Information Retrieval (Text Categorization)

Fabio Aiolli

http://www.math.unipd.it/~aiolli

Dipartimento di Matematica Pura ed Applicata Università di Padova

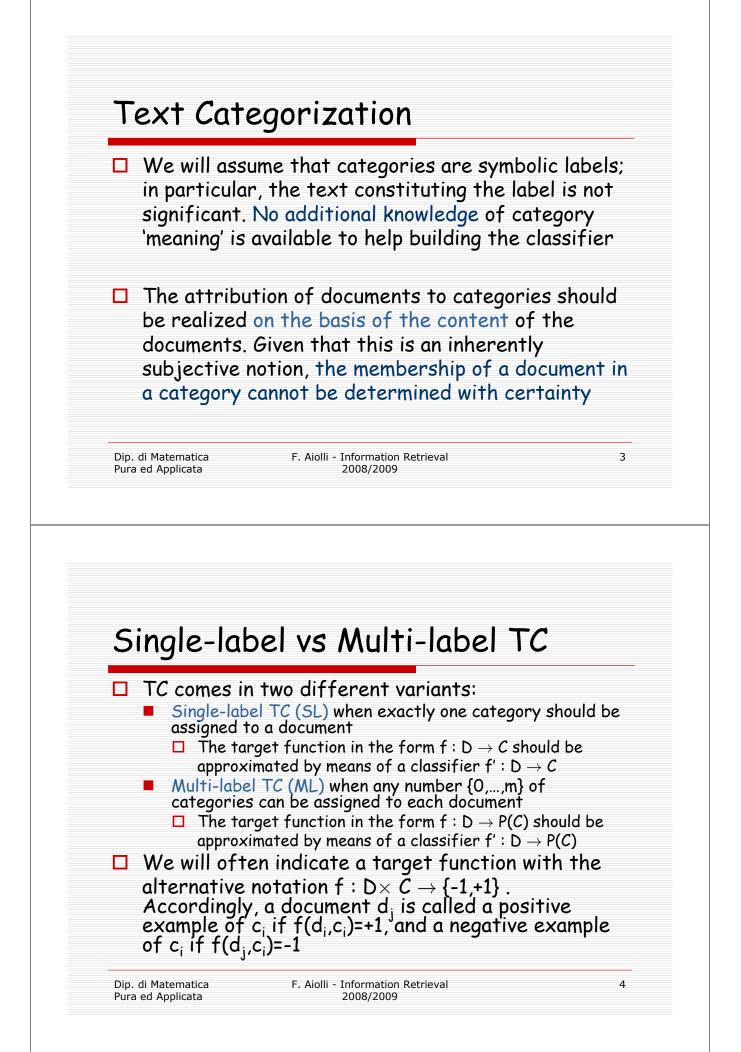
Anno Accademico 2008/2009

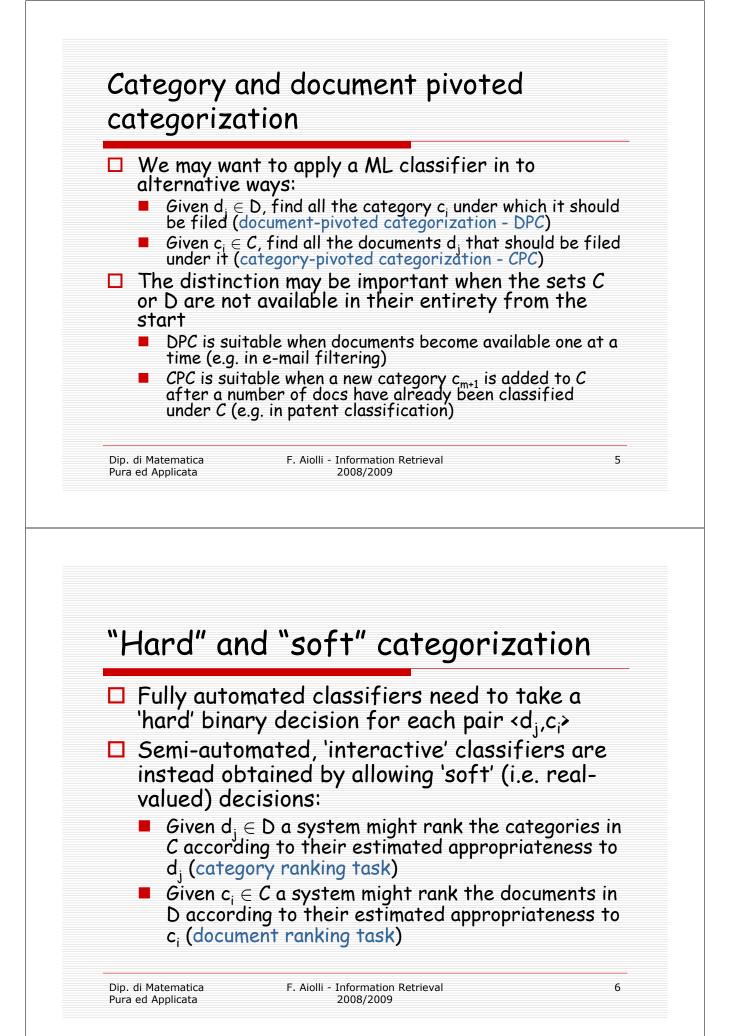
Dip. di Matematica Pura ed Applicata F. Aiolli - Information Retrieval 2008/2009

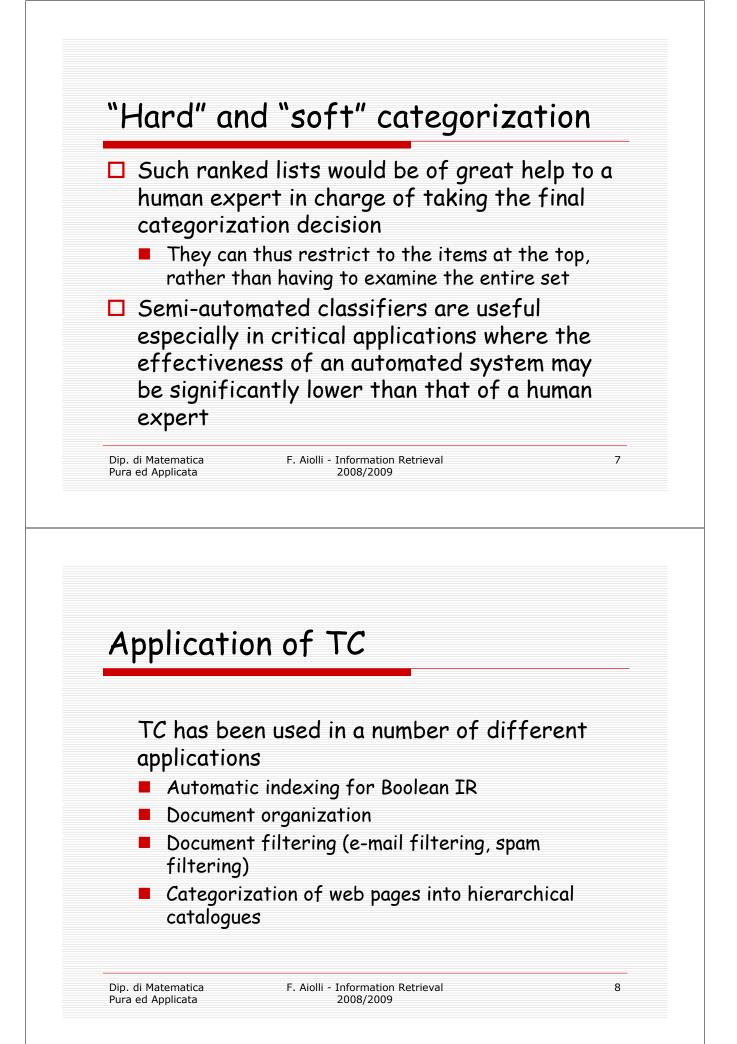
Text Categorization

- Text categorization (TC aka text classification) is the task of building text classifiers, i.e. sofware systems that classify documents from a domain D into a given, fixed set C = {c₁,...,c_m} of categories (aka classes or labels)
- TC is an approximation task, in that we assume the existence of an 'oracle', a target function that specifies how docs ought to be classified.
- Since this oracle is unknown, the task consists in building a system that 'approximates' it

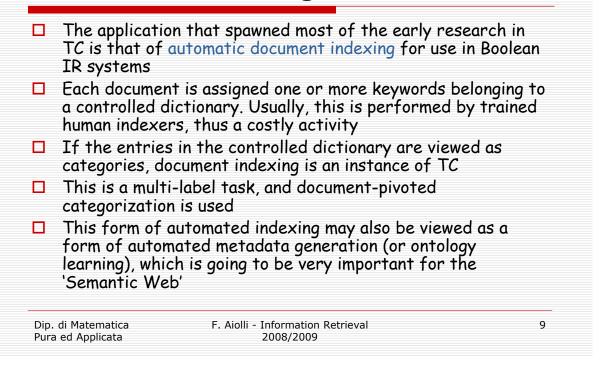
1







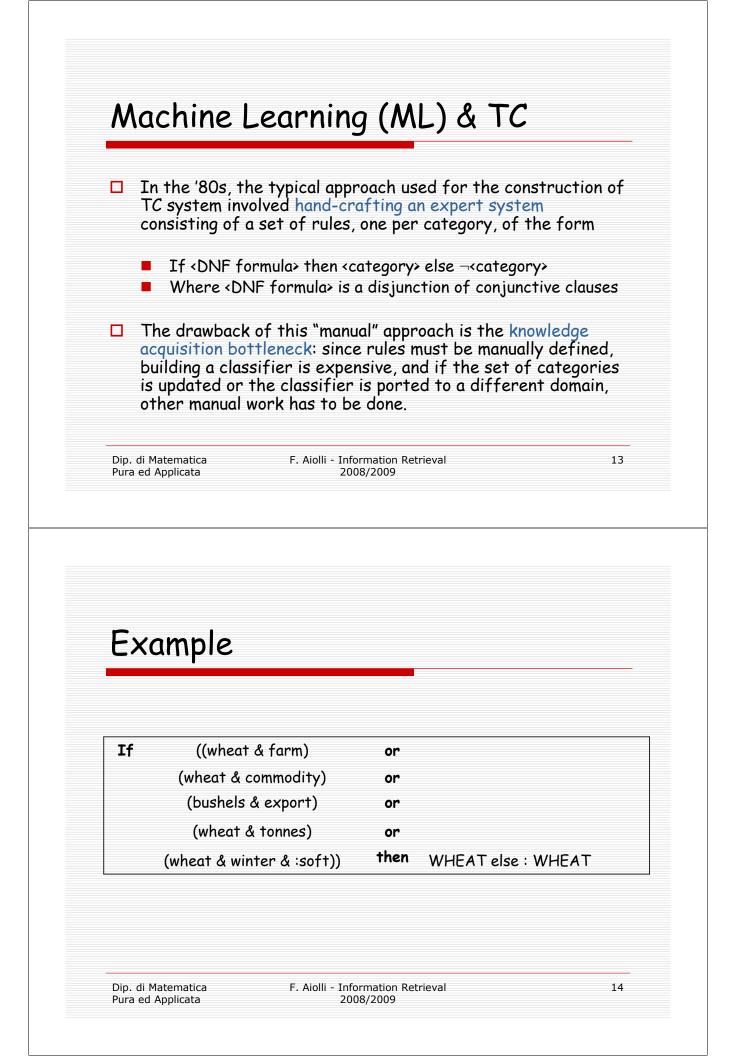
Automatic indexing for Boolean IR

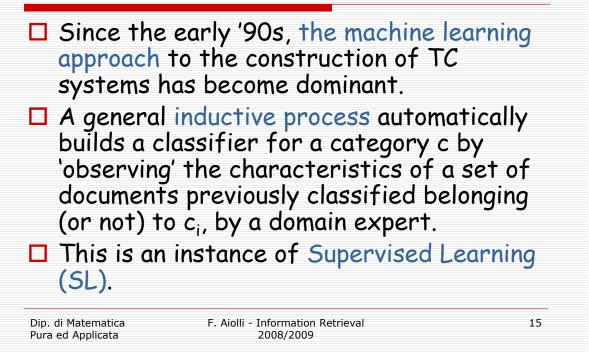




]	Document filtering (DF) is the categorization of a dynamic stream of incoming documents dispatched in an asynchronous way by an information consumer
	A typical example is a newsfeed (the information producer is a news agency and the information consumer is a newspaper). In this case, the DF system should discard the documents the consumer is not likely to be interested in
	 A DF system may be installed At the producer end - to route the info to the interested users only At the consumer end - to block the delivery of info deemed interesting to the consumer
	di Matematica F. Aiolli - Information Retrieval 1 a ed Applicata 2008/2009

