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What is clustering?

O Clustering: the process of grouping a set of
objects into classes of similar objects

B The commonest form of wnsupervised
learning
O Unsupervised learning = learning from raw

data, as opposed to supervised data where a
classification of examples is given

B A common and important task that finds many
applications in IR and other places

O Not only Document Clustering (e.g. terms)
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Why cluster documents?

OO0 Whole corpus analysis/navigation
B Better user interface

O For improving recall in search applications
B Better search results

OO0 For better navigation of search results
B Effective "user recall” will be higher

[0 For speeding up vector space retrieval
B Faster search
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For better navigation of search
results

O For grouping search results thematically
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For improving search recall

O Cluster hypothesis - Documents with similar text
are related

O Therefore, to improve search recall:
B Cluster docs in corpus a priori
B When a query matches a doc D, also return other

docs in the cluster containing O

O Hope if we do this: The query "car” will also

return docs containing automobile

B Because clustering grouped ftogether docs containing
car with those containing automobile.
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The Clustering Problem

Given:

B A set of documents D={d,,..d,}

B A similarity measure (or distance metric)

B A partitioning criterion

B A desired number of clusters K
Compute:

B Anassignment functiony: D — {1,.. K}

0 None of the clusters is empty

O Satisfies the partitioning criterion w.r.t. the
similarity measure
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Issues for clustering

[0 Representation for clustering
B Document representation
0 Vector space? Normalization?
B Need a notion of similarity/distance

OO0 How many clusters?
B Fixed a priori?
B Completely data driven?

O Avoid “frivial” clusters - too large or small

B Inan application, if a cluster's too large, then for
navigation purposes you've wasted an extra user click
without whittling down the set of documents much.
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What makes docs "related”?

[0 Tdeal: semantic similarity.

O Practical: statistical similarity
B We will use cosine similarity.
B Docs as vectors.

B For many algorithms, easier o think in
terms of a distance (rather than
similarity) between docs.

B Any kernel function can be used
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Objective Functions

O

Often, the goal of a clustering algorithm is to
optimize an objective function

In this cases, clustering is a search (optimization)
problem

KN / K! different clustering available

Most partitioning algorithms start from a guess and
then refine the partition

Many local minima in the objective function implies
that different starting point may lead to very
different (and unoptimal) final partitions
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What Is A Good Clustering?

O Internal criterion: A good clustering will

produce high quality clusters in which:

B the intra-class (that is, intra-cluster)
similarity is high

B the inter-class similarity is low

B The measured quality of a clustering
depends on both the document

representation and the similarity measure
used
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External criteria for clustering quality

O Quality measured by its ability to discover
some or all of the hidden patterns or latent
classes in gold standard data

[0 Assesses a clustering with respect to ground
truth

O Assume documents with Cgold standard
classes, while our clustering algorithms produce
K clusters, o,,..,0, with #,members.
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External Evaluation of Cluster Quality

O Simple measure: purity, the ratio between
the dominant class in the cluster ©; and the
size of cluster o,

Purity(wy) = mmaxj Nkj, Nkj = |wk N ¢l

0 Others are entropy of classes in clusters

(or mutual information between classes and
clusters)

P(wic;
I(Q,C)=> 12, P(wkcﬂ')lOng}D(zj)
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Purity example

Cluster I Cluster IT Cluster ITI

Cluster I: Purity = 1/6 (max(5, 1, 0)) = 5/6
Cluster IT: Purity = 1/6 (max(1, 4, 1)) = 4/6

Cluster ITI: Purity =1/5 (max(2,0, 3)) = 3/5
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Rand Index

Number of | Same Cluster [C)llffer'enT
oints in clustering usters in
P clustering

Same class in
ground truth A (TP) C (fn)
Different

classes in 2 (fp) D (tn)

ground truth
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Rand index: symmetric version

A+ D

RI =
A+B+C+D

Compare with standard Precision and Recall.

A A

P =
A+ B A+C
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Rand Index example: 0.68
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Clustering Algorithms

O Partitional algorithms
B Usually start with a random (partial)
partitioning
B Refine it iteratively
0 K'means clustering
[0 Model based clustering
O Hierarchical algorithms
B Bottom-up, agglomerative
B Top-down, divisive
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Partitioning Algorithms

O Partitioning method: Construct a partition of 7
documents into a set of Kclusters

[0 Given: a set of documents and the number K

O Find: a partition of K clusters that optimizes
the chosen partitioning criterion

B Globally optimal: exhaustively enumerate all
partitions

B Effective heuristic methods: k~means and K-
medoids algorithms
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K-Means

O Assumes documents are real-valued vectors.

O Clusters based on centroids (aka the center of gravity
or mean) of points in a cluster, ¢

= 1 =
c)=—)> X
H(c) lcl;

[0 Reassignment of instances to clusters is based on
distance to the current cluster centroids.

B (Or one can equivalently phrase it in terms of similarities)
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K-Means Algorithm

Select Krandom docs {s;, s,,.. 5} as seeds.

