
scikit-learn user guide
Release 0.12-git

scikit-learn developers

June 04, 2012

CONTENTS

1 User Guide 3
1.1 Installing scikit-learn . 3
1.2 Tutorials: From the bottom up with scikit-learn . 6
1.3 Supervised learning . 35
1.4 Unsupervised learning . 99
1.5 Model Selection . 154
1.6 Dataset transformations . 204
1.7 Dataset loading utilities . 218
1.8 Reference . 226

2 Example Gallery 661
2.1 Examples . 661

3 Development 981
3.1 Contributing . 981
3.2 How to optimize for speed . 988
3.3 Utilities for Developers . 993
3.4 Developers’ Tips for Debugging . 997
3.5 About us . 997
3.6 Support . 999
3.7 0.12 . 1000
3.8 0.11 . 1000
3.9 0.10 . 1004
3.10 0.9 . 1007
3.11 0.8 . 1010
3.12 0.7 . 1012
3.13 0.6 . 1013
3.14 0.5 . 1014
3.15 0.4 . 1016
3.16 Presentations and Tutorials on Scikit-Learn . 1017

Bibliography 1019

Python Module Index 1023

Python Module Index 1025

Index 1027

i

ii

scikit-learn user guide, Release 0.12-git

scikit-learn is a Python module integrating classic machine learning algorithms in the tightly-knit sci-
entific Python world (numpy, scipy, matplotlib). It aims to provide simple and efficient solutions to learning
problems, accessible to everybody and reusable in various contexts: machine-learning as a versatile tool for
science and engineering.

License: Open source, commercially usable: BSD license (3 clause)

Documentation for scikit-learn version 0.12-git. For other versions and printable format, see Documentation re-
sources.

CONTENTS 1

http://numpy.scipy.org
http://www.scipy.org
http://matplotlib.sourceforge.net/

scikit-learn user guide, Release 0.12-git

2 CONTENTS

CHAPTER

ONE

USER GUIDE

1.1 Installing scikit-learn

There are different ways to get scikit-learn installed:

• Install the version of scikit-learn provided by your operating system distribution . This is the quickest option for
those who have operating systems that distribute scikit-learn.

• Install an official release. This is the best approach for users who want a stable version number and aren’t
concerned about running a slightly older version of scikit-learn.

• Install the latest development version. This is best for users who want the latest-and-greatest features and aren’t
afraid of running brand-new code.

Note: If you wish to contribute to the project, it’s recommended you install the latest development version.

1.1.1 Installing an official release

Installing from source

Installing from source requires you to have installed python (>= 2.6), numpy (>= 1.3), scipy (>= 0.7), setuptools,
python development headers and a working C++ compiler. Under Debian-based systems you can get all this by
executing with root privileges:

sudo apt-get install python-dev python-numpy python-numpy-dev python-setuptools python-numpy-dev python-scipy libatlas-dev g++

Note: In Order to build the documentation and run the example code contains in this documentation you will need
matplotlib:

sudo apt-get install python-matplotlib

Note: On Ubuntu LTS (10.04) the package libatlas-dev is called libatlas-headers

Easy install

This is usually the fastest way to install the latest stable release. If you have pip or easy_install, you can install or
update with the command:

3

scikit-learn user guide, Release 0.12-git

pip install -U scikit-learn

or:

easy_install -U scikit-learn

for easy_install. Note that you might need root privileges to run these commands.

From source package

Download the package from http://pypi.python.org/pypi/scikit-learn/ , unpack the sources and cd into archive.

This packages uses distutils, which is the default way of installing python modules. The install command is:

python setup.py install

Windows installer

You can download a windows installer from downloads in the project’s web page. Note that must also have installed
the packages numpy and setuptools.

This package is also expected to work with python(x,y) as of 2.6.5.5.

Installing on Windows 64bit

To install a 64bit version of the scikit, you can download the binaries from
http://www.lfd.uci.edu/~gohlke/pythonlibs/#scikit-learn Note that this will require a compatible version
of numpy, scipy and matplotlib. The easiest option is to also download them from the same URL.

Building on windows

To build scikit-learn on windows you will need a C/C++ compiler in addition to numpy, scipy and setuptools. At least
MinGW (a port of GCC to Windows OS) and the Microsoft Visual C++ 2008 should work out of the box. To force the
use of a particular compiler, write a file named setup.cfg in the source directory with the content:

[build_ext]
compiler=my_compiler

[build]
compiler=my_compiler

where my_compiler should be one of mingw32 or msvc.

When the appropriate compiler has been set, and assuming Python is in your PATH (see Python FAQ for windows for
more details), installation is done by executing the command:

python setup.py install

To build a precompiled package like the ones distributed at the downloads section, the command to execute is:

python setup.py bdist_wininst -b doc/logos/scikit-learn-logo.bmp

This will create an installable binary under directory dist/.

4 Chapter 1. User Guide

http://pypi.python.org/pypi/scikit-learn/
https://sourceforge.net/projects/scikit-learn/files/
http://www.lfd.uci.edu/~gohlke/pythonlibs/#scikit-learn
http://www.mingw.org
http://docs.python.org/faq/windows.html
https://sourceforge.net/projects/scikit-learn/files/

scikit-learn user guide, Release 0.12-git

1.1.2 Third party distributions of scikit-learn

Some third-party distributions are now providing versions of scikit-learn integrated with their package-management
systems.

These can make installation and upgrading much easier for users since the integration includes the ability to automat-
ically install dependencies (numpy, scipy) that scikit-learn requires.

The following is a list of Linux distributions that provide their own version of scikit-learn:

Debian and derivatives (Ubuntu)

The Debian package is named python-sklearn (formerly python-scikits-learn) and can be installed using the following
commands with root privileges:

apt-get install python-sklearn

Additionally, backport builds of the most recent release of scikit-learn for existing releases of Debian and Ubuntu are
available from NeuroDebian repository .

Python(x, y)

The Python(x, y) distributes scikit-learn as an additional plugin, which can be found in the Additional plugins page.

Enthought Python distribution

The Enthought Python Distribution already ships a recent version.

Macports

The macport’s package is named py26-sklearn or py27-sklearn depending on the version of Python. It can be installed
by typing the following command:

sudo port install py26-scikits-learn

or:

sudo port install py27-scikits-learn

depending on the version of Python you want to use.

NetBSD

scikit-learn is available via pkgsrc-wip:

http://pkgsrc.se/wip/py-scikit_learn

1.1.3 Bleeding Edge

See section Retrieving the latest code on how to get the development version.

1.1. Installing scikit-learn 5

http://neuro.debian.net/pkgs/python-scikits-learn.html
http://pythonxy.com
http://code.google.com/p/pythonxy/wiki/AdditionalPlugins
http://www.enthought.com/products/epd.php
http://pkgsrc-wip.sourceforge.net/
http://pkgsrc.se/wip/py-scikit_learn

scikit-learn user guide, Release 0.12-git

1.1.4 Testing

Testing requires having the nose library. After installation, the package can be tested by executing from outside the
source directory:

nosetests sklearn --exe

This should give you a lot of output (and some warnings) but eventually should finish with the a text similar to:

Ran 601 tests in 27.920s
OK (SKIP=2)

otherwise please consider posting an issue into the bug tracker or to the Mailing List.

Note: Alternative testing method

If for some reason the recommended method is failing for you, please try the alternate method:

python -c "import sklearn; sklearn.test()"

This method might display doctest failures because of nosetests issues.

scikit-learn can also be tested without having the package installed. For this you must compile the sources inplace
from the source directory:

python setup.py build_ext --inplace

Test can now be run using nosetests:

nosetests sklearn/

This is automated in the commands:

make in

and:

make test

1.2 Tutorials: From the bottom up with scikit-learn

Quick start

In this section, we introduce the machine learning vocabulary that we use through-out scikit-learn and give a
simple learning example.

1.2.1 An Introduction to machine learning with scikit-learn

Section contents

In this section, we introduce the machine learning vocabulary that we use through-out scikit-learn and give a
simple learning example.

6 Chapter 1. User Guide

http://somethingaboutorange.com/mrl/projects/nose/
https://github.com/scikit-learn/scikit-learn/issues
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Machine_learning

scikit-learn user guide, Release 0.12-git

Machine learning: the problem setting

In general, a learning problem considers a set of n samples of data and try to predict properties of unknown data. If
each sample is more than a single number, and for instance a multi-dimensional entry (aka multivariate data), is it said
to have several attributes, or features.

We can separate learning problems in a few large categories:

• supervised learning, in which the data comes with additional attributes that we want to predict (Click here to go
to the Scikit-Learn supervised learning page).This problem can be either:

– classification: samples belong to two or more classes and we want to learn from already labeled data how
to predict the class of unlabeled data. An example of classification problem would be the digit recognition
example, in which the aim is to assign each input vector to one of a finite number of discrete categories.

– regression: if the desired output consists of one or more continuous variables, then the task is called
regression. An example of a regression problem would be the prediction of the length of a salmon as a
function of its age and weight.

• unsupervised learning, in which the training data consists of a set of input vectors x without any corresponding
target values. The goal in such problems may be to discover groups of similar examples within the data, where
it is called clustering, or to determine the distribution of data within the input space, known as density estima-
tion, or to project the data from a high-dimensional space down to two or thee dimensions for the purpose of
visualization (Click here to go to the Scikit-Learn unsupervised learning page).

Training set and testing set

Machine learning is about learning some properties of a data set and applying them to new data. This is why a
common practice in machine learning to evaluate an algorithm is to split the data at hand in two sets, one that we
call a training set on which we learn data properties, and one that we call a testing set, on which we test these
properties.

Loading an example dataset

scikit-learn comes with a few standard datasets, for instance the iris and digits datasets for classification and the boston
house prices dataset for regression.:

>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> digits = datasets.load_digits()

A dataset is a dictionary-like object that holds all the data and some metadata about the data. This data is stored in
the .data member, which is a n_samples, n_features array. In the case of supervised problem, explanatory
variables are stored in the .target member. More details on the different datasets can be found in the dedicated
section.

For instance, in the case of the digits dataset, digits.data gives access to the features that can be used to classify
the digits samples:

>>> print digits.data
[[0. 0. 5. ..., 0. 0. 0.]
[0. 0. 0. ..., 10. 0. 0.]
[0. 0. 0. ..., 16. 9. 0.]
...,
[0. 0. 1. ..., 6. 0. 0.]
[0. 0. 2. ..., 12. 0. 0.]
[0. 0. 10. ..., 12. 1. 0.]]

1.2. Tutorials: From the bottom up with scikit-learn 7

http://en.wikipedia.org/wiki/Sample_(statistics)
http://en.wikipedia.org/wiki/Multivariate_random_variable
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Classification_in_machine_learning
http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/Unsupervised_learning
http://en.wikipedia.org/wiki/Cluster_analysis
http://en.wikipedia.org/wiki/Density_estimation
http://en.wikipedia.org/wiki/Density_estimation
http://en.wikipedia.org/wiki/Iris_flower_data_set
http://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
http://archive.ics.uci.edu/ml/datasets/Housing
http://archive.ics.uci.edu/ml/datasets/Housing

scikit-learn user guide, Release 0.12-git

and digits.target gives the ground truth for the digit dataset, that is the number corresponding to each digit image that
we are trying to learn:

>>> digits.target
array([0, 1, 2, ..., 8, 9, 8])

Shape of the data arrays

The data is always a 2D array, n_samples, n_features, although the original data may have had a different shape.
In the case of the digits, each original sample is an image of shape 8, 8 and can be accessed using:

>>> digits.images[0]
array([[0., 0., 5., 13., 9., 1., 0., 0.],

[0., 0., 13., 15., 10., 15., 5., 0.],
[0., 3., 15., 2., 0., 11., 8., 0.],
[0., 4., 12., 0., 0., 8., 8., 0.],
[0., 5., 8., 0., 0., 9., 8., 0.],
[0., 4., 11., 0., 1., 12., 7., 0.],
[0., 2., 14., 5., 10., 12., 0., 0.],
[0., 0., 6., 13., 10., 0., 0., 0.]])

The simple example on this dataset illustrates how starting from the original problem one can shape the data for
consumption in the scikit-learn.

Learning and Predicting

In the case of the digits dataset, the task is to predict the value of a hand-written digit from an image. We are given
samples of each of the 10 possible classes on which we fit an estimator to be able to predict the labels corresponding
to new data.

In scikit-learn, an estimator is just a plain Python class that implements the methods fit(X, Y) and predict(T).

An example of estimator is the class sklearn.svm.SVC that implements Support Vector Classification. The con-
structor of an estimator takes as arguments the parameters of the model, but for the time being, we will consider the
estimator as a black box:

>>> from sklearn import svm
>>> clf = svm.SVC(gamma=0.001, C=100.)

Choosing the parameters of the model

In this example we set the value of gamma manually. It is possible to automatically find good values for the
parameters by using tools such as grid search and cross validation.

We call our estimator instance clf as it is a classifier. It now must be fitted to the model, that is, it must learn from the
model. This is done by passing our training set to the fit method. As a training set, let us use all the images of our
dataset apart from the last one:

>>> clf.fit(digits.data[:-1], digits.target[:-1])
SVC(C=100.0, cache_size=200, class_weight=None, coef0=0.0, degree=3,

gamma=0.001, kernel=’rbf’, probability=False, shrinking=True, tol=0.001,
verbose=False)

Now you can predict new values, in particular, we can ask to the classifier what is the digit of our last image in the
digits dataset, which we have not used to train the classifier:

8 Chapter 1. User Guide

http://en.wikipedia.org/wiki/Estimator
http://en.wikipedia.org/wiki/Support_vector_machine

scikit-learn user guide, Release 0.12-git

>>> clf.predict(digits.data[-1])
array([8.])

The corresponding image is the following: As you can see, it is a challenging task: the
images are of poor resolution. Do you agree with the classifier?

A complete example of this classification problem is available as an example that you can run and study: Recognizing
hand-written digits.

Model persistence

It is possible to save a model in the scikit by using Python’s built-in persistence model, namely pickle:

>>> from sklearn import svm
>>> from sklearn import datasets
>>> clf = svm.SVC()
>>> iris = datasets.load_iris()
>>> X, y = iris.data, iris.target
>>> clf.fit(X, y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.25,

kernel=’rbf’, probability=False, shrinking=True, tol=0.001,
verbose=False)

>>> import pickle
>>> s = pickle.dumps(clf)
>>> clf2 = pickle.loads(s)
>>> clf2.predict(X[0])
array([0.])
>>> y[0]
0

In the specific case of the scikit, it may be more interesting to use joblib’s replacement of pickle (joblib.dump &
joblib.load), which is more efficient on big data, but can only pickle to the disk and not to a string:

>>> from sklearn.externals import joblib
>>> joblib.dump(clf, ’filename.pkl’)

Statistical-learning Tutorial

This tutorial covers some of the models and tools available to do data-processing with Scikit Learn and how to
learn from your data.

1.2.2 A tutorial on statistical-learning for scientific data processing

1.2. Tutorials: From the bottom up with scikit-learn 9

http://docs.python.org/library/pickle.html

scikit-learn user guide, Release 0.12-git

Statistical learning

Machine learning is a technique with a growing importance, as the size of the datasets experimental sciences
are facing is rapidly growing. Problems it tackles range from building a prediction function linking different
observations, to classifying observations, or learning the structure in an unlabeled dataset.
This tutorial will explore statistical learning, that is the use of machine learning techniques with the goal of
statistical inference: drawing conclusions on the data at hand.
sklearn is a Python module integrating classic machine learning algorithms in the tightly-knit world of scien-
tific Python packages (numpy, scipy, matplotlib).

Warning: In scikit-learn release 0.9, the import path has changed from scikits.learn to sklearn. To import with
cross-version compatibility, use:

try:
from sklearn import something

except ImportError:
from scikits.learn import something

Statistical learning: the setting and the estimator object in the scikit-learn

Datasets

The scikit-learn deals with learning information from one or more datasets that are represented as 2D arrays. They
can be understood as a list of multi-dimensional observations. We say that the first axis of these arrays is the samples
axis, while the second is the features axis.

A simple example shipped with the scikit: iris dataset

>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> data = iris.data
>>> data.shape
(150, 4)

It is made of 150 observations of irises, each described by 4 features: their sepal and petal length and width, as
detailed in iris.DESCR.

When the data is not intially in the (n_samples, n_features) shape, it needs to be preprocessed to be used by the scikit.

10 Chapter 1. User Guide

http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Statistical_inference
http://www.scipy.org
http://www.scipy.org
http://matplotlib.sourceforge.net/

scikit-learn user guide, Release 0.12-git

An example of reshaping data: the digits dataset

The digits dataset is made of 1797 8x8 images of hand-written digits

>>> digits = datasets.load_digits()
>>> digits.images.shape
(1797, 8, 8)
>>> import pylab as pl
>>> pl.imshow(digits.images[-1], cmap=pl.cm.gray_r)
<matplotlib.image.AxesImage object at ...>

To use this dataset with the scikit, we transform each 8x8 image in a feature vector of length 64

>>> data = digits.images.reshape((digits.images.shape[0], -1))

Estimators objects

Fitting data: The core object of the scikit-learn is the estimator object. All estimator objects expose a fit method, that
takes a dataset (2D array):

>>> estimator.fit(data)

Estimator parameters: All the parameters of an estimator can be set when it is instanciated, or by modifying the
corresponding attribute:

>>> estimator = Estimator(param1=1, param2=2)
>>> estimator.param1
1

Estimated parameters: When data is fitted with an estimator, parameters are estimated from the data at hand. All the
estimated parameters are attributes of the estimator object ending by an underscore:

>>> estimator.estimated_param_

Supervised learning: predicting an output variable from high-dimensional observations

The problem solved in supervised learning

Supervised learning consists in learning the link between two datasets: the observed data X, and an external
variable y that we are trying to predict, usually called target or labels. Most often, y is a 1D array of length
n_samples.
All supervised estimators in the scikit-learn implement a fit(X, y) method to fit the model, and a predict(X)
method that, given unlabeled observations X, returns the predicted labels y.

1.2. Tutorials: From the bottom up with scikit-learn 11

http://en.wikipedia.org/wiki/Estimator

scikit-learn user guide, Release 0.12-git

Vocabulary: classification and regression

If the prediction task is to classify the observations in a set of finite labels, in other words to “name” the objects
observed, the task is said to be a classification task. On the opposite, if the goal is to predict a continous target
variable, it is said to be a regression task.
In the scikit-learn, for classification tasks, y is a vector of integers.
Note: See the Introduction to machine learning with Scikit-learn Tutorial for a quick run-through on the basic
machine learning vocabulary used within Scikit-learn.

Nearest neighbor and the curse of dimensionality

Classifying irises:

The iris dataset is a classification task consisting in identifying 3
different types of irises (Setosa, Versicolour, and Virginica) from their petal and sepal length and width:

>>> import numpy as np
>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> iris_X = iris.data
>>> iris_y = iris.target
>>> np.unique(iris_y)
array([0, 1, 2])

k-Nearest neighbors classifier The simplest possible classifier is the nearest neighbor: given a new observation
X_test, find in the training set (i.e. the data used to train the estimator) the observation with the closest feature
vector. (Please see the Nearest Neighbors section of the online Scikit-learn documentation for more information about
this type of classifier.)

Training set and testing set

When experimenting with learning algorithm, it is important not to test the prediction of an estimator on the data
used to fit the estimator, as this would not be evaluating the performance of the estimator on new data. This is
why datasets are often split into train and test data.

12 Chapter 1. User Guide

http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

scikit-learn user guide, Release 0.12-git

KNN (k nearest neighbors) classification example:

>>> # Split iris data in train and test data
>>> # A random permutation, to split the data randomly
>>> np.random.seed(0)
>>> indices = np.random.permutation(len(iris_X))
>>> iris_X_train = iris_X[indices[:-10]]
>>> iris_y_train = iris_y[indices[:-10]]
>>> iris_X_test = iris_X[indices[-10:]]
>>> iris_y_test = iris_y[indices[-10:]]
>>> # Create and fit a nearest-neighbor classifier
>>> from sklearn.neighbors import KNeighborsClassifier
>>> knn = KNeighborsClassifier()
>>> knn.fit(iris_X_train, iris_y_train)
KNeighborsClassifier(algorithm=’auto’, leaf_size=30, n_neighbors=5, p=2,

warn_on_equidistant=True, weights=’uniform’)
>>> knn.predict(iris_X_test)
array([1, 2, 1, 0, 0, 0, 2, 1, 2, 0])
>>> iris_y_test
array([1, 1, 1, 0, 0, 0, 2, 1, 2, 0])

The curse of dimensionality For an estimator to be effective, you need the distance between neighboring points to
be less than some value d, which depends on the problem. In one dimension, this requires on average n ~ 1/d points.
In the context of the above KNN example, if the data is only described by one feature, with values ranging from 0 to
1 and with n training observations, new data will thus be no further away than 1/n. Therefore, the nearest neighbor
decision rule will be efficient as soon as 1/n is small compared to the scale of between-class feature variations.

If the number of features is p, you now require n ~ 1/d^p points. Let’s say that we require 10 points in one dimension:
Now 10^p points are required in p dimensions to pave the [0, 1] space. As p becomes large, the number of training
points required for a good estimator grows exponentially.

For example, if each point is just a single number (8 bytes), then an effective KNN estimator in a paltry p~20 di-
mensions would require more training data than the current estimated size of the entire internet! (±1000 Exabytes or
so).

This is called the curse of dimensionality and is a core problem that machine learning addresses.

1.2. Tutorials: From the bottom up with scikit-learn 13

http://en.wikipedia.org/wiki/Curse_of_dimensionality

scikit-learn user guide, Release 0.12-git

Linear model: from regression to sparsity

Diabetes dataset

The diabetes dataset consists of 10 physiological variables (age, sex, weight, blood pressure) measure on 442
patients, and an indication of disease progression after one year:

>>> diabetes = datasets.load_diabetes()
>>> diabetes_X_train = diabetes.data[:-20]
>>> diabetes_X_test = diabetes.data[-20:]
>>> diabetes_y_train = diabetes.target[:-20]
>>> diabetes_y_test = diabetes.target[-20:]

The task at hand is to predict disease progression from physiological variables.

Linear regression LinearRegression, in it’s simplest form, fits a linear model to the data set by adjust-
ing a set of parameters, in order to make the sum of the squared residuals of the model as small as possilbe.

Linear models: y = Xβ + ε

• X: data

• y: target variable

• β: Coefficients

• ε: Observation noise

>>> from sklearn import linear_model
>>> regr = linear_model.LinearRegression()
>>> regr.fit(diabetes_X_train, diabetes_y_train)
LinearRegression(copy_X=True, fit_intercept=True, normalize=False)
>>> print regr.coef_
[0.30349955 -237.63931533 510.53060544 327.73698041 -814.13170937

492.81458798 102.84845219 184.60648906 743.51961675 76.09517222]

>>> # The mean square error
>>> np.mean((regr.predict(diabetes_X_test)-diabetes_y_test)**2)
2004.56760268...

>>> # Explained variance score: 1 is perfect prediction
>>> # and 0 means that there is no linear relationship
>>> # between X and Y.
>>> regr.score(diabetes_X_test, diabetes_y_test)
0.5850753022690...

14 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Shrinkage If there are few data points per dimension, noise in the observations induces high variance:

>>> X = np.c_[.5, 1].T
>>> y = [.5, 1]
>>> test = np.c_[0, 2].T
>>> regr = linear_model.LinearRegression()

>>> import pylab as pl
>>> pl.figure()

>>> np.random.seed(0)
>>> for _ in range(6):
... this_X = .1*np.random.normal(size=(2, 1)) + X
... regr.fit(this_X, y)
... pl.plot(test, regr.predict(test))
... pl.scatter(this_X, y, s=3)

A solution, in high-dimensional statistical learning, is to shrink the regression coefficients to zero: any
two randomly chosen set of observations are likely to be uncorrelated. This is called Ridge regression:

>>> regr = linear_model.Ridge(alpha=.1)

>>> pl.figure()

>>> np.random.seed(0)
>>> for _ in range(6):
... this_X = .1*np.random.normal(size=(2, 1)) + X
... regr.fit(this_X, y)
... pl.plot(test, regr.predict(test))
... pl.scatter(this_X, y, s=3)

1.2. Tutorials: From the bottom up with scikit-learn 15

scikit-learn user guide, Release 0.12-git

This is an example of bias/variance tradeoff: the larger the ridge alpha parameter, the higher the bias and the lower
the variance.

We can choose alpha to minimize left out error, this time using the diabetes dataset, rather than our synthetic data:

>>> alphas = np.logspace(-4, -1, 6)
>>> print [regr.set_params(alpha=alpha
...).fit(diabetes_X_train, diabetes_y_train,
...).score(diabetes_X_test, diabetes_y_test) for alpha in alphas]
[0.5851110683883..., 0.5852073015444..., 0.5854677540698..., 0.5855512036503..., 0.5830717085554..., 0.57058999437...]

Note: Capturing in the fitted parameters noise that prevents the model to generalize to new data is called overfitting.
The bias introduced by the ridge regression is called a regularization.

Sparsity Fitting only features 1 and 2

Note: A representation of the full diabetes dataset would involve 11 dimensions (10 feature dimensions, and one of
the target variable). It is hard to develop an intuition on such representation, but it may be useful to keep in mind that
it would be a fairly empty space.

We can see that although feature 2 has a strong coefficient on the full model, it conveys little information on y when
considered with feature 1.

To improve the conditioning of the problem (mitigate the The curse of dimensionality), it would be interesting to
select only the informative features and set non-informative ones, like feature 2 to 0. Ridge regression will decrease
their contribution, but not set them to zero. Another penalization approach, called Lasso (least absolute shrinkage and
selection operator), can set some coefficients to zero. Such methods are called sparse method, and sparsity can be
seen as an application of Occam’s razor: prefer simpler models.

16 Chapter 1. User Guide

http://en.wikipedia.org/wiki/Overfitting
http://en.wikipedia.org/wiki/Regularization_%28machine_learning%29

scikit-learn user guide, Release 0.12-git

>>> regr = linear_model.Lasso()
>>> scores = [regr.set_params(alpha=alpha
...).fit(diabetes_X_train, diabetes_y_train
...).score(diabetes_X_test, diabetes_y_test)
... for alpha in alphas]
>>> best_alpha = alphas[scores.index(max(scores))]
>>> regr.alpha = best_alpha
>>> regr.fit(diabetes_X_train, diabetes_y_train)
Lasso(alpha=0.025118864315095794, copy_X=True, fit_intercept=True,

max_iter=1000, normalize=False, positive=False, precompute=’auto’,
tol=0.0001, warm_start=False)

>>> print regr.coef_
[0. -212.43764548 517.19478111 313.77959962 -160.8303982 -0.
-187.19554705 69.38229038 508.66011217 71.84239008]

Different algorithms for a same problem

Different algorithms can be used to solve the same mathematical problem. For instance the Lasso object in
the scikit-learn solves the lasso regression using a coordinate decent method, that is efficient on large datasets.
However, the scikit-learn also provides the LassoLars object, using the LARS which is very efficient for
problems in which the weight vector estimated is very sparse, that is problems with very few observations.

Classification For classification, as in the labeling iris task, linear
regression is not the right approach, as it will give too much weight to data far from the decision frontier. A linear
approach is to fit a sigmoid function, or logistic function:

y = sigmoid(Xβ − offset) + ε =
1

1 + exp(−Xβ + offset)
+ ε

>>> logistic = linear_model.LogisticRegression(C=1e5)
>>> logistic.fit(iris_X_train, iris_y_train)
LogisticRegression(C=100000.0, class_weight=None, dual=False,

fit_intercept=True, intercept_scaling=1, penalty=’l2’,
tol=0.0001)

1.2. Tutorials: From the bottom up with scikit-learn 17

http://en.wikipedia.org/wiki/Coordinate_descent
http://en.wikipedia.org/wiki/Iris_flower_data_set

scikit-learn user guide, Release 0.12-git

This is known as LogisticRegression.

Multiclass classification

If you have several classes to predict, an option often used is to fit one-versus-all classifiers, and use a voting
heuristic for the final decision.

Shrinkage and sparsity with logistic regression

The C parameter controls the amount of regularization in the LogisticRegression object: a large value for
C results in less regularization. penalty=”l2” gives Shrinkage (i.e. non-sparse coefficients), while penalty=”l1”
gives Sparsity.

Exercise

Try classifying the digits dataset with nearest neighbors and a linear model. Leave out the last 10% and test
prediction performance on these observations.

from sklearn import datasets, neighbors, linear_model

digits = datasets.load_digits()
X_digits = digits.data
y_digits = digits.target

Solution: ../../auto_examples/exercises/plot_digits_classification_exercise.py

Support vector machines (SVMs)

Linear SVMs Support Vector Machines belong to the discrimant model family: they try to find a combination of
samples to build a plane maximizing the margin between the two classes. Regularization is set by the C parameter:
a small value for C means the margin is calculated using many or all of the observations around the separating line
(more regularization); a large value for C means the margin is calculated on observations close to the separating line
(less regularization).

18 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Unregularized SVM Regularized SVM (default)

SVMs can be used in regression –SVR (Support Vector
Regression)–, or in classification –SVC (Support Vector Classification).

>>> from sklearn import svm
>>> svc = svm.SVC(kernel=’linear’)
>>> svc.fit(iris_X_train, iris_y_train)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,

kernel=’linear’, probability=False, shrinking=True, tol=0.001,
verbose=False)

Warning: Normalizing data
For many estimators, including the SVMs, having datasets with unit standard deviation for each feature is important
to get good prediction.

Using kernels Classes are not always linearly separable in feature space. The solution is to build a decision function
that is not linear but that may be for instance polynomial. This is done using the kernel trick that can be seen as
creating an decision energy by positioning kernels on observations:

1.2. Tutorials: From the bottom up with scikit-learn 19

scikit-learn user guide, Release 0.12-git

Linear kernel Polynomial kernel

>>> svc = svm.SVC(kernel=’linear’) >>> svc = svm.SVC(kernel=’poly’,
... degree=3)
>>> # degree: polynomial degree

RBF kernel (Radial Basis Function)

>>> svc = svm.SVC(kernel=’rbf’)
>>> # gamma: inverse of size of
>>> # radial kernel

Interactive example

See the SVM GUI to download svm_gui.py; add data points of both classes with right and left button, fit the
model and change parameters and data.