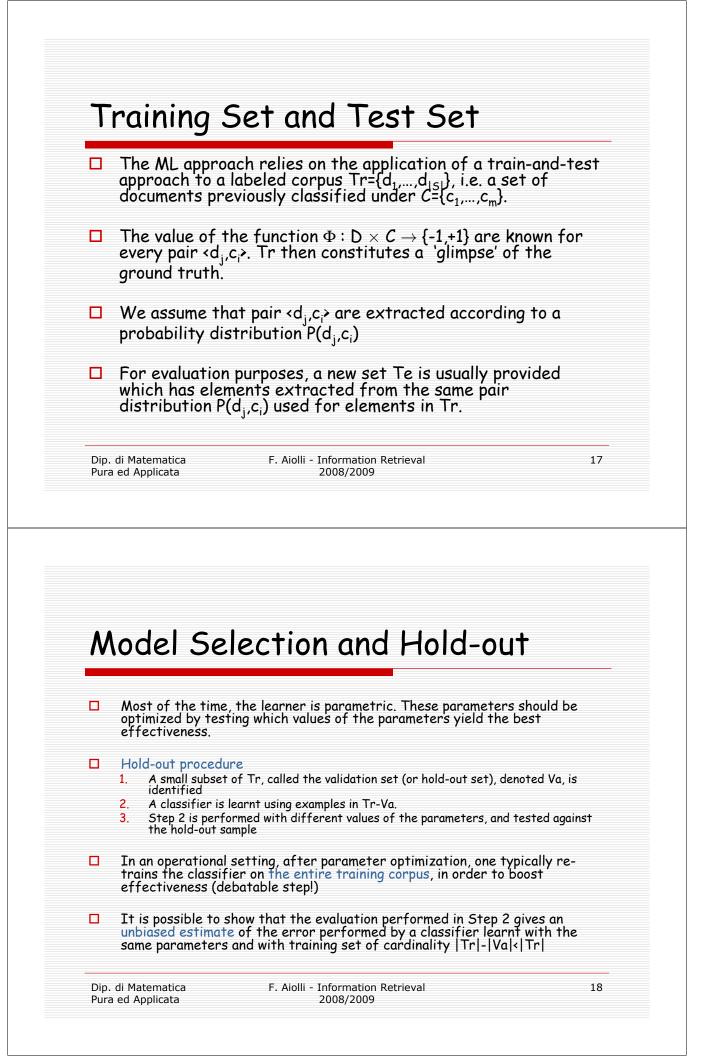
	Author (or author's gender) identification for documents of	
	disputed paternity [deVel01,Koppel02,Diederich03]	
	Automatic identification of text genre	
	[Finn02,Lee&Myaeng02,Liu03] or Web page genre	
	[MeyerZuEissen&Stein04]	
	Polarity detection (aka 'sentiment classification')	
	[Pang02,Turmey02,Kim&Hovy04]	
	Multimedia document categorization through caption analysis	
	[Sable&Hatzivassiloglu99]	
	Speech categorization through speech recognition + TC	
	[Myers00,Schapire&Singer00]	
	Automatic survey coding [Giorgetti&Sebastiani03]	
	Text-to-speech synthesis for news reading [Alias02]	
	Question type classification for question answering	
	[Li&Roth02,Zhang&Lee03]	
	-	
Dip.	di Matematica F. Aiolli - Information Retrieval 12	2
Pura	a ed Applicata 2008/2009	

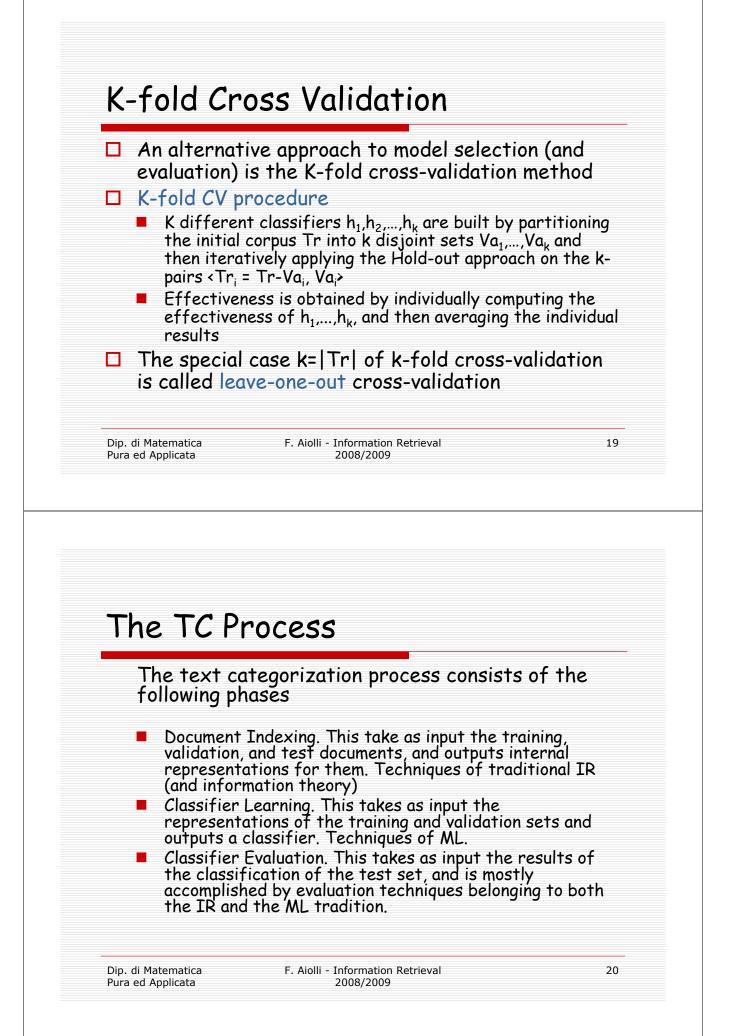


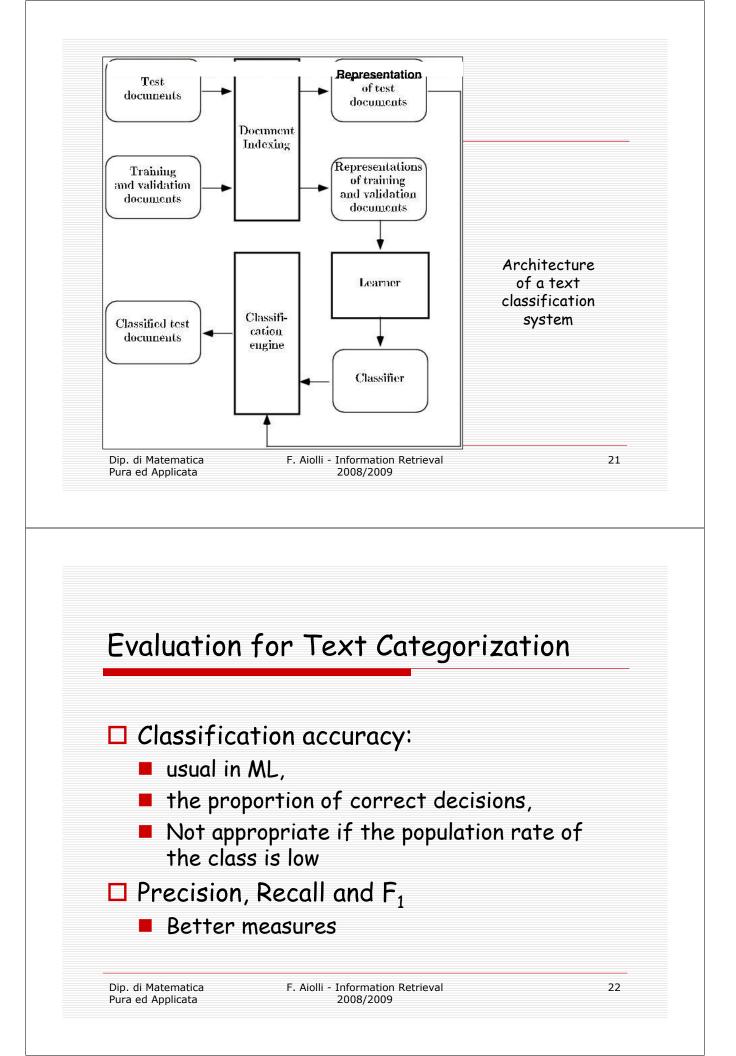


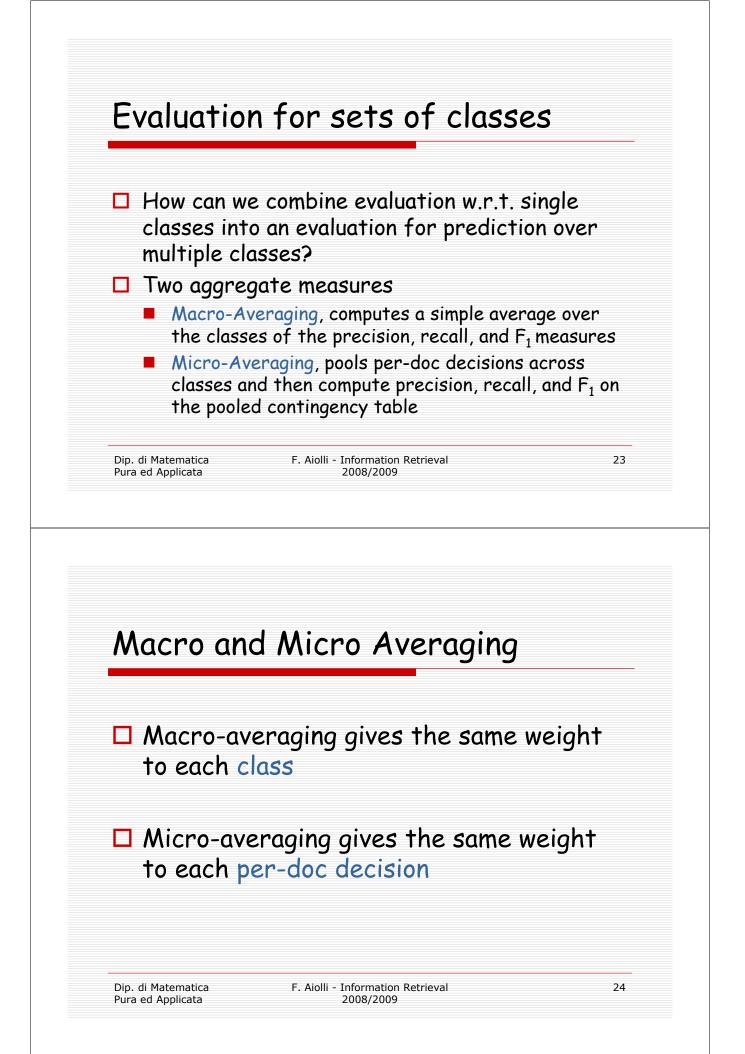
Advantages of the SL approach

- The engineering effort goes towards the construction, not of a classifier, but of an automatic builder of classifiers (learner)
- If the set of categories is updated, or if the system is ported to a different domain, all that is need is a different set of manually classified documents
- Domain expertise (for labeling), and not knowledge engineering expertise, is needed. Easier to characterize a concept extensionally than intentionally.
- Sometimes the preclassified documents are already available
- The effectiveness achievable nowadays by these classifiers rivals that of hand-crafted classifiers and that of human classifiers









Example

	Class 1			Class 2			POOLED	
	Truth: "yes"	Truth: "no"		Truth: "yes"	Truth: "no"		Truth: "yes"	Truth: "no"
Pred: "yes"	10	10	Pred: "yes"	90	10	Pred: "yes"	100	20
Pred: "no"	10	970	Pred: "no"	10	890	Pred: "no"	20	1860

Macro-Averaged Precision: (.5+.9)/2 = .7

Micro-averaged Precision: 100/120 = .833...

Dip. di Matematica Pura ed Applicata F. Aiolli - Information Retrieval 2008/2009 25

Benchmark Collections (used in Text Categorization)

Reuters-21578

The most widely used in text categorization. It consists of newswire articles which are labeled with some number of topical classifications (zero or more out of 115 classes). 9603 train + 3299 test documents

Reuters RCV1

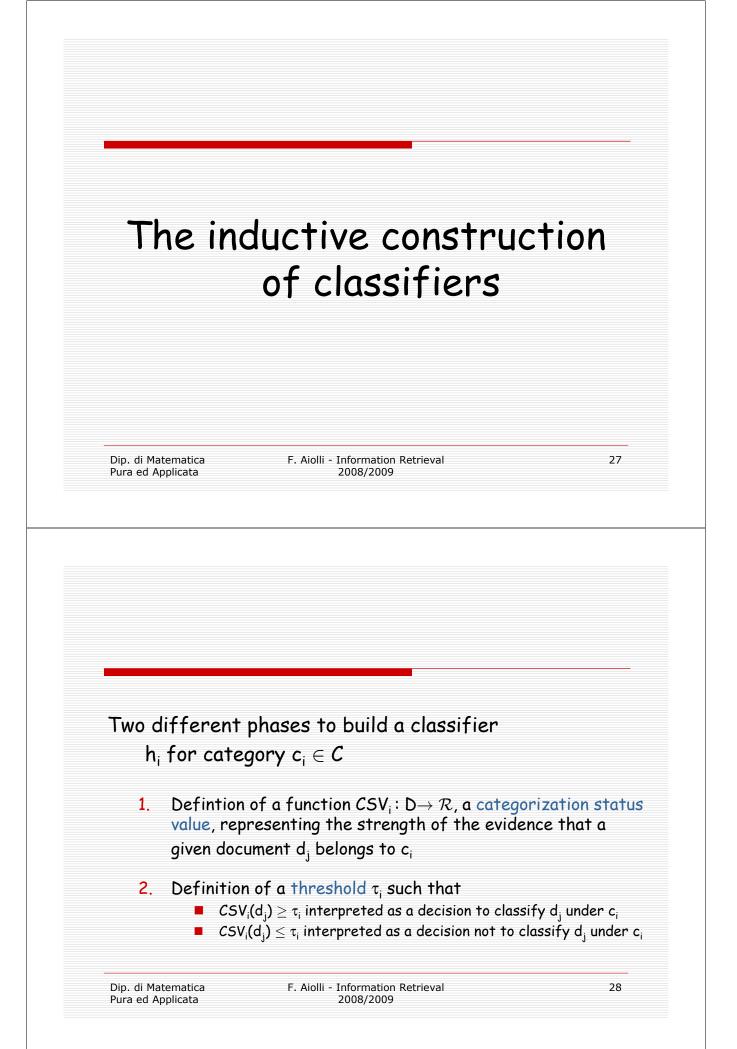
Newstories, larger than the previous (about 810K documents) and a hierarchically structured set of (103) leaf classes