Until clustering converges or other stopping criterion:
1. For each doc d;
Assign d;to the cluster ¢, such that disf(x; s;) is
minimal
2. (Update the seeds to the centroid of each cluster)
For each cluster ¢;

J
5= H(Cj)
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K Means Example

Pick seeds
Reassign clusters
Compute centroids
° * Reassigh clusters
e * *x Compute centroids
o [ ] >
. Reassign clusters
[ ]
. Converged!
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Termination conditions

(1 Several possibilities, e.g.,
B A fixed number of iterations.
B Based on Loss function (RSS)
B Doc partition unchanged.
B Centroid positions don't change.

4

Does this mean that the docs ina
cluster are unchanged?
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Convergence

0 Why should the k~means algorithm ever
reach a fixed point?

B A state in which clusters don't change.
0 K“means is a special case of a general

procedure known as the Expectation

Maximization (EM) algorithm.

® EM is known to converge.

® Number of iterations could be large.
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Convergence of K~Means

[0 Define goodness measure of cluster kas
sum of squared distances from cluster
centroid:

B G,=2(d -c)? (sumoverall d;in cluster 4)

O06:=2,6,

[0 Reassignment monotonically decreases 6

since each vector is assigned to the
closest centroid.
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Convergence of k~“Means

[0 Recomputation monotonically decreases
each G, since (m, is number of members in
cluster 4):

2 (d. - aF reaches minimum for:
> -2(d-a)=0
>2dz=2a
mea=2d,
a=(1/mJ)2 d =c,
[0 k~means typically converges quickly
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Time Complexity

0 Computing distance between two docs is
O(m)where m is the dimensionality of
the vectors.

[0 Reassighing clusters: O(kn)distance
computations, or O(Knm).

OO0 Computing centroids: Each doc gets
added once to some centroid: O(nm)

[0 Assume these two steps are each done
once for Iiterations: O(IKnm)
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Time Complexity

O

So, k-means is linear in all relevant factors (iterations,
number of clusters, number of documents, and
dimensionality of the space)

But M>100.000 !l

Docs are sparse but centroids tend to be dense ->
distance computation is time consuming

Effective heuristics can be defined for making
centroid-doc distance computation as efficient as doc-
doc distance computation

K-medoids is a variant of k-means that compute
medoids (the docs closest to the centroid) instead of
centroids as cluster centers.
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Seed Choice

[0 Results can vary based on Example showing

[0 Some seeds can result in poor

random seed selection. sensitivity to seeds

A B

convergence rate, or o
convergence o sub-optimal ¢

Clus‘rer'mgs. = In the above, if you start
B Select good seeds using a with B and E as centroids

heuristic (e.g., doc least similar  you converge to {A,B,C}

AN and {D,E,F}
To any existing mean) If you start with D and F

B Try out multiple starting points you converge to

B Initialize with the results of {A.B.D.E} {C.F}
another method.

Ml (N

C
i
E
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How Many Clusters?

0 Number of clusters K'is given

B Partition n1docs into predetermined number of
clusters
O Finding the "right" number of clusters is part
of the problem

B Given docs, partition into an “"appropriate” number of
subsets.

m Eg., for query results - ideal value of K'not known up
front - though UI may impose limits.
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K not specified in advance

[0 Say, the results of a query.

[0 Solve an optimization problem
B MIN, L(K) + A q(K) which penalizes having
lots of clusters
B gpplication dependent, e.g., compressed
summary of search results list.
[0 Tradeoff between having more clusters
(better focus within each cluster) and
having too many clusters

Dip. di Matematica F. Aiolli - Information Retrieval - 32
Pura ed Applicata 2008/09




Model-based Clustering

O A different way of posing the clustering problem is to
formalize the clustering as a parameterized model ®
and then search the parameters that maximize the
likelihood of the data

MAX L(D|®)

O Where L(D|O®) = log 1, P(d,|®) =X, log P(d,)
O This can be done by an EM (Expectation Maximization
procedure)

O K-means can be seen as an instance of EM when the
model is a mixture of multivariate Gaussians
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Model-based Clustering

[0 Instead of a Gaussian mixture, we focus on
mixture of multivariate binomials, i.e.

P(d|o,,0) = I1,, P(X,=I(w, € d)|o,)

[0 The mixture model
P(d|®) = >, v I1,, PX,=I(w,, € d)|®,)

O N.B. K-means performs an hard assignment
while the binomial EM clustering performs a
soft assignment
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EM

0 Maximization Step: computes the conditional
parameters q,, = P(X,, = 1 | ®,) and the priors vy,

N
= anl Tkl (wWmEdy) N =
dmke = 25:1 Tnk Tk = z:nZ:\;L k

0 Expectation Step: computes the soft
assignment of documents to clusters given the
current parameters

ok = W’k(meedn qu)(megdn(l — qmk))

/

_ T ;
rnk = 7"/
z :k nk
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Considerations

O Finding good seeds is even more critical for EM than for k-means
(EM is prone to get stuck in local optima)

O Therefore (as in k-means) an initial assignment is often
computed by another algorithm

