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What is clustering?

� Clustering: the process of grouping a set of 
objects into classes of similar objects

� The commonest form of unsupervised 
learning
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learning
� Unsupervised learning = learning from raw 

data, as opposed to supervised data where a 
classification of examples is given

� A common and important task that finds many 
applications in IR and other places

� Not only Document Clustering (e.g. terms)



Why cluster documents?

� Whole corpus analysis/navigation
� Better user interface

� For improving recall in search applications
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� For improving recall in search applications
� Better search results

� For better navigation of search results
� Effective “user recall” will be higher

� For speeding up vector space retrieval
� Faster search

Yahoo! Hierarchy

agriculture biology physics CS space

www.yahoo.com/Science
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Scatter/Gather: Cutting, Karger, and Pedersen
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For better navigation of search 
results

� For grouping search results thematically
� clusty.com / Vivisimo
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For improving search recall

� Cluster hypothesis - Documents with similar text 
are related

� Therefore, to improve search recall:
� Cluster docs in corpus a priori

When a query matches a doc D, also return other 
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� When a query matches a doc D, also return other 
docs in the cluster containing D

� Hope if we do this: The query “car” will also 
return docs containing automobile
� Because clustering grouped together docs containing 

car with those containing automobile.

The Clustering Problem

Given:
� A set of documents D={d1,..dn}

� A similarity measure (or distance metric)

� A partitioning criterion

A desired number of clusters K
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� A desired number of clusters K

Compute:
� An assignment function γ : D → {1,..,K}

� None of the clusters is empty

� Satisfies the partitioning criterion w.r.t. the 
similarity measure



Issues for clustering

� Representation for clustering
� Document representation

� Vector space?  Normalization?

� Need a notion of similarity/distance

How many clusters?
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� How many clusters?
� Fixed a priori?

� Completely data driven?
� Avoid “trivial” clusters - too large or small

� In an application, if a cluster's too large, then for 
navigation purposes you've wasted an extra user click 
without whittling down the set of documents much.

What makes docs “related”? 

� Ideal: semantic similarity.

� Practical: statistical similarity
� We will use cosine similarity.

� Docs as vectors.
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� Docs as vectors.

� For many algorithms, easier to think in 
terms of a distance (rather than 
similarity) between docs.

� Any kernel function can be used



Objective Functions 

� Often, the goal of a clustering algorithm is to 
optimize an objective function

� In this cases, clustering is a search (optimization) 
problem

� KN / K! different clustering available
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� KN / K! different clustering available

� Most partitioning algorithms start from a guess and 
then refine the partition

� Many local minima in the objective function implies 
that different starting point may lead to very 
different (and unoptimal) final partitions

What Is A Good Clustering?

� Internal criterion: A good clustering will 
produce high quality clusters in which:
� the intra-class (that is, intra-cluster) 

similarity is high
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similarity is high

� the inter-class similarity is low

� The measured quality of a clustering 
depends on both the document 
representation and the similarity measure 
used



External criteria for clustering quality

� Quality measured by its ability to discover 
some or all of the hidden patterns or latent 
classes in gold standard data

� Assesses a clustering with respect to ground 
truth
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� Assesses a clustering with respect to ground 
truth

� Assume documents with C gold standard 
classes, while our clustering algorithms produce 
K clusters, ω1,..,ωk with ni members.

External Evaluation of Cluster Quality

� Simple measure: purity, the ratio between 
the dominant class in the cluster πi and the 
size of cluster ωi
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size of cluster i

� Others are entropy of classes in clusters 
(or mutual information between classes and 
clusters)

I(Ω, C) =
∑

k

∑
j P (ωkcj) log

P (ωkcj)
P (ωk)P (cj)

Purity(ωk) =
1
|ωk|

maxj nkj , nkj = |ωk ∩ cj |



• •
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• •
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Purity example
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Cluster I Cluster II Cluster III

Cluster I: Purity = 1/6 (max(5, 1, 0)) = 5/6

Cluster II: Purity = 1/6 (max(1, 4, 1)) = 4/6

Cluster III: Purity = 1/5 (max(2, 0, 3)) = 3/5

Rand Index

Number of 
points

Same Cluster 
in clustering

Different 
Clusters in 
clustering

Same class in A (tp) C (fn)
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Same class in 
ground truth A (tp) C (fn)

Different 
classes in 
ground truth

B (fp) D (tn)



Rand index: symmetric version

DCBA

DA
RI

+++

+
=
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BA

A
P

+
=

CA

A
R

+
=

Compare with standard Precision and Recall.