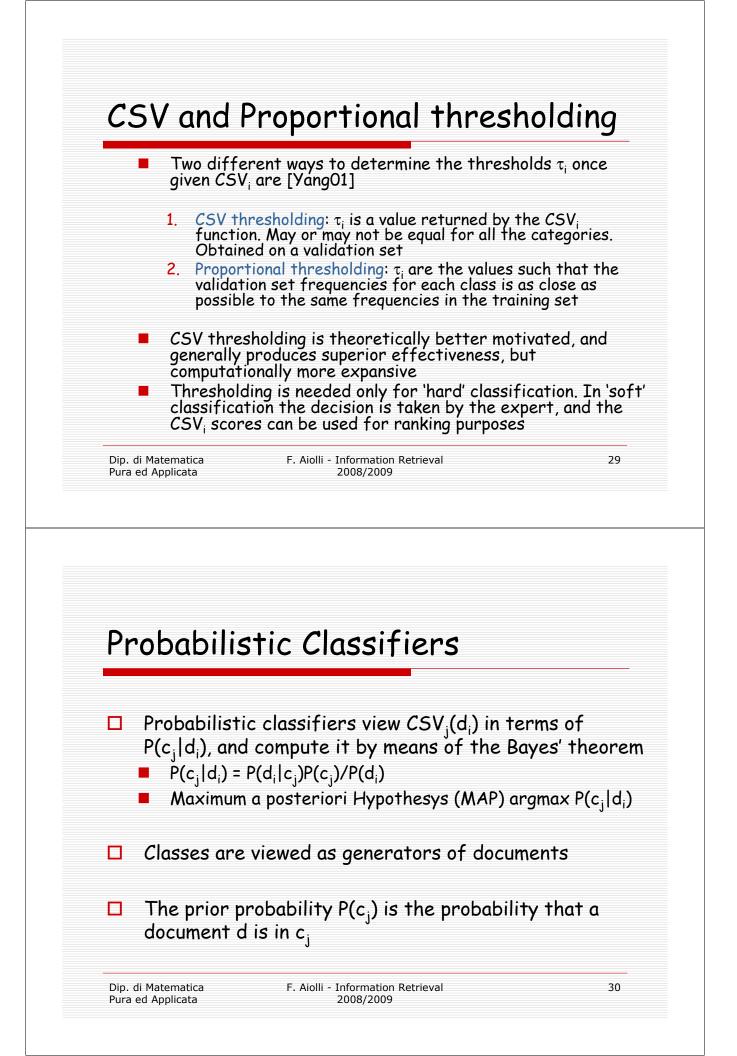
Oshumed

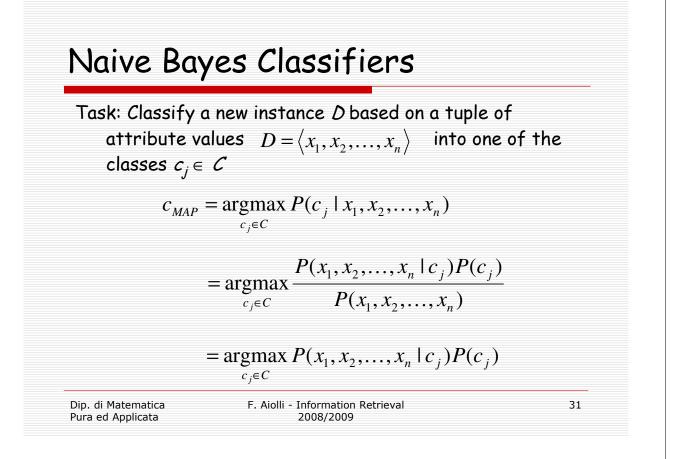
 a ML set of 348K docs classified under a hierarchically structured set of 14K classes (MESH thesaurus). Title+abstracts of scientific medical papers.

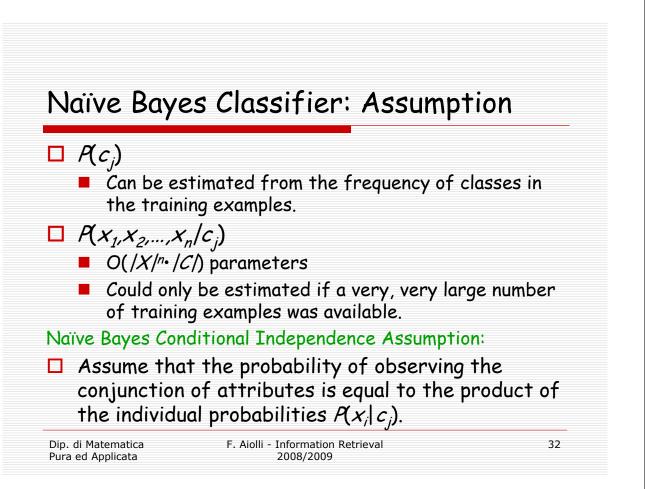
20 Newsgroups

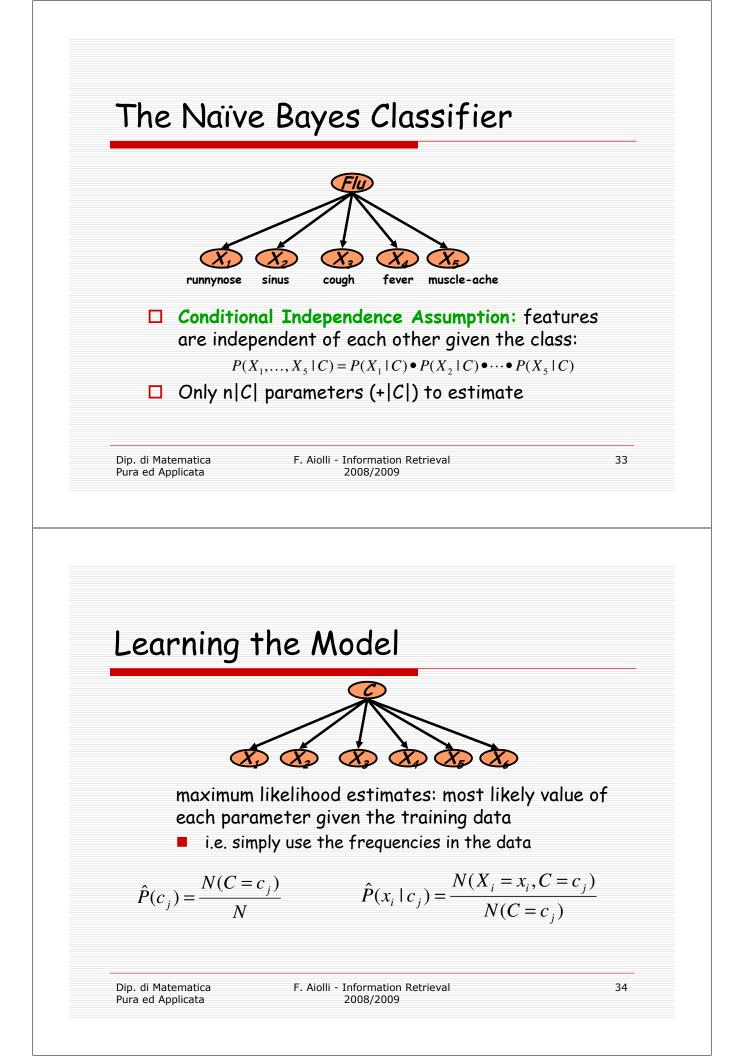
18491 articles from the 20 Usenet newsgroups

