Information Retrieval (Web Search)

Fabio Aiolli

http://www.math.unipd.it/~aiolli

Dipartimento di Matematica Pura ed Applicata Università di Padova

Anno Accademico 2008/2009

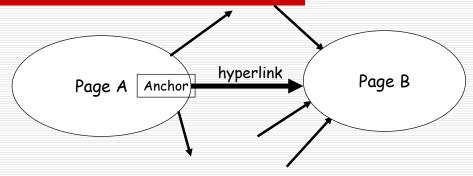
Dip. di Matematica Pura ed Applicata F. Aiolli - Information Retrieval 2008/2009

1

Web Search before Google

- Web Search Engines (WSEs) of the first generation (up to 1998)
 - Identified relevance with topic-relateness
 - Based on keywords inserted by web page creators (META tags)
 - Preprocessing (HTML tags removal, ...), the only difference with standard text search
- □ Problems
 - Web pages are multimedia items and their relevance determined by non-testual content
 - Many Web pages, often use evocative (as opposed to descriptive) language

The Web as a Directed Graph



Assumption 1: A hyperlink between pages denotes author perceived relevance (quality signal)

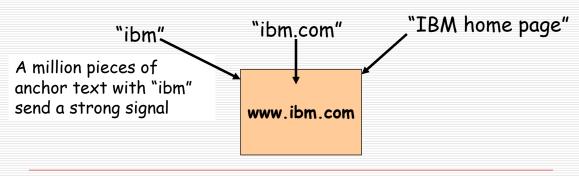
Assumption 2: The anchor of the hyperlink describes the target page (textual context)

Dip. di Matematica Pura ed Applicata F. Aiolli - Information Retrieval 2008/2009 3

Anchor Text

WWW Worm - McBryan [Mcbr94]

- ☐ For *ibm* how to distinguish between:
 - IBM's home page (mostly graphical)
 - IBM's copyright page (high term freq. for 'ibm')
 - Rival's spam page (arbitrarily high term freq.)

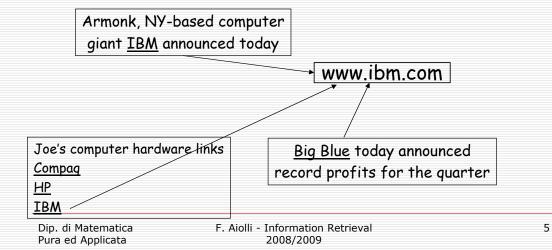


Dip. di Matematica Pura ed Applicata F. Aiolli - Information Retrieval 2008/2009

4

Indexing anchor text

□ When indexing a document D, include anchor text from links pointing to D.



Indexing anchor text

- □ Can sometimes have unexpected side effects, e.g. derogatory phrases
- □ Can index anchor text with less weight.
- Other applications
 - Weighting/filtering links in the graph
 HITS [Chak98], Hilltop [Bhar01]
 - Generating page descriptions from anchor text [Amit98, Amit00]

Web Search after Google

- □ Web Search Engines (WSEs) of the second generation (from 1998 onwards)
 - Identify relevance with topic-relateness and authoritativeness
 - □ Independent by the particular format of the Web site
 - □ Relevance computation is more selective
- This has been possible by the development of Link-based Ranking Schemes (LRSs) algorithms which compute authoritativeness exploiting the hyperlink structure of the Web
- The Web can be seen as a network of recommendations, a social network. Social networks analysis has been applied in many contexts in the past, including epidemiology, espionage and scientific production

Dip. di Matematica Pura ed Applicata F. Aiolli - Information Retrieval 2008/2009

7

Spam Web Sites

- Spam Web Sites (SWSs) are Web pages designed to manipulate WSE ranking schemes, generally for commercial purposes
 - First Generation WSEs
 - ☐ Including deceptive self-description in the HTML META tag
 - □ Including "invisible words" (i.e. displayed in the same color as the background) or words typeset in tiny fonts, in order to deceive tfidf-based ranking schemes
 - Second Generation WSEs
 - LRSs would seem to be more robust, since SWSs are not authoritative, but naive LRSs may be fooled by artificially conferring authority onto SWSs
 - Adversarial IR to outwit companies specialized in promoting the rank of their customer (adaptive "enemies")