20 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Exercise

Try classifying classes 1 and 2 from the iris dataset with SVMs, with the 2 first features. Leave out 10% of each
class and test prediction performance on these observations.
Warning: the classes are ordered, do not leave out the last 10%, you would be testing on only one class.
Hint: You can use the decision_function method on a grid to get intuitions.

iris = datasets.load_iris()
X = iris.data
y = iris.target

X = X[y != 0, :2]
y = y[y != 0]

Solution: ../../auto_examples/exercises/plot_iris_exercise.py

Model selection: choosing estimators and their parameters

Score, and cross-validated scores

As we have seen, every estimator exposes a score method that can judge the quality of the fit (or the prediction) on
new data. Bigger is better.

>>> from sklearn import datasets, svm
>>> digits = datasets.load_digits()
>>> X_digits = digits.data
>>> y_digits = digits.target
>>> svc = svm.SVC(C=1, kernel=’linear’)
>>> svc.fit(X_digits[:-100], y_digits[:-100]).score(X_digits[-100:], y_digits[-100:])
0.97999999999999998

To get a better measure of prediction accuracy (which we can use as a proxy for goodness of fit of the model), we can
successively split the data in folds that we use for training and testing:

>>> import numpy as np
>>> X_folds = np.array_split(X_digits, 3)
>>> y_folds = np.array_split(y_digits, 3)
>>> scores = list()
>>> for k in range(3):
... # We use ’list’ to copy, in order to ’pop’ later on
... X_train = list(X_folds)
... X_test = X_train.pop(k)
... X_train = np.concatenate(X_train)
... y_train = list(y_folds)
... y_test = y_train.pop(k)
... y_train = np.concatenate(y_train)
... scores.append(svc.fit(X_train, y_train).score(X_test, y_test))
>>> print scores
[0.93489148580968284, 0.95659432387312182, 0.93989983305509184]

This is called a KFold cross validation

Cross-validation generators

The code above to split data in train and test sets is tedious to write. The sklearn exposes cross-validation generators
to generate list of indices for this purpose:

1.2. Tutorials: From the bottom up with scikit-learn 21

scikit-learn user guide, Release 0.12-git

>>> from sklearn import cross_validation
>>> k_fold = cross_validation.KFold(n=6, k=3, indices=True)
>>> for train_indices, test_indices in k_fold:
... print ’Train: %s | test: %s’ % (train_indices, test_indices)
Train: [2 3 4 5] | test: [0 1]
Train: [0 1 4 5] | test: [2 3]
Train: [0 1 2 3] | test: [4 5]

The cross-validation can then be implemented easily:

>>> kfold = cross_validation.KFold(len(X_digits), k=3)
>>> [svc.fit(X_digits[train], y_digits[train]).score(X_digits[test], y_digits[test])
... for train, test in kfold]
[0.93489148580968284, 0.95659432387312182, 0.93989983305509184]

To compute the score method of an estimator, the sklearn exposes a helper function:

>>> cross_validation.cross_val_score(svc, X_digits, y_digits, cv=kfold, n_jobs=-1)
array([0.93489149, 0.95659432, 0.93989983])

n_jobs=-1 means that the computation will be dispatched on all the CPUs of the computer.

Cross-validation generators

KFold (n, k) StratifiedKFold (y, k) LeaveOneOut
(n)

LeaveOneLabelOut
(labels)

Split it K folds, train on
K-1, test on left-out

Make sure that all classes are
even accross the folds

Leave one
observation out

Takes a label array to
group observations

22 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Exercise

On the digits dataset, plot the cross-validation score of a SVC estimator with an RBF kernel as a function of
parameter C (use a logarithmic grid of points, from 1 to 10).

from sklearn import cross_validation, datasets, svm

digits = datasets.load_digits()
X = digits.data
y = digits.target

svc = svm.SVC()
C_s = np.logspace(1, 10, 10)

scores = list()
scores_std = list()

Solution: ../../auto_examples/exercises/plot_cv_digits.py

Grid-search and cross-validated estimators

Grid-search The sklearn provides an object that, given data, computes the score during the fit of an estimator on
a parameter grid and chooses the parameters to maximize the cross-validation score. This object takes an estimator
during the construction and exposes an estimator API:

>>> from sklearn.grid_search import GridSearchCV
>>> gammas = np.logspace(-6, -1, 10)
>>> clf = GridSearchCV(estimator=svc, param_grid=dict(gamma=gammas),
... n_jobs=-1)
>>> clf.fit(X_digits[:1000], y_digits[:1000])
GridSearchCV(cv=None,...
>>> clf.best_score_
0.988991985997974
>>> clf.best_estimator_.gamma
9.9999999999999995e-07

>>> # Prediction performance on test set is not as good as on train set
>>> clf.score(X_digits[1000:], y_digits[1000:])
0.94228356336260977

By default the GridSearchCV uses a 3-fold cross-validation. However, if it detects that a classifier is passed, rather
than a regressor, it uses a stratified 3-fold.

Nested cross-validation

>>> cross_validation.cross_val_score(clf, X_digits, y_digits)
array([0.97996661, 0.98163606, 0.98330551])

Two cross-validation loops are performed in parallel: one by the GridSearchCV estimator to set gamma, the
other one by cross_val_score to measure the prediction performance of the estimator. The resulting scores are
unbiased estimates of the prediction score on new data.

Warning: You cannot nest objects with parallel computing (n_jobs different than 1).

1.2. Tutorials: From the bottom up with scikit-learn 23

scikit-learn user guide, Release 0.12-git

Cross-validated estimators Cross-validation to set a parameter can be done more efficiently on an algorithm-by-
algorithm basis. This is why, for certain estimators, the sklearn exposes Cross-Validation: evaluating estimator per-
formance estimators, that set their parameter automatically by cross-validation:

>>> from sklearn import linear_model, datasets
>>> lasso = linear_model.LassoCV()
>>> diabetes = datasets.load_diabetes()
>>> X_diabetes = diabetes.data
>>> y_diabetes = diabetes.target
>>> lasso.fit(X_diabetes, y_diabetes)
LassoCV(alphas=array([2.14804, 2.00327, ..., 0.0023 , 0.00215]),

copy_X=True, cv=None, eps=0.001, fit_intercept=True, max_iter=1000,
n_alphas=100, normalize=False, precompute=’auto’, tol=0.0001,
verbose=False)

>>> # The estimator chose automatically its lambda:
>>> lasso.alpha
0.01318...

These estimators are called similarly to their counterparts, with ‘CV’ appended to their name.

Exercise

On the diabetes dataset, find the optimal regularization parameter alpha.
Bonus: How much can you trust the selection of alpha?

import numpy as np
import pylab as pl

from sklearn import cross_validation, datasets, linear_model

diabetes = datasets.load_diabetes()
X = diabetes.data
y = diabetes.target

lasso = linear_model.Lasso()

alphas = np.logspace(-4, -1, 20)

Solution: ../../auto_examples/exercises/plot_cv_diabetes.py

Unsupervised learning: seeking representations of the data

Clustering: grouping observations together

The problem solved in clustering

Given the iris dataset, if we knew that there were 3 types of iris, but did not have access to a taxonomist to label
them: we could try a clustering task: split the observations in well-separated group called clusters.

24 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

K-means clustering Note that their exists a lot of different clustering criteria and associated algorithms. The sim-

plest clustering algorithm is the K-means.

>>> from sklearn import cluster, datasets
>>> iris = datasets.load_iris()
>>> X_iris = iris.data
>>> y_iris = iris.target

>>> k_means = cluster.KMeans(n_clusters=3)
>>> k_means.fit(X_iris)
KMeans(copy_x=True, init=’k-means++’, ...
>>> print k_means.labels_[::10]
[1 1 1 1 1 0 0 0 0 0 2 2 2 2 2]
>>> print y_iris[::10]
[0 0 0 0 0 1 1 1 1 1 2 2 2 2 2]

Warning: There is absolutely no guarantee of recovering a ground truth. First choosing the right number of
clusters is hard. Second, the algorithm is sensitive to initialization, and can fall in local minima, although in the
sklearn package we play many tricks to mitigate this issue.

Bad initialization 8 clusters Ground truth
Don’t over-interpret clustering results

1.2. Tutorials: From the bottom up with scikit-learn 25

scikit-learn user guide, Release 0.12-git

Application example: vector quantization

Clustering in general and KMeans in particular, can be seen as a way of choosing a small number of examplars
to compress the information, a problem sometimes known as vector quantization. For instance, this can be used
to posterize an image:

>>> import scipy as sp
>>> try:
... lena = sp.lena()
... except AttributeError:
... from scipy import misc
... lena = misc.lena()
>>> X = lena.reshape((-1, 1)) # We need an (n_sample, n_feature) array
>>> k_means = cluster.KMeans(n_clusters=5, n_init=1)
>>> k_means.fit(X)
KMeans(copy_x=True, init=’k-means++’, ...
>>> values = k_means.cluster_centers_.squeeze()
>>> labels = k_means.labels_
>>> lena_compressed = np.choose(labels, values)
>>> lena_compressed.shape = lena.shape

Raw image K-means quantization Equal bins Image histogram

Hierarchical agglomerative clustering: Ward A Hierarchical clustering method is a type of cluster analysis that
aims to build a hierarchy of clusters. In general, the various approaches of this technique are either:

• Agglomerative - bottom-up approaches, or

• Divisive - top-down approaches.

For estimating a large number of clusters, top-down approaches are both statisticaly ill-posed, and slow - due to it
starting with all observations as one cluster, which it splits recursively. Agglomerative hierarchical-clustering is a
bottom-up approach that successively merges observations together and is particularly useful when the clusters of
interest are made of only a few observations. Ward clustering minimizes a criterion similar to k-means in a bottom-up
approach. When the number of clusters is large, it is much more computationally efficient than k-means.

Connectivity-constrained clustering With Ward clustering, it is possible to specify which samples can be clus-
tered together by giving a connectivity graph. Graphs in the scikit are represented by their adjacency matrix. Of-
ten a sparse matrix is used. This can be useful for instance to retrieve connect regions when clustering an image:

26 Chapter 1. User Guide

http://en.wikipedia.org/wiki/Vector_quantization

scikit-learn user guide, Release 0.12-git

###
Generate data
lena = sp.misc.lena()
Downsample the image by a factor of 4
lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2]
X = np.reshape(lena, (-1, 1))

###
Define the structure A of the data. Pixels connected to their neighbors.
connectivity = grid_to_graph(*lena.shape)

###
Compute clustering
print "Compute structured hierarchical clustering..."
st = time.time()
n_clusters = 15 # number of regions
ward = Ward(n_clusters=n_clusters, connectivity=connectivity).fit(X)
label = np.reshape(ward.labels_, lena.shape)
print "Elaspsed time: ", time.time() - st
print "Number of pixels: ", label.size
print "Number of clusters: ", np.unique(label).size

Feature agglomeration We have seen that sparsity could be used to mitigate the curse of dimensionality, i.e the
insufficience of observations compared to the number of features. Another approach is to merge together similar
features: feature agglomeration. This approach can be implementing by clustering in the feature direction, in other

words clustering the transposed data.

>>> digits = datasets.load_digits()
>>> images = digits.images
>>> X = np.reshape(images, (len(images), -1))
>>> connectivity = grid_to_graph(*images[0].shape)

>>> agglo = cluster.WardAgglomeration(connectivity=connectivity,
... n_clusters=32)
>>> agglo.fit(X)
WardAgglomeration(connectivity=...
>>> X_reduced = agglo.transform(X)

>>> X_approx = agglo.inverse_transform(X_reduced)
>>> images_approx = np.reshape(X_approx, images.shape)

1.2. Tutorials: From the bottom up with scikit-learn 27

scikit-learn user guide, Release 0.12-git

transform and inverse_transform methods

Some estimators expose a transform method, for instance to reduce the dimensionality of the dataset.

Decompositions: from a signal to components and loadings

Components and loadings

If X is our multivariate data, the problem that we are trying to solve is to rewrite it on a different observation
basis: we want to learn loadings L and a set of components C such that X = L C. Different criteria exist to choose
the components

Principal component analysis: PCA Principal component analysis (PCA) selects the successive components that
explain the maximum variance in the signal.

The point cloud spanned by the observations above is very flat in one direction: one of the 3 univariate features can
almost be exactly computed using the 2 other. PCA finds the directions in which the data is not flat

When used to transform data, PCA can reduce the dimensionality of the data by projecting on a principal subspace.

>>> # Create a signal with only 2 useful dimensions
>>> x1 = np.random.normal(size=100)
>>> x2 = np.random.normal(size=100)
>>> x3 = x1 + x2
>>> X = np.c_[x1, x2, x3]

>>> from sklearn import decomposition
>>> pca = decomposition.PCA()
>>> pca.fit(X)
PCA(copy=True, n_components=None, whiten=False)
>>> print pca.explained_variance_
[2.18565811e+00 1.19346747e+00 8.43026679e-32]

>>> # As we can see, only the 2 first components are useful
>>> pca.n_components = 2
>>> X_reduced = pca.fit_transform(X)
>>> X_reduced.shape
(100, 2)

28 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Independent Component Analysis: ICA Independent component analysis (ICA) selects components so that the
distribution of their loadings carries a maximum amount of independent information. It is able to recover non-

Gaussian independent signals:

>>> # Generate sample data
>>> time = np.linspace(0, 10, 2000)
>>> s1 = np.sin(2 * time) # Signal 1 : sinusoidal signal
>>> s2 = np.sign(np.sin(3 * time)) # Signal 2 : square signal
>>> S = np.c_[s1, s2]
>>> S += 0.2 * np.random.normal(size=S.shape) # Add noise
>>> S /= S.std(axis=0) # Standardize data
>>> # Mix data
>>> A = np.array([[1, 1], [0.5, 2]]) # Mixing matrix
>>> X = np.dot(S, A.T) # Generate observations

>>> # Compute ICA
>>> ica = decomposition.FastICA()
>>> S_ = ica.fit(X).transform(X) # Get the estimated sources
>>> A_ = ica.get_mixing_matrix() # Get estimated mixing matrix
>>> np.allclose(X, np.dot(S_, A_.T))
True

1.2. Tutorials: From the bottom up with scikit-learn 29

scikit-learn user guide, Release 0.12-git

Putting it all together

Pipelining

We have seen that some estimators can transform data, and some estimators can predict variables. We can create

combined estimators:

import pylab as pl

from sklearn import linear_model, decomposition, datasets

logistic = linear_model.LogisticRegression()

pca = decomposition.PCA()
from sklearn.pipeline import Pipeline
pipe = Pipeline(steps=[(’pca’, pca), (’logistic’, logistic)])

digits = datasets.load_digits()
X_digits = digits.data
y_digits = digits.target

###
Plot the PCA spectrum
pca.fit(X_digits)

pl.figure(1, figsize=(4, 3))
pl.clf()
pl.axes([.2, .2, .7, .7])
pl.plot(pca.explained_variance_, linewidth=2)
pl.axis(’tight’)
pl.xlabel(’n_components’)
pl.ylabel(’explained_variance_’)

###
Prediction

from sklearn.grid_search import GridSearchCV

n_components = [20, 40, 64]
Cs = np.logspace(-4, 4, 3)

#Parameters of pipelines can be set using ‘__’ separated parameter names:

estimator = GridSearchCV(pipe,
dict(pca__n_components=n_components,

logistic__C=Cs))

30 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

estimator.fit(X_digits, y_digits)

pl.axvline(estimator.best_estimator_.named_steps[’pca’].n_components,
linestyle=’:’, label=’n_components chosen’)

pl.legend(prop=dict(size=12))

Face recognition with eigenfaces

The dataset used in this example is a preprocessed excerpt of the “Labeled Faces in the Wild”, aka LFW:

http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB)

"""
===
Faces recognition example using eigenfaces and SVMs
===

The dataset used in this example is a preprocessed excerpt of the
"Labeled Faces in the Wild", aka LFW_:

http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB)

.. _LFW: http://vis-www.cs.umass.edu/lfw/

Expected results for the top 5 most represented people in the dataset::

precision recall f1-score support

Gerhard_Schroeder 0.91 0.75 0.82 28
Donald_Rumsfeld 0.84 0.82 0.83 33

Tony_Blair 0.65 0.82 0.73 34
Colin_Powell 0.78 0.88 0.83 58

George_W_Bush 0.93 0.86 0.90 129

avg / total 0.86 0.84 0.85 282

"""
print __doc__

from time import time
import logging
import pylab as pl

from sklearn.cross_validation import train_test_split
from sklearn.datasets import fetch_lfw_people
from sklearn.grid_search import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.decomposition import RandomizedPCA
from sklearn.svm import SVC

Display progress logs on stdout
logging.basicConfig(level=logging.INFO, format=’%(asctime)s %(message)s’)

1.2. Tutorials: From the bottom up with scikit-learn 31

http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz

scikit-learn user guide, Release 0.12-git

###
Download the data, if not already on disk and load it as numpy arrays

lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

introspect the images arrays to find the shapes (for plotting)
n_samples, h, w = lfw_people.images.shape

fot machine learning we use the 2 data directly (as relative pixel
positions info is ignored by this model)
X = lfw_people.data
n_features = X.shape[1]

the label to predict is the id of the person
y = lfw_people.target
target_names = lfw_people.target_names
n_classes = target_names.shape[0]

print "Total dataset size:"
print "n_samples: %d" % n_samples
print "n_features: %d" % n_features
print "n_classes: %d" % n_classes

###
Split into a training set and a test set using a stratified k fold

split into a training and testing set
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_fraction=0.25)

###
Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled
dataset): unsupervised feature extraction / dimensionality reduction
n_components = 150

print "Extracting the top %d eigenfaces from %d faces" % (
n_components, X_train.shape[0])

t0 = time()
pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train)
print "done in %0.3fs" % (time() - t0)

eigenfaces = pca.components_.reshape((n_components, h, w))

print "Projecting the input data on the eigenfaces orthonormal basis"
t0 = time()
X_train_pca = pca.transform(X_train)
X_test_pca = pca.transform(X_test)
print "done in %0.3fs" % (time() - t0)

###
Train a SVM classification model

print "Fitting the classifier to the training set"
t0 = time()
param_grid = {

32 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

’C’: [1e3, 5e3, 1e4, 5e4, 1e5],
’gamma’: [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1],

}
clf = GridSearchCV(SVC(kernel=’rbf’, class_weight=’auto’), param_grid)
clf = clf.fit(X_train_pca, y_train)
print "done in %0.3fs" % (time() - t0)
print "Best estimator found by grid search:"
print clf.best_estimator_

###
Quantitative evaluation of the model quality on the test set

print "Predicting the people names on the testing set"
t0 = time()
y_pred = clf.predict(X_test_pca)
print "done in %0.3fs" % (time() - t0)

print classification_report(y_test, y_pred, target_names=target_names)
print confusion_matrix(y_test, y_pred, labels=range(n_classes))

###
Qualitative evaluation of the predictions using matplotlib

def plot_gallery(images, titles, h, w, n_row=3, n_col=4):
"""Helper function to plot a gallery of portraits"""
pl.figure(figsize=(1.8 * n_col, 2.4 * n_row))
pl.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)
for i in range(n_row * n_col):

pl.subplot(n_row, n_col, i + 1)
pl.imshow(images[i].reshape((h, w)), cmap=pl.cm.gray)
pl.title(titles[i], size=12)
pl.xticks(())
pl.yticks(())

plot the result of the prediction on a portion of the test set

def title(y_pred, y_test, target_names, i):
pred_name = target_names[y_pred[i]].rsplit(’ ’, 1)[-1]
true_name = target_names[y_test[i]].rsplit(’ ’, 1)[-1]
return ’predicted: %s\ntrue: %s’ % (pred_name, true_name)

prediction_titles = [title(y_pred, y_test, target_names, i)
for i in range(y_pred.shape[0])]

plot_gallery(X_test, prediction_titles, h, w)

plot the gallery of the most significative eigenfaces

eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]
plot_gallery(eigenfaces, eigenface_titles, h, w)

pl.show()

1.2. Tutorials: From the bottom up with scikit-learn 33

scikit-learn user guide, Release 0.12-git

Prediction Eigenfaces

Expected results for the top 5 most represented people in the dataset:

precision recall f1-score support

Gerhard_Schroeder 0.91 0.75 0.82 28
Donald_Rumsfeld 0.84 0.82 0.83 33

Tony_Blair 0.65 0.82 0.73 34
Colin_Powell 0.78 0.88 0.83 58

George_W_Bush 0.93 0.86 0.90 129

avg / total 0.86 0.84 0.85 282

Open problem: Stock Market Structure

Can we predict the variation in stock prices for Google?

Visualizing the stock market structure

Finding help

The project mailing list

If you encounter a bug with scikit-learn or something that needs clarification in the docstring or the online
documentation, please feel free to ask on the Mailing List

Q&A communities with Machine Learning practictioners

Metaoptimize/QA A forum for Machine Learning, Natural Language Processing and
other Data Analytics discussions (similar to what Stackoverflow is for developers):
http://metaoptimize.com/qa

A good starting point is the discussion on good freely available textbooks on machine
learning

Quora.com Quora has a topic for Machine Learning related questions that also features some
interesting discussions: http://quora.com/Machine-Learning

Have a look at the best questions section, eg: What are some good resources for learning
about machine learning.

Note: Videos

Videos with tutorials can also be found in the Videos section.

34 Chapter 1. User Guide

http://scikit-learn.sourceforge.net/support.html
http://metaoptimize.com/qa
http://metaoptimize.com/qa/questions/186/good-freely-available-textbooks-on-machine-learning
http://metaoptimize.com/qa/questions/186/good-freely-available-textbooks-on-machine-learning
http://quora.com/Machine-Learning
http://www.quora.com/What-are-some-good-resources-for-learning-about-machine-learning
http://www.quora.com/What-are-some-good-resources-for-learning-about-machine-learning

scikit-learn user guide, Release 0.12-git

Note: Doctest Mode

The code-examples in the above tutorials are written in a python-console format. If you wish to easily execute these
examples in iPython, use:

%doctest_mode

in the iPython-console. You can then simply copy and paste the examples directly into iPython without having to
worry about removing the >>> manually.

1.3 Supervised learning

1.3.1 Generalized Linear Models

The following are a set of methods intended for regression in which the target value is expected to be a linear combi-
nation of the input variables. In mathematical notion, if ŷ is the predicted value.

ŷ(w, x) = w0 + w1x1 + ...+ wpxp

Across the module, we designate the vector w = (w1, ..., wp) as coef_ and w0 as intercept_.

To perform classification with generalized linear models, see Logisitic regression.

Ordinary Least Squares

LinearRegression fits a linear model with coefficients w = (w1, ..., wp) to minimize the residual sum of squares
between the observed responses in the dataset, and the responses predicted by the linear approximation. Mathemati-
cally it solves a problem of the form:

min
w
||Xw − y||22

1.3. Supervised learning 35

scikit-learn user guide, Release 0.12-git

LinearRegression will take in its fit method arrays X, y and will store the coefficients w of the linear model in
its coef_ member:

>>> from sklearn import linear_model
>>> clf = linear_model.LinearRegression()
>>> clf.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2])
LinearRegression(copy_X=True, fit_intercept=True, normalize=False)
>>> clf.coef_
array([0.5, 0.5])

However, coefficient estimates for Ordinary Least Squares rely on the independence of the model terms. When terms
are correlated and the columns of the design matrix X have an approximate linear dependence, the design matrix
becomes close to singular and as a result, the least-squares estimate becomes highly sensitive to random errors in the
observed response, producing a large variance. This situation of multicollinearity can arise, for example, when data
are collected without an experimental design.

Examples:

• Linear Regression Example

Ordinary Least Squares Complexity

This method computes the least squares solution using a singular value decomposition of X. If X is a matrix of size (n,
p) this method has a cost of O(np2), assuming that n ≥ p.

Ridge Regression

Ridge regression addresses some of the problems of Ordinary Least Squares by imposing a penalty on the size of
coefficients. The ridge coefficients minimize a penalized residual sum of squares,

min
w
||Xw − y||22

+ α||w||22

Here, α ≥ 0 is a complexity parameter that controls the amount of shrinkage: the larger the value of α, the greater the
amount of shrinkage and thus the coefficients become more robust to collinearity.

As with other linear models, Ridge will take in its fit method arrays X, y and will store the coefficients w of the linear
model in its coef_ member:

36 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

>>> from sklearn import linear_model
>>> clf = linear_model.Ridge (alpha = .5)
>>> clf.fit ([[0, 0], [0, 0], [1, 1]], [0, .1, 1])
Ridge(alpha=0.5, copy_X=True, fit_intercept=True, normalize=False, tol=0.001)
>>> clf.coef_
array([0.34545455, 0.34545455])
>>> clf.intercept_
0.13636...

Examples:

• Plot Ridge coefficients as a function of the regularization
• Classification of text documents using sparse features

Ridge Complexity

This method has the same order of complexity than an Ordinary Least Squares.

Setting the regularization parameter: generalized Cross-Validation

RidgeCV implements ridge regression with built-in cross-validation of the alpha parameter. The object works in
the same way as GridSearchCV except that it defaults to Generalized Cross-Validation (GCV), an efficient form of
leave-one-out cross-validation:

>>> from sklearn import linear_model
>>> clf = linear_model.RidgeCV(alphas=[0.1, 1.0, 10.0])
>>> clf.fit([[0, 0], [0, 0], [1, 1]], [0, .1, 1])
RidgeCV(alphas=[0.1, 1.0, 10.0], cv=None, fit_intercept=True, loss_func=None,

normalize=False, score_func=None)
>>> clf.best_alpha
0.1

References

• “Notes on Regularized Least Squares”, Rifkin & Lippert (technical report, course slides).

Lasso

The Lasso is a linear model that estimates sparse coefficients. It is useful in some contexts due to its tendency
to prefer solutions with fewer parameter values, effectively reducing the number of variables upon which the given
solution is dependent. For this reason, the Lasso and its variants are fundamental to the field of compressed sensing.
Under certain conditions, it can recover the exact set of non-zero weights (see Compressive sensing: tomography
reconstruction with L1 prior (Lasso)).

Mathematically, it consists of a linear model trained with `1 prior as regularizer. The objective function to minimize
is:

min
w

1

2nsamples
||Xw − y||22 + α||w||1

1.3. Supervised learning 37

http://cbcl.mit.edu/projects/cbcl/publications/ps/MIT-CSAIL-TR-2007-025.pdf
http://www.mit.edu/~9.520/spring07/Classes/rlsslides.pdf

scikit-learn user guide, Release 0.12-git

The lasso estimate thus solves the minimization of the least-squares penalty with α||w||1 added, where α is a constant
and ||w||1 is the `1-norm of the parameter vector.

The implementation in the class Lasso uses coordinate descent as the algorithm to fit the coefficients. See Least
Angle Regression for another implementation:

>>> clf = linear_model.Lasso(alpha = 0.1)
>>> clf.fit([[0, 0], [1, 1]], [0, 1])
Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000,

normalize=False, positive=False, precompute=’auto’, tol=0.0001,
warm_start=False)

>>> clf.predict([[1, 1]])
array([0.8])

Also useful for lower-level tasks is the function lasso_path that computes the coefficients along the full path of
possible values.

Examples:

• Lasso and Elastic Net for Sparse Signals
• Compressive sensing: tomography reconstruction with L1 prior (Lasso)

Note: Feature selection with Lasso

As the Lasso regression yields sparse models, it can thus be used to perform feature selection, as detailed in L1-based
feature selection.

Setting regularization parameter

The alpha parameter control the degree of sparsity of the coefficients estimated.

Using cross-validation scikit-learn exposes objects that set the Lasso alpha parameter by cross-validation:
LassoCV and LassoLarsCV. LassoLarsCV is based on the Least Angle Regression algorithm explained below.

For high-dimensional datasets with many collinear regressors, LassoCV is most often preferrable. How,
LassoLarsCV has the advantage of exploring more relevant values of alpha parameter, and if the number of samples
is very small compared to the number of observations, it is often faster than LassoCV.

38 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Information-criteria based model selection Alternatively, the estimator LassoLarsIC proposes to use the
Akaike information criterion (AIC) and the Bayes Information criterion (BIC). It is a computationally cheaper al-
ternative to find the optimal value of alpha as the regularization path is computed only once instead of k+1 times
when using k-fold cross-validation. However, such criteria needs a proper estimation of the degrees of freedom of
the solution, are derived for large samples (asymptotic results) and assume the model is correct, i.e. that the data are
actually generated by this model. They also tend to break when the problem is badly conditioned (more features than
samples).

Examples:

• Lasso model selection: Cross-Validation / AIC / BIC

Elastic Net

ElasticNet is a linear model trained with L1 and L2 prior as regularizer.

The objective function to minimize is in this case

min
w

1

2nsamples
||Xw − y||22 + αρ||w||1 +

α(1− ρ)

2
||w||22

The class ElasticNetCV can be used to set the parameters alpha and rho by cross-validation.

Examples:

• Lasso and Elastic Net for Sparse Signals
• Lasso and Elastic Net

Least Angle Regression

Least-angle regression (LARS) is a regression algorithm for high-dimensional data, developed by Bradley Efron,
Trevor Hastie, Iain Johnstone and Robert Tibshirani.

The advantages of LARS are:

1.3. Supervised learning 39

scikit-learn user guide, Release 0.12-git

• It is numerically efficient in contexts where p >> n (i.e., when the number of dimensions is significantly greater
than the number of points)

• It is computationally just as fast as forward selection and has the same order of complexity as an ordinary least
squares.

• It produces a full piecewise linear solution path, which is useful in cross-validation or similar attempts to tune
the model.

• If two variables are almost equally correlated with the response, then their coefficients should increase at ap-
proximately the same rate. The algorithm thus behaves as intuition would expect, and also is more stable.

• It is easily modified to produce solutions for other estimators, like the Lasso.

The disadvantages of the LARS method include:

• Because LARS is based upon an iterative refitting of the residuals, it would appear to be especially sensitive to
the effects of noise. This problem is discussed in detail by Weisberg in the discussion section of the Efron et al.
(2004) Annals of Statistics article.

The LARS model can be used using estimator Lars, or its low-level implementation lars_path.

LARS Lasso

LassoLars is a lasso model implemented using the LARS algorithm, and unlike the implementation based on
coordinate_descent, this yields the exact solution, which is piecewise linear as a function of the norm of its coefficients.

>>> from sklearn import linear_model
>>> clf = linear_model.LassoLars(alpha=.1)
>>> clf.fit([[0, 0], [1, 1]], [0, 1])
LassoLars(alpha=0.1, copy_X=True, eps=..., fit_intercept=True,

max_iter=500, normalize=True, precompute=’auto’, verbose=False)
>>> clf.coef_
array([0.717157..., 0.])

Examples:

• Lasso path using LARS

40 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

The Lars algorithm provides the full path of the coefficients along the regularization parameter almost for free, thus a
common operation consist of retrieving the path with function lars_path

Mathematical formulation

The algorithm is similar to forward stepwise regression, but instead of including variables at each step, the estimated
parameters are increased in a direction equiangular to each one’s correlations with the residual.