O If the model of the data is correct EM algorithm finds the
correct structure

O Hardly a document collection can be considered generated by a
simple mixture model

O Aft least, model based clustering allows for analysis and
adaptations
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Hierarchical Clustering

1 Build a tree-based hierarchical
taxonomy (dendrogram) from a set

of documents. wiwd
Vertel(}verebrate

ﬁh r7<11e amphib. ma/nimal W/o\@\se>crus/ticean

(1 One approach: recursive application
of a partitional clustering algorithm.
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Dendogram: Hierarchical Clustering

Clustering obtained
by cutting the
dendrogram at a
desired level: each
connected === 11—
component forms a
cluster.
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The dendogram

OO0 The y-axis of the dendogram represents
the combination similarities, i.e. the
similarities of the clusters merged by a
the horizontal lines for a particular y

[0 Assumption: The merge operation is
monotonic, i.e. if s4,..,5, 4 are successive
combination similarities, then

Sy > S, > ..> 5, must hold
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Hierarchical Agglomerative
Clustering (HAC)

[ Starts with each doc in a separate
cluster

B then repeatedly joins the closest
pair of clusters, until there is only
one cluster.

[0 The history of merging forms a
binary tree or hierarchy.
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Closest pair of clusters

O Many variants to defining closest pair of clusters
O Single-link
B Similarity of the most cosine-similar (single-link)
O Complete-link
B Similarity of the "furthest” points, the /east cosine-
similar
O Centroid

B Clusters whose centroids (centers of gravity) are the
most cosine-similar

O Average-link
B Average cosine between pairs of elements
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Single Link Agglomerative
Clustering

O Use maximum similarity of pairs:
sim(c;,¢ ;) = max sim(x,y)
XEC;,YEC;
O Can result in “straggly” (long and thin) clusters
due to chaining effect.

O After merging ¢;and ¢, the similarity of the
resulting cluster to another cluster, ¢, is:

sim((c; U c;),c,) =max(sim(c;,c, ),sim(c;,c;))
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Single Link Example
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Complete Link Agglomerative
Clustering

O Use minimum similarity of pairs:

sim(c;,c ;)= min sim(x,y)
XEC;,YEC;
0 Makes “tighter,"” spherical clusters that are
typically preferable.

O After merging ¢;and ¢, the similarity of the
resulting cluster to another cluster, ¢, is:

sim((c; Uc,),c,) =min(sim(c;,c,),sim(c;,c,))

x> Coo— G
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Complete Link Example
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Graph theoretical interpretation

|
0 Single-link Clustering as connected component of a
graph
B If G(A)) is the graph that links all data points with a
distance of at most A,, then the clusters are the
connected components of G(A,)
O Complete-link as cliques of a graph

B If 6(A))is the graph that links all data points with a
distance of at most A,, then the clusters are the
cliques of G(A,)

O This motivates the terms single-link and
complete-link clustering
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Computational Complexity

O

|
In the first iteration, all HAC methods need to compute

similarity of all pairs of #individual instances which is
O(rP).

In each of the subsequent #-2 merging iterations,
compute the distance between the most recently
created cluster and all other existing clusters.

In order to maintain an overall O(+/#) performance,
computing similarity to each other cluster must be done
in constant time.

B Else O(7? log n) or O(#®) if done naively
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Best-Merge Persistency

O

The single-link agglomerative clustering is best-
merge persistent

Suppose that the best merge cluster for k is j

Then, after merging j with a third cluster i # k, the
merger of i and j will be the k's best merge cluster

As a consequence, we can keep the best merge
candidates for the merged cluster as one of the
two best merge candidates for the merged clusters

e s
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Single-link and Complete-link
drawbacks

O Single link clustering can produce straggling
clusters. Since the merge criterion is local, it can
cause the chaining effect

O Complete-link clustering pays o much attention to
outliers, i.e. points that do not fit well in the global
structure of the clusters
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Group Average Agglomerative
Clustering

O Similarity of fwo clusters = average
similarity of all pairs within merged cluster.

drd;
de Ew; U(.Uj Zdl Ewy; ij 7dl -—,édk

(Ni+N;)(Ni+N;—1)

$iMgq (Wi, wj) =
0 Compromise between single and complete link.

0 An alternative to group-average clustering is
centroid clustering

Simcent(wia wj) — Nile de Ew; ZdZij,dﬁfdk dkdl
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Computing Group Average and
Centroid similarities

[0 Always maintain sum of vectors in each
cluster.

S(wj) — deEWj dk

O Compute similarity of clusters in

constant time:

. 5% (wiUw;)—(N;+Nj)
$iMga (Wi Wj) = NN 8, 1)

. _ s(wi)s(wy)
STMcent (Wi, wj) = WJJ
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Summarizing

Single-link Max sim of O(N?2) Chaining
any two effect
points

Complete-link | Min sim of O(NZ2logN) Sensitive to
any two outliers
points

Centroid Similarity of | O(N2logN) Non
centroids monotonic

Group- Avg sim of O(NZ2logN) OK

average any two
points
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