LRSs and Bibliometrics

- □ LRSs leverage on the body of literature within bibliometrics, the 80-years-old science of the quantitative analysis of scientific literature
- Bibliometrics studies the quality of scientific papers, journals, etc., in terms of their impact factors (IFs), i.e. a measure of the impact that it has had, obtained through a quantitative analysis of the bibliographic citations to it
- Many results are directly applicable by observing that a hyperlink from page p_i to page p_j can be seen as a bibliographic reference to paper p_j included in the bibliography of paper p_i

Dip. di Matematica Pura ed Applicata F. Aiolli - Information Retrieval 2008/2009 9

Link-based Ranking Systems (LRSs)

- □ LRSs rank a "base set" BS of Web pages
- Depending on what BS is, we have:
 - Query Dependent LRSs rank a set of Web pages that have previously been identified as being topic-related with the query
 - ☐ Based on both topic-relatedness and authoritativeness
 - Must be computed on-line
 - ☐ Best known algorithm: HITS[Kleinberg98] (Clever WSE)
 - Query Independent LRSs, in principle, rank the entire Web
 - Only based on authoritativeness
 - ☐ Can be computed off-line
 - At query time, it must be merged in some way with a querydependent ranking based on topic-relatedness
 - ☐ Best known algorithm: PageRank[Brin&Page98] (Google WSE)

LRSs

- Preliminary steps to all LRSs are
 - 1. Identification of BS (necessary for QD LRSs only)
 - 2. The generation of the hyperlink graph G=<P,E>
- In Step 1, HITS obtains a base set BS of pages (loosely) topic-related to the query in the following way:
 - The query is fed to a standard text search system, and BS is initiated to a 'root set' consisting of the k top-ranked pages
 - All the pages pointing to pages in BS, and all the pages pointed to pages of BS, are added to BS
- Step 2 is obtained by considering all pages in BS as nodes in P, and all hyperlinks between pages of BS as edges in E, after discarding
 - 'nepotistic' hyperlinks (internal to the Web site)
 - 'duplicate' hyperlinks (only one link for any pair <p,,p,>)
 - 'self-loops' (links from p_i to p_i)

Dip. di Matematica Pura ed Applicata F. Aiolli - Information Retrieval 2008/2009 11

Adjacency Matrix

- □ The input to any LRS is thus a |BS|×|BS| adjacency matrix W such that
 W[i,j]=1 iif there is a hyperlink from page p; to p;
- ☐ The output of any LRS is a vector $a=[a_1,...,a_{|BS|}]$ where a_i is the authoritativeness of page p_i
- \square Backward Neighbors, B(j)={p_i | W[i,j]=1}
- □ Forward Neighbors, $F(i)=\{p_j \mid W[i,j]=1\}$

The InDegree Algorithm

- □ The InDegree algorithm [Marchiori97], consists in identifying the authoritativeness a_i of a page p_i with the in-degree of p_i, i.e. |B(i)|
- □ It corresponds to ranking Web pages according to their 'popularity' ('visibility')
- \square In matric notation $a = W^{T} \cdot 1$
- Main weakness: only the quantity of backward links, and not their quality, matters
- It can fooled easily by SWSs. To promote a page p_s , they only need to set up lots of dummy pages $p_1...p_k$, containing pointers to p_s
- □ Not used in any current-day WSE

Dip. di Matematica Pura ed Applicata F. Aiolli - Information Retrieval 2008/2009

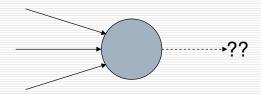
13

Pagerank scoring

- □ Imagine a browser doing a random walk on web pages:
 - Start at a random page
 - At each step, go out of the current page along one of the links on that page, equiprobably
- □ "In the steady state" each page has a long-term visit rate - use this as the page's score.

Not quite enough

- □ The web is full of dead-ends.
 - Random walk can get stuck in dead-ends.
 - Makes no sense to talk about long-term visit rates.