Instead of giving a vector result, the LARS solution consists of a curve denoting the solution for each value of the L1
norm of the parameter vector. The full coeffients path is stored in the array coef_path_, which has size (n_features,
max_features+1). The first column is always zero.

References:

• Original Algorithm is detailed in the paper Least Angle Regression by Hastie et al.

Orthogonal Matching Pursuit (OMP)

OrthogonalMatchingPursuit and orthogonal_mp implements the OMP algorithm for approximating the
fit of a linear model with constraints imposed on the number of non-zero coefficients (ie. the L 0 pseudo-norm).

Being a forward feature selection method like Least Angle Regression, orthogonal matching pursuit can approximate
the optimum solution vector with a fixed number of non-zero elements:

arg min ||y −Xγ||22 subject to ||γ||0 ≤ nnonzero_coefs

Alternatively, orthogonal matching pursuit can target a specific error instead of a specific number of non-zero coeffi-
cients. This can be expressed as:

arg min ||γ||0 subject to ||y −Xγ||22 ≤ tol

OMP is based on a greedy algorithm that includes at each step the atom most highly correlated with the current
residual. It is similar to the simpler matching pursuit (MP) method, but better in that at each iteration, the residual is
recomputed using an orthogonal projection on the space of the previously chosen dictionary elements.

1.3. Supervised learning 41

http://www-stat.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf

scikit-learn user guide, Release 0.12-git

Examples:

• Orthogonal Matching Pursuit

References:

• http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf
• Matching pursuits with time-frequency dictionaries, S. G. Mallat, Z. Zhang,

Bayesian Regression

Bayesian regression techniques can be used to include regularization parameters in the estimation procedure: the
regularization parameter is not set in a hard sense but tuned to the data at hand.

This can be done by introducing uninformative priors over the hyper parameters of the model. The `2 regularization
used in Ridge Regression is equivalent to finding a maximum a-postiori solution under a Gaussian prior over the
parameters w with precision λ−1. Instead of setting lambda manually, it is possible to treat it as a random variable to
be estimated from the data.

To obtain a fully probabilistic model, the output y is assumed to be Gaussian distributed around Xw:

p(y|X,w, α) = N (y|Xw,α)

Alpha is again treated as a random variable that is to be estimated from the data.

The advantages of Bayesian Regression are:

• It adapts to the data at hand.

• It can be used to include regularization parameters in the estimation procedure.

The disadvantages of Bayesian regression include:

• Inference of the model can be time consuming.

References

• A good introduction to Bayesian methods is given in C. Bishop: Pattern Recognition and Machine learning
• Original Algorithm is detailed in the book Bayesian learning for neural networks by Radford M. Neal

Bayesian Ridge Regression

BayesianRidge estimates a probabilistic model of the regression problem as described above. The prior for the
parameter w is given by a spherical Gaussian:

p(w|λ) = N (w|0, λ−1Ip)

The priors over α and λ are choosen to be gamma distributions, the conjugate prior for the precision of the Gaussian.

The resulting model is called Bayesian Ridge Regression, and is similar to the classical Ridge. The parameters w,
α and λ are estimated jointly during the fit of the model. The remaining hyperparameters are the parameters of the

42 Chapter 1. User Guide

http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf
http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf
http://en.wikipedia.org/wiki/Non-informative_prior#Uninformative_priors
http://en.wikipedia.org/wiki/Gamma_distribution

scikit-learn user guide, Release 0.12-git

gamma priors over α and λ. These are usually choosen to be non-informative. The parameters are estimated by
maximizing the marginal log likelihood.

By default α1 = α2 = λ1 = λ2 = 1.e−6.

Bayesian Ridge Regression is used for regression:

>>> from sklearn import linear_model
>>> X = [[0., 0.], [1., 1.], [2., 2.], [3., 3.]]
>>> Y = [0., 1., 2., 3.]
>>> clf = linear_model.BayesianRidge()
>>> clf.fit(X, Y)
BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True,

fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300,
normalize=False, tol=0.001, verbose=False)

After being fitted, the model can then be used to predict new values:

>>> clf.predict ([[1, 0.]])
array([0.50000013])

The weights w of the model can be access:

>>> clf.coef_
array([0.49999993, 0.49999993])

Due to the Bayesian framework, the weights found are slightly different to the ones found by Ordinary Least Squares.
However, Bayesian Ridge Regression is more robust to ill-posed problem.

Examples:

• Bayesian Ridge Regression

References

• More details can be found in the article Bayesian Interpolation by MacKay, David J. C.

1.3. Supervised learning 43

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.27.9072&rep=rep1&type=pdf

scikit-learn user guide, Release 0.12-git

Automatic Relevance Determination - ARD

ARDRegression is very similar to Bayesian Ridge Regression, but can lead to sparser weights w 1.
ARDRegression poses a different prior over w, by dropping the assuption of the Gaussian being spherical.

Instead, the distribution over w is assumed to be an axis-parallel, elliptical Gaussian distribution.

This means each weight wi is drawn from a Gaussian distribution, centered on zero and with a precision λi:

p(w|λ) = N (w|0, A−1)

with diag (A) = λ = {λ1, ..., λp}.

In constrast to Bayesian Ridge Regression, each coordinate of wi has its own standard deviation λi. The prior over all
λi is choosen to be the same gamma distribution given by hyperparameters λ1 and λ2.

Examples:

• Automatic Relevance Determination Regression (ARD)

References:

Logisitic regression

If the task at hand is to choose which class a sample belongs to given a finite (hopefuly small) set of choices, the
learning problem is a classification, rather than regression. Linear models can be used for such a decision, but it is best
to use what is called a logistic regression, that doesn’t try to minimize the sum of square residuals, as in regression,
but rather a “hit or miss” cost.

The LogisticRegression class can be used to do L1 or L2 penalized logistic regression. L1 penalization yields
sparse predicting weights. For L1 penalization sklearn.svm.l1_min_c allows to calculate the lower bound for
C in order to get a non “null” (all feature weights to zero) model.

1 David Wipf and Srikantan Nagarajan: A new view of automatic relevance determination.

44 Chapter 1. User Guide

http://en.wikipedia.org/wiki/Logistic_regression
http://books.nips.cc/papers/files/nips20/NIPS2007_0976.pdf

scikit-learn user guide, Release 0.12-git

Examples:

• L1 Penalty and Sparsity in Logistic Regression
• Path with L1- Logistic Regression

Note: Feature selection with sparse logistic regression

A logistic regression with L1 penalty yields sparse models, and can thus be used to perform feature selection, as
detailed in L1-based feature selection.

Stochastic Gradient Descent - SGD

Stochastic gradient descent is a simple yet very efficient approach to fit linear models. It is particulary useful when the
number of samples (and the number of features) is very large.

The classes SGDClassifier and SGDRegressor provide functionality to fit linear models for classification and
regression using different (convex) loss functions and different penalties.

References

• Stochastic Gradient Descent

Perceptron

The Perceptron is another simple algorithm suitable for large scale learning. By default:

• It does not require a learning rate.

• It is not regularized (penalized).

• It updates its model only on mistakes.

The last characteristic implies that the Perceptron is slightly faster to train than SGD with the hinge loss and that the
resulting models are sparser.

1.3.2 Support Vector Machines

Support vector machines (SVMs) are a set of supervised learning methods used for classification, regression and
outliers detection.

The advantages of support vector machines are:

• Effective in high dimensional spaces.

• Still effective in cases where number of dimensions is greater than the number of samples.

• Uses a subset of training points in the decision function (called support vectors), so it is also memory efficient.

• Versatile: different Kernel functions can be specified for the decision function. Common kernels are provided,
but it is also possible to specify custom kernels.

The disadvantages of support vector machines include:

• If the number of features is much greater than the number of samples, the method is likely to give poor perfor-
mances.

1.3. Supervised learning 45

scikit-learn user guide, Release 0.12-git

• SVMs do not directly provide probability estimates, these are calculated using five-fold cross-validation, and
thus performance can suffer.

The support vector machines in scikit-learn support both dens (numpy.ndarray and convertible to that by
numpy.asarray) and sparse (any scipy.sparse) sample vectors as input. However, to use an SVM to make pre-
dictions for sparse data, it must have been fit on such data. For optimal performance, use C-ordered numpy.ndarray
(dense) or scipy.sparse.csr_matrix (sparse) with dtype=float64.

In previous versions of scikit-learn, sparse input support existed only in the sklearn.svm.sparse module which
duplicated the sklearn.svm interface. This module still exists for backward compatibility, but is deprecated and
will be removed in scikit-learn 0.12.

Classification

SVC, NuSVC and LinearSVC are classes capable of performing multi-class classification on a dataset.

SVC and NuSVC are similar methods, but accept slightly different sets of parameters and have different mathematical
formulations (see section Mathematical formulation). On the other hand, LinearSVC is another implementation of
Support Vector Classification for the case of a linear kernel. Note that LinearSVC does not accept keyword ‘kernel’,
as this is assumed to be linear. It also lacks some of the members of SVC and NuSVC, like support_.

As other classifiers, SVC, NuSVC and LinearSVC take as input two arrays: an array X of size [n_samples, n_features]
holding the training samples, and an array Y of integer values, size [n_samples], holding the class labels for the training
samples:

46 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

>>> from sklearn import svm
>>> X = [[0, 0], [1, 1]]
>>> Y = [0, 1]
>>> clf = svm.SVC()
>>> clf.fit(X, Y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3,
gamma=0.5, kernel=’rbf’, probability=False, shrinking=True, tol=0.001,
verbose=False)

After being fitted, the model can then be used to predict new values:

>>> clf.predict([[2., 2.]])
array([1.])

SVMs decision function depends on some subset of the training data, called the support vectors. Some properties of
these support vectors can be found in members support_vectors_, support_ and n_support:

>>> # get support vectors
>>> clf.support_vectors_
array([[0., 0.],

[1., 1.]])
>>> # get indices of support vectors
>>> clf.support_
array([0, 1]...)
>>> # get number of support vectors for each class
>>> clf.n_support_
array([1, 1]...)

Multi-class classification

SVC and NuSVC implement the “one-against-one” approach (Knerr et al., 1990) for multi- class classification. If
n_class is the number of classes, then n_class * (n_class - 1)/2 classifiers are constructed and each one trains data from
two classes:

>>> X = [[0], [1], [2], [3]]
>>> Y = [0, 1, 2, 3]
>>> clf = svm.SVC()
>>> clf.fit(X, Y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3,
gamma=1.0, kernel=’rbf’, probability=False, shrinking=True,
tol=0.001, verbose=False)
>>> dec = clf.decision_function([[1]])
>>> dec.shape[1] # 4 classes: 4*3/2 = 6
6

On the other hand, LinearSVC implements “one-vs-the-rest” multi-class strategy, thus training n_class models. If
there are only two classes, only one model is trained:

>>> lin_clf = svm.LinearSVC()
>>> lin_clf.fit(X, Y)
LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,
intercept_scaling=1, loss=’l2’, multi_class=’ovr’, penalty=’l2’,
tol=0.0001, verbose=0)
>>> dec = lin_clf.decision_function([[1]])
>>> dec.shape[1]
4

See Mathematical formulation for a complete description of the decision function.

1.3. Supervised learning 47

scikit-learn user guide, Release 0.12-git

Note that the LinearSVC also implements an alternative multi-class strategy, the so-called multi-class SVM formu-
lated by Crammer and Singer, by using the option “multi_class=’crammer_singer”’. This method is consistent, which
is not true for one-vs-rest classification. In practice, on-vs-rest classification is usually preferred, since the results are
mostly similar, but the runtime is significantly less.

For “one-vs-rest” LinearSVC the attributes coef_ and intercept_ have the shape [n_class,
n_features] and [n_class] respectively. Each row of the coefficients corresponds to one of the n_class
many “one-vs-rest” classifiers and simliar for the interecepts, in the order of the “one” class.

In the case of “one-vs-one” SVC, the layout of the attributes is a little more involved. In the case of having a linear
kernel, The layout of coef_ and intercept_ is similar to the one described for LinearSVC described above,
except that the shape of coef_ is [n_class * (n_class - 1) / 2, corresponding to as many binary clas-
sifiers. The order for classes 0 to n is “0 vs 1”, “0 vs 2” , ... “0 vs n”, “1 vs 2”, “1 vs 3”, “1 vs n”, . . . “n-1 vs
n”.

The shape of dual_coef_ is [n_class-1, n_SV] with a somewhat hard to grasp layout. The columns corre-
spond to the support vectors involved in any of the n_class * (n_class - 1) / 2 “one-vs-one” classifiers.
Each of the support vectors is used in n_class - 1 classifiers. The n_class - 1 entries in each row correspond
to the dual coefficients for these classifiers.

This might be made more clear by an example:

Consider a three class problem with with class 0 having 3 support vectors v0
0 , v

1
0 , v

2
0 and class 1 and 2

having two support vectors v0
1 , v

1
1 and v0

1 , v
1
1 respectively. For each support vector vji , there are 2 dual

coefficients. Let’s call the coefficient of support vector vji in the classifier between classes i and k αji,k.
Then dual_coef_ looks like this:

Unbalanced problems

In problems where it is desired to give more importance to certain classes or certain individual samples keywords
class_weight and sample_weight can be used.

SVC (but not NuSVC) implement a keyword class_weight in the fit method. It’s a dictionary of the form
{class_label : value}, where value is a floating point number > 0 that sets the parameter C of class
class_label to C * value.

SVC, NuSVC, SVR, NuSVR and OneClassSVM implement also weights for individual samples in method fit
through keyword sample_weight.

Examples:

• Plot different SVM classifiers in the iris dataset,
• SVM: Maximum margin separating hyperplane,
• SVM: Separating hyperplane for unbalanced classes
• SVM-Anova: SVM with univariate feature selection,
• Non-linear SVM
• SVM: Weighted samples,

Regression

The method of Support Vector Classification can be extended to solve regression problems. This method is called
Support Vector Regression.

The model produced by support vector classification (as described above) depends only on a subset of the training
data, because the cost function for building the model does not care about training points that lie beyond the margin.

48 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

1.3. Supervised learning 49

scikit-learn user guide, Release 0.12-git

Analogously, the model produced by Support Vector Regression depends only on a subset of the training data, because
the cost function for building the model ignores any training data close to the model prediction.

There are two flavors of Support Vector Regression: SVR and NuSVR.

As with classification classes, the fit method will take as argument vectors X, y, only that in this case y is expected to
have floating point values instead of integer values:

>>> from sklearn import svm
>>> X = [[0, 0], [2, 2]]
>>> y = [0.5, 2.5]
>>> clf = svm.SVR()
>>> clf.fit(X, y)
SVR(C=1.0, cache_size=200, coef0=0.0, degree=3,
epsilon=0.1, gamma=0.5, kernel=’rbf’, probability=False, shrinking=True,
tol=0.001, verbose=False)
>>> clf.predict([[1, 1]])
array([1.5])

Examples:

• Support Vector Regression (SVR) using linear and non-linear kernels

Density estimation, novelty detection

One-class SVM is used for novelty detection, that is, given a set of samples, it will detect the soft boundary of that set
so as to classify new points as belonging to that set or not. The class that implements this is called OneClassSVM.

In this case, as it is a type of unsupervised learning, the fit method will only take as input an array X, as there are no
class labels.

See, section Novelty and Outlier Detection for more details on this usage.

50 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Examples:

• One-class SVM with non-linear kernel (RBF)
• Species distribution modeling

Complexity

Support Vector Machines are powerful tools, but their compute and storage requirements increase rapidly with the
number of training vectors. The core of an SVM is a quadratic programming problem (QP), separating support
vectors from the rest of the training data. The QP solver used by this libsvm-based implementation scales between
O(nfeatures × n2

samples) and O(nfeatures × n3
samples) depending on how efficiently the libsvm cache is used in

practice (dataset dependent). If the data is very sparse nfeatures should be replaced by the average number of non-
zero features in a sample vector.

Also note that for the linear case, the algorithm used in LinearSVC by the liblinear implementation is much more
efficient than its libsvm-based SVC counterpart and can scale almost linearly to millions of samples and/or features.

Tips on Practical Use

• Avoiding data copy: For SVC, SVR, NuSVC and NuSVR, if the data passed to certain methods is not C-ordered
contiguous, and double precision, it will be copied before calling the underlying C implementation. You can
check whether a give numpy array is C-contiguous by inspecting its flags attribute.

For LinearSVC (and LogisticRegression) any input passed as a numpy array will be copied and converted to the
liblinear internal sparse data representation (double precision floats and int32 indices of non-zero components).
If you want to fit a large-scale linear classifier without copying a dense numpy C-contiguous double precision
array as input we suggest to use the SGDClassifier class instead. The objective function can be configured to be
almost the same as the LinearSVC model.

• Kernel cache size: For SVC, SVR, nuSVC and NuSVR, the size of the kernel cache has a strong impact on run
times for larger problems. If you have enough RAM available, it is recommended to set cache_size to a higher
value than the default of 200(MB), such as 500(MB) or 1000(MB).

• Setting C: C is 1 by default and it’s a reasonable default choice. If you have a lot of noisy observations you
should decrease it. It corresponds to regularize more the estimation.

• Support Vector Machine algorithms are not scale invariant, so it is highly recommended to scale your data.
For example, scale each attribute on the input vector X to [0,1] or [-1,+1], or standardize it to have mean 0
and variance 1. Note that the same scaling must be applied to the test vector to obtain meaningful results. See
section Preprocessing data for more details on scaling and normalization.

• Parameter nu in NuSVC/OneClassSVM/NuSVR approximates the fraction of training errors and support vec-
tors.

• In SVC, if data for classification are unbalanced (e.g. many positive and few negative), set class_weight=’auto’
and/or try different penalty parameters C.

• The underlying LinearSVC implementation uses a random number generator to select features when fitting
the model. It is thus not uncommon, to have slightly different results for the same input data. If that happens,
try with a smaller tol parameter.

• Using L1 penalization as provided by LinearSVC(loss=’l2’, penalty=’l1’, dual=False) yields a sparse solution,
i.e. only a subset of feature weights is different from zero and contribute to the decision function. Increasing C
yields a more complex model (more feature are selected). The C value that yields a “null” model (all weights
equal to zero) can be calculated using l1_min_c.

1.3. Supervised learning 51

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

scikit-learn user guide, Release 0.12-git

Kernel functions

The kernel function can be any of the following:

• linear: < xi, x
′
j >.

• polynomial: (γ < x, x′ > +r)d. d is specified by keyword degree, r by coef0.

• rbf (exp(−γ|x− x′|2), γ > 0). γ is specified by keyword gamma.

• sigmoid (tanh(< xi, xj > +r)), where r is specified by coef0.

Different kernels are specified by keyword kernel at initialization:

>>> linear_svc = svm.SVC(kernel=’linear’)
>>> linear_svc.kernel
’linear’
>>> rbf_svc = svm.SVC(kernel=’rbf’)
>>> rbf_svc.kernel
’rbf’

Custom Kernels

You can define your own kernels by either giving the kernel as a python function or by precomputing the Gram matrix.

Classifiers with custom kernels behave the same way as any other classifiers, except that:

• Field support_vectors_ is now empty, only indices of support vectors are stored in support_

• A reference (and not a copy) of the first argument in the fit() method is stored for future reference. If that array
changes between the use of fit() and predict() you will have unexpected results.

Using python functions as kernels You can also use your own defined kernels by passing a function to the keyword
kernel in the constructor.

Your kernel must take as arguments two matrices and return a third matrix.

The following code defines a linear kernel and creates a classifier instance that will use that kernel:

>>> import numpy as np
>>> from sklearn import svm
>>> def my_kernel(x, y):
... return np.dot(x, y.T)
...
>>> clf = svm.SVC(kernel=my_kernel)

Examples:

• SVM with custom kernel.

Using the Gram matrix Set kernel=’precomputed’ and pass the Gram matrix instead of X in the fit method. At the
moment, the kernel values between all training vectors and the test vectors must be provided.

>>> import numpy as np
>>> from sklearn import svm
>>> X = np.array([[0, 0], [1, 1]])
>>> y = [0, 1]

52 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

>>> clf = svm.SVC(kernel=’precomputed’)
>>> # linear kernel computation
>>> gram = np.dot(X, X.T)
>>> clf.fit(gram, y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3,
gamma=0.0, kernel=’precomputed’, probability=False, shrinking=True,
tol=0.001, verbose=False)
>>> # predict on training examples
>>> clf.predict(gram)
array([0., 1.])

Parameters of the RBF Kernel When training an SVM with the Radial Basis Function (RBF) kernel, two parame-
ters must be considered: C and gamma. The parameter C, common to all SVM kernels, trades off misclassification of
training examples against simplicity of the decision surface. A low C makes the decision surface smooth, while a high
C aims at classifying all training examples correctly. gamma defines how much influence a single training example
has. The larger gamma is, the closer other examples must be to be affected.

Proper choice of C and gamma is critical to the SVM’s performance. One is advised to use GridSearchCV with C
and gamma spaced exponentially far apart to choose good values.

Examples:

• RBF SVM parameters

Mathematical formulation

A support vector machine constructs a hyper-plane or set of hyper-planes in a high or infinite dimensional space, which
can be used for classification, regression or other tasks. Intuitively, a good separation is achieved by the hyper-plane
that has the largest distance to the nearest training data points of any class (so-called functional margin), since in
general the larger the margin the lower the generalization error of the classifier.

SVC

Given training vectors xi ∈ Rp, i=1,..., n, in two classes, and a vector y ∈ Rn such that yi ∈ 1,−1, SVC solves the
following primal problem:

min
w,b,ζ

1

2
wTw + C

∑
i=1,n

ζi

subject to yi(wTφ(xi) + b) ≥ 1− ζi,
ζi ≥ 0, i = 1, ..., n

Its dual is

min
α

1

2
αTQα− eTα

subject to yTα = 0

0 ≤ αi ≤ C, i = 1, ..., l

where e is the vector of all ones, C > 0 is the upper bound, Q is an n by n positive semidefinite matrix,Qij ≡ K(xi, xj)
and φ(xi)

Tφ(x) is the kernel. Here training vectors are mapped into a higher (maybe infinite) dimensional space by
the function φ.

1.3. Supervised learning 53

scikit-learn user guide, Release 0.12-git

The decision function is:

sgn(

n∑
i=1

yiαiK(xi, x) + ρ)

Note: While SVM models derived from libsvm and liblinear use C as regularization parameter, most other estimators
use alpha. The relation between both is C = nsamples

alpha .

This parameters can be accessed through the members dual_coef_ which holds the product yiαi, support_vectors_
which holds the support vectors, and intercept_ which holds the independent term −ρ :

References:

• “Automatic Capacity Tuning of Very Large VC-dimension Classifiers” I Guyon, B Boser, V Vapnik -
Advances in neural information processing 1993,

• “Support-vector networks” C. Cortes, V. Vapnik, Machine Leaming, 20, 273-297 (1995)

NuSVC

We introduce a new parameter ν which controls the number of support vectors and training errors. The parameter
ν ∈ (0, 1] is an upper bound on the fraction of training errors and a lower bound of the fraction of support vectors.

It can be shown that the nu-SVC formulation is a reparametrization of the C-SVC and therefore mathematically
equivalent.

54 Chapter 1. User Guide

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.7215
http://www.springerlink.com/content/k238jx04hm87j80g/

scikit-learn user guide, Release 0.12-git

Implementation details

Internally, we use libsvm and liblinear to handle all computations. These libraries are wrapped using C and Cython.

References:

For a description of the implementation and details of the algorithms used, please refer to
• LIBSVM: a library for Support Vector Machines
• LIBLINEAR – A Library for Large Linear Classification

1.3.3 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a simple yet very efficient approach to discriminative learning of linear clas-
sifiers under convex loss functions such as (linear) Support Vector Machines and Logistic Regression. Even though
SGD has been around in the machine learning community for a long time, it has received a considerable amount of
attention just recently in the context of large-scale learning.

SGD has been successfully applied to large-scale and sparse machine learning problems often encountered in text
classification and natural language processing. Given that the data is sparse, the classifiers in this module easily scale
to problems with more than 10^5 training examples and more than 10^5 features.

The advantages of Stochastic Gradient Descent are:

• Efficiency.

• Ease of implementation (lots of opportunities for code tuning).

The disadvantages of Stochastic Gradient Descent include:

• SGD requires a number of hyperparameters such as the regularization parameter and the number of iterations.

• SGD is sensitive to feature scaling.

Classification

Warning: Make sure you permute (shuffle) your training data before fitting the model or use shuffle=True to
shuffle after each iterations.

The class SGDClassifier implements a plain stochastic gradient descent learning routine which supports different
loss functions and penalties for classification.

As other classifiers, SGD has to be fitted with two arrays: an array X of size [n_samples, n_features] holding the
training samples, and an array Y of size [n_samples] holding the target values (class labels) for the training samples:

>>> from sklearn.linear_model import SGDClassifier
>>> X = [[0., 0.], [1., 1.]]
>>> y = [0, 1]
>>> clf = SGDClassifier(loss="hinge", penalty="l2")
>>> clf.fit(X, y)
SGDClassifier(alpha=0.0001, class_weight=None, epsilon=0.1, eta0=0.0,

fit_intercept=True, learning_rate=’optimal’, loss=’hinge’, n_iter=5,
n_jobs=1, penalty=’l2’, power_t=0.5, rho=0.85, seed=0,
shuffle=False, verbose=0, warm_start=False)

After being fitted, the model can then be used to predict new values:

1.3. Supervised learning 55

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf
http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://en.wikipedia.org/wiki/Support_vector_machine
http://en.wikipedia.org/wiki/Logistic_regression

scikit-learn user guide, Release 0.12-git

>>> clf.predict([[2., 2.]])
array([1])

SGD fits a linear model to the training data. The member coef_ holds the model parameters:

>>> clf.coef_
array([[9.90090187, 9.90090187]])

Member intercept_ holds the intercept (aka offset or bias):

>>> clf.intercept_
array([-9.990...])

Whether or not the model should use an intercept, i.e. a biased hyperplane, is controlled by the parameter fit_intercept.

To get the signed distance to the hyperplane use decision_function:

>>> clf.decision_function([[2., 2.]])
array([29.61357756])

The concrete loss function can be set via the loss parameter. SGDClassifier supports the following loss functions:

• loss=”hinge”: (soft-margin) linear Support Vector Machine,

• loss=”modified_huber”: smoothed hinge loss,

• loss=”log”: Logistic Regression,

• and all regression losses below.

The first two loss functions are lazy, they only update the model parameters if an example violates the margin con-
straint, which makes training very efficient and may result in sparser models, even when L2 penalty is used.

In the case of binary classification and loss=”log” or loss=”modified_huber” you get a probability estimate P(y=C|x)
using predict_proba, where C is the largest class label:

56 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

>>> clf = SGDClassifier(loss="log").fit(X, y)
>>> clf.predict_proba([[1., 1.]])
array([0.99999949])

The concrete penalty can be set via the penalty parameter. SGD supports the following penalties:

• penalty=”l2”: L2 norm penalty on coef_.

• penalty=”l1”: L1 norm penalty on coef_.

• penalty=”elasticnet”: Convex combination of L2 and L1; rho * L2 + (1 - rho) * L1.

The default setting is penalty=”l2”. The L1 penalty leads to sparse solutions, driving most coefficients to zero. The
Elastic Net solves some deficiencies of the L1 penalty in the presence of highly correlated attributes. The parameter
rho has to be specified by the user.

SGDClassifier supports multi-class classification by combining multiple binary classifiers in a “one versus all”
(OVA) scheme. For each of the K classes, a binary classifier is learned that discriminates between that and all other
K-1 classes. At testing time, we compute the confidence score (i.e. the signed distances to the hyperplane) for each
classifier and choose the class with the highest confidence. The Figure below illustrates the OVA approach on the iris
dataset. The dashed lines represent the three OVA classifiers; the background colors show the decision surface induced
by the three classifiers.

In the case of multi-class classification coef_ is a two-dimensionaly array of shape [n_classes, n_features] and in-
tercept_ is a one dimensional array of shape [n_classes]. The i-th row of coef_ holds the weight vector of the OVA
classifier for the i-th class; classes are indexed in ascending order (see attribute classes). Note that, in principle, since
they allow to create a probability model, loss=”log” and loss=”modified_huber” are more suitable for one-vs-all
classification.

SGDClassifier supports both weighted classes and weighted instances via the fit parameters class_weight and
sample_weight. See the examples below and the doc string of SGDClassifier.fit for further information.

1.3. Supervised learning 57

scikit-learn user guide, Release 0.12-git

Examples:

• SGD: Maximum margin separating hyperplane,
• Plot multi-class SGD on the iris dataset
• SGD: Separating hyperplane with weighted classes
• SGD: Weighted samples

Regression

The class SGDRegressor implements a plain stochastic gradient descent learning routine which supports different
loss functions and penalties to fit linear regression models. SGDRegressor is well suited for regression prob-
lems with a large number of training samples (> 10.000), for other problems we recommend Ridge, Lasso, or
ElasticNet.

The concrete loss function can be set via the loss parameter. SGDRegressor supports the following loss functions:

• loss=”squared_loss”: Ordinary least squares,

• loss=”huber”: Huber loss for robust regression,

• loss=”epsilon_insensitive”: linear Support Vector Regression.

The Huber and epsilon-insensitive loss functions can be used for robust regression. The width of the insensitive region
has to be specified via the parameter epsilon. This parameter depends on the scale of the target variables.

Examples:

• Ordinary Least Squares with SGD,

58 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Stochastic Gradient Descent for sparse data

Note: The sparse implementation produces slightly different results than the dense implementation due to a shrunk
learning rate for the intercept.

There is built-in support for sparse data given in any matrix in a format supported by scipy.sparse. For maximum
efficiency, however, use the CSR matrix format as defined in scipy.sparse.csr_matrix.

Examples:

• Classification of text documents using sparse features

Complexity

The major advantage of SGD is its efficiency, which is basically linear in the number of training examples. If X is a
matrix of size (n, p) training has a cost of O(knp̄), where k is the number of iterations (epochs) and p̄ is the average
number of non-zero attributes per sample.

Recent theoretical results, however, show that the runtime to get some desired optimization accuracy does not increase
as the training set size increases.

Tips on Practical Use

• Stochastic Gradient Descent is sensitive to feature scaling, so it is highly recommended to scale your data. For
example, scale each attribute on the input vector X to [0,1] or [-1,+1], or standardize it to have mean 0 and
variance 1. Note that the same scaling must be applied to the test vector to obtain meaningful results. This can
be easily done using Scaler:

from sklearn.preprocessing import Scaler
scaler = Scaler()
scaler.fit(X_train) # Don’t cheat - fit only on training data
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test) # apply same transformation to test data

If your attributes have an intrinsic scale (e.g. word frequencies or indicator features) scaling is not needed.

