f_r, i_s) & \text{if } \#(f_r, i_s) > 0\\ 0 & \text{otherwise} \end{cases}$

Let $\#_{I}(f_{r})$ the number of items in I in which f_{r} occurs at least once

Inverse item frequency is given by

$$iif(f_r) = \log \frac{|I|}{\#_I(f_r)}$$

Dip. di Matematica Pura ed Applicata F. Aiolli - Sistemi Informativi 2007/2008

Abstract Indexing Theory

The weighting function $ffiif(f_r, i_s)$ can now be defined and weights can be further normalized by $w_{rs} = ffiif(f_r, i_s)/||ffiif(f_r, i_s)||^2$ Moreover SIM $(i_s, i_t) = w_r w_t$

If F is the set of terms and I is the set of docs we obtain document-document similarity for document search

If F is the set of docs and I is the set of terms we obtain term-term similarity for associative thesauri

Dip. di Matematica Pura ed Applicata 27