Dip. di Matematica Pura ed Applicata F. Aiolli - Information Retrieval 2008/2009 15

Teleporting

- At a dead end, jump to a random web page.
- ☐ At any non-dead end, with probability 10%, jump to a random web page.
 - With remaining probability (90%), go out on a random link.
 - 10% a parameter.

Result of teleporting

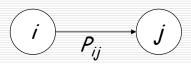
- □ Now cannot get stuck locally.
- ☐ There is a long-term rate at which any page is visited
- □ How do we compute this visit rate?

Dip. di Matematica Pura ed Applicata F. Aiolli - Information Retrieval 2008/2009

17

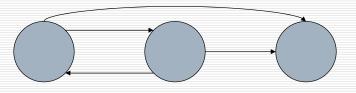
Markov chains

- \square A Markov chain consists of *n* states, plus an $n \times n$ transition probability matrix **P**.
- ☐ At each step, we are in exactly one of the states.
- □ For $1 \le i, j \le n$, the matrix entry P_{ij} tells us the probability of j being the next state, given we are currently in state i.



Markov chains

- \square Clearly, for all i, $\sum_{j} P_{ij} = 1$
- Markov chains are abstractions of random walks.
- □ Exercise: represent the teleporting random walk from 3 slides ago as a Markov chain, for this case:



Dip. di Matematica Pura ed Applicata F. Aiolli - Information Retrieval 2008/2009

19

Ergodic Markov chains

- □ A Markov chain is ergodic if
 - you have a path from any state to any other
 - you can be in any state at every time step, with nonzero probability.
- ☐ For any ergodic Markov chain, there is a unique long-term visit rate for each state.
 - Steady-state distribution.
- Over a long time-period, we visit each state in proportion to this rate.
- ☐ It doesn't matter where we start.

Probability vectors

- \square A probability (row) vector $\mathbf{x} = (x_1, ..., x_n)$ tells us where the walk is at any point.
- \square E.g., (000...1...000) means we're in state *i*.

More generally, the vector $\mathbf{x} = (x_1, ... x_n)$ means the walk is in state *i* with probability x_i .

$$\sum_{i} x_{i} = 1$$

Dip. di Matematica Pura ed Applicata F. Aiolli - Information Retrieval 2008/2009

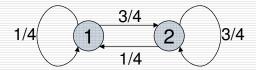
21

Change in probability vector

- \square If the probability vector is $\mathbf{x} = (x_1, ... x_n)$ at this step, what is it at the next step?
- □ Recall that row i of the transition prob. Matrix P tells us where we go next from state i.
- \square So from x, our next state is distributed as xP.

Steady state example

- ☐ The steady state looks like a vector of probabilities $\mathbf{a} = (a_1, ..., a_n)$:
 - \blacksquare a_i is the probability that we are in state *i*.



For this example, $a_1=1/4$ and $a_2=3/4$.

Dip. di Matematica Pura ed Applicata F. Aiolli - Information Retrieval 2008/2009 23

How do we compute this vector?

- Let $\mathbf{a} = (a_1, \dots a_n)$ denote the row vector of steady-state probabilities.
- ☐ If our current position is described by **a**, then the next step is distributed as **aP**.
- \square Whenever **a** is the steady state, it should be **a**=**a**P.
- \square Solving this matrix equation gives us **a**.
 - So a is the (left) eigenvector for P.
 - (Corresponds to the "principal" eigenvector of P with the largest eigenvalue.)
 - Transition probability matrices always have largest eigenvalue 1.

One way of computing a

- Recall, regardless of where we start, we eventually reach the steady state a.
- \square Start with any distribution (say x=(10...0)).
- □ After one step, we're at xP;
- \square After two steps at $\times P^2$, then $\times P^3$ and so on.
- \square "Eventually" means for "large" k, $\times P^k = a$.
- ☐ Algorithm: multiply x by increasing powers of P until the product looks stable.
- Strict convergence is not necessary;
 - [Brin&Page98] reports acceptable convergence on 322M nodes in about 50 iterations

Dip. di Matematica Pura ed Applicata F. Aiolli - Information Retrieval 2008/2009

25

Pagerank summary

- □ Preprocessing:
 - Given graph of links, build matrix P.
 - From it compute a.
 - The entry a_i is a number between 0 and 1: the pagerank of page i.
- Query processing:
 - Retrieve pages meeting query.
 - Rank them by their pagerank.
 - Order is query-independent.