• Finding a reasonable regularization term α is best done using GridSearchCV, usually in the range 10.0**-
np.arange(1,7).

• Empirically, we found that SGD converges after observing approx. 10^6 training samples. Thus, a reasonable
first guess for the number of iterations is n_iter = np.ceil(10**6 / n), where n is the size of the training set.

• If you apply SGD to features extracted using PCA we found that it is often wise to scale the feature values by
some constant c such that the average L2 norm of the training data equals one.

References:

• “Efficient BackProp” Y. LeCun, L. Bottou, G. Orr, K. Müller - In Neural Networks: Tricks of the Trade
1998.

1.3. Supervised learning 59

http://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html

scikit-learn user guide, Release 0.12-git

Mathematical formulation

Given a set of training examples (x1, y1), . . . , (xn, yn) where xi ∈ Rn and yi ∈ {−1, 1}, our goal is to learn a linear
scoring function f(x) = wTx+ b with model parameters w ∈ Rm and intercept b ∈ R. In order to make predictions,
we simply look at the sign of f(x). A common choice to find the model parameters is by minimizing the regularized
training error given by

E(w, b) =

n∑
i=1

L(yi, f(xi)) + αR(w)

where L is a loss function that measures model (mis)fit and R is a regularization term (aka penalty) that penalizes
model complexity; α > 0 is a non-negative hyperparameter.

Different choices for L entail different classifiers such as

• Hinge: (soft-margin) Support Vector Machines.

• Log: Logistic Regression.

• Least-Squares: Ridge Regression.

• Epsilon-Insensitive: (soft-margin) Support Vector Regression.

All of the above loss functions can be regarded as an upper bound on the misclassification error (Zero-one loss) as
shown in the Figure below.

Popular choices for the regularization term R include:

• L2 norm: R(w) := 1
2

∑n
i=1 w

2
i ,

• L1 norm: R(w) :=
∑n
i=1 |wi|, which leads to sparse solutions.

• Elastic Net: R(w) := ρ 1
2

∑n
i=1 w

2
i + (1− ρ)

∑n
i=1 |wi|, a convex combination of L2 and L1.

The Figure below shows the contours of the different regularization terms in the parameter space when R(w) = 1.

60 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

SGD

Stochastic gradient descent is an optimization method for unconstrained optimization problems. In contrast to (batch)
gradient descent, SGD approximates the true gradient of E(w, b) by considering a single training example at a time.

The class SGDClassifier implements a first-order SGD learning routine. The algorithm iterates over the training
examples and for each example updates the model parameters according to the update rule given by

w ← w − η(α
∂R(w)

∂w
+
∂L(wTxi + b, yi)

∂w
)

where η is the learning rate which controls the step-size in the parameter space. The intercept b is updated similarly
but without regularization.

The learning rate η can be either constant or gradually decaying. For classification, the default learning rate schedule
(learning_rate=’optimal’) is given by

η(t) =
1

α(t0 + t)

where t is the time step (there are a total of n_samples * epochs time steps), t0 is determined based on a heuristic
proposed by Léon Bottou such that the expected initial updates are comparable with the expected size of the weights
(this assuming that the norm of the training samples is approx. 1). The exact definition can be found in _init_t in
BaseSGD.

For regression, the default learning rate schedule, inverse scaling (learning_rate=’invscaling’), is given by

η(t) =
eta0

tpower_t

where eta0 and power_t are hyperparameters choosen by the user via eta0 and power_t, resp.

For a constant learning rate use learning_rate=’constant’ and use eta0 to specify the learning rate.

The model parameters can be accessed through the members coef_ and intercept_:

1.3. Supervised learning 61

scikit-learn user guide, Release 0.12-git

• Member coef_ holds the weights w

• Member intercept_ holds b

References:

• “Solving large scale linear prediction problems using stochastic gradient descent algorithms” T. Zhang -
In Proceedings of ICML ‘04.

• “Regularization and variable selection via the elastic net” H. Zou, T. Hastie - Journal of the Royal Statis-
tical Society Series B, 67 (2), 301-320.

Implementation details

The implementation of SGD is influenced by the Stochastic Gradient SVM of Léon Bottou. Similar to SvmSGD,
the weight vector is represented as the product of a scalar and a vector which allows an efficient weight update in
the case of L2 regularization. In the case of sparse feature vectors, the intercept is updated with a smaller learning
rate (multiplied by 0.01) to account for the fact that it is updated more frequently. Training examples are picked up
sequentially and the learning rate is lowered after each observed example. We adopted the learning rate schedule from
Shalev-Shwartz et al. 2007. For multi-class classification, a “one versus all” approach is used. We use the truncated
gradient algorithm proposed by Tsuruoka et al. 2009 for L1 regularization (and the Elastic Net). The code is written
in Cython.

References:

• “Stochastic Gradient Descent” L. Bottou - Website, 2010.
• “The Tradeoffs of Large Scale Machine Learning” L. Bottou - Website, 2011.
• “Pegasos: Primal estimated sub-gradient solver for svm” S. Shalev-Shwartz, Y. Singer, N. Srebro - In

Proceedings of ICML ‘07.
• “Stochastic gradient descent training for l1-regularized log-linear models with cumulative penalty” Y.

Tsuruoka, J. Tsujii, S. Ananiadou - In Proceedings of the AFNLP/ACL ‘09.

1.3.4 Nearest Neighbors

sklearn.neighbors provides functionality for unsupervised and supervised neighbors-based learning methods.
Unsupervised nearest neighbors is the foundation of many other learning methods, notably manifold learning and
spectral clustering. Supervised neighbors-based learning comes in two flavors: classification for data with discrete
labels, and regression for data with continuous labels.

The principle behind nearest neighbor methods is to find a predefined number of training samples closest in distance
to the new point, and predict the label from these. The number of samples can be a user-defined constant (k-nearest
neighbor learning), or vary based on the local density of points (radius-based neighbor learning). The distance can,
in general, be any metric measure: standard Euclidean distance is the most common choice. Neighbors-based meth-
ods are known as non-generalizing machine learning methods, since they simply “remember” all of its training data
(possibly transformed into a fast indexing structure such as a Ball Tree or KD Tree.).

Despite its simplicity, nearest neighbors has been successful in a large number of classification and regression prob-
lems, including handwritten digits or satellite image scenes. It is often successful in classification situations where the
decision boundary is very irregular.

The classes in sklearn.neighbors can handle either Numpy arrays or scipy.sparse matrices as input. Arbitrary
Minkowski metrics are supported for searches.

62 Chapter 1. User Guide

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.58.7377
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.124.4696
http://leon.bottou.org/projects/sgd
http://leon.bottou.org/projects/sgd
http://leon.bottou.org/slides/largescale/lstut.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.74.8513
http://www.aclweb.org/anthology/P/P09/P09-1054.pdf

scikit-learn user guide, Release 0.12-git

Unsupervised Nearest Neighbors

NearestNeighbors implements unsupervised nearest neighbors learning. It acts as a uniform interface to
three different nearest neighbors algorithms: BallTree, scipy.spatial.cKDTree, and a brute-force algo-
rithm based on routines in sklearn.metrics.pairwise. The choice of neighbors search algorithm is con-
trolled through the keyword ’algorithm’, which must be one of [’auto’, ’ball_tree’, ’kd_tree’,
’brute’]. When the default value ’auto’ is passed, the algorithm attempts to determine the best approach from
the training data. For a discussion of the strengths and weaknesses of each option, see Nearest Neighbor Algorithms.

Nearest Neighbors Classification

Neighbors-based classification is a type of instance-based learning or non-generalizing learning: it does not attempt
to construct a general internal model, but simply stores instances of the training data. Classification is computed from
a simple majority vote of the nearest neighbors of each point: a query point is assigned the data class which has the
most representatives within the nearest neighbors of the point.

scikit-learn implements two different nearest neighbors classifiers: KNeighborsClassifier implements learn-
ing based on the k nearest neighbors of each query point, where k is an integer value specified by the user.
RadiusNeighborsClassifier implements learning based on the number of neighbors within a fixed radius
r of each training point, where r is a floating-point value specified by the user.

The k-neighbors classification in KNeighborsClassifier is the more commonly used of the two techniques.
The optimal choice of the value k is highly data-dependent: in general a larger k suppresses the effects of noise, but
makes the classification boundaries less distinct.

In cases where the data is not uniformly sampled, radius-based neighbors classification in
RadiusNeighborsClassifier can be a better choice. The user specifies a fixed radius r, such that
points in sparser neighborhoods use fewer nearest neighbors for the classification. For high-dimensional parameter
spaces, this method becomes less effective due to the so-called “curse of dimensionality”.

The basic nearest neighbors classification uses uniform weights: that is, the value assigned to a query point is computed
from a simple majority vote of the nearest neighbors. Under some circumstances, it is better to weight the neighbors
such that nearer neighbors contribute more to the fit. This can be accomplished through the weights keyword. The
default value, weights = ’uniform’, assigns uniform weights to each neighbor. weights = ’distance’
assigns weights proportional to the inverse of the distance from the query point. Alternatively, a user-defined function
of the distance can be supplied which is used to compute the weights.

1.3. Supervised learning 63

scikit-learn user guide, Release 0.12-git

Examples:

• Nearest Neighbors Classification: an example of classification using nearest neighbors.

Nearest Neighbors Regression

Neighbors-based regression can be used in cases where the data labels are continuous rather than discrete variables.
The label assigned to a query point is computed based the mean of the labels of its nearest neighbors.

scikit-learn implements two different neighbors regressors: KNeighborsRegressor implements learning
based on the k nearest neighbors of each query point, where k is an integer value specified by the user.
RadiusNeighborsRegressor implements learning based on the neighbors within a fixed radius r of the query
point, where r is a floating-point value specified by the user.

The basic nearest neighbors regression uses uniform weights: that is, each point in the local neighborhood contributes
uniformly to the classification of a query point. Under some circumstances, it can be advantageous to weight points
such that nearby points contribute more to the regression than faraway points. This can be accomplished through the
weights keyword. The default value, weights = ’uniform’, assigns equal weights to all points. weights
= ’distance’ assigns weights proportional to the inverse of the distance from the query point. Alternatively, a
user-defined function of the distance can be supplied, which will be used to compute the weights.

Examples:

• Nearest Neighbors regression: an example of regression using nearest neighbors.

Nearest Neighbor Algorithms

Brute Force

Fast computation of nearest neighbors is an active area of research in machine learning. The most naive neighbor
search implementation involves the brute-force computation of distances between all pairs of points in the dataset:
for N samples in D dimensions, this approach scales as O[DN2]. Efficient brute-force neighbors searches can
be very competitive for small data samples. However, as the number of samples N grows, the brute-force ap-
proach quickly becomes infeasible. In the classes within sklearn.neighbors, brute-force neighbors searches

64 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

are specified using the keyword algorithm = ’brute’, and are computed using the routines available in
sklearn.metrics.pairwise.

K-D Tree

To address the computational inefficiencies of the brute-force approach, a variety of tree-based data structures have
been invented. In general, these structures attempt to reduce the required number of distance calculations by efficiently
encoding aggregate distance information for the sample. The basic idea is that if point A is very distant from point
B, and point B is very close to point C, then we know that points A and C are very distant, without having to
explicitly calculate their distance. In this way, the computational cost of a nearest neighbors search can be reduced to
O[DN log(N)] or better. This is a significant improvement over brute-force for large N .

An early approach to taking advantage of this aggregate information was the KD tree data structure (short for K-
dimensional tree), which generalizes two-dimensional Quad-trees and 3-dimensional Oct-trees to an arbitrary number
of dimensions. The KD tree is a tree structure which recursively partitions the parameter space along the data axes,
dividing it into nested orthotopic regions into which data points are filed. The construction of a KD tree is very fast:
because partitioning is performed only along the data axes, no D-dimensional distances need to be computed. Once
constructed, the nearest neighbor of a query point can be determined with only O[log(N)] distance computations.
Though the KD tree approach is very fast for low-dimensional (D < 20) neighbors searches, it becomes inefficient
as D grows very large: this is one manifestation of the so-called “curse of dimensionality”. In scikit-learn, KD tree
neighbors searches are specified using the keyword algorithm = ’kd_tree’, and are computed using the class
scipy.spatial.cKDTree.

References:

• “Multidimensional binary search trees used for associative searching”, Bentley, J.L., Communications of
the ACM (1975)

1.3. Supervised learning 65

http://dl.acm.org/citation.cfm?doid=361002.361007

scikit-learn user guide, Release 0.12-git

Ball Tree

To address the inefficiencies of KD Trees in higher dimensions, the ball tree data structure was developed. Where KD
trees partition data along Cartesian axes, ball trees partition data in a series of nesting hyper-spheres. This makes tree
construction more costly than that of the KD tree, but results in a data structure which allows for efficient neighbors
searches even in very high dimensions.

A ball tree recursively divides the data into nodes defined by a centroid C and radius r, such that each point in the
node lies within the hyper-sphere defined by r and C. The number of candidate points for a neighbor search is reduced
through use of the triangle inequality:

|x+ y| ≤ |x|+ |y|

With this setup, a single distance calculation between a test point and the centroid is sufficient to determine a
lower and upper bound on the distance to all points within the node. Because of the spherical geometry of
the ball tree nodes, its performance does not degrade at high dimensions. In scikit-learn, ball-tree-based neigh-
bors searches are specified using the keyword algorithm = ’ball_tree’, and are computed using the class
sklearn.neighbors.BallTree. Alternatively, the user can work with the BallTree class directly.

References:

• “Five balltree construction algorithms”, Omohundro, S.M., International Computer Science Institute Tech-
nical Report (1989)

Choice of Nearest Neighbors Algorithm

The optimal algorithm for a given dataset is a complicated choice, and depends on a number of factors:

• number of samples N (i.e. n_samples) and dimensionality D (i.e. n_features).

– Brute force query time grows as O[DN]

– Ball tree query time grows as approximately O[D log(N)]

– KD tree query time changes with D in a way that is difficult to precisely characterise. For small D (less
than 20 or so) the cost is approximately O[D log(N)], and the KD tree query can be very efficient. For
larger D, the cost increases to nearly O[DN], and the overhead due to the tree structure can lead to queries
which are slower than brute force.

For small data sets (N less than 30 or so), log(N) is comparable to N , and brute force algorithms can be more
efficient than a tree-based approach. Both cKDTree and BallTree address this through providing a leaf
size parameter: this controls the number of samples at which a query switches to brute-force. This allows both
algorithms to approach the efficiency of a brute-force computation for small N .

• data structure: intrinsic dimensionality of the data and/or sparsity of the data. Intrinsic dimensionality refers
to the dimension d ≤ D of a manifold on which the data lies, which can be linearly or nonlinearly embedded
in the parameter space. Sparsity refers to the degree to which the data fills the parameter space (this is to be
distinguished from the concept as used in “sparse” matrices. The data matrix may have no zero entries, but the
structure can still be “sparse” in this sense).

– Brute force query time is unchanged by data structure.

– Ball tree and KD tree query times can be greatly influenced by data structure. In general, sparser data with a
smaller intrinsic dimensionality leads to faster query times. Because the KD tree internal representation is
aligned with the parameter axes, it will not generally show as much improvement as ball tree for arbitrarily
structured data.

66 Chapter 1. User Guide

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.8209

scikit-learn user guide, Release 0.12-git

Datasets used in machine learning tend to be very structured, and are very well-suited for tree-based queries.

• number of neighbors k requested for a query point.

– Brute force query time is largely unaffected by the value of k

– Ball tree and KD tree query time will become slower as k increases. This is due to two effects: first, a
larger k leads to the necessity to search a larger portion of the parameter space. Second, using k > 1
requires internal queueing of results as the tree is traversed.

As k becomes large compared to N , the ability to prune branches in a tree-based query is reduced. In this
situation, Brute force queries can be more efficient.

• number of query points. Both the ball tree and the KD Tree require a construction phase. The cost of this
construction becomes negligible when amortized over many queries. If only a small number of queries will
be performed, however, the construction can make up a significant fraction of the total cost. If very few query
points will be required, brute force is better than a tree-based method.

Currently, algorithm = ’auto’ selects ’ball_tree’ if k < N/2, and ’brute’ otherwise. This choice is
based on the assumption that the number of query points is at least the same order as the number of training points,
and that leaf_size is close to its default value of 30.

Effect of leaf_size

As noted above, for small sample sizes a brute force search can be more efficient than a tree-based query. This fact is
accounted for in the ball tree and KD tree by internally switching to brute force searches within leaf nodes. The level
of this switch can be specified with the parameter leaf_size. This parameter choice has many effects:

construction time A larger leaf_size leads to a faster tree construction time, because fewer nodes need to be
created

query time Both a large or small leaf_size can lead to suboptimal query cost. For leaf_size approaching
1, the overhead involved in traversing nodes can significantly slow query times. For leaf_size approach-
ing the size of the training set, queries become essentially brute force. A good compromise between these is
leaf_size = 30, the default value of the parameter.

memory As leaf_size increases, the memory required to store a tree structure decreases. This is especially
important in the case of ball tree, which stores a D-dimensional centroid for each node. The required storage
space for BallTree is approximately 1 / leaf_size times the size of the training set.

leaf_size is not referenced for brute force queries.

Nearest Centroid Classifier

The NearestCentroid classifier is a simple algorithm that represents each class by the centroid of its members. In
effect, this makes it similar to the label updating phase of the sklearn.KMeans algorithm. It also has no parameters
to choose, making it a good baseline classifier. It does, however, suffer on non-convex classes, as well as when classes
have drastically different variances, as equal variance in all dimensions is assumed. See Linear Discriminant Analysis
(sklearn.lda.LDA) and Quadratic Discriminant Analysis (sklearn.qda.QDA) for more complex methods that
do not make this assumption. Usage of the default NearestCentroid is simple:

>>> from sklearn.neighbors.nearest_centroid import NearestCentroid
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> clf = NearestCentroid()
>>> clf.fit(X, y)
NearestCentroid(metric=’euclidean’, shrink_threshold=None)

1.3. Supervised learning 67

scikit-learn user guide, Release 0.12-git

>>> print clf.predict([[-0.8, -1]])
[1]

Nearest Shrunken Centroid

The NearestCentroid classifier has a shrink_threshold parameter, which implements the nearest shrunken cen-
troid classifier. In effect, the value of each feature for each centroid is divided by the within-class variance of that
feature. The feature values are then reduced by shrink_threshold. Most notably, if a particular feature value crosses
zero, it is set to zero. In effect, this removes the feature from affecting the classification. This is useful, for example,
for removing noisy features.

In the example below, using a small shrink threshold increases the accuracy of the model from 0.81 to 0.82.

Examples:

• Nearest Centroid Classification: an example of classification using nearest centroid with different shrink
thresholds.

68 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

1.3.5 Gaussian Processes

Gaussian Processes for Machine Learning (GPML) is a generic supervised learning method primarily designed to
solve regression problems. It has also been extended to probabilistic classification, but in the present implementation,
this is only a post-processing of the regression exercise.

The advantages of Gaussian Processes for Machine Learning are:

• The prediction interpolates the observations (at least for regular correlation models).

• The prediction is probabilistic (Gaussian) so that one can compute empirical confidence intervals and excee-
dence probabilities that might be used to refit (online fitting, adaptive fitting) the prediction in some region of
interest.

• Versatile: different linear regression models and correlation models can be specified. Common models are
provided, but it is also possible to specify custom models provided they are stationary.

The disadvantages of Gaussian Processes for Machine Learning include:

• It is not sparse. It uses the whole samples/features information to perform the prediction.

• It loses efficiency in high dimensional spaces – namely when the number of features exceeds a few dozens. It
might indeed give poor performance and it loses computational efficiency.

• Classification is only a post-processing, meaning that one first need to solve a regression problem by providing
the complete scalar float precision output y of the experiment one attempt to model.

Thanks to the Gaussian property of the prediction, it has been given varied applications: e.g. for global optimization,
probabilistic classification.

Examples

An introductory regression example

Say we want to surrogate the function g(x) = x sin(x). To do so, the function is evaluated onto a design of experi-
ments. Then, we define a GaussianProcess model whose regression and correlation models might be specified using
additional kwargs, and ask for the model to be fitted to the data. Depending on the number of parameters provided at
instanciation, the fitting procedure may recourse to maximum likelihood estimation for the parameters or alternatively
it uses the given parameters.

>>> import numpy as np
>>> from sklearn import gaussian_process
>>> def f(x):
... return x * np.sin(x)
>>> X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T
>>> y = f(X).ravel()
>>> x = np.atleast_2d(np.linspace(0, 10, 1000)).T
>>> gp = gaussian_process.GaussianProcess(theta0=1e-2, thetaL=1e-4, thetaU=1e-1)
>>> gp.fit(X, y)
GaussianProcess(beta0=None, corr=<function squared_exponential at 0x...>,

normalize=True, nugget=array(2.22...-15),
optimizer=’fmin_cobyla’, random_start=1, random_state=...
regr=<function constant at 0x...>, storage_mode=’full’,
theta0=array([[0.01]]), thetaL=array([[0.0001]]),
thetaU=array([[0.1]]), verbose=False)

>>> y_pred, sigma2_pred = gp.predict(x, eval_MSE=True)

1.3. Supervised learning 69

scikit-learn user guide, Release 0.12-git

70 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Fitting Noisy Data

When the data to be fit includes noise, the Gaussian process model can be used by specifying the variance of the noise
for each point. GaussianProcess takes a parameter nugget which is added to the diagonal of the correlation
matrix between training points: in general this is a type of Tikhonov regularization. In the special case of a squared-
exponential correlation function, this normalization is equivalent to specifying a fractional variance in the input. That
is

nuggeti =

[
σi
yi

]2

With nugget and corr properly set, Gaussian Processes can be used to robustly recover an underlying function
from noisy data:

Other examples

• Gaussian Processes classification example: exploiting the probabilistic output

1.3. Supervised learning 71

scikit-learn user guide, Release 0.12-git

Mathematical formulation

The initial assumption

Suppose one wants to model the output of a computer experiment, say a mathematical function:

g :Rnfeatures → R
X 7→ y = g(X)

GPML starts with the assumption that this function is a conditional sample path of a Gaussian process G which is
additionally assumed to read as follows:

G(X) = f(X)Tβ + Z(X)

where f(X)Tβ is a linear regression model and Z(X) is a zero-mean Gaussian process with a fully stationary covari-
ance function:

C(X,X ′) = σ2R(|X −X ′|)

σ2 being its variance and R being the correlation function which solely depends on the absolute relative distance
between each sample, possibly featurewise (this is the stationarity assumption).

From this basic formulation, note that GPML is nothing but an extension of a basic least squares linear regression
problem:

g(X) ≈ f(X)Tβ

Except we additionaly assume some spatial coherence (correlation) between the samples dictated by the correlation
function. Indeed, ordinary least squares assumes the correlation model R(|X −X ′|) is one when X = X ′ and zero
otherwise : a dirac correlation model – sometimes referred to as a nugget correlation model in the kriging literature.

The best linear unbiased prediction (BLUP)

We now derive the best linear unbiased prediction of the sample path g conditioned on the observations:

Ĝ(X) = G(X|y1 = g(X1), ..., ynsamples
= g(Xnsamples

))

It is derived from its given properties:

• It is linear (a linear combination of the observations)

Ĝ(X) ≡ a(X)T y

• It is unbiased

E[G(X)− Ĝ(X)] = 0

• It is the best (in the Mean Squared Error sense)

Ĝ(X)∗ = arg min
Ĝ(X)

E[(G(X)− Ĝ(X))2]

So that the optimal weight vector a(X) is solution of the following equality constrained optimization problem:

a(X)∗ = arg min
a(X)

E[(G(X)− a(X)T y)2]

s.t. E[G(X)− a(X)T y] = 0

72 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Rewriting this constrained optimization problem in the form of a Lagrangian and looking further for the first order
optimality conditions to be satisfied, one ends up with a closed form expression for the sought predictor – see references
for the complete proof.

In the end, the BLUP is shown to be a Gaussian random variate with mean:

µŶ (X) = f(X)T β̂ + r(X)T γ

and variance:

σ2
Ŷ

(X) = σ2
Y (1− r(X)T R−1 r(X) + u(X)T (FT R−1 F)−1 u(X))

where we have introduced:

• the correlation matrix whose terms are defined wrt the autocorrelation function and its built-in parameters θ:

Ri j = R(|Xi −Xj |, θ), i, j = 1, ...,m

• the vector of cross-correlations between the point where the prediction is made and the points in the DOE:

ri = R(|X −Xi|, θ), i = 1, ...,m

• the regression matrix (eg the Vandermonde matrix if f is a polynomial basis):

Fi j = fi(Xj), i = 1, ..., p, j = 1, ...,m

• the generalized least square regression weights:

β̂ = (FT R−1 F)−1 FT R−1 Y

• and the vectors:

γ = R−1(Y − F β̂)

u(X) = FT R−1 r(X)− f(X)

It is important to notice that the probabilistic response of a Gaussian Process predictor is fully analytic and mostly relies
on basic linear algebra operations. More precisely the mean prediction is the sum of two simple linear combinations
(dot products), and the variance requires two matrix inversions, but the correlation matrix can be decomposed only
once using a Cholesky decomposition algorithm.

The empirical best linear unbiased predictor (EBLUP)

Until now, both the autocorrelation and regression models were assumed given. In practice however they are never
known in advance so that one has to make (motivated) empirical choices for these models Correlation Models.

Provided these choices are made, one should estimate the remaining unknown parameters involved in the BLUP. To
do so, one uses the set of provided observations in conjunction with some inference technique. The present implemen-
tation, which is based on the DACE’s Matlab toolbox uses the maximum likelihood estimation technique – see DACE
manual in references for the complete equations. This maximum likelihood estimation problem is turned into a global
optimization problem onto the autocorrelation parameters. In the present implementation, this global optimization is
solved by means of the fmin_cobyla optimization function from scipy.optimize. In the case of anisotropy however, we
provide an implementation of Welch’s componentwise optimization algorithm – see references.

For a more comprehensive description of the theoretical aspects of Gaussian Processes for Machine Learning, please
refer to the references below:

1.3. Supervised learning 73

scikit-learn user guide, Release 0.12-git

References:

• DACE, A Matlab Kriging Toolbox S Lophaven, HB Nielsen, J Sondergaard 2002
• Screening, predicting, and computer experiments WJ Welch, RJ Buck, J Sacks, HP Wynn, TJ Mitchell,

and MD Morris Technometrics 34(1) 15–25, 1992
• Gaussian Processes for Machine Learning CE Rasmussen, CKI Williams MIT Press, 2006 (Ed. T Diet-

trich)
• The design and analysis of computer experiments TJ Santner, BJ Williams, W Notz Springer, 2003

Correlation Models

Common correlation models matches some famous SVM’s kernels because they are mostly built on equivalent as-
sumptions. They must fulfill Mercer’s conditions and should additionaly remain stationary. Note however, that the
choice of the correlation model should be made in agreement with the known properties of the original experiment
from which the observations come. For instance:

• If the original experiment is known to be infinitely differentiable (smooth), then one should use the squared-
exponential correlation model.

• If it’s not, then one should rather use the exponential correlation model.

• Note also that there exists a correlation model that takes the degree of derivability as input: this is the Matern
correlation model, but it’s not implemented here (TODO).

For a more detailed discussion on the selection of appropriate correlation models, see the book by Rasmussen &
Williams in references.

Regression Models

Common linear regression models involve zero- (constant), first- and second-order polynomials. But one may specify
its own in the form of a Python function that takes the features X as input and that returns a vector containing the
values of the functional set. The only constraint is that the number of functions must not exceed the number of
available observations so that the underlying regression problem is not underdetermined.

Implementation details

The present implementation is based on a translation of the DACE Matlab toolbox.

References:

• DACE, A Matlab Kriging Toolbox S Lophaven, HB Nielsen, J Sondergaard 2002,
• W.J. Welch, R.J. Buck, J. Sacks, H.P. Wynn, T.J. Mitchell, and M.D. Morris (1992). Screening, predicting,

and computer experiments. Technometrics, 34(1) 15–25.

1.3.6 Partial Least Squares

Partial least squares (PLS) models are useful to find linear relations between two multivariate datasets: in PLS the X
and Y arguments of the fit method are 2D arrays.

PLS finds the fundamental relations between two matrices (X and Y): it is a latent variable approach to modeling
the covariance structures in these two spaces. A PLS model will try to find the multidimensional direction in the X

74 Chapter 1. User Guide

http://www2.imm.dtu.dk/~hbn/dace/
http://www.jstor.org/pss/1269548
http://www.gaussianprocess.org/gpml/chapters/RW.pdf
http://www.stat.osu.edu/~comp_exp/book.html
http://www2.imm.dtu.dk/~hbn/dace/

scikit-learn user guide, Release 0.12-git

space that explains the maximum multidimensional variance direction in the Y space. PLS-regression is particularly
suited when the matrix of predictors has more variables than observations, and when there is multicollinearity among
X values. By contrast, standard regression will fail in these cases.

Classes included in this module are PLSRegression PLSCanonical, CCA and PLSSVD

Reference:

• JA Wegelin A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case

Examples:

• PLS Partial Least Squares

1.3.7 Naive Bayes

Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes’ theorem with the “naive”
assumption of independence between every pair of features. Given a class variable y and a dependent feature vector
x1 through xn, Bayes’ theorem states the following relationship:

P (y | x1, . . . , xn) =
P (y)P (x1, . . . xn | y)

P (x1, . . . , xn)

Using the naive independence assumption that

P (xi|y, x1, . . . , xi−1, xi+1, . . . , xn) = P (xi|y),

1.3. Supervised learning 75

https://www.stat.washington.edu/www/research/reports/2000/tr371.pdf

scikit-learn user guide, Release 0.12-git

for all i, this relationship is simplified to

P (y | x1, . . . , xn) =
P (y)

∏n
i=1 P (xi | y)

P (x1, . . . , xn)

Since P (x1, . . . , xn) is constant given the input, we can use the following classification rule:

P (y | x1, . . . , xn) ∝ P (y)

n∏
i=1

P (xi | y)

⇓

ŷ = arg max
y

P (y)

n∏
i=1

P (xi | y),

and we can use Maximum A Posteriori (MAP) estimation to estimate P (y) and P (xi | y); the former is then the
relative frequency of class y in the training set.

The different Naive Bayes classifiers differ mainly by the assumptions they make regarding the distribution of P (xi |
y).