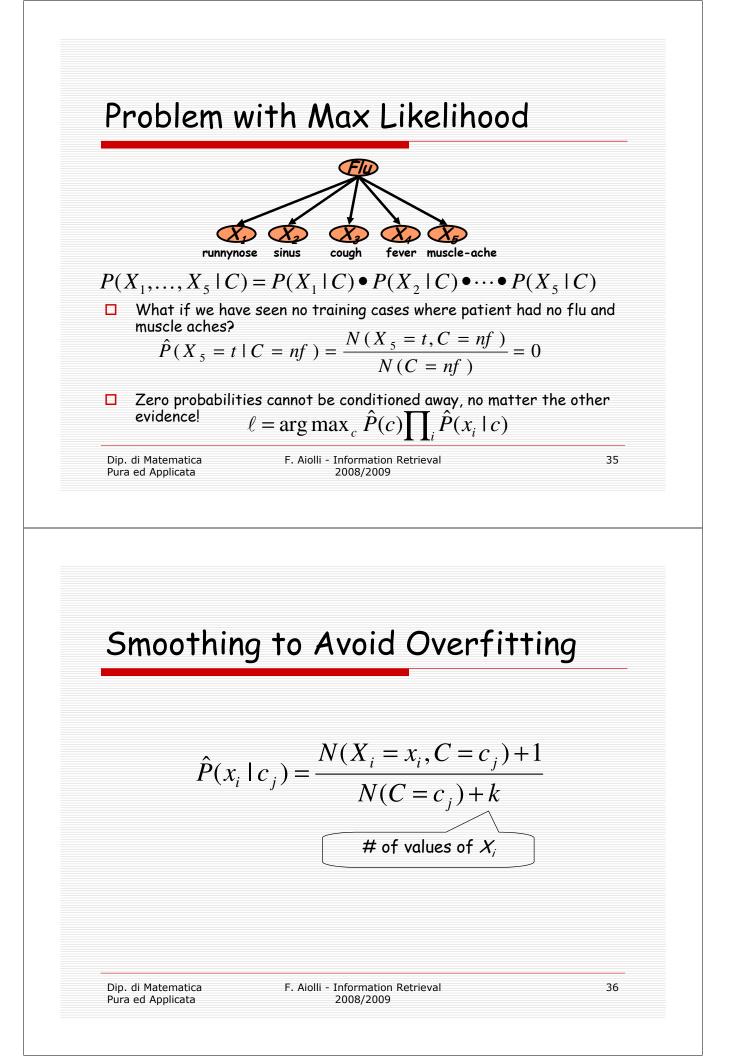


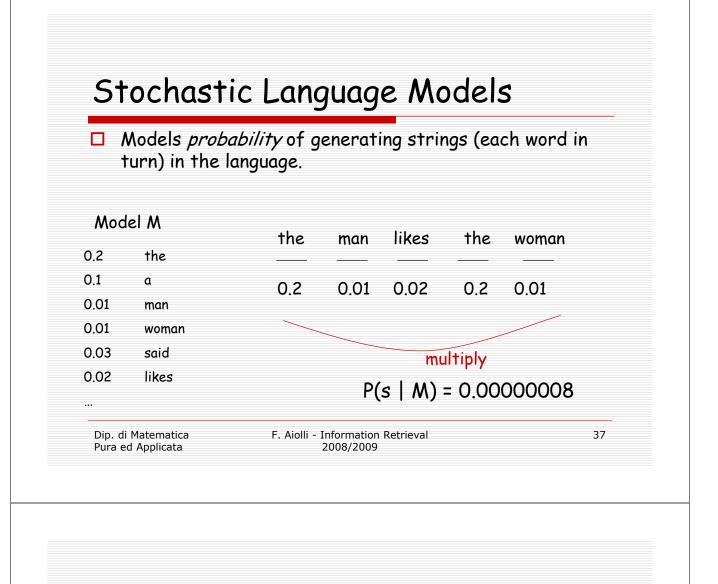












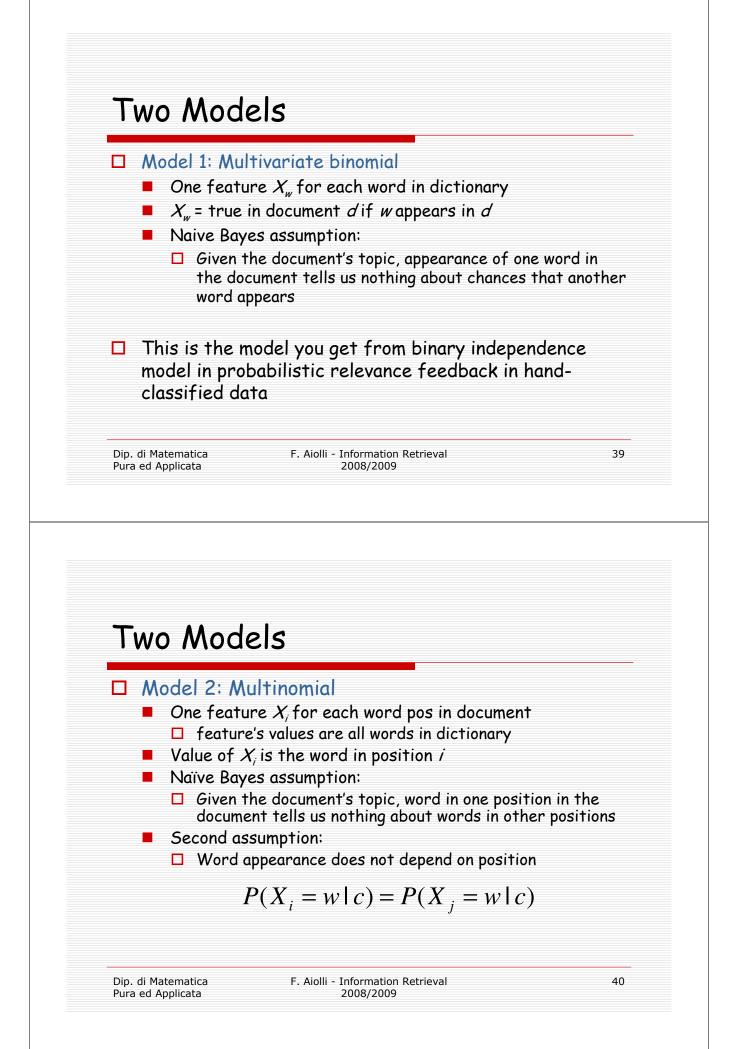
Stochastic Language Models

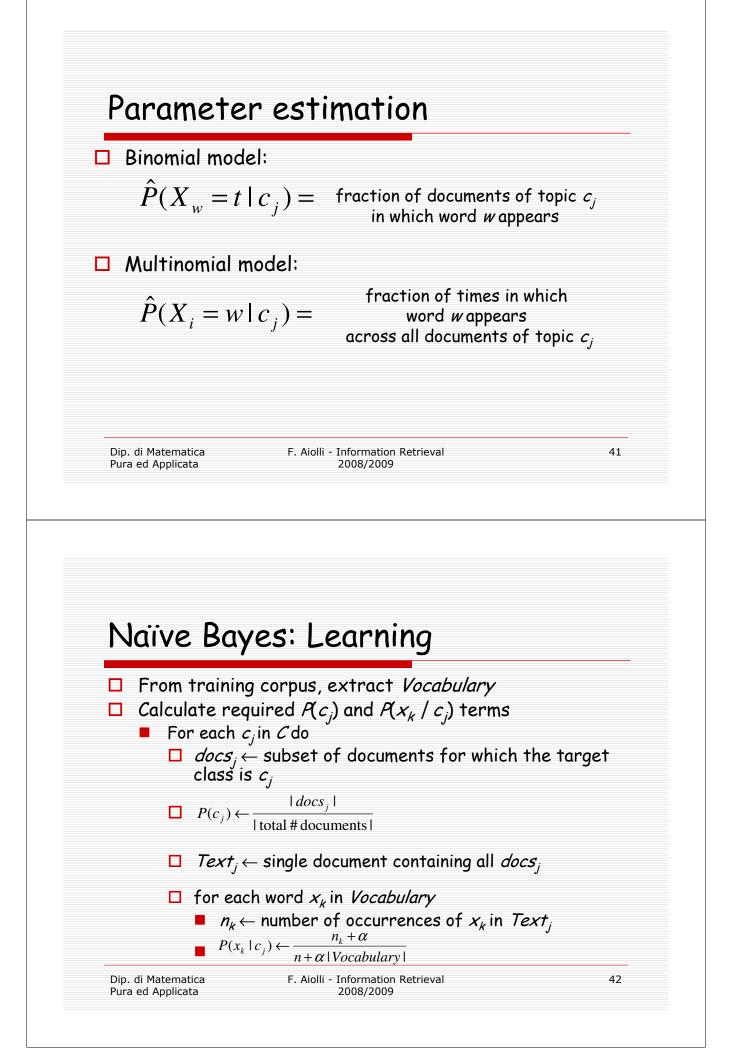
Pura ed Applicata

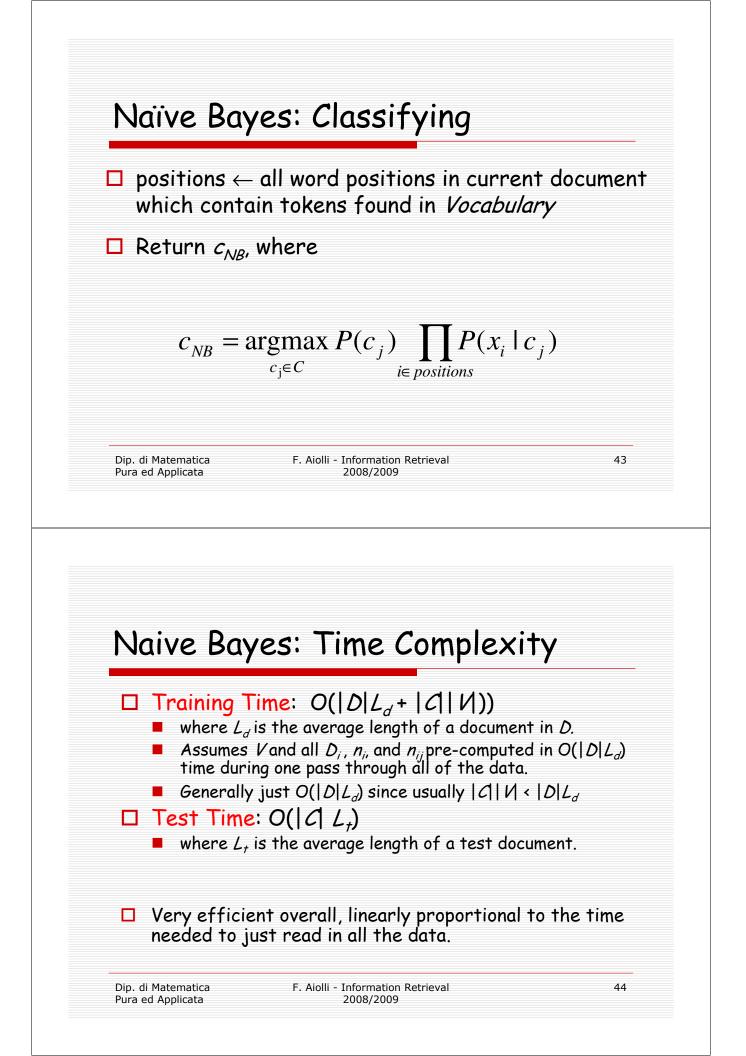
Model probability of generating any string

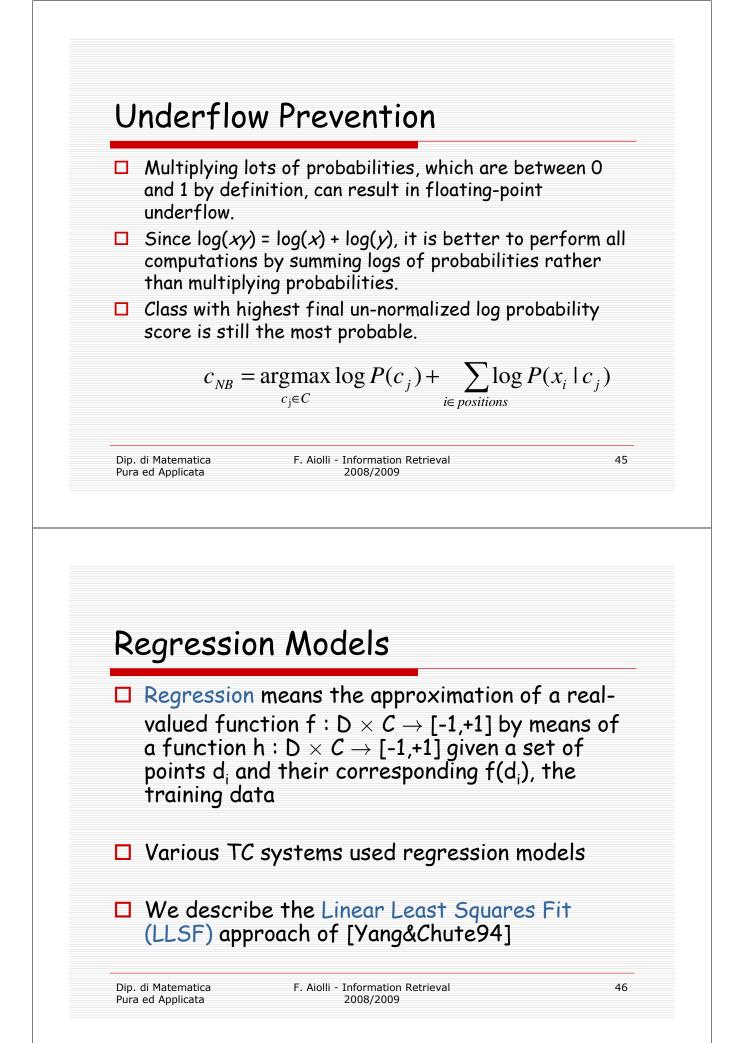
Mod	el M1	Moc	lel M2					
0.2	the	0.2	the					
0.01	class	0.0001	class	the	class	pleaseth	yon	maiden
0.0001	sayst	0.03	sayst	0.2	0.01	0.0001	0.0001	0.0005
0.0001	pleaseth	0.02	pleaseth	0.2	0.0001	0.02	0.1	0.01
0.0001	yon	0.1	yon					
0.0005	maiden	0.01	maiden		DICIM	2) > P(s	1 4 4 1 1	
0.01	woman	0.0001	woman		r (31/M	<i>L</i>)) / V (1)	
Dip. di N	Matematica	F	. Aiolli - Inforr	nation Retr	rieval			38