Rand Index example: 0.68

Number of 
points

Same 
Cluster in 
clustering

Different 
Clusters in 
clustering

Same class 
in ground 20 24
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Same class 
in ground 
truth

20 24

Different 
classes in 
ground truth

20 72



Clustering Algorithms

� Partitional algorithms
� Usually start with a random (partial) 

partitioning

� Refine it iteratively
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� Refine it iteratively
� K means clustering
� Model based clustering

� Hierarchical algorithms
� Bottom-up, agglomerative

� Top-down, divisive

Partitioning Algorithms

� Partitioning method: Construct a partition of n
documents into a set of K clusters

� Given: a set of documents and the number K
� Find: a partition of K clusters that optimizes 
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� Find: a partition of K clusters that optimizes 
the chosen partitioning criterion
� Globally optimal: exhaustively enumerate all 

partitions

� Effective heuristic methods: K-means and K-
medoids algorithms



K-Means

� Assumes documents are real-valued vectors.

� Clusters based on centroids (aka the center of gravity
or mean) of points in a cluster, c:

∑= x
c r

rr

||

1
(c)µ
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� Reassignment of instances to clusters is based on 
distance to the current cluster centroids.

� (Or one can equivalently phrase it in terms of similarities)

∑
∈cxc r||

K-Means Algorithm

Select K random docs {s1, s2,… sK} as seeds.

Until clustering converges or other stopping criterion:
1. For each doc di:
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1. For each doc di:
Assign di to the cluster cj such that dist(xi, sj) is 
minimal

2. (Update the seeds to the centroid of each cluster)
For each cluster cj

sj = µ(cj) 



K Means Example
(K=2)

Pick seeds

Reassign clusters

Compute centroids

x

Reassign clusters
x x Compute centroids
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x

xx

x xx Compute centroids

Reassign clusters

Converged!

Termination conditions

�Several possibilities, e.g.,
� A fixed number of iterations.

� Based on Loss function (RSS)
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� Based on Loss function (RSS)

� Doc partition unchanged.

� Centroid positions don’t change.

Does this mean that the docs in a 
cluster are unchanged?



Convergence

� Why should the K-means algorithm ever 
reach a fixed point?
� A state in which clusters don’t change.

� K-means is a special case of a general 
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� K-means is a special case of a general 
procedure known as the Expectation 
Maximization (EM) algorithm.
� EM is known to converge.

� Number of iterations could be large.

Convergence of K-Means

� Define goodness measure of cluster k as 
sum of squared distances from cluster 
centroid:
� Gk = Σi (di – ck)2  (sum over all di in cluster 
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� Gk = Σi (di – ck)2  (sum over all di in cluster 
k)

� G = Σk Gk

� Reassignment monotonically decreases G 
since each vector is assigned to the 
closest centroid.



Convergence of K-Means

� Recomputation monotonically decreases 
each Gk since (mk is number of members in 
cluster k):

Σ (di – a)2 reaches minimum for:
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Σ (di – a)2 reaches minimum for:
Σ –2(di – a) = 0
Σ di = Σ a
mK a = Σ di
a = (1/ mk) Σ di = ck

� K-means typically converges quickly

Time Complexity

� Computing distance between two docs is 
O(m) where m is the dimensionality of 
the vectors.

� Reassigning clusters: O(Kn) distance 
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� Reassigning clusters: O(Kn) distance 
computations, or O(Knm).

� Computing centroids: Each doc gets 
added once to some centroid: O(nm).

� Assume these two steps are each done 
once for I iterations:  O(IKnm).



Time Complexity

� So, k-means is linear in all relevant factors (iterations, 
number of clusters, number of documents, and 
dimensionality of the space)

� But M>100.000 !!! 

� Docs are sparse but centroids tend to be dense -> 
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� Docs are sparse but centroids tend to be dense -> 
distance computation is time consuming

� Effective heuristics can be defined for making 
centroid-doc distance computation as efficient as doc-
doc distance computation

� K-medoids is a variant of k-means that compute 
medoids (the docs closest to the centroid) instead of 
centroids as cluster centers.