In spite of their apparently over-simplified assumptions, Naive Bayes classifiers have worked quite well in many real-
world situations, famously document classification and spam filtering. They requires a small amount of training data
to estimate the necessary parameters. (For theoretical reasons why Naive Bayes works well, and on which types of
data it does, see the references below.)

Naive Bayes learners and classifiers can be extremely fast compared to more sophisticated methods. The decoupling
of the class conditional feature distributions means that each distribution can be independently estimated as a one
dimensional distribution. This in turn helps to alleviate problems stemming from the curse of dimensionality.

On the flip side, although Naive Bayes is known as a decent classifier, it is known to be a bad estimator, so the
probability outputs from predict_proba are not to be taken too seriously.

References:

• H. Zhang (2004). The optimality of Naive Bayes. Proc. FLAIRS.

Gaussian Naive Bayes

GaussianNB implements the Gaussian Naive Bayes algorithm for classification. The likelihood of the features is
assumed to be Gaussian:

P (xi | y) =
1√

2πσ2
y

exp

(
− (xi − µy)2

2πσ2
y

)

The parameters σy and µy are estimated using maximum likelihood.

>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> from sklearn.naive_bayes import GaussianNB
>>> gnb = GaussianNB()
>>> y_pred = gnb.fit(iris.data, iris.target).predict(iris.data)
>>> print "Number of mislabeled points : %d" % (iris.target != y_pred).sum()
Number of mislabeled points : 6

76 Chapter 1. User Guide

http://www.cs.unb.ca/profs/hzhang/publications/FLAIRS04ZhangH.pdf

scikit-learn user guide, Release 0.12-git

Multinomial Naive Bayes

MultinomialNB implements the Naive Bayes algorithm for multinomially distributed data, and is one of the two
classic Naive Bayes variants used in text classification (where the data are typically represented as word vector counts,
although tf-idf vectors are also known to work well in practice). The distribution is parametrized by vectors θy =
(θy1, . . . , θyn) for each class y, where n is the number of features (in text classification, the size of the vocabulary)
and θyi is the probability P (xi | y) of feature i appearing in a sample belonging to class y.

The parameters θy is estimated by a smoothed version of maximum likelihood, i.e. relative frequency counting:

θ̂yi =
Nyi + α

Ny + αn

where Nyi =
∑
x∈T xi is the number of times feature i appears in a sample of class y in the training set T , and

Ny =
∑|T |
i=1Nyi is the total count of all features for class y.

The smoothing priors α ≥ 0 accounts for features not present in the learning samples and prevents zero probabilities
in further computations. Setting α = 1 is called Laplace smoothing, while α < 1 is called Lidstone smoothing.

Bernoulli Naive Bayes

BernoulliNB implements the Naive Bayes training and classification algorithms for data that is distributed ac-
cording to multivariate Bernoulli distributions; i.e., there may be multiple features but each one is assumed to be a
binary-valued (Bernoulli, boolean) variable. Therefore, this class requires samples to be represented as binary-valued
feature vectors; if handed any other kind of data, a BernoulliNB instance may binarizes its input (depending on the
binarize parameter).

The decision rule for Bernoulli Naive Bayes is based on

P (xi | y) = P (i | y)xi × (1− P (i | y))(1− xi)

which differs from multinomial NB’s rule in that it explicitly penalizes the non-occurrence of a feature i that is an
indicator for class y, where the multinomial variant would simply ignore a non-occurring feature.

In the case of text classification, word occurrence vectors (rather than word count vectors) may be used to train and
use this classifier. BernoulliNB might perform better on some datasets, especially those with shorter documents.
It is advisable to evaluate both models, if time permits.

References:

• C.D. Manning, P. Raghavan and H. Schütze (2008). Introduction to Information Retrieval. Cambridge
University Press, pp. 234-265.

• A. McCallum and K. Nigam (1998). A comparison of event models for Naive Bayes text classification.
Proc. AAAI/ICML-98 Workshop on Learning for Text Categorization, pp. 41-48.

• V. Metsis, I. Androutsopoulos and G. Paliouras (2006). Spam filtering with Naive Bayes – Which Naive
Bayes? 3rd Conf. on Email and Anti-Spam (CEAS).

1.3.8 Decision Trees

Decision Trees (DTs) are a non-parametric supervised learning method used for classification and regression. The
goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the
data features.

For instance, in the example below, decision trees learn from data to approximate a sine curve with a set of if-then-else
decision rules. The deeper the tree, the more complex the decision rules and the fitter the model.

1.3. Supervised learning 77

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.1529
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.5542
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.5542

scikit-learn user guide, Release 0.12-git

Some advantages of decision trees are:

• Simple to understand and to interpret. Trees can be visualised.

• Requires little data preparation. Other techniques often require data normalisation, dummy variables need to be
created and blank values to be removed. Note however that this module does not support missing values.

• The cost of using the tree (i.e., predicting data) is logarithmic in the number of data points used to train the tree.

• Able to handle both numerical and categorical data. Other techniques are usually specialised in analysing
datasets that have only one type of variable. See algorithms for more information.

• Uses a white box model. If a given situation is observable in a model, the explanation for the condition is easily
explained by boolean logic. By constrast, in a black box model (e.g., in an artificial neural network), results may
be more difficult to interpret.

• Possible to validate a model using statistical tests. That makes it possible to account for the reliability of the
model.

• Performs well even if its assumptions are somewhat violated by the true model from which the data were
generated.

The disadvantages of decision trees include:

• Decision-tree learners can create over-complex trees that do not generalise the data well. This is called overfit-
ting. Mechanisms such as pruning (not currently supported), setting the minimum number of samples required
at a leaf node or setting the maximum depth of the tree are necessary to avoid this problem.

• Decision trees can be unstable because small variations in the data might result in a completely different tree
being generated. This problem is mitigated by using decision trees within an ensemble.

• The problem of learning an optimal decision tree is known to be NP-complete under several aspects of optimality
and even for simple concepts. Consequently, practical decision-tree learning algorithms are based on heuristic
algorithms such as the greedy algorithm where locally optimal decisions are made at each node. Such algorithms
cannot guarantee to return the globally optimal decision tree. This can be mitigated by training multiple trees in
an ensemble learner, where the features and samples are randomly sampled with replacement.

78 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

• There are concepts that are hard to learn because decision trees do not express them easily, such as XOR, parity
or multiplexer problems.

• Decision tree learners create biased trees if some classes dominate. It is therefore recommended to balance the
dataset prior to fitting with the decision tree.

Classification

DecisionTreeClassifier is a class capable of performing multi-class classification on a dataset.

As other classifiers, DecisionTreeClassifier take as input two arrays: an array X of size [n_samples,
n_features] holding the training samples, and an array Y of integer values, size [n_samples], holding the class la-
bels for the training samples:

>>> from sklearn import tree
>>> X = [[0, 0], [1, 1]]
>>> Y = [0, 1]
>>> clf = tree.DecisionTreeClassifier()
>>> clf = clf.fit(X, Y)

After being fitted, the model can then be used to predict new values:

>>> clf.predict([[2., 2.]])
array([1])

DecisionTreeClassifier is capable of both binary (where the labels are [-1, 1]) classification and multiclass
(where the labels are [0, ..., K-1]) classification.

Using the Iris dataset, we can construct a tree as follows:

>>> from sklearn.datasets import load_iris
>>> from sklearn import tree
>>> iris = load_iris()
>>> clf = tree.DecisionTreeClassifier()
>>> clf = clf.fit(iris.data, iris.target)

Once trained, we can export the tree in Graphviz format using the export_graphviz exporter. Below is an example
export of a tree trained on the entire iris dataset:

>>> from StringIO import StringIO
>>> out = StringIO()
>>> out = tree.export_graphviz(clf, out_file=out)

After being fitted, the model can then be used to predict new values:

>>> clf.predict(iris.data[0, :])
array([0])

Examples:

• Plot the decision surface of a decision tree on the iris dataset

Regression

Decision trees can also be applied to regression problems, using the DecisionTreeRegressor class.

1.3. Supervised learning 79

http://www.graphviz.org/

scikit-learn user guide, Release 0.12-git

petal length (cm) <= 2.45000004768
error = 0.666666686535

samples = 150
value = [50. 50. 50.]

error = 0.0
samples = 50

value = [50. 0. 0.]

petal width (cm) <= 1.75
error = 0.5

samples = 100
value = [0. 50. 50.]

petal length (cm) <= 4.94999980927
error = 0.168038412929

samples = 54
value = [0. 49. 5.]

petal length (cm) <= 4.85000038147
error = 0.0425330810249

samples = 46
value = [0. 1. 45.]

petal width (cm) <= 1.65000009537
error = 0.040798611939

samples = 48
value = [0. 47. 1.]

petal width (cm) <= 1.54999995232
error = 0.444444447756

samples = 6
value = [0. 2. 4.]

sepal length (cm) <= 5.94999980927
error = 0.444444447756

samples = 3
value = [0. 1. 2.]

error = 0.0
samples = 43

value = [0. 0. 43.]

error = 0.0
samples = 47

value = [0. 47. 0.]

error = 0.0
samples = 1

value = [0. 0. 1.]

error = 0.0
samples = 3

value = [0. 0. 3.]

sepal length (cm) <= 6.94999980927
error = 0.444444447756

samples = 3
value = [0. 2. 1.]

error = 0.0
samples = 2

value = [0. 2. 0.]

error = 0.0
samples = 1

value = [0. 0. 1.]

error = 0.0
samples = 1

value = [0. 1. 0.]

error = 0.0
samples = 2

value = [0. 0. 2.]

80 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

As in the classification setting, the fit method will take as argument arrays X and y, only that in this case y is expected
to have floating point values instead of integer values:

>>> from sklearn import tree
>>> X = [[0, 0], [2, 2]]
>>> y = [0.5, 2.5]
>>> clf = tree.DecisionTreeRegressor()
>>> clf = clf.fit(X, y)
>>> clf.predict([[1, 1]])
array([0.5])

Examples:

• Decision Tree Regression

Complexity

In general, the run time cost to construct a balanced binary tree is O(nsamplesnfeatureslog(nsamples)) and query
time O(log(nsamples)). Although the tree construction algorithm attempts to generate balanced trees, they will not
always be balanced. Assuming that the subtrees remain approximately balanced, the cost at each node consists of
searching through O(nfeatures) to find the feature that offers the largest reduction in entropy. This has a cost of
O(nfeaturesnsampleslog(nsamples)) at each node, leading to a total cost over the entire trees (by summing the cost at
each node) of O(nfeaturesn

2
sampleslog(nsamples)).

Scikit-learn offers a more efficient implementation for the construction of decision trees. A naive implementation
(as above) would recompute the class label histograms (for classification) or the means (for regression) at for each
new split point along a given feature. By presorting the feature over all relevant samples, and retaining a running
label count, we reduce the complexity at each node to O(nfeatureslog(nsamples)), which results in a total cost of
O(nfeaturesnsampleslog(nsamples)).

1.3. Supervised learning 81

scikit-learn user guide, Release 0.12-git

This implementation also offers a parameter min_density to control an optimization heuristic. A sample mask is used
to mask data points that are inactive at a given node, which avoids the copying of data (important for large datasets or
training trees within an ensemble). Density is defined as the ratio of ‘active’ data samples to total samples at a given
node. The minimum density parameter specifies the level below which fancy indexing (and therefore data copied) and
the sample mask reset. If min_density is 1, then fancy indexing is always used for data partitioning during the tree
building phase. In this case, the size of memory (as a proportion of the input data a) required at a node of depth n can
be approximated using a geometric series: size = a 1−rn

1−r where r is the ratio of samples used at each node. A best
case analysis shows that the lowest memory requirement (for an infinitely deep tree) is 2 × a, where each partition
divides the data in half. A worst case analysis shows that the memory requirement can increase to n × a. In practise
it usually requires 3 to 4 times a. Setting min_density to 0 will always use the sample mask to select the subset of
samples at each node. This results in little to no additional memory being allocated, making it appropriate for massive
datasets or within ensemble learners. The default value for min_density is 0.1 which empirically leads to fast training
for many problems. Typically high values of min_density will lead to excessive reallocation, slowing down the
algorithm significantly.

Tips on practical use

• Decision trees tend to overfit on data with a large number of features. Getting the right ratio of samples to
number of features is important, since a tree with few samples in high dimensional space is very likely to
overfit.

• Consider performing dimensionality reduction (PCA, ICA, or Feature selection) beforehand to give your tree a
better chance of finding features that are discriminative.

• Visualise your tree as you are training by using the export function. Use max_depth=3 as an initial tree
depth to get a feel for how the tree is fitting to your data, and then increase the depth.

• Remember that the number of samples required to populate the tree doubles for each additional level the tree
grows to. Use max_depth to control the size of the tree to prevent overfitting.

• Use min_samples_split or min_samples_leaf to control the number of samples at a leaf node. A
very small number will usually mean the tree will overfit, whereas a large number will prevent the tree from
learning the data. Try min_samples_leaf=5 as an initial value. The main difference between the two is that
min_samples_leaf guarantees a minimum number of samples in a leaf, while min_samples_split can
create arbitrary small leaves, though min_samples_split is more common in the literature.

• Balance your dataset before training to prevent the tree from creating a tree biased toward the classes that are
dominant.

• All decision trees use Fortran ordered np.float32 arrays internally. If training data is not in this format, a
copy of the dataset will be made.

Tree algorithms: ID3, C4.5, C5.0 and CART

What are all the various decision tree algorithms and how do they differ from each other? Which one is implemented
in scikit-learn?

ID3 (Iterative Dichotomiser 3) was developed in 1986 by Ross Quinlan. The algorithm creates a multiway tree, finding
for each node (i.e. in a greedy manner) the categorical feature that will yield the largest information gain for categorical
targets. Trees are grown to their maximum size and then a pruning step is usually applied to improve the ability of the
tree to generalise to unseen data.

C4.5 is the successor to ID3 and removed the restriction that features must be categorical by dynamically defining
a discrete attribute (based on numerical variables) that partitions the continuous attribute value into a discrete set of
intervals. C4.5 converts the trained trees (i.e. the output of the ID3 algorithm) into sets of if-then rules. These accuracy
of each rule is then evaluated to determine the order in which they should be applied. Pruning is done by removing a
rule’s precondition if the accuracy of the rule improves without it.

82 Chapter 1. User Guide

http://en.wikipedia.org/wiki/ID3_algorithm

scikit-learn user guide, Release 0.12-git

C5.0 is Quinlan’s latest version release under a proprietary license. It uses less memory and builds smaller rulesets
than C4.5 while being more accurate.

CART (Classification and Regression Trees) is very similar to C4.5, but it differs in that it supports numerical target
variables (regression) and does not compute rule sets. CART constructs binary trees using the feature and threshold
that yield the largest information gain at each node.

scikit-learn uses an optimised version of the CART algorithm.

Mathematical formulation

Given training vectors xi ∈ Rn, i=1,..., l and a label vector y ∈ Rl, a decision tree recursively partitions the space
such that the samples with the same labels are grouped together.

Let the data at nodem be represented byQ. For each candidate split θ = (j, tm) consisting of a feature j and threshold
tm, partition the data into Qleft(θ) and Qright(θ) subsets

Qleft(θ) = (x, y)|xj <= tm

Qright(θ) = Q \Qleft(θ)

The impurity at m is computed using an impurity function H(), the choice of which depends on the task being solved
(classification or regression)

G(Q, θ) =
nleft
Nm

H(Qleft(θ)) +
nright
Nm

H(Qright(θ))

Select the parameters that minimises the impurity

θ∗ = argminθG(Q, θ)

Recurse for subsets Qleft(θ∗) and Qright(θ∗) until the maximum allowable depth is reached, Nm < min_samples
or Nm = 1.

Classification criteria

If a target is a classification outcome taking on values 0,1,...,K-1, for node m, representing a region Rm with Nm
observations, let

pmk = 1/Nm
∑

xi∈Rm

I(yi = k)

be the proportion of class k observations in node m

Common measures of impurity are Gini

H(Xm) =
∑
k

pmk(1− pmk)

Cross-Entropy

H(Xm) =
∑
k

pmklog(pmk)

and Misclassification

H(Xm) = 1−max(pmk)

1.3. Supervised learning 83

http://en.wikipedia.org/wiki/Predictive_analytics#Classification_and_regression_trees

scikit-learn user guide, Release 0.12-git

Regression criteria

If the target is a continuous value, then for node m, representing a region Rm with Nm observations, a common
criterion to minimise is the Mean Squared Error

cm =
1

Nm

∑
i∈Nm

yi

H(Xm) =
1

Nm

∑
i∈Nm

(yi − cm)2

References:

• http://en.wikipedia.org/wiki/Decision_tree_learning
• http://en.wikipedia.org/wiki/Predictive_analytics
• L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth,

Belmont, CA, 1984.
• J.R. Quinlan. C4. 5: programs for machine learning. Morgan Kaufmann, 1993.
• T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical Learning, Springer, 2009.

1.3.9 Ensemble methods

The goal of ensemble methods is to combine the predictions of several models built with a given learning algorithm
in order to improve generalizability / robustness over a single model.

Two families of ensemble methods are usually distinguished:

• In averaging methods, the driving principle is to build several models independently and then to average their
predictions. On average, the combined model is usually better than any of the single model because its variance
is reduced.

Examples: Bagging methods, Forests of randomized trees...

• By contrast, in boosting methods, models are built sequentially and one tries to reduce the bias of the combined
model. The motivation is to combine several weak models to produce a powerful ensemble.

Examples: AdaBoost, Least Squares Boosting, Gradient Tree Boosting, ...

Forests of randomized trees

The sklearn.ensemble module includes two averaging algorithms based on randomized decision trees: the Ran-
domForest algorithm and the Extra-Trees method. Both algorithms are perturb-and-combine techniques [B1998]
specifically designed for trees. This means a diverse set of classifiers is created by introducing randomness in the
classifier construction. The prediction of the ensemble is given as the averaged prediction of the individual classifiers.

As other classifiers, forest classifiers have to be fitted with two arrays: an array X of size [n_samples,
n_features] holding the training samples, and an array Y of size [n_samples] holding the target values (class
labels) for the training samples:

>>> from sklearn.ensemble import RandomForestClassifier
>>> X = [[0, 0], [1, 1]]
>>> Y = [0, 1]
>>> clf = RandomForestClassifier(n_estimators=10)
>>> clf = clf.fit(X, Y)

84 Chapter 1. User Guide

http://en.wikipedia.org/wiki/Decision_tree_learning
http://en.wikipedia.org/wiki/Predictive_analytics

scikit-learn user guide, Release 0.12-git

Random Forests

In random forests (see RandomForestClassifier and RandomForestRegressor classes), each tree in the
ensemble is built from a sample drawn with replacement (i.e., a bootstrap sample) from the training set. In addition,
when splitting a node during the construction of the tree, the split that is chosen is no longer the best split among all
features. Instead, the split that is picked is the best split among a random subset of the features. As a result of this
randomness, the bias of the forest usually slightly increases (with respect to the bias of a single non-random tree) but,
due to averaging, its variance also decreases, usually more than compensating for the increase in bias, hence yielding
an overall better model.

In contrast to the original publication [B2001], the scikit-learn implementation combines classifiers by averaging their
probabilistic prediction, instead of letting each classifier vote for a single class.

Extremely Randomized Trees

In extremely randomized trees (see ExtraTreesClassifier and ExtraTreesRegressor classes), random-
ness goes one step further in the way splits are computed. As in random forests, a random subset of candidate features
is used, but instead of looking for the most discriminative thresholds, thresholds are drawn at random for each candi-
date feature and the best of these randomly-generated thresholds is picked as the splitting rule. This usually allows to
reduce the variance of the model a bit more, at the expense of a slightly greater increase in bias:

>>> from sklearn.cross_validation import cross_val_score
>>> from sklearn.datasets import make_blobs
>>> from sklearn.ensemble import RandomForestClassifier
>>> from sklearn.ensemble import ExtraTreesClassifier
>>> from sklearn.tree import DecisionTreeClassifier

>>> X, y = make_blobs(n_samples=10000, n_features=10, centers=100,
... random_state=0)

>>> clf = DecisionTreeClassifier(max_depth=None, min_samples_split=1,
... random_state=0)
>>> scores = cross_val_score(clf, X, y)
>>> scores.mean()
0.978...

>>> clf = RandomForestClassifier(n_estimators=10, max_depth=None,
... min_samples_split=1, random_state=0)
>>> scores = cross_val_score(clf, X, y)
>>> scores.mean()
0.999...

>>> clf = ExtraTreesClassifier(n_estimators=10, max_depth=None,
... min_samples_split=1, random_state=0)
>>> scores = cross_val_score(clf, X, y)
>>> scores.mean() > 0.999
True

Parameters

The main parameters to adjust when using these methods is n_estimators and max_features. The former
is the number of trees in the forest. The larger the better, but also the longer it will take to compute. In addition,
note that results will stop getting significantly better beyond a critical number of trees. The latter is the size of the
random subsets of features to consider when splitting a node. The lower the greater the reduction of variance, but also
the greater the increase in bias. Empiricial good default values are max_features=n_features for regression

1.3. Supervised learning 85

scikit-learn user guide, Release 0.12-git

problems, and max_features=sqrt(n_features) for classification tasks (where n_features is the number
of features in the data). The best results are also usually reached when setting max_depth=None in combination
with min_samples_split=1 (i.e., when fully developping the trees). Bear in mind though that these values are
usually not optimal. The best parameter values should always be cross- validated. In addition, note that bootstrap
samples are used by default in random forests (bootstrap=True) while the default strategy is to use the original
dataset for building extra-trees (bootstrap=False).

When training on large datasets, where runtime and memory requirements are important, it might also be beneficial
to adjust the min_density parameter, that controls a heuristic for speeding up computations in each tree. See
Complexity of trees for details.

Parallelization

Finally, this module also features the parallel construction of the trees and the parallel computation of the predictions
through the n_jobs parameter. If n_jobs=k then computations are partitioned into k jobs, and run on k cores of
the machine. If n_jobs=-1 then all cores available on the machine are used. Note that because of inter-process
communication overhead, the speedup might not be linear (i.e., using k jobs will unfortunately not be k times as fast).
Significant speedup can still be achieved though when building a large number of trees, or when building a single tree
requires a fair amount of time (e.g., on large datasets).

Examples:

• Plot the decision surfaces of ensembles of trees on the iris dataset
• Pixel importances with a parallel forest of trees

References

86 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Gradient Tree Boosting

Gradient Tree Boosting or Gradient Boosted Regression Trees (GBRT) is a generalization of boosting to arbitrary
differentiable loss functions. GBRT is an accurate and effective off-the-shelf procedure that can be used for both
regression and classification problems. Gradient Tree Boosting models are used in a variety of areas including Web
search ranking and ecology.

The advantages of GBRT are:

• Natural handling of data of mixed type (= heterogeneous features)

• Predictive power

• Robustness to outliers in input space (via robust loss functions)

The disadvantages of GBRT are:

• Scalability, due to the sequential nature of boosting it can hardly be parallelized.

The module sklearn.ensemble provides methods for both classification and regression via gradient boosted
regression trees.

Classification

GradientBoostingClassifier supports both binary and multi-class classification via the deviance loss func-
tion (loss=’deviance’). The following example shows how to fit a gradient boosting classifier with 100 decision
stumps as weak learners:

>>> from sklearn.datasets import make_hastie_10_2
>>> from sklearn.ensemble import GradientBoostingClassifier

>>> X, y = make_hastie_10_2(random_state=0)
>>> X_train, X_test = X[:2000], X[2000:]
>>> y_train, y_test = y[:2000], y[2000:]

>>> clf = GradientBoostingClassifier(n_estimators=100, learn_rate=1.0,
... max_depth=1, random_state=0).fit(X_train, y_train)
>>> clf.score(X_test, y_test)
0.913...

The number of weak learners (i.e. regression trees) is controlled by the parameter n_estimators; The maximum
depth of each tree is controlled via max_depth. The learn_rate is a hyper-parameter in the range (0.0, 1.0] that
controls overfitting via shrinkage.

Note: Classification with more than 2 classes requires the induction of n_classes regression trees at each at each
iteration, thus, the total number of induced trees equals n_classes * n_estimators. For datasets with a large
number of classes we strongly recommend to use RandomForestClassifier as an alternative to GBRT.

Regression

GradientBoostingRegressor supports a number of different loss functions for regression which can be spec-
ified via the argument loss. Currently, supported are least squares (loss=’ls’) and least absolute deviation
(loss=’lad’), which is more robust w.r.t. outliers. See [F2001] for detailed information.

1.3. Supervised learning 87

http://en.wikipedia.org/wiki/Gradient_boosting

scikit-learn user guide, Release 0.12-git

>>> import numpy as np
>>> from sklearn.metrics import mean_squared_error
>>> from sklearn.datasets import make_friedman1
>>> from sklearn.ensemble import GradientBoostingRegressor

>>> X, y = make_friedman1(n_samples=1200, random_state=0, noise=1.0)
>>> X_train, X_test = X[:200], X[200:]
>>> y_train, y_test = y[:200], y[200:]
>>> clf = GradientBoostingRegressor(n_estimators=100, learn_rate=1.0,
... max_depth=1, random_state=0, loss=’ls’).fit(X_train, y_train)
>>> mean_squared_error(y_test, clf.predict(X_test))
6.90...

The figure below shows the results of applying GradientBoostingRegressor with least squares loss and 500
base learners to the Boston house-price dataset (see sklearn.datasets.load_boston). The plot on the left
shows the train and test error at each iteration. Plots like these are often used for early stopping. The plot on the right
shows the feature importances which can be optained via the feature_importance property.

Mathematical formulation

GBRT considers additive models of the following form:

F (x) =

M∑
m=1

γmhm(x)

where hm(x) are the basis functions which are usually called weak learners in the context of boosting. Gradient Tree
Boosting uses decision trees of fixed size as weak learners. Decision trees have a number of abilities that make them
valuable for boosting, namely the ability to handle data of mixed type and the ability to model complex functions.

Similar to other boosting algorithms GBRT builds the additive model in a forward stagewise fashion:

Fm(x) = Fm−1(x) + γmhm(x)

At each stage the decision tree hm(x) is choosen that minimizes the loss function L given the current model Fm−1

and its fit Fm−1(xi)

88 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Fm(x) = Fm−1(x) + arg min
h

n∑
i=1

L(yi, Fm−1(xi)− h(x))

The initial model F0 is problem specific, for least-squares regression one usually chooses the mean of the target values.

Note: The initial model can also be specified via the init argument. The passed object has to implement fit and
predict.

Gradient Boosting attempts to solve this minimization problem numerically via steepest descent: The steepest descent
direction is the negative gradient of the loss function evaluated at the current model Fm−1 which can be calculated for
any differentiable loss function:

Fm(x) = Fm−1(x) + γm

n∑
i=1

∇FL(yi, Fm−1(xi))

Where the step length γm is choosen using line search:

γm = arg min
γ

n∑
i=1

L(yi, Fm−1(xi)− γ
∂L(yi, Fm−1(xi))

∂Fm−1(xi)
)

The algorithms for regression and classification only differ in the concrete loss function used.

Loss Functions The following loss functions are supported and can be specified using the parameter loss:

• Regression

– Least squares (’ls’): The natural choice for regression due to its superior computational properties. The
initial model is given by the mean of the target values.

– Least absolute deviation (’lad’): A robust loss function for regression. The initial model is given by the
median of the target values.

• Classification

– Binomial deviance (’deviance’): The negative binomial log-likelihood loss function for binary classi-
fication (provides probability estimates). The initial model is given by the log odds-ratio.

– Multinomial deviance (’deviance’): The negative multinomial log-likelihood loss function for multi-
class classification with n_classes mutually exclusive classes. It provides probability estimates. The
initial model is given by the prior probability of each class. At each iteration n_classes regression trees
have to be constructed which makes GBRT rather inefficient for data sets with a large number of classes.

Regularization

Shrinkage [F2001] proposed a simple regularization strategy that scales the contribution of each weak learner by a
factor ν:

Fm(x) = Fm−1(x) + νγmhm(x)

1.3. Supervised learning 89

scikit-learn user guide, Release 0.12-git

The parameter ν is also called the learning rate because it scales the step length the the gradient descent procedure; it
can be set via the learn_rate parameter.

The parameter learn_rate strongly interacts with the parameter n_estimators, the number of weak learners
to fit. Smaller values of learn_rate require larger numbers of weak learners to maintain a constant training error.
Empirical evidence suggests that small values of learn_rate favor better test error. [HTF2009] recommend to set
the learning rate to a small constant (e.g. learn_rate <= 0.1) and choose n_estimators by early stopping.
For a more detailed discussion of the interaction between learn_rate and n_estimators see [R2007].

Subsampling [F1999] proposed stochastic gradient boosting, which combines gradient boosting with bootstrap av-
eraging (bagging). At each iteration the base classifier is trained on a fraction subsample of the available training
data. The subsample is drawn without replacement. A typical value of subsample is 0.5.

The figure below illustrates the effect of shrinkage and subsampling on the goodness-of-fit of the model. We can
clearly see that shrinkage outperforms no-shrinkage. Subsampling with shrinkage can further increase the accuracy of
the model. Subsampling without shrinkage, on the other hand, does poorly.

Examples:

• Gradient Boosting regression
• Gradient Boosting regularization

References

1.3.10 Multiclass and multilabel algorithms

This module implements multiclass and multilabel learning algorithms:

90 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

• one-vs-the-rest / one-vs-all

• one-vs-one

• error correcting output codes

Multiclass classification means classification with more than two classes. Multilabel classification is a different task,
where a classifier is used to predict a set of target labels for each instance; i.e., the set of target classes is not assumed
to be disjoint as in ordinary (binary or multiclass) classification. This is also called any-of classification.

The estimators provided in this module are meta-estimators: they require a base estimator to be provided in their
constructor. For example, it is possible to use these estimators to turn a binary classifier or a regressor into a multiclass
classifier. It is also possible to use these estimators with multiclass estimators in the hope that their accuracy or runtime
performance improves.

Note: You don’t need to use these estimators unless you want to experiment with different multiclass strategies:
all classifiers in scikit-learn support multiclass classification out-of-the-box. Below is a summary of the classifiers
supported in scikit-learn grouped by the strategy used.

• Inherently multiclass: Naive Bayes, sklearn.lda.LDA, Decision Trees, Random Forests

• One-Vs-One: sklearn.svm.SVC.

• One-Vs-All: sklearn.svm.LinearSVC, sklearn.linear_model.LogisticRegression,
sklearn.linear_model.SGDClassifier, sklearn.linear_model.RidgeClassifier.

Note: At the moment there are no evaluation metrics implemented for multilabel learnings.