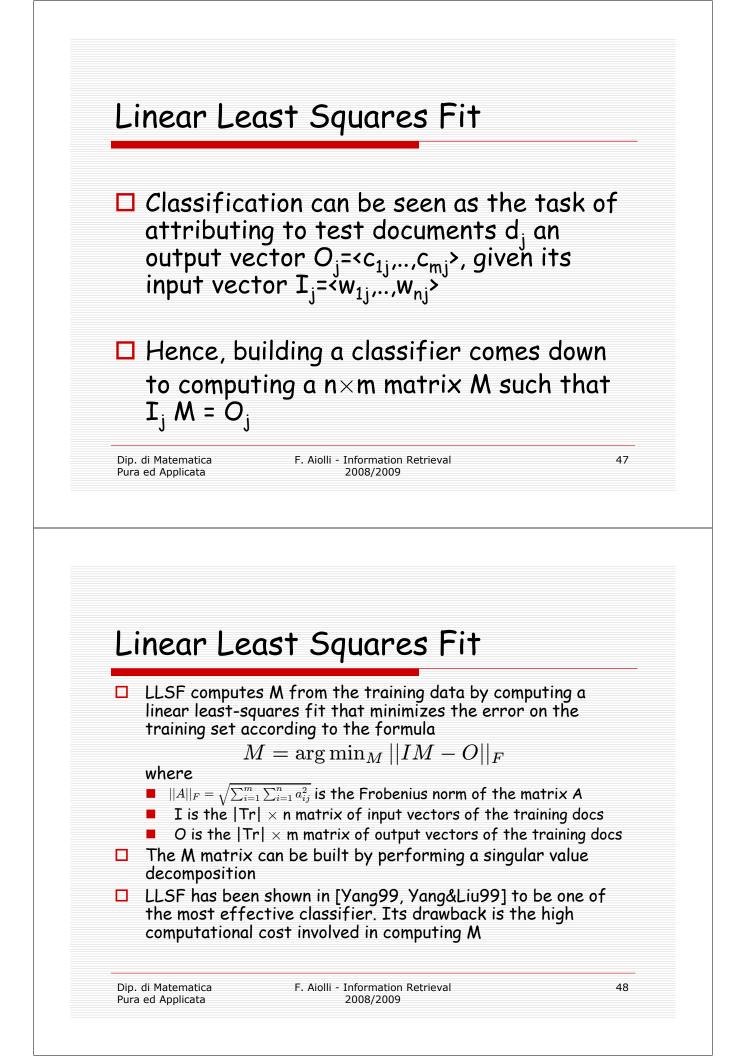
2008/2009







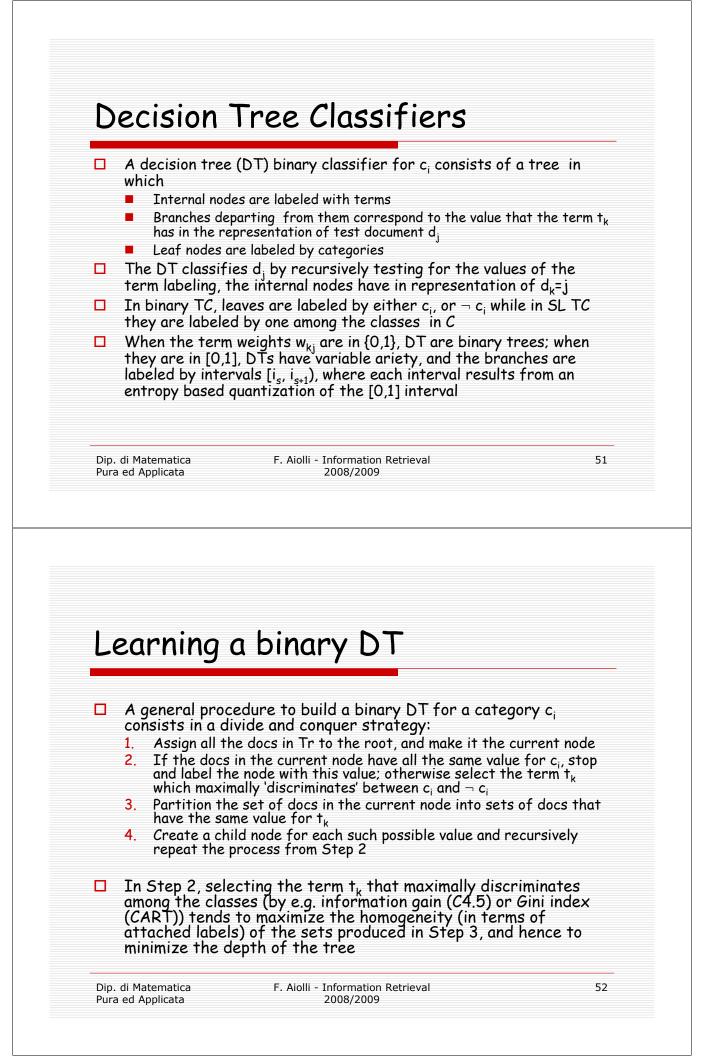


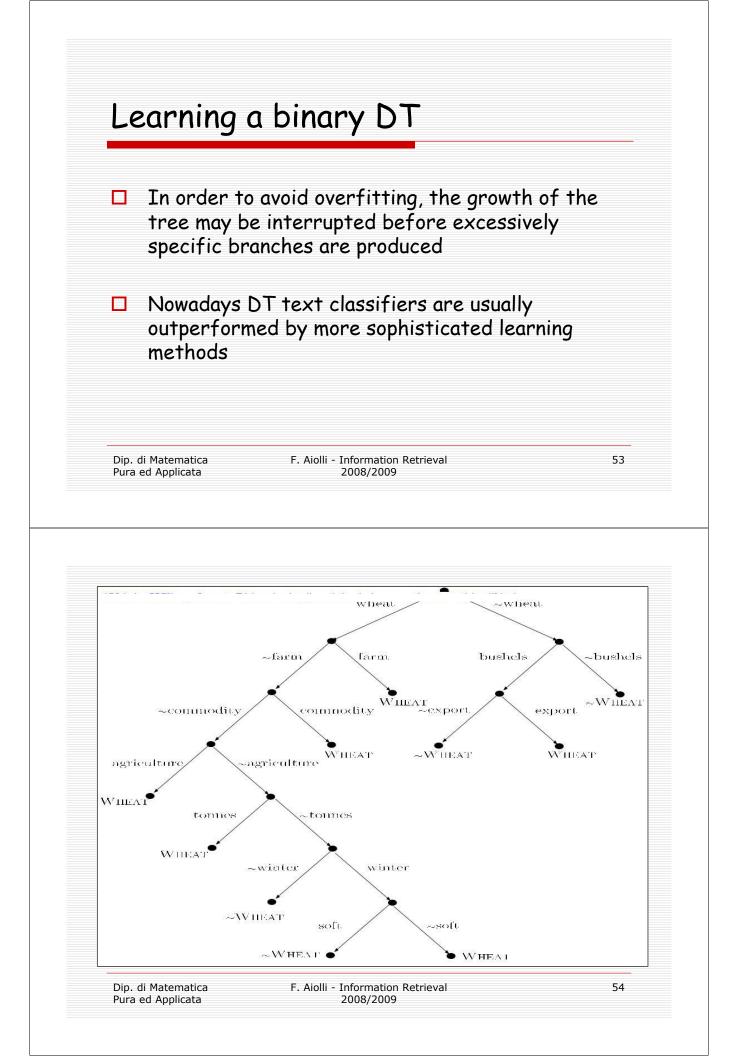


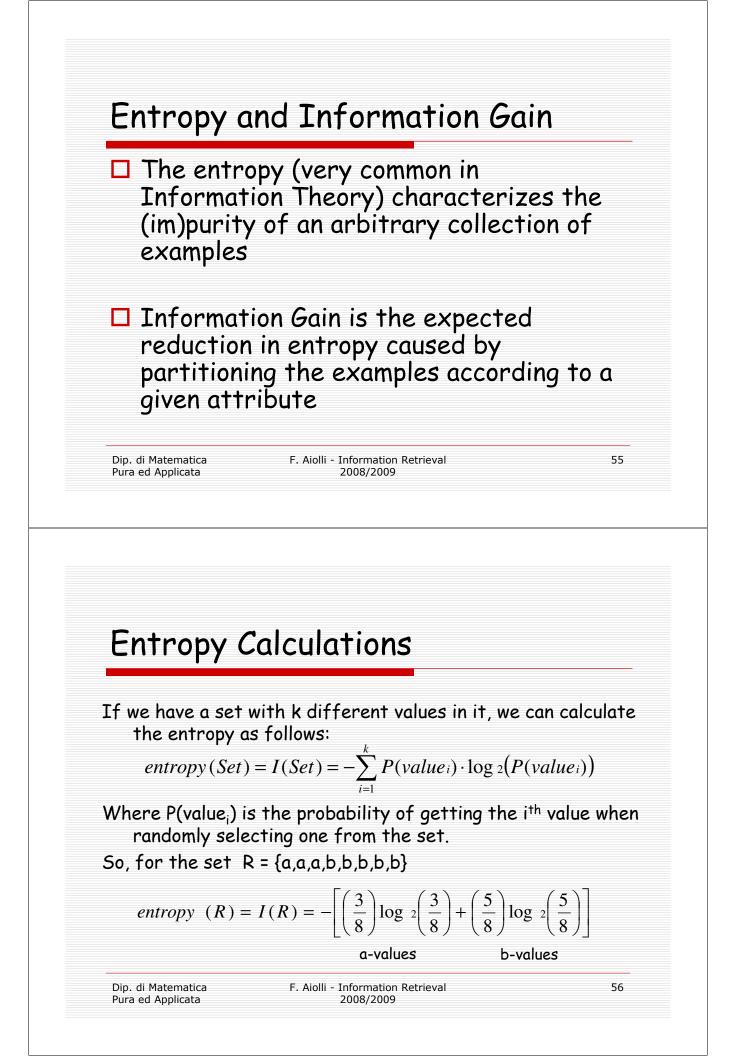
The theory: y close as possi norm of the r	ou want to find a vector v such that ble to a vector b, i.e. to minimize th esiduals Av-b	· Av is as e euclidean
The derivative	e of (Av-b)† (Av-b) is 2A†Av-2A†b	
Then the solu	tion is at A ⁺ A v = A ⁺ v, i.e. v = (A ⁺ A) ⁻	¹A⁺ b
Let A = USV [†] diagonal matr	the singular value decomposition of ix	A and S is a
	udoinverse (A ⁺ A) ⁻¹ A ⁺ = VS ⁺ U ⁺ and S ⁺ entry is substituted by its recipro	
di Matematica a ed Applicata	F. Aiolli - Information Retrieval 2008/2009	4

A Neural Network (NN) TC system is a network of units:

- Input units represent terms appearing in the document
- Output units represent categories to be assigned
- Hidden units are detectors that 'discover' correlations among terms present in the input
- Adjustable weights are associated to connections between units
- NN are trained by the backpropagation algorithm: the activation of each pattern is propagated through the network, and the error produced is back propagated and the parameter changed to reduce the error
- Non linear NN components (hidden and output units) provide no advantage
- □ The use of NN for TC is declined in recent years







Looking at some data

	<u>Color</u>	<u>Size</u>	<u>Shape</u>	Edible?	
	Yellow	Small	Round	+	
	Yellow	Small	Round	-	
	Green	Small	Irregular	+	
	Green	Large	Irregular	-	
	Yellow	Large	Round	+	
	Yellow	Small	Round	+	
	Yellow	Small	Round	+	
	Yellow	Small	Round	+	
	Green	Small	Round	-	
	Yellow	Large	Round	-	
	Yellow	Large	Round	+	
	Yellow	Large	Round	-	
	Yellow	Large	Round	-	
	Yellow	Large	Round		
	Yellow	Small	Irregular	÷	
	Yellow	Large	Irregular	+	
Dip. di Matematica Pura ed Applicata			mation Retrieval 9/2009		57

Entropy for our data set

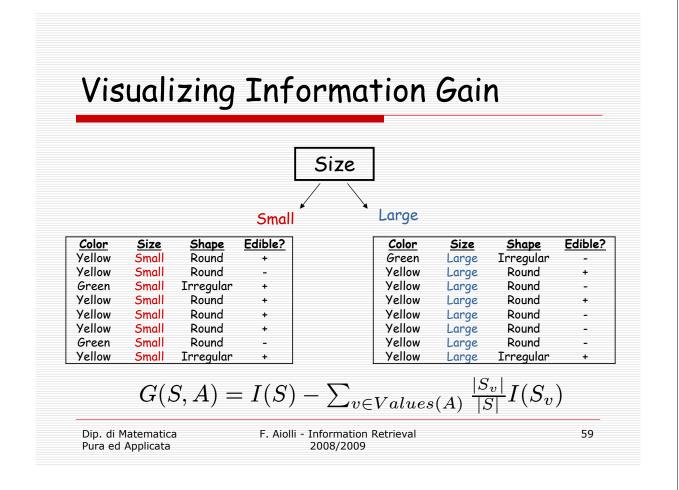
□ 16 instances: 9 positive, 7 negative.

$$I(all_data) = -\left[\left(\frac{9}{16}\right)\log_2\left(\frac{9}{16}\right) + \left(\frac{7}{16}\right)\log_2\left(\frac{7}{16}\right)\right]$$

□ This equals: 0.9836

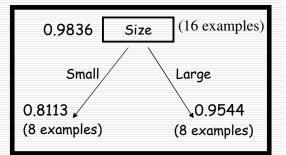
This makes sense - it's almost a 50/50 split; so, the entropy should be close to 1.

Dip. di Matematica Pura ed Applicata F. Aiolli - Information Retrieval 2008/2009



Visualizing Information Gain

The data set that goes down each branch of the tree has its own entropy value. We can calculate for each possible attribute its **expected entropy**. This is the degree to which the entropy would change if branch on this attribute. You **add** the entropies of the two children, **weighted** by the proportion of examples from the parent node that ended up at that child.



Entropy of left child is <u>0.8113</u> I(size=small) = 0.8113

Entropy of right child is <u>0.9544</u> I(size=large) = 0.9544

I(S_{Size}) = (8/16)*.8113 + (8/16)*.9544 = .8828

Dip. di Matematica Pura ed Applicata F. Aiolli - Information Retrieval 2008/2009

G(attrib) = I(parent) - I(attrib)

We want to calculate the <u>information gain</u> (or entropy reduction). This is the reduction in 'uncertainty' when choosing our first branch as 'size'. We will represent information gain as "G."

 $G(size) = I(S) - I(S_{Size})$ G(size) = 0.9836 - 0.8828G(size) = 0.1008

> <u>Entropy</u> of all data at parent node = **I(parent)** = 0.9836 Child's <u>expected entropy</u> for '**size'** split = **I(size)** = 0.8828

So, we have gained 0.1008 *bits* of information about the dataset by choosing 'size' as the first branch of our decision tree.

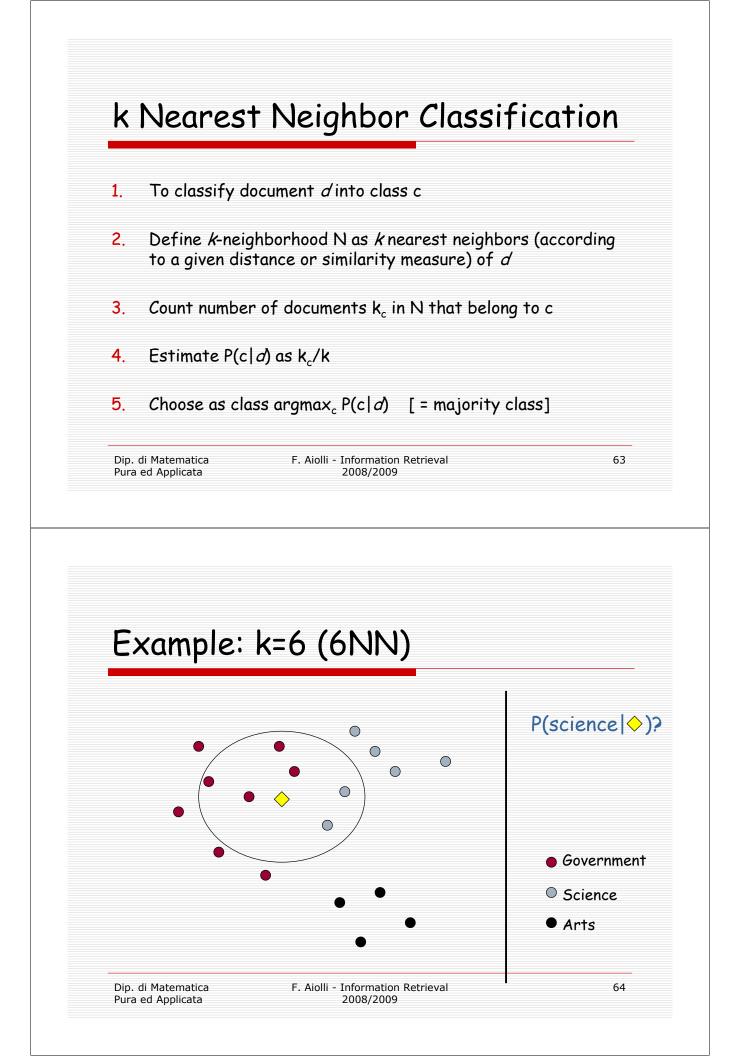
F. Aiolli - Information Retrieval 2008/2009

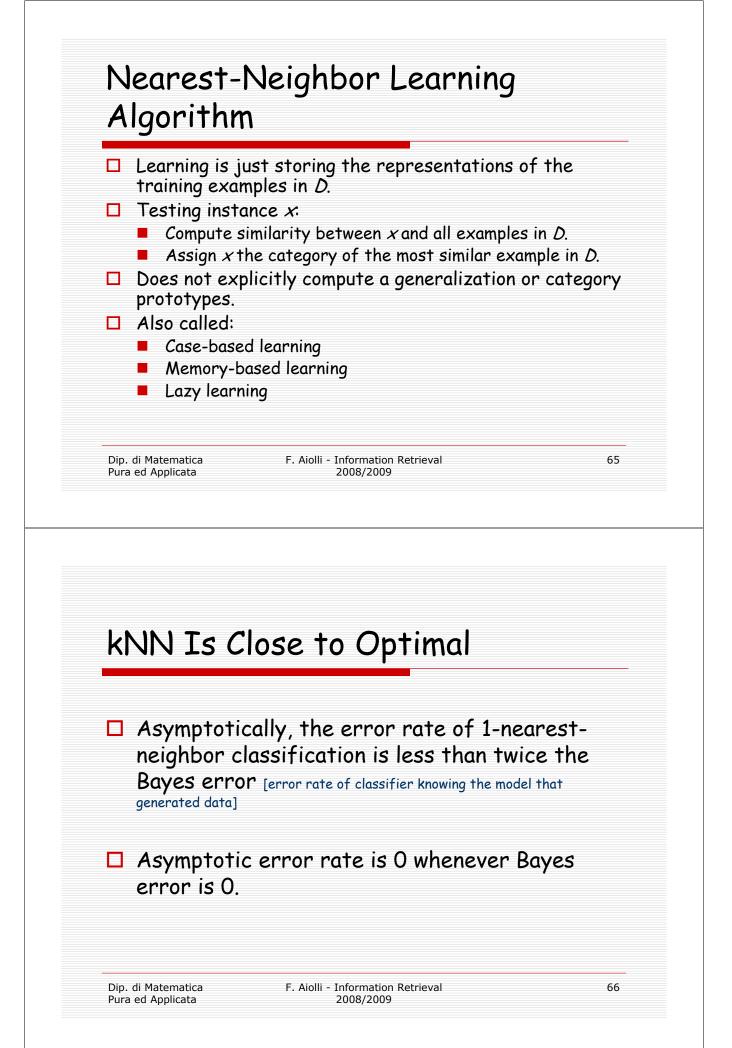
Example-based Classifiers

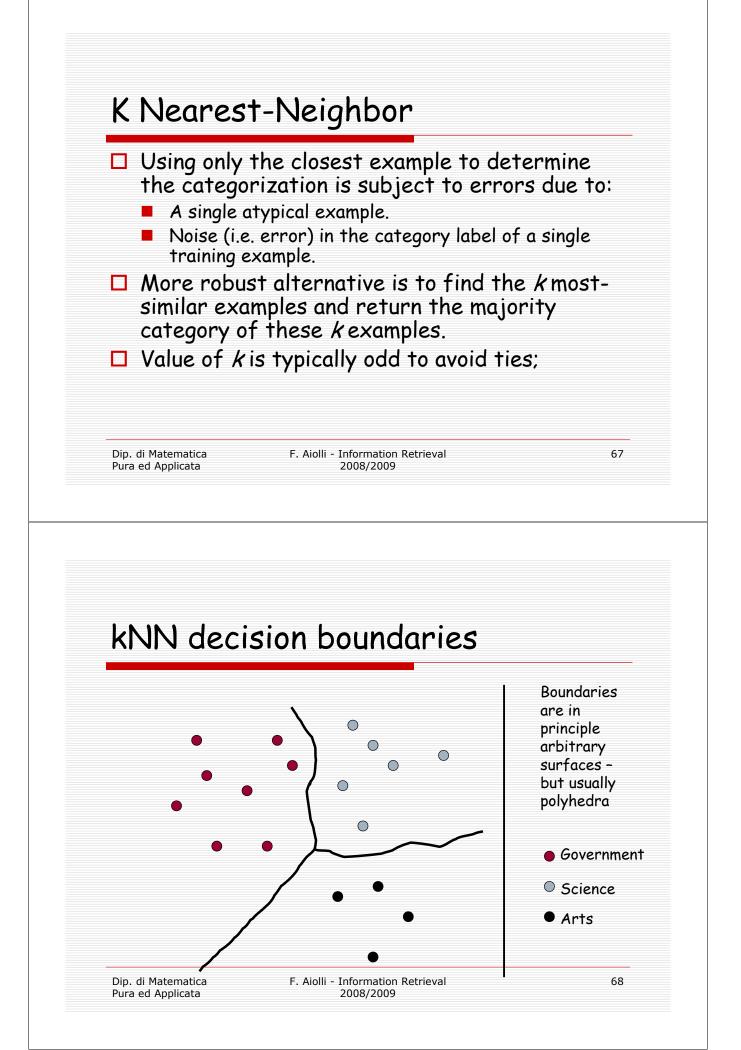
Example-based classifiers (EBCs) learns from the categories of the training documents similar to the one to be classified

