Corso Programmazione 2011-2012

(docente) Fabio Aiolli

E-mail: aiolli@math.unipd.it

Web: www.math.unipd.it/~aiolli

(docenti laboratorio) E. Caniato, A. Ceccato

Dipartimento di Matematica Pura ed Applicata Torre Archimede, Via Trieste 63

Orario delle lezioni e esercitazioni

~32 ore di lezioni in aula P200

- Mercoledi
 - Ore 12:30 13:15
- Giovedi, Venerdi'
 - Ore 11:30 13:15

~32 ore di esercitazioni in laboratorio

- ISCRIVERSI ALLA LISTA UNIWEB ASAP!

Risorse per il corso

A.Bellini, A.Guidi. "Linguaggio C, Guida alla programmazione", McGraw-Hill, 2006.

A.Kelley, I. Pohl. "C Didattica e programmazione", Pearson, 2004.

H.M.Deitel, P.J.Deitel. "C Corso completo di Programmazione", Apogeo, 2007.

Altro materiale sara' disponibile sul sito web del corso:

http://www.math.unipd.it/~aiolli/corsi/1011/prgxmat/prg.html

Il GOOGLE GROUP del corso:

http://groups.google.it/group/prxmat12atunipd

Il GOOGLE GROUP del corso:

http://groups.google.it/group/prxmat12atunipd

ISTRUZIONI x l'iscrizione

- Nickname: <Nome><InizialeCognome> (per esempio, FabioA)
- ·Inserire indirizzo di posta elettronica

Esame Scritto

Prima Parte (vale molti punti malus)

 Domande riguardanti la sintassi del linguaggio C e semplici programmi

Seconda Parte (vale pochi punti bonus)

- Analisi e implementazione di algoritmi in C

Colloquio (per esame da 8 crediti, vecchio ord.)

- Contenuti di Introduzione alla Programmazione

Esercizi a Punti

REGOLE (provvisorie)

Bisogna iscriversi alla lista!!! Comunicherò presto la modalità.

Ogni settimana:

Vengono proposti uno o più esercizi

Lo studente può sottomettere una soluzione (programma) entro una certa scadenza

Un sottoinsieme delle consegne verranno corrette (circa il 25%)

Valutazione:

I progetti corretti ricevono una valutazione x>0 (x dipende dalla difficoltà degli esercizi)

I progetti consegnati ma non corretti ricevono y punti, dove y è la media dei punti ottenuti dai progetti corretti

Gli altri studenti ricevono O punti

Contenuti del corso

- · Panoramica sul linguaggio C
- Strutture dati ed algoritmi
- Programmi x il calcolo scientifico

Iniziamo..

PARTE 1 Definizioni Fondamentali

Algoritmo

DEFINIZIONE

 Insieme completo delle regole che permettono la soluzione di un determinato problema

DEFINIZIONE OPERATIVA

 Procedura effettiva che indica le istruzioni (passi) da eseguire per ottenere i risultati voluti a partire dai dati di cui si dispone

Algoritmo: Esempi

Esempio Culinario:

· Ricetta x cucinare gli spaghetti

Esempio Turistico:

Indicazioni per raggiungere un albergo

Esempi sui numeri:

• Insieme di passi per verificare se un numero è dispari, pari, primo, ecc.

Altri esempi (piu' difficili): MCD(a,b), mcm(a,b)

 Per esempio l'algoritmo di Euclide per il calcolo del MCD (che può essere usato anche per il calcolo del mcm!) -> mcm(a,b)=(ab)/MCD(a,b)

Algoritmo MCD

- 1) a=|a|, b=|b|
- 2) ordina a e b in modo tale che a > b
- 3) Finche'b rimane diverso da 0
 - 1) t=b
 - 2) $b=a \mod b$
 - 3) a=t
- 4) MCD(a,b)=a

Algoritmo: Caratteristiche

- · Esprimibile con un numero finito di istruzioni
- Istruzioni eseguibili da un elaboratore
- Insieme di istruzioni di cardinalità finita
- Tempo di esecuzione di ogni istruzione finito
- Elaboratore ha una memoria
- Calcolo per passi discreti
- · Non esiste limite alla lunghezza dei dati di ingresso
- Non c'e' un limite alla memoria disponibile
- Numero di passi esecuzione eventualmente illimitato (vedere Macchina di Turing it.wikipedia.org/wiki/Macchina_di_Turing)