One-Vs-The-Rest

This strategy, also known as one-vs-all, is implemented in OneVsRestClassifier. The strategy consists in
fitting one classifier per class. For each classifier, the class is fitted against all the other classes. In addition to its
computational efficiency (only n_classes classifiers are needed), one advantage of this approach is its interpretability.
Since each class is represented by one and one classifier only, it is possible to gain knowledge about the class by
inspecting its corresponding classifier. This is the most commonly used strategy and is a fair default choice. Below is
an example:

>>> from sklearn import datasets
>>> from sklearn.multiclass import OneVsRestClassifier
>>> from sklearn.svm import LinearSVC
>>> iris = datasets.load_iris()
>>> X, y = iris.data, iris.target
>>> OneVsRestClassifier(LinearSVC()).fit(X, y).predict(X)
array([0, 0,

0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

Multilabel learning with OvR

OneVsRestClassifier also supports multilabel classification. To use this feature, feed the classifier a list of
tuples containing target labels, like in the example below.

1.3. Supervised learning 91

scikit-learn user guide, Release 0.12-git

Examples:

• Multilabel classification

One-Vs-One

OneVsOneClassifier constructs one classifier per pair of classes. At prediction time, the class which received
the most votes is selected. Since it requires to fit n_classes * (n_classes - 1) / 2 classifiers, this method is usually
slower than one-vs-the-rest, due to its O(n_classes^2) complexity. However, this method may be advantageous for
algorithms such as kernel algorithms which don’t scale well with n_samples. This is because each individual learning
problem only involves a small subset of the data whereas, with one-vs-the-rest, the complete dataset is used n_classes
times. Below is an example:

>>> from sklearn import datasets
>>> from sklearn.multiclass import OneVsOneClassifier
>>> from sklearn.svm import LinearSVC
>>> iris = datasets.load_iris()
>>> X, y = iris.data, iris.target
>>> OneVsOneClassifier(LinearSVC()).fit(X, y).predict(X)
array([0, 0,

0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

92 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Error-Correcting Output-Codes

Output-code based strategies are fairly different from one-vs-the-rest and one-vs-one. With these strategies, each class
is represented in a euclidean space, where each dimension can only be 0 or 1. Another way to put it is that each class
is represented by a binary code (an array of 0 and 1). The matrix which keeps track of the location/code of each class
is called the code book. The code size is the dimensionality of the aforementioned space. Intuitively, each class should
be represented by a code as unique as possible and a good code book should be designed to optimize classification
accuracy. In this implementation, we simply use a randomly-generated code book as advocated in 2 although more
elaborate methods may be added in the future.

At fitting time, one binary classifier per bit in the code book is fitted. At prediction time, the classifiers are used to
project new points in the class space and the class closest to the points is chosen.

In OutputCodeClassifier, the code_size attribute allows the user to control the number of classifiers which will
be used. It is a percentage of the total number of classes.

A number between 0 and 1 will require fewer classifiers than one-vs-the-rest. In theory, log2(n_classes) /
n_classes is sufficient to represent each class unambiguously. However, in practice, it may not lead to good
accuracy since log2(n_classes) is much smaller than n_classes.

A number greater than than 1 will require more classifiers than one-vs-the-rest. In this case, some classifiers will in
theory correct for the mistakes made by other classifiers, hence the name “error-correcting”. In practice, however, this
may not happen as classifier mistakes will typically be correlated. The error-correcting output codes have a similar
effect to bagging.

Example:

>>> from sklearn import datasets
>>> from sklearn.multiclass import OutputCodeClassifier
>>> from sklearn.svm import LinearSVC
>>> iris = datasets.load_iris()
>>> X, y = iris.data, iris.target
>>> OutputCodeClassifier(LinearSVC(), code_size=2, random_state=0).fit(X, y).predict(X)
array([0, 0,

0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1,
1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

References:

1.3.11 Feature selection

The classes in the sklearn.feature_selection module can be used for feature selection/dimensionality re-
duction on sample sets, either to improve estimators’ accuracy scores or to boost their performance on very high-
dimensional datasets.

Univariate feature selection

Univariate feature selection works by selecting the best features based on univariate statistical tests. It can seen as
a preprocessing step to an estimator. Scikit-Learn exposes feature selection routines a objects that implement the

2 “The error coding method and PICTs”, James G., Hastie T., Journal of Computational and Graphical statistics 7, 1998.

1.3. Supervised learning 93

scikit-learn user guide, Release 0.12-git

transform method:

• selecting the k-best features SelectKBest

• setting a percentile of features to keep SelectPercentile

• using common univariate statistical tests for each feature: false positive rate SelectFpr, false discovery rate
SelectFdr, or family wise error SelectFwe.

These objects take as input a scoring function that returns univariate p-values:

• For regression: f_regression

• For classification: chi2 or f_classif

Feature selection with sparse data

If you use sparse data (i.e. data represented as sparse matrices), only chi2 will deal with the data without
making it dense.

Warning: Beware not to use a regression scoring function with a classification problem, you will get useless
results.

Examples:

Univariate Feature Selection

Recursive feature elimination

Given an external estimator that assigns weights to features (e.g., the coefficients of a linear model), recursive feature
elimination (RFE) is to select features by recursively considering smaller and smaller sets of features. First, the
estimator is trained on the initial set of features and weights are assigned to each one of them. Then, features whose
absolute weights are the smallest are pruned from the current set features. That procedure is recursively repeated on
the pruned set until the desired number of features to select is eventually reached.

Examples:

• Recursive feature elimination: A recursive feature elimination example showing the relevance of pixels in
a digit classification task.

• Recursive feature elimination with cross-validation: A recursive feature elimination example with auto-
matic tuning of the number of features selected with cross-validation.

L1-based feature selection

Selecting non-zero coefficients

Linear models penalized with the L1 norm have sparse solutions: many of their estimated coefficients are zero. When
the goal is to reduce the dimensionality of the data to use with another classifier, they expose a transform method to se-
lect the non-zero coefficient. In particular, sparse estimators useful for this purpose are the linear_model.Lasso
for regression, and of linear_model.LogisticRegression and svm.LinearSVC for classification:

94 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

>>> from sklearn.svm import LinearSVC
>>> from sklearn.datasets import load_iris
>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> X.shape
(150, 4)
>>> X_new = LinearSVC(C=0.01, penalty="l1", dual=False).fit_transform(X, y)
>>> X_new.shape
(150, 3)

With SVMs and logistic-regression, the parameter C controls the sparsity: the smaller C the fewer features selected.
With Lasso, the higher the alpha parameter, the fewer features selected.

Examples:

• Classification of text documents using sparse features: Comparison of different algorithms for document
classification including L1-based feature selection.

L1-recovery and compressive sensing

For a good choice of alpha, the Lasso can fully recover the exact set of non-zero variables using only few
observations, provided certain specific conditions are met. In paraticular, the number of samples should be
“sufficiently large”, or L1 models will perform at random, where “sufficiently large” depends on the number of
non-zero coefficients, the logarithm of the number of features, the amount of noise, the smallest absolute value
of non-zero coefficients, and the structure of the design matrix X. In addition, the design matrix must display
certain specific properties, such as not being too correlated.
There is no general rule to select an alpha parameter for recovery of non-zero coefficients. It can by set by
cross-validation (LassoCV or LassoLarsCV), though this may lead to under-penalized models: including a
small number of non-relevant variables is not detrimental to prediction score. BIC (LassoLarsIC) tends, on
the opposite, to set high values of alpha.
Reference Richard G. Baraniuk Compressive Sensing, IEEE Signal Processing Magazine [120] July 2007
http://dsp.rice.edu/files/cs/baraniukCSlecture07.pdf

Randomized sparse models

The limitation of L1-based sparse models is that faced with a group of very correlated features, they will select only
one. To mitigate this problem, it is possible to use randomization techniques, reestimating the sparse model many
times perturbing the design matrix or sub-sampling data and counting how many times a given regressor is selected.

RandomizedLasso implements this strategy for regression settings, using the Lasso, while
RandomizedLogisticRegression uses the logistic regression and is suitable for classification tasks. To
get a full path of stability scores you can use lasso_stability_path.

Note that for randomized sparse models to be more powerful than standard F statistics at detecting non-zero features,
the ground truth model should be sparse, in other words, there should be only a small fraction of features non zero.

Examples:

• Sparse recovery: feature selection for sparse linear models: An example comparing different feature
selection approaches and discussing in which situation each approach is to be favored.

1.3. Supervised learning 95

http://dsp.rice.edu/files/cs/baraniukCSlecture07.pdf

scikit-learn user guide, Release 0.12-git

References:

• N. Meinshausen, P. Buhlmann, “Stability selection”, Journal of the Royal Statistical Society, 72 (2010)
http://arxiv.org/pdf/0809.2932

• F. Bach, “Model-Consistent Sparse Estimation through the Bootstrap” http://hal.inria.fr/hal-00354771/

Tree-based feature selection

Tree-based estimators (see the sklearn.tree module and forest of trees in the sklearn.ensemble module)
can be used to compute feature importances, which in turn can be used to discard irrelevant features:

>>> from sklearn.ensemble import ExtraTreesClassifier
>>> from sklearn.datasets import load_iris
>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> X.shape
(150, 4)
>>> clf = ExtraTreesClassifier(compute_importances=True, random_state=0)
>>> X_new = clf.fit(X, y).transform(X)
>>> X_new.shape
(150, 2)

Examples:

• Feature importances with forests of trees: example on synthetic data showing the recovery of the actually
meaningful features.

• Pixel importances with a parallel forest of trees: example on face recognition data.

96 Chapter 1. User Guide

http://arxiv.org/pdf/0809.2932
http://hal.inria.fr/hal-00354771/

scikit-learn user guide, Release 0.12-git

1.3.12 Semi-Supervised

Semi-supervised learning is a situation in which in your training data some of the samples are not labeled. The
semi-supervised estimators, in sklean.semi_supervised are able to make use of this addition unlabeled data
to capture better the shape of the underlying data distribution and generalize better to new samples. These algorithms
can perform well when we have a very small amount of labeled points and a large amount of unlabeled points.

Unlabeled entries in y

It is important to assign an identifier to unlabeled points along with the labeled data when training the model
with the fit method. The identifier that this implementation uses the integer value −1.

Label Propagation

Label propagation denote a few variations of semi-supervised graph inference algorithms.

A few features available in this model:

• Can be used for classification and regression tasks

• Kernel methods to project data into alternate dimensional spaces

scikit-learn provides two label propagation models: LabelPropagation and LabelSpreading. Both work by
constructing a similarity graph over all items in the input dataset.

Figure 1.1: An illustration of label-propagation: the structure of unlabeled observations is consistent with the class
structure, and thus the class label can be propagated to the unlabeled observations of the training set.

LabelPropagation and LabelSpreading differ in modifications to the similarity matrix that graph and the
clamping effect on the label distributions. Clamping allows the algorithm to change the weight of the true ground
labeled data to some degree. The LabelPropagation algorithm performs hard clamping of input labels, which
means α = 1. This clamping factor can be relaxed, to say α = 0.8, which means that we will always retain 80 percent
of our original label distribution, but the algorithm gets to change it’s confidence of the distribution within 20 percent.

LabelPropagation uses the raw similarity matrix constructed from the data with no modifications. In contrast,
LabelSpreading minimizes a loss function that has regularization properties, as such it is often more robust to
noise. The algorithm iterates on a modified version of the original graph and normalizes the edge weights by computing
the normalized graph Laplacian matrix. This procedure is also used in Spectral clustering.

Label propagation models have two built-in kernel methods. Choice of kernel effects both scalability and performance
of the algorithms. The following are available:

• rbf (exp(−γ|x− y|2), γ > 0). γ is specified by keyword gamma.

1.3. Supervised learning 97

http://en.wikipedia.org/wiki/Semi-supervised_learning

scikit-learn user guide, Release 0.12-git

• knn (1[x′ ∈ kNN(x)]). k is specified by keyword n_neighbors.

RBF kernel will produce a fully connected graph which is represented in memory by a dense matrix. This matrix may
be very large and combined with the cost of performing a full matrix multiplication calculation for each iteration of
the algorithm can lead to prohibitively long running times. On the other hand, the KNN kernel will produce a much
more memory friendly sparse matrix which can drastically reduce running times.

Examples

• Decision boundary of label propagation versus SVM on the Iris dataset
• Label Propagation learning a complex structure
• Decision boundary of label propagation versus SVM on the Iris dataset
• Label Propagation digits active learning

References

[1] Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux. In Semi-Supervised Learning (2006), pp. 193-216
[2] Olivier Delalleau, Yoshua Bengio, Nicolas Le Roux. Efficient Non-Parametric Function Induction in Semi-
Supervised Learning. AISTAT 2005 http://research.microsoft.com/en-us/people/nicolasl/efficient_ssl.pdf

1.3.13 Linear and Quadratic Discriminant Analysis

Linear Discriminant Analysis (lda.LDA) and Quadratic Discriminant Analysis (qda.QDA) are two classic classi-
fiers, with, as their names suggest, a linear and a quadratic decision surface, respectively.

These classifiers are attractive because they have closed form solutions that can be easily computed, are inherently
multi-class, and have proven to work well in practice. Also there are no parameters to tune for these algorithms.

98 Chapter 1. User Guide

http://research.microsoft.com/en-us/people/nicolasl/efficient_ssl.pdf

scikit-learn user guide, Release 0.12-git

The plot shows decision boundaries for LDA and QDA. The bottom row demonstrates that LDA can only learn linear
boundaries, while QDA can learn quadratic boundaries and is therefore more flexible.

Examples:

Linear and Quadratic Discriminant Analysis with confidence ellipsoid: Comparison of LDA and QDA on syn-
thetic data.

References:

Dimensionality Reduction using LDA

lda.LDA can be used to perform supervised dimensionality reduction by projecting the input data to a subspace con-
sisting of the most discriminant directions. This is implemented in lda.LDA.transform. The desired dimension-
ality can be set using the n_components constructor parameter. This parameter has no influence on lda.LDA.fit
or lda.LDA.predict.

Mathematical Idea

Both methods work by modeling the class conditional distribution of the data P (X|y = k) for each class k. Predictions
can be obtained by using Bayes’ rule:

P (y|X) = P (X|y) · P (y)/P (X) = P (X|y) · P (Y)/(
∑
y′

P (X|y′) · p(y′))

In linear and quadratic discriminant analysis, P(X|y) is modeled as a Gaussian distribution. In the case of LDA, the
Gaussians for each class are assumed to share the same covariance matrix. This leads to a linear decision surface, as
can be seen by comparing the the log-probability rations log[P (y = k|X)/P (y = l|X)].

In the case of QDA, there are no assumptions on the covariance matrices of the Gaussians, leading to a quadratic
decision surface.

1.4 Unsupervised learning

1.4.1 Gaussian mixture models

sklearn.mixture is a package which enables one to learn Gaussian Mixture Models (diagonal, spherical, tied and full
covariance matrices supported), sample them, and estimate them from data. Facilities to help determine the appropriate
number of components are also provided.

A Gaussian mixture model is a probabilistic model that assumes all the data points are generated from a mixture of a
finite number of Gaussian distributions with unknown parameters. One can think of mixture models as generalizing
k-means clustering to incorporate information about the covariance structure of the data as well as the centers of the
latent Gaussians.

The scikit-learn implements different classes to estimate Gaussian mixture models, that correspond to different esti-
mation strategies, detailed below.

1.4. Unsupervised learning 99

scikit-learn user guide, Release 0.12-git

Figure 1.2: Two-component Gaussian mixture model: data points, and equi-probability surfaces of the model.

GMM classifier

The GMM object implements the expectation-maximization (EM) algorithm for fitting mixture-of-Gaussian models. It
can also draw confidence ellipsoids for multivariate models, and compute the Bayesian Information Criterion to assess
the number of clusters in the data. A GMM.fit method is provided that learns a Gaussian Mixture Model from train
data. Given test data, it can assign to each sample the class of the Gaussian it mostly probably belong to using the
GMM.predict method.

The GMM comes with different options to constrain the covariance of the difference classes estimated: spherical,
diagonal, tied or full covariance.

Examples:

• See GMM classification for an example of using a GMM as a classifier on the iris dataset.
• See Density Estimation for a mixture of Gaussians for an example on plotting the density estimation.

Pros and cons of class GMM: expectation-maximization inference

Pros

Speed it is the fastest algorithm for learning mixture models

Agnostic as this algorithm maximizes only the likelihood, it will not bias the means towards zero, or bias
the cluster sizes to have specific structures that might or might not apply.

Cons

Singularities when one has insufficiently many points per mixture, estimating the covariance matrices
becomes difficult, and the algorithm is known to diverge and find solutions with infinite likelihood
unless one regularizes the covariances artificially.

Number of components this algorithm will always use all the components it has access to, needing held-
out data or information theoretical criteria to decide how many components to use in the absence of
external cues.

100 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Selecting the number of components in a classical GMM

The BIC criterion can be used to select the number of components in a GMM in an efficient way. In theory, it recovers
the true number of components only in the asymptotic regime (i.e. if much data is available). Note that using a
DPGMM avoids the specification of the number of components for a Gaussian mixture model.

Examples:

• See Gaussian Mixture Model Selection for an example of model selection performed with classical GMM.

Estimation algorithm Expectation-maximization

The main difficulty in learning Gaussian mixture models from unlabeled data is that it is one usually doesn’t know
which points came from which latent component (if one has access to this information it gets very easy to fit a separate
Gaussian distribution to each set of points). Expectation-maximization is a well-fundamented statistical algorithm to
get around this problem by an iterative process. First one assumes random components (randomly centered on data
points, learned from k-means, or even just normally distributed around the origin) and computes for each point a
probability of being generated by each component of the model. Then, one tweaks the parameters to maximize the
likelihood of the data given those assignments. Repeating this process is guaranteed to always converge to a local
optimum.

1.4. Unsupervised learning 101

http://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm

scikit-learn user guide, Release 0.12-git

VBGMM classifier: variational Gaussian mixtures

The VBGMM object implements a variant of the Gaussian mixture model with variational inference algorithms. The
API is identical to GMM. It is essentially a middle-ground between GMM and DPGMM, as it has some of the properties of
the Dirichlet process.

Pros and cons of class VBGMM: variational inference

Pros

Regularization due to the incorporation of prior information, variational solutions have less pathological
special cases than expectation-maximization solutions. One can then use full covariance matrices
in high dimensions or in cases where some components might be centered around a single point
without risking divergence.

Cons

Bias to regularize a model one has to add biases. The variational algorithm will bias all the means
towards the origin (part of the prior information adds a “ghost point” in the origin to every mixture
component) and it will bias the covariances to be more spherical. It will also, depending on the
concentration parameter, bias the cluster structure either towards uniformity or towards a rich-get-
richer scenario.

Hyperparameters this algorithm needs an extra hyperparameter that might need experimental tuning via
cross-validation.

Estimation algorithm: variational inference

Variational inference is an extension of expectation-maximization that maximizes a lower bound on model evidence
(including priors) instead of data likelihood. The principle behind variational methods is the same as expectation-
maximization (that is both are iterative algorithms that alternate between finding the probabilities for each point to
be generated by each mixture and fitting the mixtures to these assigned points), but variational methods add regular-
ization by integrating information from prior distributions. This avoids the singularities often found in expectation-
maximization solutions but introduces some subtle biases to the model. Inference is often notably slower, but not
usually as much so as to render usage unpractical.

102 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Due to its Bayesian nature, the variational algorithm needs more hyper-parameters than expectation-maximization,
the most important of these being the concentration parameter alpha. Specifying a high value of alpha leads more
often to uniformly-sized mixture components, while specifying small (between 0 and 1) values will lead to some
mixture components getting almost all the points while most mixture components will be centered on just a few of the
remaining points.

DPGMM classifier: Infinite Gaussian mixtures

The DPGMM object implements a variant of the Gaussian mixture model with a variable (but bounded) number of
components using the Dirichlet Process. The API is identical to GMM. This class doesn’t require the user to choose the
number of components, and at the expense of extra computational time the user only needs to specify a loose upper
bound on this number and a concentration parameter.

The examples above compare Gaussian mixture models with fixed number of components, to DPGMM models. On
the left the GMM is fitted with 5 components on a dataset composed of 2 clusters. We can see that the DPGMM
is able to limit itself to only 2 components whereas the GMM fits the data fit too many components. Note that with
very little observations, the DPGMM can take a conservative stand, and fit only one component. On the right we are
fitting a dataset not well-depicted by a mixture of Gaussian. Adjusting the alpha parameter of the DPGMM controls
the number of components used to fit this data.

Examples:

• See Gaussian Mixture Model Ellipsoids for an example on plotting the confidence ellipsoids for both GMM
and DPGMM.

• Gaussian Mixture Model Sine Curve shows using GMM and DPGMM to fit a sine wave

Pros and cons of class DPGMM: Diriclet process mixture model

Pros

Less sensitivity to the number of parameters unlike finite models, which will almost always use all
components as much as they can, and hence will produce wildly different solutions for different
numbers of components, the Dirichlet process solution won’t change much with changes to the
parameters, leading to more stability and less tuning.

No need to specify the number of components only an upper bound of this number needs to be pro-
vided. Note however that the DPMM is not a formal model selection procedure, and thus provides
no guarantee on the result.

1.4. Unsupervised learning 103

scikit-learn user guide, Release 0.12-git

Cons

Speed the extra parametrization necessary for variational inference and for the structure of the Dirichlet
process can and will make inference slower, although not by much.

Bias as in variational techniques, but only more so, there are many implicit biases in the Dirichlet process
and the inference algorithms, and whenever there is a mismatch between these biases and the data it
might be possible to fit better models using a finite mixture.

The Dirichlet Process

Here we describe variational inference algorithms on Dirichlet process mixtures. The Dirichlet process is a prior
probability distribution on clusterings with an infinite, unbounded, number of partitions. Variational techniques let us
incorporate this prior structure on Gaussian mixture models at almost no penalty in inference time, comparing with a
finite Gaussian mixture model.

An important question is how can the Dirichlet process use an infinite, unbounded number of clusters and still be
consistent. While a full explanation doesn’t fit this manual, one can think of its chinese restaurant process analogy to
help understanding it. The chinese restaurant process is a generative story for the Dirichlet process. Imagine a chinese
restaurant with an infinite number of tables, at first all empty. When the first customer of the day arrives, he sits at
the first table. Every following customer will then either sit on an occupied table with probability proportional to the
number of customers in that table or sit in an entirely new table with probability proportional to the concentration
parameter alpha. After a finite number of customers has sat, it is easy to see that only finitely many of the infinite
tables will ever be used, and the higher the value of alpha the more total tables will be used. So the Dirichlet process
does clustering with an unbounded number of mixture components by assuming a very asymmetrical prior structure
over the assignments of points to components that is very concentrated (this property is known as rich-get-richer, as
the full tables in the Chinese restaurant process only tend to get fuller as the simulation progresses).

Variational inference techniques for the Dirichlet process still work with a finite approximation to this infinite mixture
model, but instead of having to specify a priori how many components one wants to use, one just specifies the concen-
tration parameter and an upper bound on the number of mixture components (this upper bound, assuming it is higher
than the “true” number of components, affects only algorithmic complexity, not the actual number of components
used).

Derivation:

• See here the full derivation of this algorithm.

Variational Gaussian Mixture Models The API is identical to that of the GMM class, the main difference being that
it offers access to precision matrices as well as covariance matrices.

The inference algorithm is the one from the following paper:

• Variational Inference for Dirichlet Process Mixtures David Blei, Michael Jordan. Bayesian Analysis, 2006

While this paper presents the parts of the inference algorithm that are concerned with the structure of the dirichlet pro-
cess, it does not go into detail in the mixture modeling part, which can be just as complex, or even more. For this reason
we present here a full derivation of the inference algorithm and all the update and lower-bound equations. If you’re
not interested in learning how to derive similar algorithms yourself and you’re not interested in changing/debugging
the implementation in the scikit this document is not for you.

The complexity of this implementation is linear in the number of mixture components and data points. With regards
to the dimensionality, it is linear when using spherical or diag and quadratic/cubic when using tied or full. For
spherical or diag it is O(n_states * n_points * dimension) and for tied or full it is O(n_states * n_points * dimension^2

104 Chapter 1. User Guide

http://en.wikipedia.org/wiki/Chinese_restaurant_process
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.4467&rep=rep1&type=pdf

scikit-learn user guide, Release 0.12-git

+ n_states * dimension^3) (it is necessary to invert the covariance/precision matrices and compute its determinant,
hence the cubic term).

This implementation is expected to scale at least as well as EM for the mixture of Gaussians.

Update rules for VB inference Here the full mathematical derivation of the Variational Bayes update rules for
Gaussian Mixture Models is given. The main parameters of the model, defined for any class k ∈ [1..K] are the class
proportion φk, the mean parameters µk, the covariance parameters Σk, which is characterized by variational Wishart
density,Wishart(ak,Bk), where a is the degrees of freedom, andB is the scale matrix. Depending on the covariance
parameterization, Bk can be a positive scalar, a positive vector or a Symmetric Positive Definite matrix.

The spherical model The model then is

φk ∼ Beta(1, α1)
µk ∼ Normal(0, I)
σk ∼ Gamma(1, 1)
zi ∼ SBP (φ)
Xt ∼ Normal(µzi ,

1
σzi

I)

The variational distribution we’ll use is

φk ∼ Beta(γk,1, γk,2)
µk ∼ Normal(νµk

, I)
σk ∼ Gamma(ak, bk)
zi ∼ Discrete(νzi)

The bound The variational bound is

logP (X) ≥
∑
k(Eq[logP (φk)]− Eq[logQ(φk)])

+
∑
k (Eq[logP (µk)]− Eq[logQ(µk)])

+
∑
k (Eq[logP (σk)]− Eq[logQ(σk)])

+
∑
i (Eq[logP (zi)]− Eq[logQ(zi)])

+
∑
iEq[logP (Xt)]

The bound for φk

Eq[logBeta(1, α)]− E[logBeta(γk,1, γk,2)] = log Γ(1 + α)− log Γ(α)
+(α− 1)(Ψ(γk,2)−Ψ(γk,1 + γk,2))
− log Γ(γk,1 + γk,2) + log Γ(γk,1) + log Γ(γk,2)
−(γk,1 − 1)(Ψ(γk,1)−Ψ(γk,1 + γk,2))
−(γk,2 − 1)(Ψ(γk,2)−Ψ(γk,1 + γk,2))

The bound for µk

Eq[logP (µk)]− Eq[logQ(µk)]
=

∫
dµfq(µf) logP (µf)−

∫
dµfq(µf) logQ(µf)

= −D2 log 2π − 1
2 ||νµk

||2 − D
2 + D

2 log 2πe

The bound for σk

Here I’ll use the inverse scale parametrization of the gamma distribution.

Eq[logP (σk)]− Eq[logQ(σk)]
= log Γ(ak)− (ak − 1)Ψ(ak)− log bk + ak − ak

bk

1.4. Unsupervised learning 105

scikit-learn user guide, Release 0.12-git

The bound for z

Eq[logP (z)]− Eq[logQ(z)]

=
∑
k

((∑K
j=k+1 νzi,j

)
(Ψ(γk, 1)−Ψ(γk, 1 + γk,2)) + νzi,k(Ψ(γk,1)−Ψ(γk,1 + γk,2))− log νzi,k

)
The bound for X

Recall that there is no need for a Q(X) so this bound is just

Eq[logP (Xi)] =
∑
k νzk

(
−D2 log 2π + D

2 (Ψ(ak)− log(bk))− ak
2bk

(||Xi − νµk
||2 +D)− log 2πe

)
For simplicity I’ll later call the term inside the parenthesis Eq[logP (Xi|zi = k)]

The updates Updating γ

γk,1 = 1 +
∑
i νzi,k

γk,2 = α+
∑
i

∑
j>k νzi,j .

Updating µ

The updates for mu essentially are just weighted expectations of X regularized by the prior. We can see this by taking
the gradient of the bound w.r.t. νµ and setting it to zero. The gradient is

∇L = −νµk
+
∑
i

νzi,kbk

ak
(Xi +−νµ)

so the update is

νµk
=

∑
i

νzi,k bk

ak
Xi

1 +
∑
i

νzi,k bk

ak

Updating a and b

For some odd reason it doesn’t really work when you derive the updates for a and b using the gradients of the lower
bound (terms involving the Ψ′ function show up and a is hard to isolate). However, we can use the other formula,

logQ(σk) = Ev 6=σk
[logP] + const

All the terms not involving σk get folded over into the constant and we get two terms: the prior and the probability of
X . This gives us

logQ(σk) = −σk +
D

2

∑
i

νzi,k log σk −
σk
2

∑
i

νzi,k(||Xi − µk||2 +D)

This is the log of a gamma distribution, with ak = 1 + D
2

∑
i νzi,k and

bk = 1 +
1

2

∑
i

νzi,k(||Xi − µk||2 +D).

You can verify this by normalizing the previous term.

Updating z

log νzi,k ∝ Ψ(γk,1)−Ψ(γk,1 + γk,2) + EQ[logP (Xi|zi = k)] +
∑
j<k

(Ψ(γj,2)−Ψ(γj,1 + γj,2)) .

106 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

The diagonal model The model then is

φk ∼ Beta(1, α1)
µk ∼ Normal(0, I)
σk,d ∼ Gamma(1, 1)
zi ∼ SBP (φ)
Xt ∼ Normal(µzi ,σ

−1
zi

)

Tha variational distribution we’ll use is

φk ∼ Beta(γk,1, γk,2)
µk ∼ Normal(νµk

, I)
σk,d ∼ Gamma(ak,d, bk,d)
zi ∼ Discrete(νzi)

The lower bound The changes in this lower bound from the previous model are in the distributions of σ (as there
are a lot more σ s now) and X .

The bound for σk,d is the same bound for σk and can be safelly ommited.

The bound for X :

The main difference here is that the precision matrix σk scales the norm, so we have an extra term after computing the
expectation of µTkσkµk, which is νTµk

σkνµk
+
∑
d σk,d. We then have

Eq[logP (Xi)] =
∑
k νzk

(
− D

2 log 2π + 1
2

∑
d(Ψ(ak,d)− log(bk,d))

− 1
2 ((Xi − νµk

)T ak

bk
(Xi − νµk

) +
∑
d σk,d)− log 2πe

)
The updates The updates only chance for µ (to weight them with the new σ), z (but the change is all folded into the
Eq[P (Xi|zi = k)] term), and the a and b variables themselves.