The most frequently used EBC is the k-NN algorithm

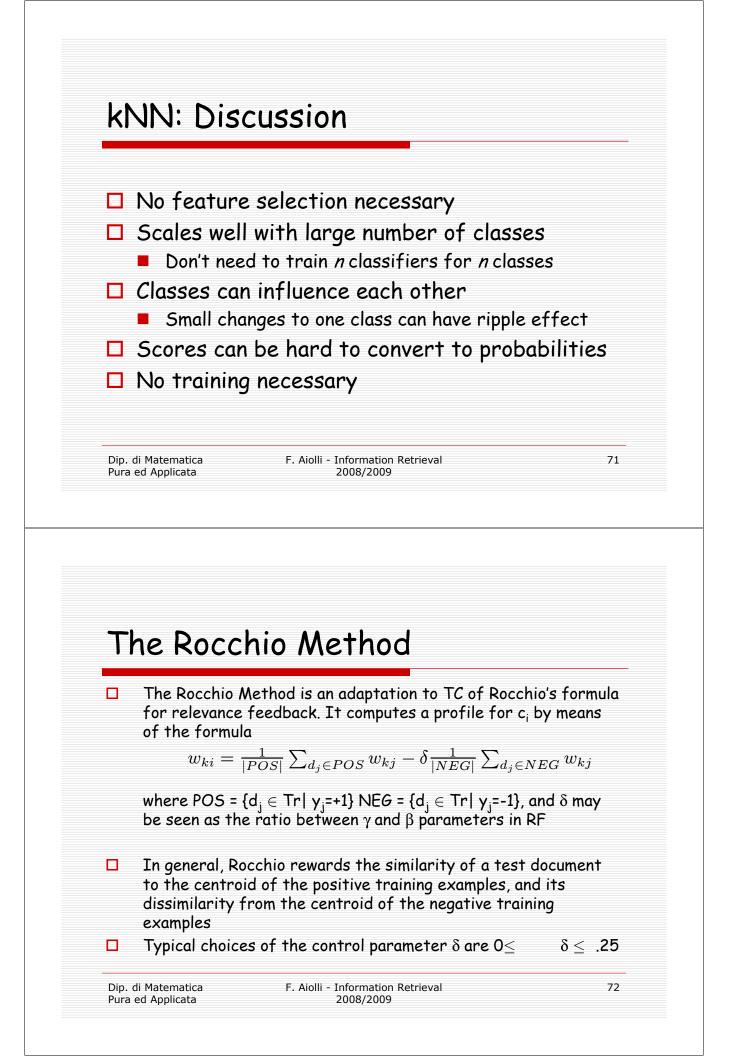
61

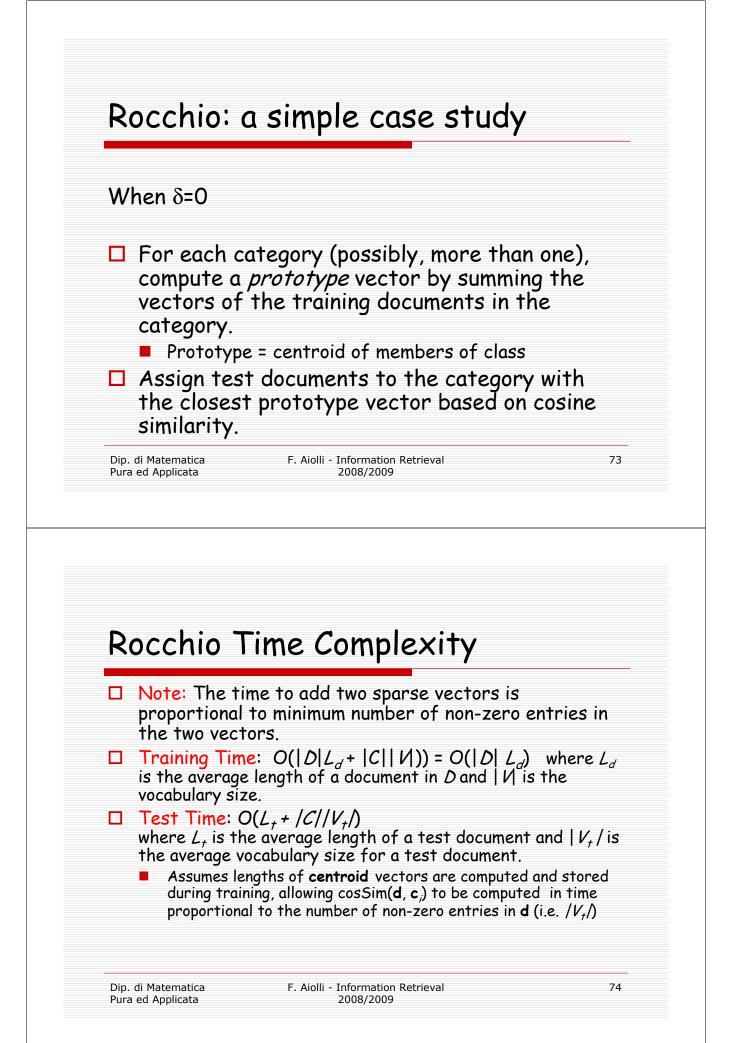


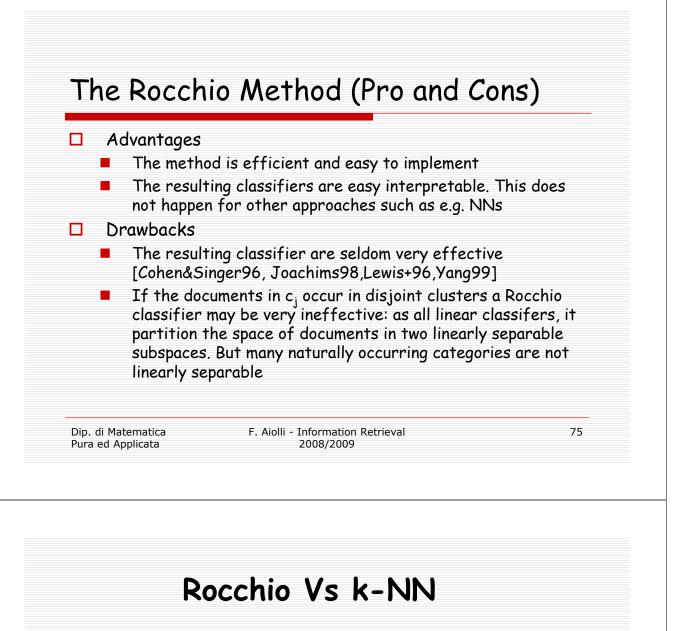


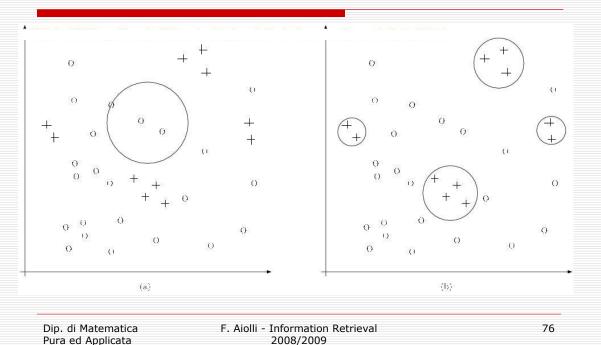


		bor method depends on distance) metric.	a
	•	continuous <i>m</i> -dimensiona	l instance
	space is Euclid	dian distance.	
	Simplest for <i>n</i> space is <i>Hamn</i> values that dif	<i>n</i> -dimensional binary ins n <i>ing distance</i> (number of ffer).	tance feature
	For text, cosi	ne similarity of tf.idf we ically most effective.	eighted
	But any metr	ric can be used!!	
	di Matamatica	F. Aiolli - Information Retrieval	69
	di Matematica a ed Applicata	2008/2009	
	ed Applicata		
N	ed Applicata learest Ne ndex	ighbor with Inve	erted
N	ed Applicata earest Ne ndex Naively finding n	2008/2009	erted
N	ed Applicata earest Ne ndex Naively finding n search through But determining	earest neighbors requires a <i>D</i> documents in collection <i>k</i> nearest neighbors is the s	erted linear ame as
	ed Applicata earest Ne ndex Naively finding n search through But determining determining the document as a qu	2008/2009 ighbor with Inve earest neighbors requires a D documents in collection	erted linear ame as est
	ed Applicata earest Ne ndex Naively finding n search through But determining determining the document as a qu documents. Use standard ver	earest neighbors requires a D documents in collection k nearest neighbors is the s k best retrievals using the t uery to a database of trainin	erted linear ame as est g
	earest Ne dearest Ne dex Naively finding n search through But determining determining the document as a qu documents. Use standard vec find the <i>k</i> neares Testing Time: O(earest neighbors requires a D documents in collection k nearest neighbors is the s k best retrievals using the t uery to a database of trainin	erted linear ame as est g ethods to erage









The Rocchio Method (Enhancements)

- Instead of considering the set of negative training instances in its entirely, a set of near-positives might be selected (as in RF). This is called the query zoning method
- Near positives are more significant, since they are the most difficult to tell apart from the positives. They may be identified by issuing a Rocchio query consisting of the centroid of the positive training examples against a document base consisting of the negative training examples. The top-ranked ones can be used as near positives.
- Some claim that, by using query zones plus other enhancements, the Rocchio method can achieve levels of effectiveness comparable to state-of-the art methods while being quicker to train

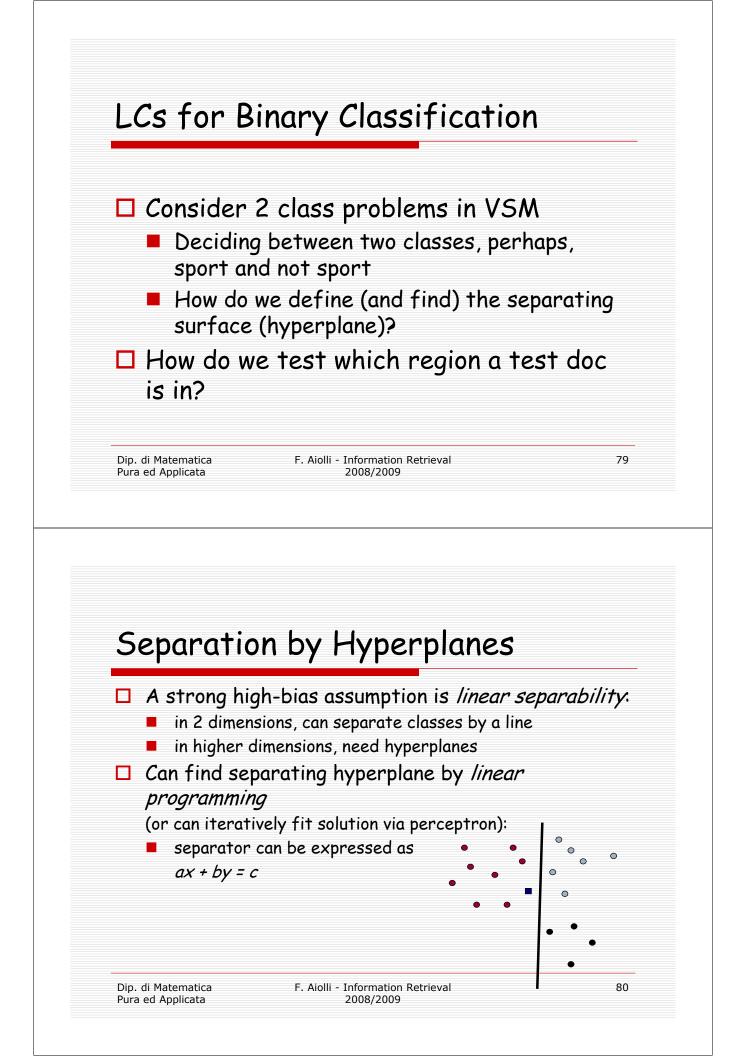
Dip. di Matematica	
Pura ed Applicata	

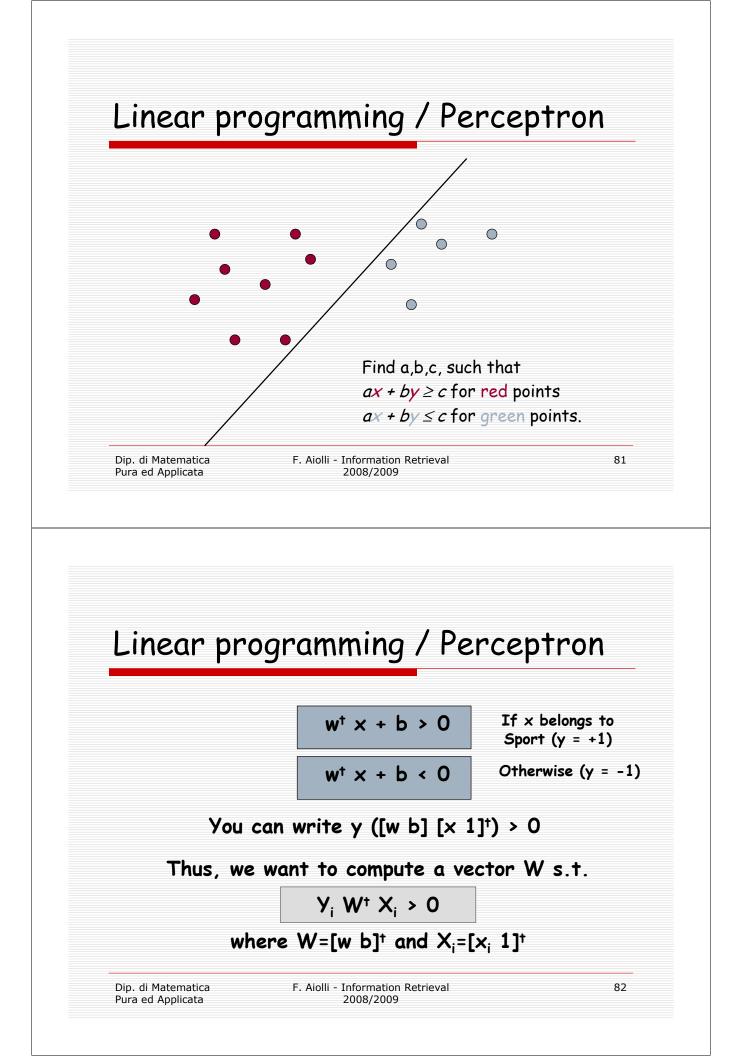
F. Aiolli - Information Retrieval 2008/2009