Machina di Turing

- La macchina può agire sopra un nastro che si presenta come una sequenza di caselle nelle quali possono essere registrati simboli di un ben determinato alfabeto tintto; essa è dotata di una testina di lettura e scrittura (I/O) con cui è in grado di effettuare operazioni di lettura e scrittura su una casella del nastro
- Dati iniziali su nastro
- La macchina na uno stato interno
- Ad ogni passo, dipendentemente dallo stato in cui si trova e dal carattere letto, la macchina
 - Modifica il contenuto della casella
 - Si sposta a destra o sinistra di una posizione
 - Cambia il suo stato interno
- Si dimostra che essa è equivalente, ossia in grado di effettuare le stesse elaborazioni, a tutti gli altri modelli di calcolo piu' complessi!!!

Linguaggi

LINGUAGGI NON FORMALI (ambigui)

- Linguaggio Naturale
- · Linguaggio della musica e della pittura
- · Linguaggio del corpo
- Ecc.

LINGUAGGI FORMALI (di programmazione)

- Linguaggi NON ambigui, regolati da regole grammaticali precise
- Possono essere classificati in base al loro livello di astrazione

Linguaggi di Alto Livello (LAL)

ESEMPI FAMOSI

- Imperativi: PASCAL, FORTRAN, COBOL, C
- · Ad oggetti: CPP, JAVA

Appositi software (compilatori) si occupano di tradurre le istruzioni scritte in questi linguaggi (cosiddetto codice sorgente, un file di testo), nell'equivalente codice eseguibile dalla macchina (cosiddetto codice eseguibile, binario)

Caratteristiche LAL strutturati

SEQUENZA

 Le istruzioni vengono eseguite in sequenza nell'ordine in cui compaiono in un blocco di istruzioni

SELEZIONE

- Strutture di controllo decisionali:
 - P.e. Se <espressione> esegui <BloccoIstruzioniV> altrimenti esegui <BloccoIstruzioniF>

ITERAZIONE

- Strutture di controllo iterative:
 - P.e. Fintanto che <espressione> esegui <BloccoIstruzioni>
 - Oppure, Esegui <BloccoIstruzioni> fintanto che <espressione>

Complessita' degli Algoritmi

- Complessita' Polinomial (P): Il numero di passi e' proporzionale in modo polinomiale alla cardinalita' dell'input
- Complessita' Non-Deterministic Polinomial (NP): Sono noti algoritmi che terminano in un numero di passi polinomiale usando un numero indeterminato di macchine in parallelo, oppure utilizzando l'algoritmo di Gastone

Complessita' degli Algoritmi (2)

Casi:

- Ottimo: I dati presentati sono i migliori possibili per l'algoritmo
- · Pessimo: I dati presentati sono i piu' sfavorevoli per l'algoritmo
- Medio: Comportamento in media al variare dei dati possibili in ingresso

Notazione:

- O(f(n)): valutazione caso pessimo
 - La quantita' di risorse richiesta cresce NON PIU' di f(n)
- $\Omega(g(n))$: valutazione caso ottimo
 - La quantita' di risorse richiesta cresce NON MENO di g(n)
- $\theta(h(n))$: casi ottimo e pessimo hanno simili prestazioni
 - La quantita' di risorse richiesta cresce COME h(n)

Algoritmi di Ricerca

- Ricerca MIN e MAX
- Ricerca di un valore in una collezione
- · Ricerca di un valore in una collezione ordinata
- Ricerca degli zeri di una funzione

Algoritmi di Ordinamento

- Ordinamento degli elementi in una generica collezione
- · Fondere due collezioni ognuna di esse gia' ordinata
- Ordinare senza usare confronti

Algoritmi di Ottimizzazione

- Problema del Commesso Viaggiatore (TSP)
- Problema dei Cammini Minimi (SP)
- · Problemi IA