The update for µ

νµk
=

(
I +

∑
i

νzi,kbk

ak

)−1(∑
i

νzi,kbk

ak
Xi

)

The updates for a and b

Here we’ll do something very similar to the spheric model. The main difference is that now each σk,d controls only
one dimension of the bound:

logQ(σk,d) = −σk,d +
∑
i

νzi,k
1

2
log σk,d −

σk,d
2

∑
i

νzi,k((Xi,d − µk,d)2 + 1)

Hence

ak,d = 1 +
1

2

∑
i

νzi,k

bk,d = 1 +
1

2

∑
i

νzi,k((Xi,d − µk,d)2 + 1)

1.4. Unsupervised learning 107

scikit-learn user guide, Release 0.12-git

The tied model The model then is

φk ∼ Beta(1, α1)
µk ∼ Normal(0, I)
Σ ∼ Wishart(D, I)
zi ∼ SBP (φ)
Xt ∼ Normal(µzi ,Σ

−1)

Tha variational distribution we’ll use is

φk ∼ Beta(γk,1, γk,2)
µk ∼ Normal(νµk

, I)
Σ ∼ Wishart(a,B)
zi ∼ Discrete(νzi)

The lower bound There are two changes in the lower-bound: for Σ and for X .

The bound for Σ

D2

2 log 2 +
∑
d log Γ(D+1−d

2)
−aD2 log 2 + a

2 log |B|+
∑
d log Γ(a+1−d

2)
+a−D

2

(∑
d Ψ
(
a+1−d

2

)
+D log 2 + log |B|

)
+ 1

2atr[B− I]

The bound for X

Eq[logP (Xi)] =
∑
k νzk

(
− D

2 log 2π + 1
2

(∑
d Ψ
(
a+1−d

2

)
+D log 2 + log |B|

)
− 1

2 ((Xi − νµk
)aB(Xi − νµk

) + atr(B))− log 2πe
)

The updates As in the last setting, what changes are the trivial update for z, the update for µ and the update for a
and B.

The update for µ

νµk
=

(
I + aB

∑
i

νzi,k

)−1(
aB
∑
i

νzi,kXi

)
The update for a and B

As this distribution is far too complicated I’m not even going to try going at it the gradient way.

logQ(Σ) = +
1

2
log |Σ| − 1

2
tr[Σ] +

∑
i

∑
k

νzi,k

(
+

1

2
log |Σ| − 1

2
((Xi − νµk

)TΣ(Xi − νµk
) + tr[Σ])

)
which non-trivially (seeing that the quadratic form with Σ in the middle can be expressed as the trace of something)
reduces to

logQ(Σ) = +
1

2
log |Σ| − 1

2
tr[Σ] +

∑
i

∑
k

νzi,k

(
+

1

2
log |Σ| − 1

2
(tr[(Xi − νµk

)(Xi − νµk
)TΣ] + tr[IΣ])

)
hence this (with a bit of squinting) looks like a wishart with parameters

a = 2 +D + T

and

B =

(
I +

∑
i

∑
k

νzi,k(Xi − νµk
)(Xi − νµk

)T

)−1

108 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

The full model

The model then is

φk ∼ Beta(1, α1)
µk ∼ Normal(0, I)
Σk ∼ Wishart(D, I)
zi ∼ SBP (φ)
Xt ∼ Normal(µzi ,Σ

−1
z,i)

The variational distribution we’ll use is

φk ∼ Beta(γk,1, γk,2)
µk ∼ Normal(νµk

, I)
Σk ∼ Wishart(ak,Bk)
zi ∼ Discrete(νzi)

The lower bound All that changes in this lower bound in comparison to the previous one is that there are K priors
on different Σ precision matrices and there are the correct indices on the bound for X.

The updates All that changes in the updates is that the update for mu uses only the proper sigma and the updates
for a and B don’t have a sum over K, so

νµk
=

(
I + akBk

∑
i

νzi,k

)−1(
akBk

∑
i

νzi,kXi

)

ak = 2 +D +
∑
i

νzi,k

and

B =

((∑
i

νzi,k + 1

)
I +

∑
i

νzi,k(Xi − νµk
)(Xi − νµk

)T

)−1

1.4.2 Manifold learning

Look for the bare necessities
The simple bare necessities
Forget about your worries and your strife
I mean the bare necessities
Old Mother Nature’s recipes
That bring the bare necessities of life

– Baloo’s song [The Jungle Book]

Manifold learning is an approach to nonlinear dimensionality reduction. Algorithms for this task are based on the idea
that the dimensionality of many data sets is only artificially high.

1.4. Unsupervised learning 109

scikit-learn user guide, Release 0.12-git

Introduction

High-dimensional datasets can be very difficult to visualize. While data in two or three dimensions can be plotted to
show the inherent structure of the data, equivalent high-dimensional plots are much less intuitive. To aid visualization
of the structure of a dataset, the dimension must be reduced in some way.

The simplest way to accomplish this dimensionality reduction is by taking a random projection of the data. Though
this allows some degree of visualization of the data structure, the randomness of the choice leaves much to be desired.
In a random projection, it is likely that the more interesting structure within the data will be lost.

110 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

To address this concern, a number of supervised and unsupervised linear dimensionality reduction frameworks have
been designed, such as Principal Component Analysis (PCA), Independent Component Analysis, Linear Discriminant
Analysis, and others. These algorithms define specific rubrics to choose an “interesting” linear projection of the data.
These methods can be powerful, but often miss important nonlinear structure in the data.

Manifold Learning can be thought of as an attempt to generalize linear frameworks like PCA to be sensitive to non-
linear structure in data. Though supervised variants exist, the typical manifold learning problem is unsupervised: it
learns the high-dimensional structure of the data from the data itself, without the use of predetermined classifications.

Examples:

• See Manifold learning on handwritten digits: Locally Linear Embedding, Isomap... for an example of
dimensionality reduction on handwritten digits.

• See Comparison of Manifold Learning methods for an example of dimensionality reduction on a toy “S-
curve” dataset.

The manifold learning implementations available in sklearn are summarized below

Isomap

One of the earliest approaches to manifold learning is the Isomap algorithm, short for Isometric Mapping. Isomap can
be viewed as an extension of Multi-dimensional Scaling (MDS) or Kernel PCA. Isomap seeks a lower-dimensional

1.4. Unsupervised learning 111

scikit-learn user guide, Release 0.12-git

embedding which maintains geodesic distances between all points. Isomap can be performed with the object Isomap.

Complexity

The Isomap algorithm comprises three stages:

1. Nearest neighbor search. Isomap uses sklearn.neighbors.BallTree for efficient neighbor search.
The cost is approximately O[D log(k)N log(N)], for k nearest neighbors of N points in D dimensions.

2. Shortest-path graph search. The most efficient known algorithms for this are Dijkstra’s Algorithm, which is
approximately O[N2(k + log(N))], or the Floyd-Warshall algorithm, which is O[N3]. The algorithm can be
selected by the user with the path_method keyword of Isomap. If unspecified, the code attempts to choose
the best algorithm for the input data.

3. Partial eigenvalue decomposition. The embedding is encoded in the eigenvectors corresponding to the d
largest eigenvalues of the N × N isomap kernel. For a dense solver, the cost is approximately O[dN2]. This
cost can often be improved using the ARPACK solver. The eigensolver can be specified by the user with the
path_method keyword of Isomap. If unspecified, the code attempts to choose the best algorithm for the
input data.

The overall complexity of Isomap is O[D log(k)N log(N)] +O[N2(k + log(N))] +O[dN2].

• N : number of training data points

• D : input dimension

• k : number of nearest neighbors

• d : output dimension

References:

• “A global geometric framework for nonlinear dimensionality reduction” Tenenbaum, J.B.; De Silva, V.; &
Langford, J.C. Science 290 (5500)

112 Chapter 1. User Guide

http://www.sciencemag.org/content/290/5500/2319.full

scikit-learn user guide, Release 0.12-git

Locally Linear Embedding

Locally linear embedding (LLE) seeks a lower-dimensional projection of the data which preserves distances within
local neighborhoods. It can be thought of as a series of local Principal Component Analyses which are globally
compared to find the best nonlinear embedding.

Locally linear embedding can be performed with function locally_linear_embedding or its object-oriented
counterpart LocallyLinearEmbedding.

Complexity

The standard LLE algorithm comprises three stages:

1. Nearest Neighbors Search. See discussion under Isomap above.

2. Weight Matrix Construction. O[DNk3]. The construction of the LLE weight matrix involves the solution of
a k × k linear equation for each of the N local neighborhoods

3. Partial Eigenvalue Decomposition. See discussion under Isomap above.

The overall complexity of standard LLE is O[D log(k)N log(N)] +O[DNk3] +O[dN2].

• N : number of training data points

• D : input dimension

• k : number of nearest neighbors

• d : output dimension

References:

• “Nonlinear dimensionality reduction by locally linear embedding” Roweis, S. & Saul, L. Science
290:2323 (2000)

Modified Locally Linear Embedding

One well-known issue with LLE is the regularization problem. When the number of neighbors is greater than the
number of input dimensions, the matrix defining each local neighborhood is rank-deficient. To address this, standard

1.4. Unsupervised learning 113

http://www.sciencemag.org/content/290/5500/2323.full

scikit-learn user guide, Release 0.12-git

LLE applies an arbitrary regularization parameter r, which is chosen relative to the trace of the local weight matrix.
Though it can be shown formally that as r → 0, the solution coverges to the desired embedding, there is no guarantee
that the optimal solution will be found for r > 0. This problem manifests itself in embeddings which distort the
underlying geometry of the manifold.

One method to address the regularization problem is to use multiple weight vectors in each neighborhood.
This is the essence of modified locally linear embedding (MLLE). MLLE can be performed with function
locally_linear_embedding or its object-oriented counterpart LocallyLinearEmbedding, with the key-
word method = ’modified’. It requires n_neighbors > n_components.

Complexity

The MLLE algorithm comprises three stages:

1. Nearest Neighbors Search. Same as standard LLE

2. Weight Matrix Construction. ApproximatelyO[DNk3]+O[N(k−D)k2]. The first term is exactly equivalent
to that of standard LLE. The second term has to do with constructing the weight matrix from multiple weights.
In practice, the added cost of constructing the MLLE weight matrix is relatively small compared to the cost of
steps 1 and 3.

3. Partial Eigenvalue Decomposition. Same as standard LLE

The overall complexity of MLLE is O[D log(k)N log(N)] +O[DNk3] +O[N(k −D)k2] +O[dN2].

• N : number of training data points

• D : input dimension

• k : number of nearest neighbors

• d : output dimension

References:

• “MLLE: Modified Locally Linear Embedding Using Multiple Weights” Zhang, Z. & Wang, J.

114 Chapter 1. User Guide

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382

scikit-learn user guide, Release 0.12-git

Hessian Eigenmapping

Hessian Eigenmapping (also known as Hessian-based LLE: HLLE) is another method of solving the regularization
problem of LLE. It revolves around a hessian-based quadratic form at each neighborhood which is used to recover
the locally linear structure. Though other implementations note its poor scaling with data size, sklearn imple-
ments some algorithmic improvements which make its cost comparable to that of other LLE variants for small output
dimension. HLLE can be performed with function locally_linear_embedding or its object-oriented counter-
part LocallyLinearEmbedding, with the keyword method = ’hessian’. It requires n_neighbors >
n_components * (n_components + 3) / 2.

Complexity

The HLLE algorithm comprises three stages:

1. Nearest Neighbors Search. Same as standard LLE

2. Weight Matrix Construction. Approximately O[DNk3] + O[Nd6]. The first term reflects a similar cost to
that of standard LLE. The second term comes from a QR decomposition of the local hessian estimator.

3. Partial Eigenvalue Decomposition. Same as standard LLE

The overall complexity of standard HLLE is O[D log(k)N log(N)] +O[DNk3] +O[Nd6] +O[dN2].

• N : number of training data points

• D : input dimension

• k : number of nearest neighbors

• d : output dimension

References:

• “Hessian Eigenmaps: Locally linear embedding techniques for high-dimensional data” Donoho, D. &
Grimes, C. Proc Natl Acad Sci USA. 100:5591 (2003)

1.4. Unsupervised learning 115

http://www.pnas.org/content/100/10/5591

scikit-learn user guide, Release 0.12-git

Local Tangent Space Alignment

Though not technically a variant of LLE, Local tangent space alignment (LTSA) is algorithmically similar enough
to LLE that it can be put in this category. Rather than focusing on preserving neighborhood distances as in LLE,
LTSA seeks to characterize the local geometry at each neighborhood via its tangent space, and performs a global
optimization to align these local tangent spaces to learn the embedding. LTSA can be performed with function
locally_linear_embedding or its object-oriented counterpart LocallyLinearEmbedding, with the key-
word method = ’ltsa’.

Complexity

The LTSA algorithm comprises three stages:

1. Nearest Neighbors Search. Same as standard LLE

2. Weight Matrix Construction. Approximately O[DNk3] +O[k2d]. The first term reflects a similar cost to that
of standard LLE.

3. Partial Eigenvalue Decomposition. Same as standard LLE

The overall complexity of standard LTSA is O[D log(k)N log(N)] +O[DNk3] +O[k2d] +O[dN2].

• N : number of training data points

• D : input dimension

• k : number of nearest neighbors

• d : output dimension

References:

• “Principal manifolds and nonlinear dimensionality reduction via tangent space alignment” Zhang, Z. &
Zha, H. Journal of Shanghai Univ. 8:406 (2004)

Multi-dimensional Scaling (MDS)

Multidimensional scaling (MDS) seeks a low-dimensional representation of the data in which the distances respect well
the distances in the original high-dimensional space.

116 Chapter 1. User Guide

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.3693

scikit-learn user guide, Release 0.12-git

In general, is a technique used for analyzing similarity or dissimilarity data. MDS attempts to model similarity or
dissimilarity data as distances in a geometric spaces. The data can be ratings of similarity between objects, interaction
frequencies of molecules, or trade indices between countries.

There exists two types of MDS algorithm: metric and non metric. In the scikit-learn, the class MDS implements
both. In Metric MDS, the input simiarity matrix arises from a metric (and thus respects the triangular inequality), the
distances between output two points are then set to be as close as possible to the similarity or dissimilarity data. In
the non metric vision, the algorithms will try to preserve the order of the distances, and hence seek for a monotonic
relationship between the distances in the embedded space and the similarities/dissimilarities.

Let S be the similarity matrix, and X the coordinates of the n input points. Disparities d̂ij are transformation of the
similarities chosen in some optimal ways. The objective, called the stress, is then defined by sumi<jdij(X)− d̂ij(X)

Metric MDS

The simplest metric MDS model, called absolute MDS, disparities are defined by d̂ij = Sij . With absolute MDS, the
value Sij should then correspond exactly to the distance between point i and j in the embedding point.

Most commonly, disparities are set to d̂ij = bSij .

Nonmetric MDS

Non metric MDS focuses on the ordination of the data. If Sij < Skl, then the embedding should enforce dij < djk.
A simple algorithm to enforce that is to use a monotonic regression of dij on Sij , yielding disparities d̂ij in the same
order as Sij .

A trivial solution to this problem is to set all the points on the origin. In order to avoid that, the disparities d̂ij are
normalized.

References:

• “Modern Multidimensional Scaling - Theory and Applications” Borg, I.; Groenen P. Springer Series in
Statistics (1997)

• “Nonmetric multidimensional scaling: a numerical method” Kruskal, J. Psychometrika, 29 (1964)
• “Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis” Kruskal, J. Psychome-

trika, 29, (1964)

1.4. Unsupervised learning 117

http://www.springer.com/statistics/social+sciences+%26+law/book/978-0-387-25150-9
http://www.springerlink.com/content/tj18655313945114/
http://www.springerlink.com/content/010q1x323915712x/

scikit-learn user guide, Release 0.12-git

Tips on practical use

• Make sure the same scale is used over all features. Because manifold learning methods are based on a nearest-
neighbor search, the algorithm may perform poorly otherwise. See Scaler for convenient ways of scaling het-
erogeneous data.

• The reconstruction error computed by each routine can be used to choose the optimal output dimension. For a
d-dimensional manifold embedded in a D-dimensional parameter space, the reconstruction error will decrease
as n_components is increased until n_components == d.

• Note that noisy data can “short-circuit” the manifold, in essence acting as a bridge between parts of the manifold
that would otherwise be well-separated. Manifold learning on noisy and/or incomplete data is an active area of
research.

• Certain input configurations can lead to singular weight matrices, for example when more than two points in the
dataset are identical, or when the data is split into disjointed groups. In this case, method=’arpack’ will
fail to find the null space. The easiest way to address this is to use method=’dense’ which will work on a
singular matrix, though it may be very slow depending on the number of input points. Alternatively, one can
attempt to understand the source of the singularity: if it is due to disjoint sets, increasing n_neighbors may
help. If it is due to identical points in the dataset, removing these points may help.

1.4.3 Clustering

Clustering of unlabeled data can be performed with the module sklearn.cluster.

Each clustering algorithm comes in two variants: a class, that implements the fit method to learn the clusters on train
data, and a function, that, given train data, returns an array of integer labels corresponding to the different clusters. For
the class, the labels over the training data can be found in the labels_ attribute.

118 Chapter 1. User Guide

http://en.wikipedia.org/wiki/Cluster_analysis

scikit-learn user guide, Release 0.12-git

Input data

One important thing to note is that the algorithms implemented in this module take different kinds of ma-
trix as input. On one hand, MeanShift and KMeans take data matrices of shape [n_samples, n_features].
These can be obtained from the classes in the sklearn.feature_extraction module. On the
other hand, AffinityPropagation and SpectralClustering take similarity matrices of shape
[n_samples, n_samples]. These can be obtained from the functions in the sklearn.metrics.pairwise
module. In other words, MeanShift and KMeans work with points in a vector space, whereas
AffinityPropagation and SpectralClustering can work with arbitrary objects, as long as a simi-
larity measure exists for such objects.

Overview of clustering methods

Figure 1.3: A comparison of the clustering algorithms in scikit-learn

Method
name

Parame-
ters

Scalability Usecase Geometry (metric
used)

K-Means number of
clusters

Very large n_samples,
medium n_clusters with
MiniBatch code

General-purpose, even cluster
size, flat geometry, not too
many clusters

Distances between
points

Affinity
propaga-
tion

damping,
sample
preference

Not scalable with
n_samples

Many clusters, uneven cluster
size, non-flat geometry

Graph distance
(e.g.
nearest-neighbor
graph)

Mean-
shift

bandwidth Not scalable with
n_samples

Many clusters, uneven cluster
size, non-flat geometry

Distances between
points

Spectral
clustering

number of
clusters

Medium n_samples, small
n_clusters

Few clusters, even cluster size,
non-flat geometry

Graph distance
(e.g.
nearest-neighbor
graph)

Hierar-
chical
clustering

number of
clusters

Large n_samples and
n_clusters

Many clusters, possibly
connectivity constraints

Distances between
points

DBSCAN neighbor-
hood
size

Very large n_samples,
medium n_clusters

Non-flat geometry, uneven
cluster sizes

Distances between
nearest points

Gaussian
mixtures

many Not scalable Flat geometry, good for density
estimation

Mahalanobis
distances to centers

1.4. Unsupervised learning 119

scikit-learn user guide, Release 0.12-git

Non-flat geometry clustering is useful when the clusters have a specific shape, i.e. a non-flat manifold, and the standard
euclidean distance is not the right metric. This case arises in the two top rows of the figure above.

Gaussian mixture models, useful for clustering, are described in another chapter of the documentation dedicated
to mixture models. KMeans can be seen as a special case of Gaussian mixture model with equal covariance per
component.

K-means

The KMeans algorithm clusters data by trying to separate samples in n groups of equal variance, minimizing a criterion
known as the ‘inertia’ of the groups. This algorithm requires the number of cluster to be specified. It scales well to
large number of samples, however its results may be dependent on an initialisation. As a result, the computation is
often done several times, with different initialisation of the centroids.

K-means is often referred to as Lloyd’s algorithm. After initialization, k-means consists of looping between two major
steps. First the Voronoi diagram of the points is calculated using the current centroids. Each segment in the Voronoi
diagram becomes a separate cluster. Secondly, the centroids are updated to the mean of each segment. The algorithm
then repeats this until a stopping criteria is fulfilled. Usually, as in this implementation, the algorithm stops when the
relative increment in the results between iterations is less than the given tolerance value.

A parameter can be given to allow K-means to be run in parallel, called n_jobs. Giving this parameter a positive
value uses that many processors (default=1). A value of -1 uses all processors, with -2 using one less, and so on.
Parallelization generally speeds up computation at the cost of memory (in this case, multiple copies of centroids need
to be stored, one for each job).

K-means can be used for vector quantization. This is achieved using the transform method of a trained model of
KMeans.

Examples:

• A demo of K-Means clustering on the handwritten digits data: Clustering handwritten digits

Mini Batch K-Means

The MiniBatchKMeans is a variant of the KMeans algorithm using mini-batches, random subset of the dataset, to
compute the centroids.

Althought the MiniBatchKMeans converge faster than the KMeans version, the quality of the results, measured by
the inertia, the sum of the distance of each points to the nearest centroid, is not as good as the KMeans algorithm.

Examples:

• A demo of the K Means clustering algorithm: Comparison of KMeans and MiniBatchKMeans
• Clustering text documents using k-means: Document clustering using sparse MiniBatchKMeans

References:

• “Web Scale K-Means clustering” D. Sculley, Proceedings of the 19th international conference on World
wide web (2010)

120 Chapter 1. User Guide

http://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf

scikit-learn user guide, Release 0.12-git

Affinity propagation

AffinityPropagation clusters data by diffusion in the similarity matrix. This algorithm automatically sets its
numbers of cluster. It will have difficulties scaling to thousands of samples.

Examples:

• Demo of affinity propagation clustering algorithm: Affinity Propagation on a synthetic 2D datasets with 3
classes.

• Visualizing the stock market structure Affinity Propagation on Financial time series to find groups of
companies

Mean Shift

MeanShift clusters data by estimating blobs in a smooth density of points matrix. This algorithm automati-
cally sets its numbers of cluster. It will have difficulties scaling to thousands of samples. The utility function
estimate_bandwidth can be used to guess the optimal bandwidth for MeanShift from the data.

1.4. Unsupervised learning 121

scikit-learn user guide, Release 0.12-git

Examples:

• A demo of the mean-shift clustering algorithm: Mean Shift clustering on a synthetic 2D datasets with 3
classes.

Spectral clustering

SpectralClustering does a low-dimension embedding of the affinity matrix between samples, followed by a
KMeans in the low dimensional space. It is especially efficient if the affinity matrix is sparse and the pyamg module
is installed. SpectralClustering requires the number of clusters to be specified. It works well for a small number of
clusters but is not advised when using many clusters.

For two clusters, it solves a convex relaxation of the normalised cuts problem on the similarity graph: cutting the graph
in two so that the weight of the edges cut is small compared to the weights in of edges inside each cluster. This criteria
is especially interesting when working on images: graph vertices are pixels, and edges of the similarity graph are a
function of the gradient of the image.

122 Chapter 1. User Guide

http://code.google.com/p/pyamg/
http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf

scikit-learn user guide, Release 0.12-git

Warning: Shapeless isotropic data
When the data is really shapeless (i.e. generated from a random distribution with no clusters), the spectral-
clustering problem is ill-conditioned: the different choices are almost equivalent, and the spectral clustering solver
chooses an arbitrary one, putting the first sample alone in one bin.

Warning: Transforming distance to well-behaved similarities
Note that if the values of your similarity matrix are not well distributed, e.g. with negative values or with a distance
matrix rather than a similarity, the spectral problem will be singular and the problem not solvable. In which case
it is advised to apply a transformation to the entries of the matrix. For instance, in the case of a signed distance
matrix, is common to apply a heat kernel:

similarity = np.exp(-beta * distance / distance.std())

See the examples for such an application.

Examples:

• Spectral clustering for image segmentation: Segmenting objects from a noisy background using spectral
clustering.

• Segmenting the picture of Lena in regions: Spectral clustering to split the image of lena in regions.

References:

• “A Tutorial on Spectral Clustering” Ulrike von Luxburg, 2007
• “Normalized cuts and image segmentation” Jianbo Shi, Jitendra Malik, 2000
• “A Random Walks View of Spectral Segmentation” Marina Meila, Jianbo Shi, 2001
• “On Spectral Clustering: Analysis and an algorithm” Andrew Y. Ng, Michael I. Jordan, Yair Weiss, 2001

Hierarchical clustering

Hierarchical clustering is a general family of clustering algorithms that build nested clusters by merging them succes-
sively. This hierarchy of clusters represented as a tree (or dendrogram). The root of the tree is the unique cluster that
gathers all the samples, the leaves being the clusters with only one sample. See the Wikipedia page for more details.

The Ward object performs a hierarchical clustering based on the Ward algorithm, that is a variance-minimizing ap-
proach. At each step, it minimizes the sum of squared differences within all clusters (inertia criterion).

This algorithm can scale to large number of samples when it is used jointly with an connectivity matrix, but can be
computationally expensive when no connectivity constraints are added between samples: it considers at each step all
the possible merges.

Adding connectivity constraints

An interesting aspect of the Ward object is that connectivity constraints can be added to this algorithm (only adjacent
clusters can be merged together), through an connectivity matrix that defines for each sample the neighboring samples
following a given structure of the data. For instance, in the swiss-roll example below, the connectivity constraints
forbid the merging of points that are not adjacent on the swiss roll, and thus avoid forming clusters that extend across
overlapping folds of the roll.

1.4. Unsupervised learning 123

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.1501
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.8100
http://en.wikipedia.org/wiki/Hierarchical_clustering

scikit-learn user guide, Release 0.12-git

The connectivity constraints are imposed via an connectivity matrix: a scipy sparse matrix that has elements
only at the intersection of a row and a column with indices of the dataset that should be connected. This ma-
trix can be constructed from a-priori information, for instance if you wish to cluster web pages, but only merg-
ing pages with a link pointing from one to another. It can also be learned from the data, for instance using
sklearn.neighbors.kneighbors_graph to restrict merging to nearest neighbors as in the swiss roll exam-
ple, or using sklearn.feature_extraction.image.grid_to_graph to enable only merging of neigh-
boring pixels on an image, as in the Lena example.

Examples:

• A demo of structured Ward hierarchical clustering on Lena image: Ward clustering to split the image of
lena in regions.

• Hierarchical clustering: structured vs unstructured ward: Example of Ward algorithm on a swiss-roll,
comparison of structured approaches versus unstructured approaches.

• Feature agglomeration vs. univariate selection: Example of dimensionality reduction with feature ag-
glomeration based on Ward hierarchical clustering.

DBSCAN

The DBSCAN algorithm clusters data by finding core points which have many neighbours within a given radius. After
a core point is found, the cluster is expanded by adding its neighbours to the current cluster and recursively checking
if any are core points. Formally, a point is considered a core point if it has more than min_points points which are of
a similarity greater than the given threshold eps. This is shown in the figure below, where the color indicates cluster
membership and large circles indicate core points found by the algorithm. Moreover, the algorithm can detect outliers,
indicated by black points below. The outliers are defined as points which do not belong to any current cluster and do
not have enough close neighbours to start a new cluster.

124 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Examples:

• Demo of DBSCAN clustering algorithm: Clustering synthetic data with DBSCAN

References:

• “A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise” Ester, M.,
H. P. Kriegel, J. Sander, and X. Xu, In Proceedings of the 2nd International Conference on Knowledge
Discovery and Data Mining, Portland, OR, AAAI Press, pp. 226–231. 1996

Clustering performance evaluation

Evaluating the performance of a clustering algorithm is not as trivial as counting the number of errors or the precision
and recall of a supervised classification algorithm. In particular any evaluation metric should not take the absolute
values of the cluster labels into account but rather if this clustering define separations of the data similar to some
ground truth set of classes or satisfying some assumption such that members belong to the same class are more similar
that members of different classes according to some similarity metric.

Inertia

Presentation and usage TODO: factorize inertia computation out of kmeans and then write me!

Advantages

• No need for the ground truth knowledge of the “real” classes.

Drawbacks

• Inertia makes the assumption that clusters are convex and isotropic which is not always the case especially of the
clusters are manifolds with weird shapes: for instance inertia is a useless metrics to evaluate clustering algorithm
that tries to identify nested circles on a 2D plane.

• Inertia is not a normalized metrics: we just know that lower values are better and bounded by zero. One
potential solution would be to adjust inertia for random clustering (assuming the number of ground truth classes
is known).

1.4. Unsupervised learning 125

scikit-learn user guide, Release 0.12-git

Adjusted Rand index

Presentation and usage Given the knowledge of the ground truth class assignments labels_true and our clus-
tering algorithm assignments of the same samples labels_pred, the adjusted Rand index is a function that mea-
sures the similarity of the two assignments, ignoring permutations and with chance normalization:

>>> from sklearn import metrics
>>> labels_true = [0, 0, 0, 1, 1, 1]
>>> labels_pred = [0, 0, 1, 1, 2, 2]

>>> metrics.adjusted_rand_score(labels_true, labels_pred)
0.24...

One can permute 0 and 1 in the predicted labels and rename 2 by 3 and get the same score:

>>> labels_pred = [1, 1, 0, 0, 3, 3]
>>> metrics.adjusted_rand_score(labels_true, labels_pred)
0.24...

Furthermore, adjusted_rand_score is symmetric: swapping the argument does not change the score. It can
thus be used as a consensus measure:

>>> metrics.adjusted_rand_score(labels_pred, labels_true)
0.24...

Perfect labeling is scored 1.0:

>>> labels_pred = labels_true[:]
>>> metrics.adjusted_rand_score(labels_true, labels_pred)
1.0

Bad (e.g. independent labelings) have negative or close to 0.0 scores:

>>> labels_true = [0, 1, 2, 0, 3, 4, 5, 1]
>>> labels_pred = [1, 1, 0, 0, 2, 2, 2, 2]
>>> metrics.adjusted_rand_score(labels_true, labels_pred)
-0.12...

Advantages

• Random (uniform) label assignments have a ARI score close to 0.0 for any value of n_clusters and
n_samples (which is not the case for raw Rand index or the V-measure for instance).

• Bounded range [-1, 1]: negative values are bad (independent labelings), similar clusterings have a positive ARI,
1.0 is the perfect match score.

• No assumption is made on the cluster structure: can be used to compare clustering algorithms such as k-
means which assumes isotropic blob shapes with results of spectral clustering algorithms which can find cluster
with “folded” shapes.

Drawbacks

• Contrary to inertia, ARI requires knowledge of the ground truth classes while is almost never available in
practice or requires manual assignment by human annotators (as in the supervised learning setting).

However ARI can also be useful in a purely unsupervised setting as a building block for a Consensus Index that
can be used for clustering model selection (TODO).

126 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Examples:

• Adjustment for chance in clustering performance evaluation: Analysis of the impact of the dataset size on
the value of clustering measures for random assignments.