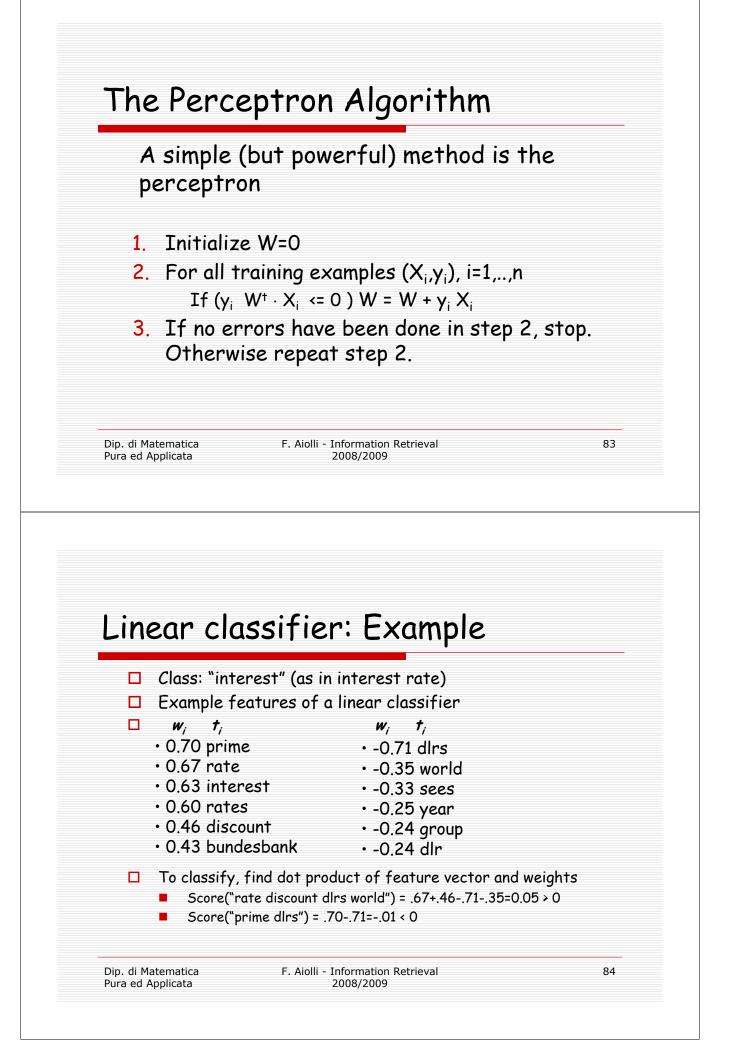
Linear Classifiers

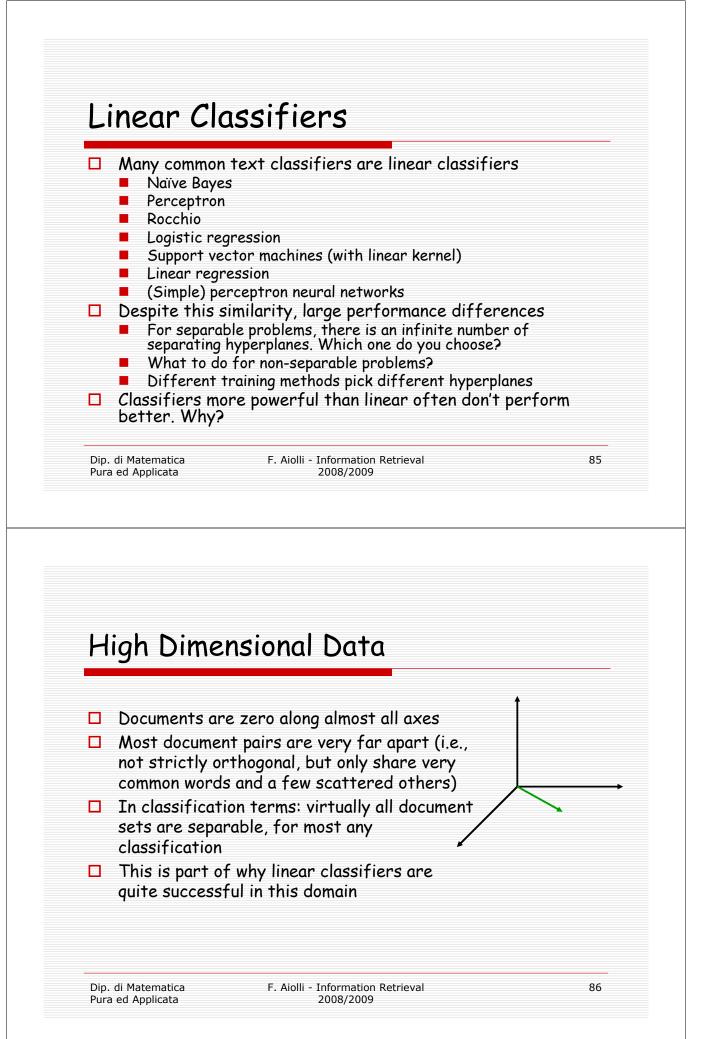
- A linear classifier is a classifier such that classification is performed by a dot product between the two vectors representing the document and the category, respectively. Therefore it consists in a document-like representation of the category c_i
- Linear classifiers are thus very efficient at classification time
- Methods for learning linear classifiers can be partitioned in two broad classes
 - Incremental methods (IMs) (or on-line) build a classifier soon after examining the first document, as incrementally refine it as they examine new ones
 - Batch methods (BMs) build a classifier by analyzing Tr all at once.

77









Naive Bayes is a linear classifier

Two-class Naive Bayes. We compute:

$$\log \frac{P(C \mid d)}{P(\overline{C} \mid d)} = \log \frac{P(C)}{P(\overline{C})} + \sum_{w \in d} \log \frac{P(w \mid C)}{P(w \mid \overline{C})}$$

Decide class C if the odds ratio is greater than 1, i.e., if the log odds is greater than 0.

□ So decision boundary is hyperplane:

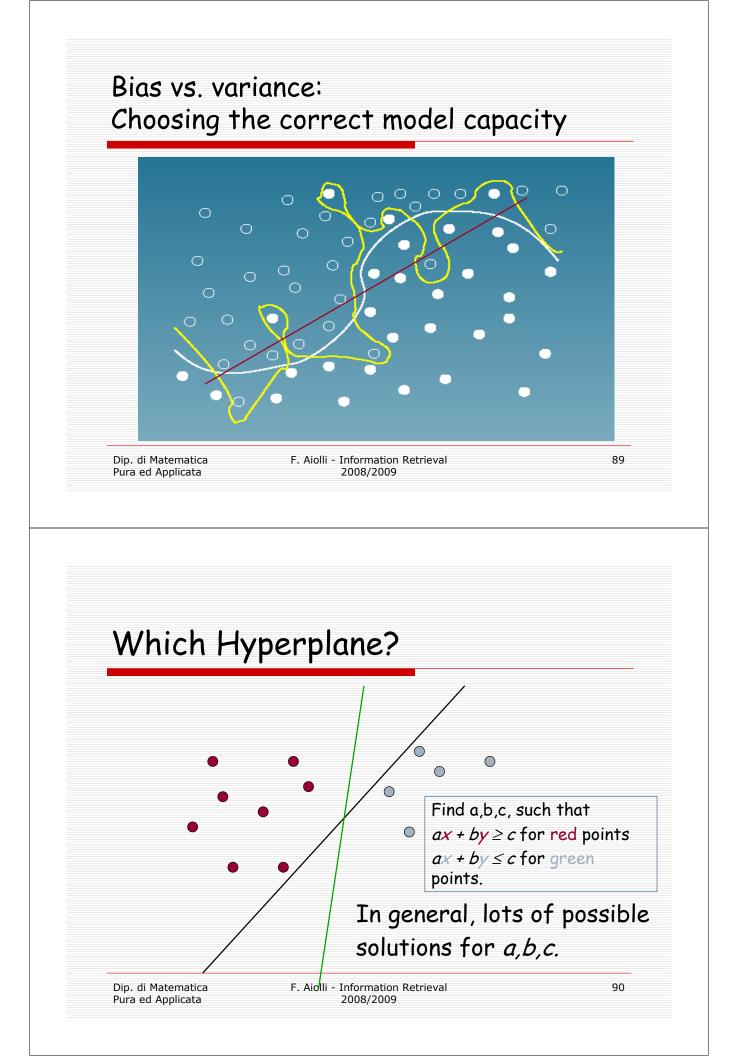
$$\alpha + \sum_{w \in V} \beta_w \times n_w = 0$$
 where $\alpha = \log \frac{P(C)}{P(\overline{C})};$

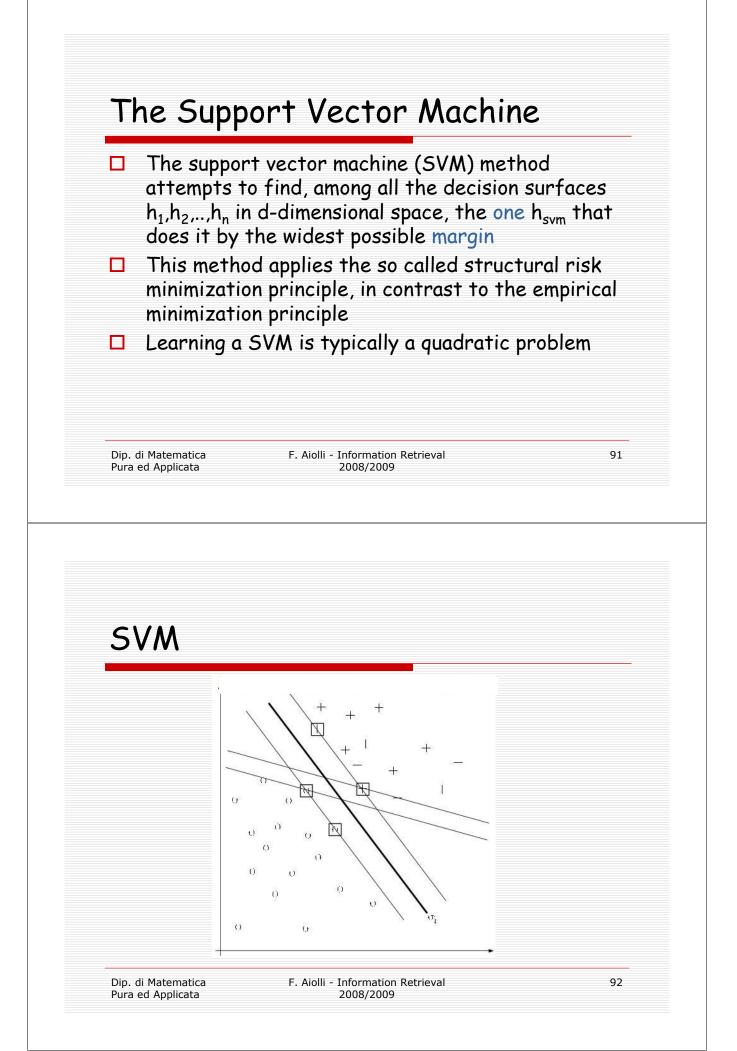
 $\beta_w = \log \frac{P(w \mid C)}{P(w \mid \overline{C})}; \quad n_w = \# \text{ of occurrence s of } w \text{ in } d$

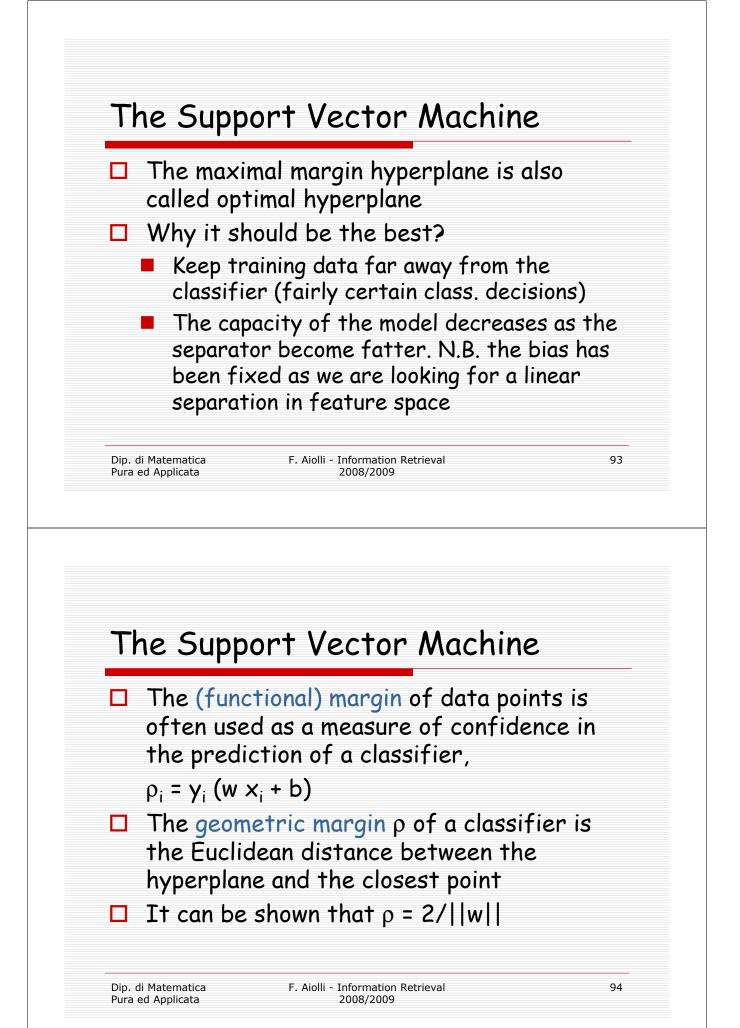
Dip. di Matematica Pura ed Applicata F. Aiolli - Information Retrieval 2008/2009 87