Seed Choice

� Results can vary based on 
random seed selection.

� Some seeds can result in poor 
convergence rate, or 
convergence to sub-optimal 

Example showing
sensitivity to seeds
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convergence to sub-optimal 
clusterings.
� Select good seeds using a 

heuristic (e.g., doc least similar 
to any existing mean)

� Try out multiple starting points
� Initialize with the results of 

another method.

In the above, if you start
with B and E as centroids
you converge to {A,B,C}
and {D,E,F}
If you start with D and F
you converge to 
{A,B,D,E} {C,F}



How Many Clusters?

� Number of clusters K is given
� Partition n docs into predetermined number of 

clusters

� Finding the “right” number of clusters is part 
of the problem
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� Finding the “right” number of clusters is part 
of the problem
� Given docs, partition into an “appropriate” number of 

subsets.

� E.g., for query results - ideal value of K not known up 
front - though UI may impose limits.

K not specified in advance

� Say, the results of a query.
� Solve an optimization problem 

� MINK L(K) + λ q(K) which penalizes having 
lots of clusters
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lots of clusters
� application dependent, e.g., compressed 

summary of search results list.

� Tradeoff between having more clusters 
(better focus within each cluster) and 
having too many clusters



Model-based Clustering

� A different way of posing the clustering problem is to 
formalize the clustering as a parameterized model Θ
and then search the parameters that maximize the 
likelihood of the data

MAX L(D|Θ)
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MAX L(D|Θ)

� Where L(D|Θ) = log ∏n P(dn|Θ) =∑n log P(dn)

� This can be done by an EM (Expectation Maximization 
procedure)

� K-means can be seen as an instance of EM when the 
model is a mixture of multivariate Gaussians

Model-based Clustering

� Instead of a Gaussian mixture, we focus on 
mixture of multivariate binomials, i.e.
P(d|ωk,Θ) = ∏m P(Xm=I(wm ∈ d)|ωk)

The mixture model
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� The mixture model
P(d|Θ) = ∑k γk ∏m P(Xm=I(wm ∈ d)|ωk)

� N.B. K-means performs an hard assignment 
while the binomial EM clustering performs a 
soft assignment



EM

� Maximization Step: computes the conditional 
parameters qmk = P(Xm = 1 | ωk) and the priors γk

qmk =

∑
N

n=1
rnkI(ωm∈dn)∑
N

n=1
rnk

γk =

∑
N

n=1
rnk

N
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� Expectation Step: computes the soft 
assignment of documents to clusters given the 
current parameters

∑
∑

n=1

r′nk = γk(
∏
wm∈dn

qmk)(
∏
wm �∈dn

(1− qmk))

rnk =
r′nk∑
k
r′
nk

Considerations
� Finding good seeds is even more critical for EM than for k-means 

(EM is prone to get stuck in local optima)

� Therefore (as in k-means) an initial assignment is often 
computed by another algorithm
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� If the model of the data is correct EM algorithm finds the 
correct structure

� Hardly a document collection can be considered generated by a 
simple mixture model

� At least, model based clustering allows for analysis and 
adaptations 



Hierarchical Clustering

� Build a tree-based hierarchical 
taxonomy (dendrogram) from a set 
of documents. animal

vertebrate invertebrate
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�One approach: recursive application 
of a partitional clustering algorithm.

vertebrate

fish reptile amphib. mammal      worm insect crustacean

invertebrate

• Clustering obtained 
by cutting the 
dendrogram at a 
desired level: each 

Dendrogram: Hierarchical Clustering
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desired level: each 
connectedconnected
component forms a 
cluster.



The dendrogram

� The y-axis of the dendogram represents 
the combination similarities, i.e. the 
similarities of the clusters merged by a 
the horizontal lines for a particular y
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the horizontal lines for a particular y

� Assumption: The merge operation is 
monotonic, i.e. if s1,..,sk-1 are successive 
combination similarities, then 
s1 ≥ s2 ≥ … ≥ sk-1 must hold

Hierarchical Agglomerative 
Clustering (HAC)

�Starts with each doc in a separate 
cluster
� then repeatedly joins the closest 
pair of clusters, until there is only 
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pair of clusters, until there is only 
one cluster.

�The history of merging forms a 
binary tree or hierarchy.