Topic Specific Pagerank [Have02]

- Conceptually, we use a random surfer who teleports, with say 10% probability, using the following rule:
 - □ Selects a category (say, one of the 16 top level ODP categories) based on a query & user -specific distribution over the categories
 - □ Teleport to a page uniformly at random within the chosen category
- Sounds hard to implement: can't compute PageRank at query time!

Dip. di Matematica Pura ed Applicata F. Aiolli - Information Retrieval 2008/2009

27

Topic Specific Pagerank [Have02]

- Implementation
 - offline: Compute pagerank distributions wrt to individual categories

Query independent model as before

Each page has multiple pagerank scores - one for each ODP category, with teleportation only to that category

 online: Distribution of weights over categories computed by query context classification

Generate a dynamic pagerank score for each page - weighted sum of category-specific pageranks

Considerations on PageRank

- □ The ranking returned by PageRank can be used for doing prioritized crawling
- □ Without the teleporting factor, PageRank would be uncrackable by spammers
- □ The (undisclosed) ranking formula used by Google nowadays is a complex recipe (PageRank is the most important ingredient). Other ingredients include:
 - Text in the page
 - Anchor text
 - Query term proximity
 - URL length

Dip. di Matematica Pura ed Applicata

F. Aiolli - Information Retrieval 2008/2009

29

HITS (Klimberg98]

- ☐ HITS may be seen as a modification of InDegree where a companion notion of the authority value (the hub value) is introduced.
- □ Authority Value a; of p; (how authoritative p; is, 'seminal
- ☐ Hub Value h; of p; (how good p; is helping the user in locating authoritative pages, 'survey papers')
- They are defined in a mutual recursive manner
 - A page is a good hub when it points to many good
 - authoritative pages $h_i = \sum_{j \in F(i)} a_j$ A page is a good authority when it is pointed by many good hubs $a_i = \sum_{j \in B(i)} h_j$

Equations

- Recasting equations in a matrix-vector form, we have
 - h ← W a
 - \blacksquare a \leftarrow W^T h
- □ Substituting these into one another, we obtain
 - h = W W^T h
 - a = W^T W a
- □ Eigenvectors equations!

Dip. di Matematica Pura ed Applicata F. Aiolli - Information Retrieval 2008/2009 31

Considerations

- □ The iterative updates, if scaled by an appropriate eigenvalues, are equivalent to the power iteration method for computing the eigenvectors of WW^T and W^TW respectively
- □ Thus the steady state is determined by the entries in W and hence the structure of the graph
- ☐ In computing these eigenvectors entries, we are not restricted to use the power iteration method

Problems

☐ The problem of HITS is that it is easily spammable: in fact, a spammer wishing to promote a page ps only needs to set up a page p, that points to many known authorities and to

Dip. di Matematica Pura ed Applicata

F. Aiolli - Information Retrieval 2008/2009

33

A variant: HubAvg

- ☐ A problem with HITS is that h, monotonically grows not only with the authority, but also with the number |F(i)| of the forward neighbors of p_i;
- ☐ Thus, the best hub is the one which points to all pages in BS!
- □ The HubAvg algorithm [Borodin+05] views h, as the average authority value of the forward neighbors of pi
 - $\begin{array}{ll} \bullet & h_i = (\sum_{j \in F(i)} a_j) / |F(i)| \\ \bullet & a_i = (\sum_{j \in B(i)} h_j) \end{array}$

A variant: HubAvg

- □ It can be seen as a hybrid between HITS and PageRank
 - Authority and hubs to every page
 - Subdivides the hub score of a page amongst its forward neighbors
- ☐ Fairly easy to spam, although slightly more difficult than HITS

Dip. di Matematica Pura ed Applicata F. Aiolli - Information Retrieval 2008/2009

35