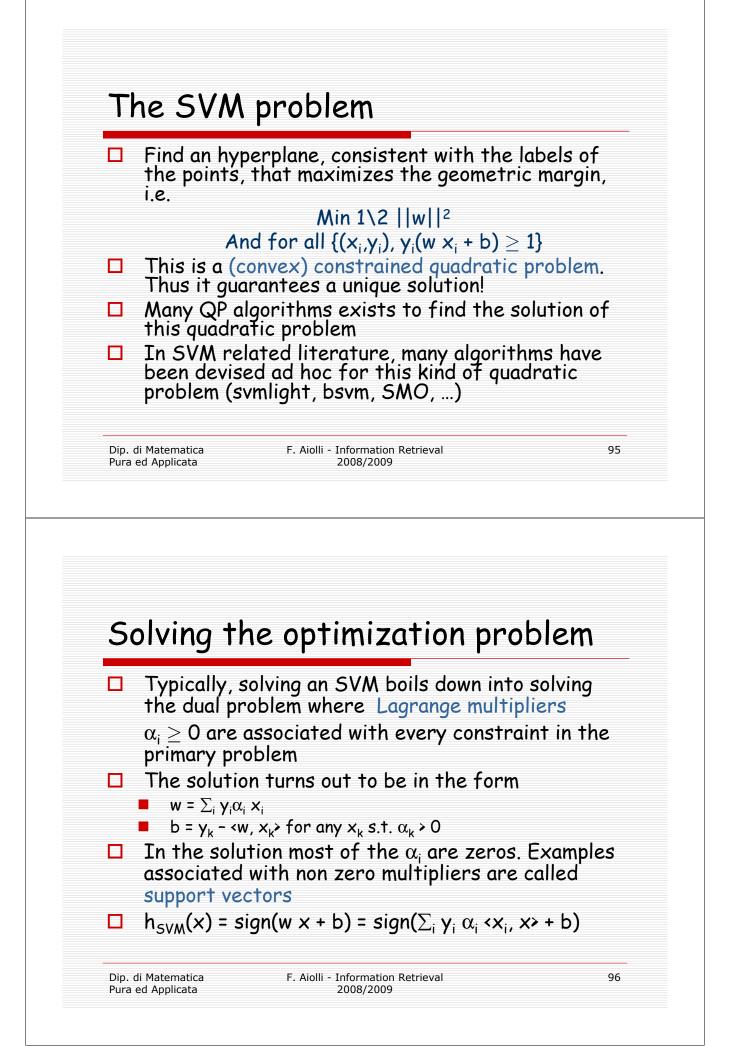
kNN vs. Linear Classifiers

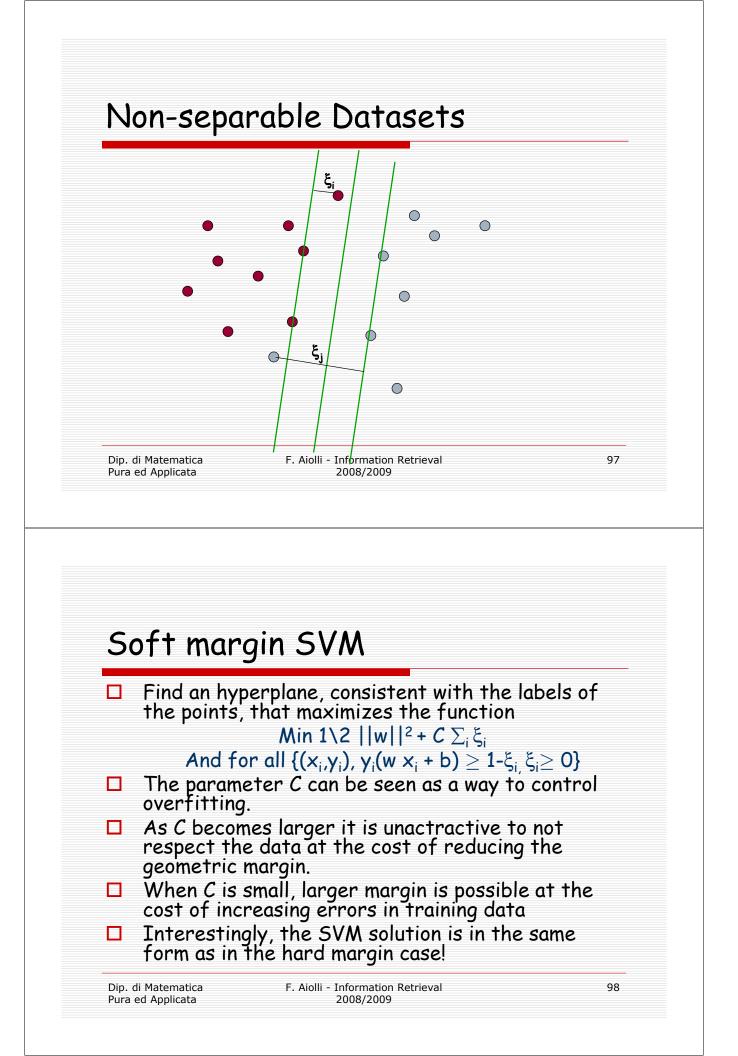
- Bias/Variance tradeoff
 - Variance ≈ Capacity
- kNN has high variance and low bias.
 - Infinite memory
- LCs has low variance and high bias.
 - Decision surface has to be linear (hyperplane)
- Consider: Is an object a tree?
 - Too much capacity/variance, low bias
 - Botanist who memorizes
 - Will always say "no" to new object (e.g., # leaves)
 - Not enough capacity/variance, high bias
 - Lazy botanist
 - Says "yes" if the object is green
 - Want the middle ground

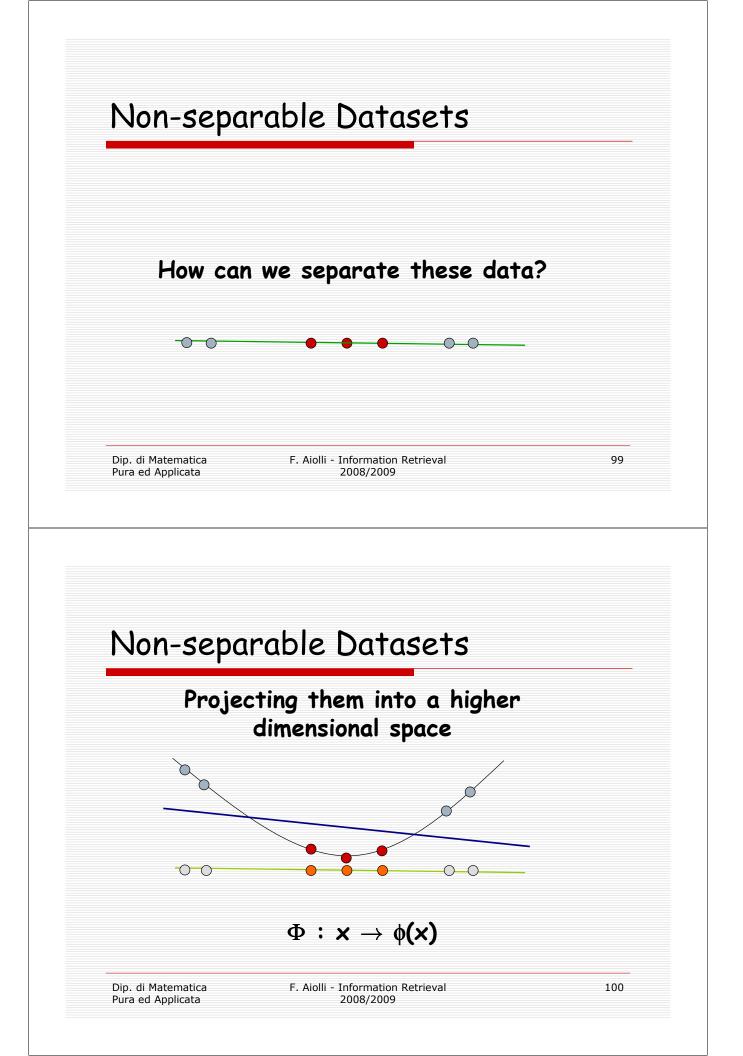


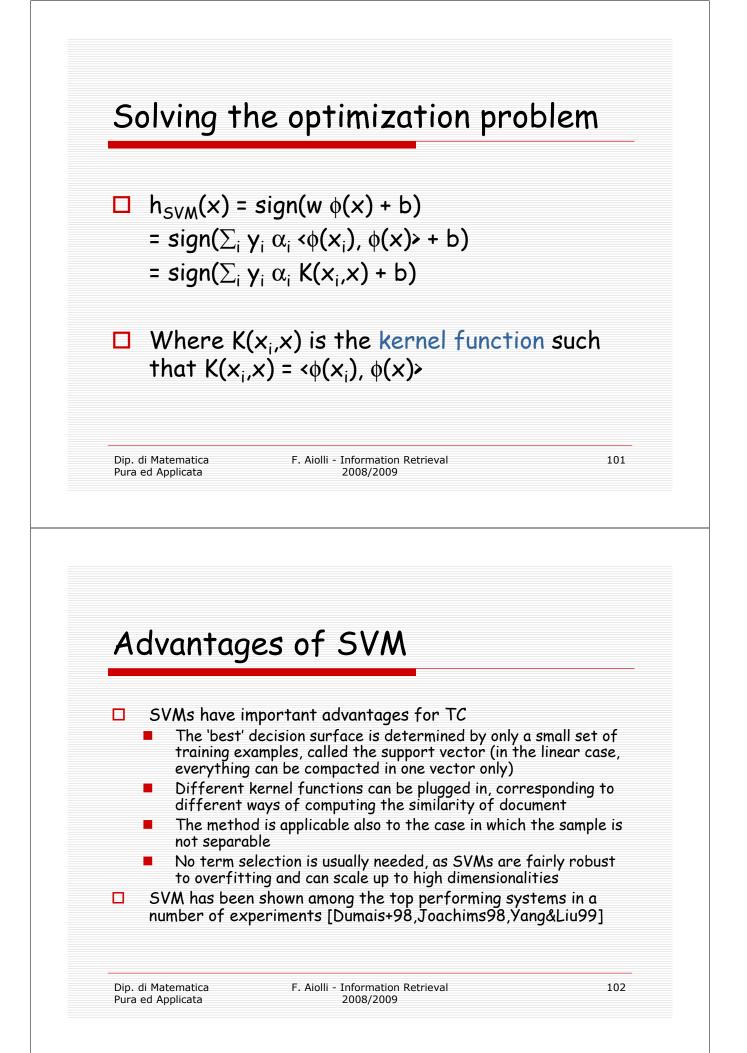


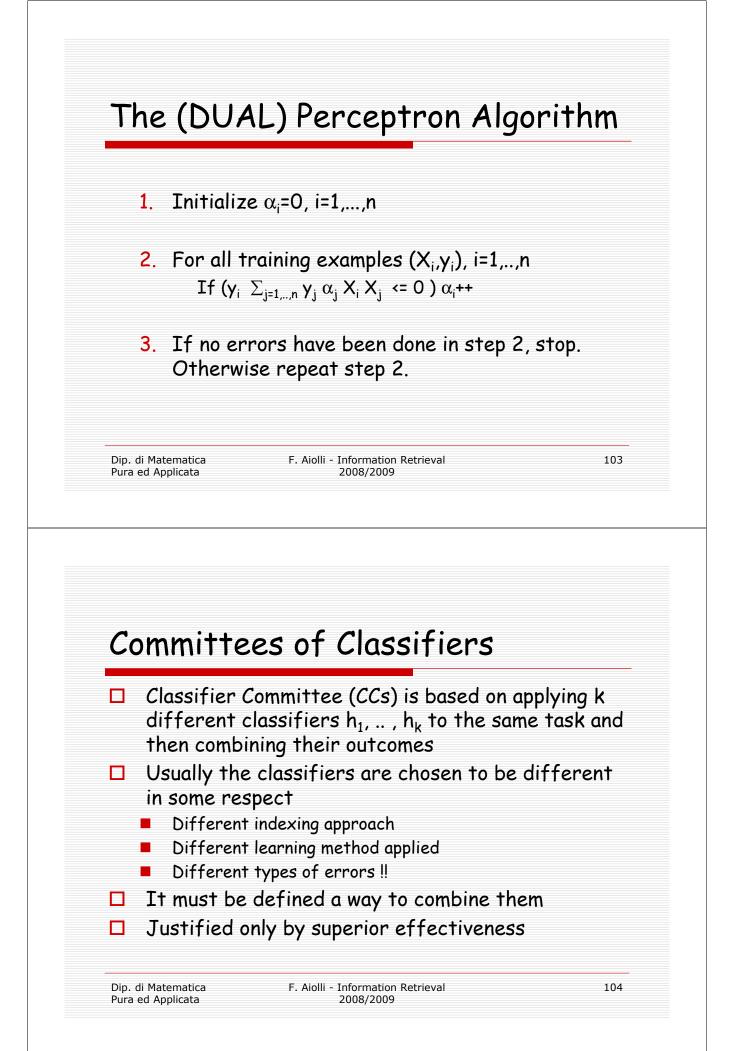












Combination rules

- Majority Voting: the classification decision that reach the majority of votes is taken
- Weighted Linear Combination: a weighted sum of the k CSV_i's yields the final CSV_i
- Dynamic Classifier Selection: the judgment of the classifier h_t that yields the best effectiveness on the validation examples most similar to d_j is adopted
- Adaptive Classifier Combination: the judgment of all the classifiers are summed together, but their individual contribution is weighted by their effectiveness on the examples most similar to d_i

Dip. di Matematica Pura ed Applicata F. Aiolli - Information Retrieval 2008/2009

Boosting

- Boosting is a CC method whereby the classifiers ('weak hypothesis') are trained sequentially by the same learner ('weak learner'), and are combined into a CC ('final hypothesys')
- The training of h_t is done in such a way to try to make the classifier to perform well on examples in which h₁,..,h_{t-1} have performed worst
- AdaBoost is a popular Boosting algorithm

105