Closest pair of clusters
� Many variants to defining closest pair of clusters

� Single-link
� Similarity of the most cosine-similar (single-link)

� Complete-link
� Similarity of the “furthest” points, the least cosine-
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� Similarity of the “furthest” points, the least cosine-
similar

� Centroid
� Clusters whose centroids (centers of gravity) are the 

most cosine-similar

� Average-link
� Average cosine between pairs of elements

Single Link Agglomerative 
Clustering

� Use maximum similarity of pairs:

� Can result in “straggly” (long and thin) clusters 

),(max),(
,

yxsimccsim
ji cycx

ji
∈∈

=
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� Can result in “straggly” (long and thin) clusters 
due to chaining effect.

� After merging ci and cj, the similarity of the 
resulting cluster to another cluster, ck, is:

)),(),,(max()),(( kjkikji ccsimccsimcccsim =∪



Single Link Example
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Complete Link Agglomerative 
Clustering

� Use minimum similarity of pairs:

� Makes “tighter,” spherical clusters that are 

),(min),(
,

yxsimccsim
ji cycx

ji
∈∈

=
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� Makes “tighter,” spherical clusters that are 
typically preferable.

� After merging ci and cj, the similarity of the 
resulting cluster to another cluster, ck, is:

)),(),,(min()),(( kjkikji ccsimccsimcccsim =∪

Ci Cj Ck



Complete Link Example
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Graph theoretical interpretation
� Single-link Clustering as connected component of a 

graph
� If G(∆k) is the graph that links all data points with a 

distance of at most ∆k, then the clusters are the 
connected components of G(∆k)

Complete-link as cliques of a graph
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k

� Complete-link as cliques of a graph
� If G(∆k) is the graph that links all data points with a 

distance of at most ∆k, then the clusters are the 
cliques of G(∆k)

� This motivates the terms single-link and 
complete-link clustering



Computational Complexity
� In the first iteration, all HAC methods need to compute 

similarity of all pairs of n individual instances which is 
O(n2).

� In each of the subsequent n−2 merging iterations, 
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� In each of the subsequent n−2 merging iterations, 
compute the distance between the most recently 
created cluster and all other existing clusters.

� In order to maintain an overall O(n2) performance, 
computing similarity to each other cluster must be done 
in constant time.
� Else O(n2 log n) or O(n3) if done naively

Best-Merge Persistency
� The single-link agglomerative clustering is best-

merge persistent

� Suppose that the best merge cluster for k is j

� Then, after merging j with a third cluster i ≠ k, the 
merger of i and j will be the k’s best merge cluster
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merger of i and j will be the k’s best merge cluster

� As a consequence, we can keep the best merge 
candidates for the merged cluster as one of the 
two best merge candidates for the merged clusters

i j k l



Single-link and Complete-link 
drawbacks

� Single link clustering can produce straggling 
clusters. Since the merge criterion is local, it can 
cause the chaining effect
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� Complete-link clustering pays to much attention to 
outliers, i.e. points that do not fit well in the global 
structure of the clusters

Group Average Agglomerative 
Clustering

� Similarity of two clusters = average 
similarity of all pairs within merged cluster.

simga(ωi, ωj) =

∑
dk∈ωi∪ωj

∑
dl∈ωi∪ωj,dl �=dk

dkdl

(Ni+Nj)(Ni+Nj−1)
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� Compromise between single and complete link.

� An alternative to group-average clustering is 
centroid clustering

∑ ∑

i j i j−

simcent(ωi, ωj) =
1

NiNj

∑
dk∈ωi

∑
dl∈ωj ,dl �=dk

dkdl



Computing Group Average and 
Centroid similarities

� Always maintain sum of vectors in each 
cluster.

s(ωj) =
∑

dk∈ωj
dk
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� Compute similarity of clusters in 
constant time:

∑
dk∈ωj

simga(ωi, ωj) =
s2(ωi∪ωj)−(Ni+Nj)
(Ni+Nj)(Ni+Nj−1)

simcent(ωi, ωj) =
s(ωi)s(ωj)
NiNj

Summarizing

Single-link Max sim of 
any two 
points

O(N2) Chaining 
effect

Complete-link Min sim of 
any two 

O(N2logN) Sensitive to 
outliers
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any two 
points

outliers

Centroid Similarity of 
centroids

O(N2logN) Non 
monotonic

Group-
average

Avg sim of 
any two 
points

O(N2logN) OK