Mathematical formulation If C is a ground truth class assignment and K the clustering, let us define a and b as:

• a, the number of pairs of elements that are in the same set in C and in the same set in K

• b, the number of pairs of elements that are in different sets in C and in different sets in K

The raw (unadjusted) Rand index is then given by:

RI =
a+ b

C
nsamples

2

Where Cnsamples

2 is the total number of possible pairs in the dataset (without ordering).

However the RI score does not guarantee that random label assignments will get a value close to zero (esp. if the
number of clusters is in the same order of magnitude as the number of samples).

To counter this effect we can discount the expected RI E[RI] of random labelings by defining the adjusted Rand index
as follows:

ARI =
RI− E[RI]

max(RI)− E[RI]

References

• Comparing Partitions L. Hubert and P. Arabie, Journal of Classification 1985
• Wikipedia entry for the adjusted Rand index

Mutual Information based scores

Presentation and usage Given the knowledge of the ground truth class assignments labels_true and our clus-
tering algorithm assignments of the same samples labels_pred, the Mutual Information is a function that mea-
sures the agreement of the two assignments, ignoring permutations. Two different normalized versions of this measure
are available, Normalized Mutual Information(NMI) and Adjusted Mutual Information(AMI). NMI is often used
in the literature while AMI was proposed more recently and is normalized against chance:

>>> from sklearn import metrics
>>> labels_true = [0, 0, 0, 1, 1, 1]
>>> labels_pred = [0, 0, 1, 1, 2, 2]

>>> metrics.adjusted_mutual_info_score(labels_true, labels_pred)
0.22504...

One can permute 0 and 1 in the predicted labels and rename 2 by 3 and get the same score:

>>> labels_pred = [1, 1, 0, 0, 3, 3]
>>> metrics.adjusted_mutual_info_score(labels_true, labels_pred)
0.22504...

1.4. Unsupervised learning 127

http://www.springerlink.com/content/x64124718341j1j0/
http://en.wikipedia.org/wiki/Rand_index#Adjusted_Rand_index

scikit-learn user guide, Release 0.12-git

All, mutual_info_score, adjusted_mutual_info_score and normalized_mutual_info_score
are symmetric: swapping the argument does not change the score. Thus they can be used as a consensus measure:

>>> metrics.adjusted_mutual_info_score(labels_pred, labels_true)
0.22504...

Perfect labeling is scored 1.0:

>>> labels_pred = labels_true[:]
>>> metrics.adjusted_mutual_info_score(labels_true, labels_pred)
1.0

>>> metrics.normalized_mutual_info_score(labels_true, labels_pred)
1.0

This is not true for mutual_info_score, which is therefore harder to judge:

>>> metrics.mutual_info_score(labels_true, labels_pred)
0.69...

Bad (e.g. independent labelings) have non-positive scores:

>>> labels_true = [0, 1, 2, 0, 3, 4, 5, 1]
>>> labels_pred = [1, 1, 0, 0, 2, 2, 2, 2]
>>> metrics.adjusted_mutual_info_score(labels_true, labels_pred)
-0.10526...

Advantages

• Random (uniform) label assignments have a AMI score close to 0.0 for any value of n_clusters and
n_samples (which is not the case for raw Mutual Information or the V-measure for instance).

• Bounded range [0, 1]: Values close to zero indicate two label assignments that are largely independent, while
values close to one indicate significant agreement. Further, values of exactly 0 indicate purely independent
label assignments and a AMI of exactly 1 indicates that the two label assignments are equal (with or without
permutation).

• No assumption is made on the cluster structure: can be used to compare clustering algorithms such as k-
means which assumes isotropic blob shapes with results of spectral clustering algorithms which can find cluster
with “folded” shapes.

Drawbacks

• Contrary to inertia, MI-based measures require the knowledge of the ground truth classes while almost
never available in practice or requires manual assignment by human annotators (as in the supervised learning
setting).

However MI-based measures can also be useful in purely unsupervised setting as a building block for a Consen-
sus Index that can be used for clustering model selection.

• NMI and MI are not adjusted against chance.

Examples:

• Adjustment for chance in clustering performance evaluation: Analysis of the impact of the dataset size on
the value of clustering measures for random assignments. This example also includes the Adjusted Rand
Index.

128 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Mathematical formulation Assume two label assignments (of the same data), U with R classes and V with C
classes. The entropy of either is the amount of uncertaintly for an array, and can be calculated as:

H(U) =

|R|∑
i=1

P (i) log(P (i))

Where P(i) is the number of instances in U that are in class Ri. Likewise, for V :

H(V) =

|C|∑
j=1

P ′(j) log(P ′(j))

Where P’(j) is the number of instances in V that are in class Cj .

The mutual information between U and V is calculated by:

MI(U, V) =

|R|∑
i=1

|C|∑
j=1

P (i, j) log

(
P (i, j)

P (i)P ′(j)

)

Where P(i, j) is the number of instances with label Ri and also with label Cj .

The normalized mutual information is defined as

NMI(U, V) =
MI(U, V)√
H(U)H(V)

This value of the mutual information and also the normalized variant is not adjusted for chance and will tend to increase
as the number of different labels (clusters) increases, regardless of the actual amount of “mutual information” between
the label assignments.

The expected value for the mutual information can be calculated using the following equation, from Vinh, Epps, and
Bailey, (2009). In this equation, ai is the number of instances with label Ui and bj is the number of instances with
label Vj .

E[MI(U, V)] =

R∑
i=1

C∑
j=1

min(ai,bj)∑
nij=(ai+bj−N)+

nij
N

log

(
N.nij
aibj

)
ai!bj !(N − ai)!(N − bj)!

N !nij !(ai − nij)!(bj − nij)!(N − ai − bj + nij)!

Using the expected value, the adjusted mutual information can then be calculated using a similar form to that of the
adjusted Rand index:

AMI =
MI− E[MI]

max(H(U), H(V))− E[MI]

1.4. Unsupervised learning 129

scikit-learn user guide, Release 0.12-git

References

• Strehl, Alexander, and Joydeep Ghosh (2002). “Cluster ensembles – a knowledge reuse frame-
work for combining multiple partitions”. Journal of Machine Learning Research 3: 583–617.
doi:10.1162/153244303321897735

• Vinh, Epps, and Bailey, (2009). “Information theoretic measures for clusterings comparison”.
Proceedings of the 26th Annual International Conference on Machine Learning - ICML ‘09.
doi:10.1145/1553374.1553511. ISBN 9781605585161.

• Vinh, Epps, and Bailey, (2010). Information Theoretic Measures for Clusterings
Comparison: Variants, Properties, Normalization and Correction for Chance}, JMLR
http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf

• Wikipedia entry for the (normalized) Mutual Information
• Wikipedia entry for the Adjusted Mutual Information

Homogeneity, completeness and V-measure

Presentation and usage Given the knowledge of the ground truth class assignments of the samples, it is possible to
define some intuitive metric using conditional entropy analysis.

In particular Rosenberg and Hirschberg (2007) define the following two desirable objectives for any cluster assign-
ment:

• homogeneity: each cluster contains only members of a single class.

• completeness: all members of a given class are assigned to the same cluster.

We can turn those concept as scores homogeneity_score and completeness_score. Both are bounded
below by 0.0 and above by 1.0 (higher is better):

>>> from sklearn import metrics
>>> labels_true = [0, 0, 0, 1, 1, 1]
>>> labels_pred = [0, 0, 1, 1, 2, 2]

>>> metrics.homogeneity_score(labels_true, labels_pred)
0.66...

>>> metrics.completeness_score(labels_true, labels_pred)
0.42...

Their harmonic mean called V-measure is computed by v_measure_score:

>>> metrics.v_measure_score(labels_true, labels_pred)
0.51...

The V-measure is actually equivalent to the mutual information (NMI) discussed above normalized by the sum of the
label entropies [B2011].

Homogeneity, completensess and V-measure can be computed at once using
homogeneity_completeness_v_measure as follows:

>>> metrics.homogeneity_completeness_v_measure(labels_true, labels_pred)
...
(0.66..., 0.42..., 0.51...)

The following clustering assignment is slighlty better, since it is homogeneous but not complete:

>>> labels_pred = [0, 0, 0, 1, 2, 2]
>>> metrics.homogeneity_completeness_v_measure(labels_true, labels_pred)

130 Chapter 1. User Guide

http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf
http://en.wikipedia.org/wiki/Mutual_Information
http://en.wikipedia.org/wiki/Adjusted_Mutual_Information

scikit-learn user guide, Release 0.12-git

...
(1.0, 0.68..., 0.81...)

Note: v_measure_score is symmetric: it can be used to evaluate the agreement of two independent assignments
on the same dataset.

This is not the case for completeness_score and homogeneity_score: both are bound by the relationship:

homogeneity_score(a, b) == completeness_score(b, a)

Advantages

• Bounded scores: 0.0 is as bad as it can be, 1.0 is a perfect score

• Intuitive interpretation: clustering with bad V-measure can be qualitatively analyzed in terms of homogeneity
and completeness to better feel what ‘kind’ of mistakes is done by the assigmenent.

• No assumption is made on the cluster structure: can be used to compare clustering algorithms such as k-
means which assumes isotropic blob shapes with results of spectral clustering algorithms which can find cluster
with “folded” shapes.

Drawbacks

• The previously introduced metrics are not normalized w.r.t. random labeling: this means that depending on
the number of samples, clusters and ground truth classes, a completely random labeling will not always yield the
same values for homogeneity, completeness and hence v-measure. In particular random labeling won’t yield
zero scores especially when the number of clusters is large.

This problem can safely be ignored when the number of samples is more than a thousand and the number of
clusters is less than 10. For smaller sample sizes or larger number of clusters it is safer to use an adjusted
index such as the Adjusted Rand Index (ARI).

• These metrics require the knowledge of the ground truth classes while almost never available in practice or
requires manual assignment by human annotators (as in the supervised learning setting).

Examples:

• Adjustment for chance in clustering performance evaluation: Analysis of the impact of the dataset size on
the value of clustering measures for random assignments.

Mathematical formulation Homogeneity and completeness scores are formally given by:

h = 1− H(C|K)

H(C)

c = 1− H(K|C)

H(K)

1.4. Unsupervised learning 131

scikit-learn user guide, Release 0.12-git

132 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

where H(C|K) is the conditional entropy of the classes given the cluster assignments and is given by:

H(C|K) = −
|C|∑
c=1

|K|∑
k=1

nc,k
n
· log

(
nc,k
nk

)

and H(C) is the entropy of the classes and is given by:

H(C) = −
|C|∑
c=1

nc
n
· log

(nc
n

)

with n the total number of samples, nc and nk the number of samples respectively belonging to class c and cluster k,
and finally nc,k the number of samples from class c assigned to cluster k.

The conditional entropy of clusters given class H(K|C) and the entropy of clusters H(K) are defined in a sym-
metric manner.

Rosenberg and Hirschberg further define V-measure as the harmonic mean of homogeneity and completeness:

v = 2 · h · c
h+ c

References

Silhouette Coefficient

Presentation and usage If the ground truth labels are not known, evaluation must be performed using the model it-
self. The Silhouette Coefficient (sklearn.metrics.silhouette_score) is an example of such an evaluation,
where a higher Silhouette Coefficient score relates to a model with better defined clusters. The Silhouette Coefficient
is defined for each sample and is composed of two scores:

• a: The mean distance between a sample and all other points in the same class.

• b: The mean distance between a sample and all other points in the next nearest cluster.

The Silhoeutte Coefficient s for a single sample is then given as:

s =
b− a

max(a, b)

The Silhouette Coefficient for a set of samples is given as the mean of the Silhouette Coefficient for each sample.

>>> from sklearn import metrics
>>> from sklearn.metrics import pairwise_distances
>>> from sklearn import datasets
>>> dataset = datasets.load_iris()
>>> X = dataset.data
>>> y = dataset.target

In normal usage, the Silhouette Coefficient is applied to the results of a cluster analysis.

1.4. Unsupervised learning 133

scikit-learn user guide, Release 0.12-git

>>> import numpy as np
>>> from sklearn.cluster import KMeans
>>> kmeans_model = KMeans(n_clusters=3, random_state=1).fit(X)
>>> labels = kmeans_model.labels_
>>> metrics.silhouette_score(X, labels, metric=’euclidean’)
...
0.55...

References

• Peter J. Rousseeuw (1987). “Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster
Analysis”. Computational and Applied Mathematics 20: 53–65. doi:10.1016/0377-0427(87)90125-7.

Advantages

• The score is bounded between -1 for incorrect clustering and +1 for highly dense clustering. Scores around zero
indicate overlapping clusters.

• The score is higher when clusters are dense and well separated, which relates to a standard concept of a cluster.

Drawbacks

• The Silhouette Coefficient is generally higher for convex clusters than other concepts of clusters, such as density
based clusters like those obtained through DBSCAN.

1.4.4 Decomposing signals in components (matrix factorization problems)

Principal component analysis (PCA)

Exact PCA and probabilistic interpretation

PCA is used to decompose a multivariate dataset in a set of successive orthogonal components that explain a maximum
amount of the variance. In scikit-learn, PCA is implemented as a transformer object that learns n components in its fit
method, and can be used on new data to project it on these components.

The optional parameter whiten=True parameter make it possible to project the data onto the singular space while
scaling each component to unit variance. This is often useful if the models down-stream make strong assumptions
on the isotropy of the signal: this is for example the case for Support Vector Machines with the RBF kernel and the
K-Means clustering algorithm. However in that case the inverse transform is no longer exact since some information
is lost while forward transforming.

In addition, the ProbabilisticPCA object provides a probabilistic interpretation of the PCA that can give a like-
lihood of data based on the amount of variance it explains. As such it implements a score method that can be used in
cross-validation.

Below is an example of the iris dataset, which is comprised of 4 features, projected on the 2 dimensions that explain
most variance:

Examples:

• Comparison of LDA and PCA 2D projection of Iris dataset

134 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Approximate PCA

Often we are interested in projecting the data onto a lower dimensional space that preserves most of the variance by
dropping the singular vector of components associated with lower singular values.

For instance for face recognition, if we work with 64x64 gray level pixel pictures the dimensionality of the data is
4096 and it is slow to train a RBF Support Vector Machine on such wide data. Furthermore we know that intrinsic
dimensionality of the data is much lower than 4096 since all faces pictures look alike. The samples lie on a manifold
of much lower dimension (say around 200 for instance). The PCA algorithm can be used to linearly transform the data
while both reducing the dimensionality and preserve most of the explained variance at the same time.

The class RandomizedPCA is very useful in that case: since we are going to drop most of the singular vectors it
is much more efficient to limit the computation to an approximated estimate of the singular vectors we will keep to
actually perform the transform.

For instance, the following shows 16 sample portraits (centered around 0.0) from the Olivetti dataset. On the right
hand side are the first 16 singular vectors reshaped as portraits. Since we only require the top 16 singular vectors of a
dataset with size nsamples = 400 and nfeatures = 64× 64 = 4096, the computation time it less than 1s:

1.4. Unsupervised learning 135

scikit-learn user guide, Release 0.12-git

RandomizedPCA can hence be used as a drop in replacement for PCA minor the exception that we need to give it
the size of the lower dimensional space n_components as mandatory input parameter.

If we note nmax = max(nsamples, nfeatures) and nmin = min(nsamples, nfeatures), the time complexity of
RandomizedPCA is O(n2

max · ncomponents) instead of O(n2
max · nmin) for the exact method implemented in PCA.

The memory footprint of RandomizedPCA is also proportional to 2 · nmax · ncomponents instead of nmax · nmin for
the exact method.

Furthermore RandomizedPCA is able to work with scipy.sparse matrices as input which make it suitable for reducing
the dimensionality of features extracted from text documents for instance.

Note: the implementation of inverse_transform in RandomizedPCA is not the exact inverse transform of transform
even when whiten=False (default).

Examples:

• Faces recognition example using eigenfaces and SVMs
• Faces dataset decompositions

136 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

References:

• “Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decom-
positions” Halko, et al., 2009

Kernel PCA

KernelPCA is an extension of PCA which achieves non-linear dimensionality reduction through the use of kernels.
It has many applications including denoising, compression and structured prediction (kernel dependency estimation).
KernelPCA supports both transform and inverse_transform.

Examples:

• Kernel PCA

Sparse Principal Components Analysis (SparsePCA and MiniBatchSparsePCA)

SparsePCA is a variant of PCA, with the goal of extracting the set of sparse components that best reconstruct the
data.

Mini Batch Sparse PCA (MiniBatchSparsePCA) is a variant of SparsePCA that is faster but less accurate. The
increased speed is reached by iterating over small chunks of the set of features, for a given number of iterations.

Principal component analysis (PCA) has the disadvantage that the components extracted by this method have exclu-
sively dense expressions, i.e. they have non-zero coefficients when expressed as linear combinations of the original
variables. This can make interpretation difficult. In many cases, the real underlying components can be more naturally
imagined as sparse vectors; for example in face recognition, components might naturally map to parts of faces.

1.4. Unsupervised learning 137

http://arxiv.org/abs/0909.4061
http://arxiv.org/abs/0909.4061

scikit-learn user guide, Release 0.12-git

Sparse principal components yields a more parsimonious, interpretable representation, clearly emphasizing which of
the original features contribute to the differences between samples.

The following example illustrates 16 components extracted using sparse PCA from the Olivetti faces dataset. It can
be seen how the regularization term induces many zeros. Furthermore, the natural structure of the data causes the
non-zero coefficients to be vertically adjacent. The model does not enforce this mathematically: each component is
a vector h ∈ R4096, and there is no notion of vertical adjacency except during the human-friendly visualization as
64x64 pixel images. The fact that the components shown below appear local is the effect of the inherent structure of
the data, which makes such local patterns minimize reconstruction error. There exist sparsity-inducing norms that take
into account adjacency and different kinds of structure; see see [Jen09] for a review of such methods. For more details
on how to use Sparse PCA, see the Examples section below.

Note that there are many different formulations for the Sparse PCA problem. The one implemented here is based
on [Mrl09] . The optimization problem solved is a PCA problem (dictionary learning) with an `1 penalty on the
components:

(U∗, V ∗) = arg min
U,V

1

2
||X − UV ||22 + α||V ||1

subject to ||Uk||2 = 1 for all 0 ≤ k < ncomponents

The sparsity inducing `1 norm also prevents learning components from noise when few training samples are available.

138 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

The degree of penalization (and thus sparsity) can be adjusted through the hyperparameter alpha. Small values lead to
a gently regularized factorization, while larger values shrink many coefficients to zero.

Note: While in the spirit of an online algorithm, the class MiniBatchSparsePCA does not implement partial_fit
because the algorithm is online along the features direction, not the samples direction.

Examples:

• Faces dataset decompositions

References:

Dictionary Learning

Sparse coding with a precomputed dictionary

The SparseCoder object is an estimator that can be used to transform signals into sparse linear combination of
atoms from a fixed, precomputed dictionary such as a discrete wavelet basis. This object therefore does not implement
a fit method. The transformation amounts to a sparse coding problem: finding a representation of the data as a linear
combination of as few dictionary atoms as possible. All variations of dictionary learning implement the following
transform methods, controllable via the transform_method initialization parameter:

• Orthogonal matching pursuit (Orthogonal Matching Pursuit (OMP))

• Least-angle regression (Least Angle Regression)

• Lasso computed by least-angle regression

• Lasso using coordinate descent (Lasso)

• Thresholding

Thresholding is very fast but it does not yield accurate reconstructions. They have been shown useful in literature for
classification tasks. For image reconstruction tasks, orthogonal matching pursuit yields the most accurate, unbiased
reconstruction.

The dictionary learning objects offer, via the split_code parameter, the possibility to separate the positive and negative
values in the results of sparse coding. This is useful when dictionary learning is used for extracting features that will be
used for supervised learning, because it allows the learning algorithm to assign different weights to negative loadings
of a particular atom, from to the corresponding positive loading.

The split code for a single sample has length 2 * n_atoms and is constructed using the following rule: First, the regular
code of length n_atoms is computed. Then, the first n_atoms entries of the split_code are filled with the positive part
of the regular code vector. The second half of the split code is filled with the negative part of the code vector, only
with a positive sign. Therefore, the split_code is non-negative.

Examples:

• Sparse coding with a precomputed dictionary

1.4. Unsupervised learning 139

scikit-learn user guide, Release 0.12-git

Generic dictionary learning

Dictionary learning (DictionaryLearning) is a matrix factorization problem that amounts to finding a (usually
overcomplete) dictionary that will perform good at sparsely encoding the fitted data.

Representing data as sparse combinations of atoms from an overcomplete dictionary is suggested to be the way the
mammal primary visual cortex works. Consequently, dictionary learning applied on image patches has been shown
to give good results in image processing tasks such as image completion, inpainting and denoising, as well as for
supervised recognition tasks.

Dictionary learning is an optimization problem solved by alternatively updating the sparse code, as a solution to
multiple Lasso problems, considering the dictionary fixed, and then updating the dictionary to best fit the sparse code.

(U∗, V ∗) = arg min
U,V

1

2
||X − UV ||22 + α||U ||1

subject to ||Vk||2 = 1 for all 0 ≤ k < natoms

After using such a procedure to fit the dictionary, the transform is simply a sparse coding step that shares the same
implementation with all dictionary learning objects (see Sparse coding with a precomputed dictionary).

140 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

The following image shows how a dictionary learned from 4x4 pixel image patches extracted from part of the image
of Lena looks like.

Examples:

• Image denoising using dictionary learning

References:

• “Online dictionary learning for sparse coding” J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009

Mini-batch dictionary learning

MiniBatchDictionaryLearning implements a faster, but less accurate version of the dictionary learning algo-
rithm that is better suited for large datasets.

By default, MiniBatchDictionaryLearning divides the data into mini-batches and optimizes in an online
manner by cycling over the mini-batches for the specified number of iterations. However, at the moment it does not
implement a stopping condition.

The estimator also implements partial_fit, which updates the dictionary by iterating only once over a mini-batch. This
can be used for online learning when the data is not readily available from the start, or for when the data does not fit
into the memory.

Independent component analysis (ICA)

Independent component analysis separates a multivariate signal into additive subcomponents that are maximally inde-
pendent. It is implemented in scikit-learn using the Fast ICA algorithm.

It is classically used to separate mixed signals (a problem known as blind source separation), as in the example below:

ICA can also be used as yet another non linear decomposition that finds components with some sparsity:

1.4. Unsupervised learning 141

http://www.di.ens.fr/sierra/pdfs/icml09.pdf

scikit-learn user guide, Release 0.12-git

142 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Examples:

• Blind source separation using FastICA
• FastICA on 2D point clouds
• Faces dataset decompositions

Non-negative matrix factorization (NMF or NNMF)

NMF is an alternative approach to decomposition that assumes that the data and the components are non-negative. NMF
can be plugged in instead of PCA or its variants, in the cases where the data matrix does not contain negative values.

Unlike PCA, the representation of a vector is obtained in an additive fashion, by superimposing the components,
without substracting. Such additive models are efficient for representing images and text.

It has been observed in [Hoyer, 04] that, when carefully constrained, NMF can produce a parts-based representation of
the dataset, resulting in interpretable models. The following example displays 16 sparse components found by NMF
from the images in the Olivetti faces dataset, in comparison with the PCA eigenfaces.

The init attribute determines the initialization method applied, which has a great impact on the performance of the
method. NMF implements the method Nonnegative Double Singular Value Decomposition. NNDSVD is based on two
SVD processes, one approximating the data matrix, the other approximating positive sections of the resulting partial

1.4. Unsupervised learning 143

scikit-learn user guide, Release 0.12-git

SVD factors utilizing an algebraic property of unit rank matrices. The basic NNDSVD algorithm is better fit for sparse
factorization. Its variants NNDSVDa (in which all zeros are set equal to the mean of all elements of the data), and
NNDSVDar (in which the zeros are set to random perturbations less than the mean of the data divided by 100) are
recommended in the dense case.

NMF can also be initialized with random non-negative matrices, by passing an integer seed or a RandomState to init.

In NMF, sparseness can be enforced by setting the attribute sparseness to data or components. Sparse components
lead to localized features, and sparse data leads to a more efficient representation of the data.

Examples:

• Faces dataset decompositions
• Topics extraction with Non-Negative Matrix Factorization

References:

• “Learning the parts of objects by non-negative matrix factorization” D. Lee, S. Seung, 1999
• “Non-negative Matrix Factorization with Sparseness Constraints” P. Hoyer, 2004
• “Projected gradient methods for non-negative matrix factorization” C.-J. Lin, 2007
• “SVD based initialization: A head start for nonnegative matrix factorization” C. Boutsidis, E. Gallopoulos,

2008

1.4.5 Covariance estimation

Many statistical problems require at some point the estimation of a population’s covariance matrix, which can be seen
as an estimation of data set scatter plot shape. Most of the time, such an estimation has to be done on a sample whose
properties (size, structure, homogeneity) has a large influence on the estimation’s quality. The sklearn.covariance
package aims at providing tools affording an accurate estimation of a population’s covariance matrix under various
settings.

We assume that the observations are independent and identically distributed (i.i.d.).

Empirical covariance

The covariance matrix of a data set is known to be well approximated with the classical Maximum Likelihood Estimator
(or empirical covariance), provided the number of observations is large enough compared to the number of features
(the variables describing the observations). More precisely, the Maximum Likelihood Estimator of a sample is an
unbiased estimator of the corresponding population covariance matrix.

The empirical covariance matrix of a sample can be computed using the empirical_covariance func-
tion of the package, or by fitting an EmpiricalCovariance object to the data sample with the
EmpiricalCovariance.fit method. Be careful that depending whether the data are centered or not, the re-
sult will be different, so one may want to use the assume_centered parameter accurately.

Examples:

• See Ledoit-Wolf vs Covariance simple estimation for an example on how to fit an
EmpiricalCovariance object to data.

144 Chapter 1. User Guide

http://www.seas.upenn.edu/~ddlee/Papers/nmf.pdf
http://www.cs.helsinki.fi/u/phoyer/papers/pdf/NMFscweb.pdf
http://www.csie.ntu.edu.tw/~cjlin/nmf/
http://www.cs.rpi.edu/~boutsc/files/nndsvd.pdf

scikit-learn user guide, Release 0.12-git

Shrunk Covariance

Basic shrinkage

Despite being an unbiased estimator of the covariance matrix, the Maximum Likelihood Estimator is not a good esti-
mator of the eigenvalues of the covariance matrix, so the precision matrix obtained from its inversion is not accurate.
Sometimes, it even occurs that the empirical covariance matrix cannot be inverted for numerical reasons. To avoid
such an inversion problem, a transformation of the empirical covariance matrix has been introduced: the shrinkage.
It consists in reducing the ratio between the smallest and the largest eigenvalue of the empirical covariance matrix.
This can be done by simply shifting every eigenvalue according to a given offset, which is equivalent of finding the
l2-penalized Maximum Likelihood Estimator of the covariance matrix, or by reducing the highest eigenvalue while
increasing the smallest with the help of a convex transformation : Σshrunk = (1−α)Σ̂ +αTrΣ̂

p Id. The latter approach
has been implemented in scikit-learn.

A convex transformation (with a user-defined shrinkage coefficient) can be directly applied to a pre-computed covari-
ance with the shrunk_covariance method. Also, a shrunk estimator of the covariance can be fitted to data with a
ShrunkCovariance object and its ShrunkCovariance.fit method. Again, depending whether the data are
centered or not, the result will be different, so one may want to use the assume_centered parameter accurately.

Examples:

• See Ledoit-Wolf vs Covariance simple estimation for an example on how to fit a ShrunkCovariance
object to data.

Ledoit-Wolf shrinkage

In their 2004 paper [1], O. Ledoit and M. Wolf propose a formula so as to compute the optimal shrinkage coefficient
α that minimizes the Mean Squared Error between the estimated and the real covariance matrix in terms of Frobenius
norm.

The Ledoit-Wolf estimator of the covariance matrix can be computed on a sample with the ledoit_wolf function of
the sklearn.covariance package, or it can be otherwise obtained by fitting a LedoitWolf object to the same sample.

[1] O. Ledoit and M. Wolf, “A Well-Conditioned Estimator for Large-Dimensional Covariance Matrices”, Jour-
nal of Multivariate Analysis, Volume 88, Issue 2, February 2004, pages 365-411.

Examples:

• See Ledoit-Wolf vs Covariance simple estimation for an example on how to fit a LedoitWolf object to
data and for visualizing the performances of the Ledoit-Wolf estimator in terms of likelihood.

Oracle Approximating Shrinkage

Under the assumption that the data are Gaussian distributed, Chen et al. [2] derived a formula aimed at choosing a
shrinkage coefficient that yields a smaller Mean Squared Error than the one given by Ledoit and Wolf’s formula. The
resulting estimator is known as the Oracle Shrinkage Approximating estimator of the covariance.

The OAS estimator of the covariance matrix can be computed on a sample with the oas function of the
sklearn.covariance package, or it can be otherwise obtained by fitting an OAS object to the same sample. The for-
mula we used to implement the OAS does not correspond to the one given in the article. It has been taken from the
MATLAB program available from the author’s webpage (https://tbayes.eecs.umich.edu/yilun/covestimation).

1.4. Unsupervised learning 145

https://tbayes.eecs.umich.edu/yilun/covestimation

scikit-learn user guide, Release 0.12-git

[2] Chen et al., “Shrinkage Algorithms for MMSE Covariance Estimation”, IEEE Trans. on Sign. Proc., Volume
58, Issue 10, October 2010.

Examples:

• See Ledoit-Wolf vs Covariance simple estimation for an example on how to fit an OAS object to data.
• See Ledoit-Wolf vs OAS estimation to visualize the Mean Squared Error difference between a
LedoitWolf and an OAS estimator of the covariance.

Sparse inverse covariance

The matrix inverse of the covariance matrix, often called the precision matrix, is proportional to the partial correlation
matrix. It gives the partial independence relationship. In other words, if two features are independent conditionally on
the others, the corresponding coefficient in the precision matrix will be zero. This is why it makes sense to estimate a
sparse precision matrix: by learning independence relations from the data, the estimation of the covariance matrix is
better conditioned. This is known as covariance selection.

In the small-samples situation, in which n_samples is on the order of magnitude of n_features or smaller, sparse inverse
covariance estimators tend to work better than shrunk covariance estimators. However, in the opposite situation, or for
very correlated data, they can be numerically unstable. In addition, unlike shrinkage estimators, sparse estimators are
able to recover off-diagonal structure.

The GraphLasso estimator uses an l1 penalty to enforce sparsity on the precision matrix: the higher its alpha
parameter, the more sparse the precision matrix. The corresponding GraphLassoCV object uses cross-validation to
automatically set the alpha parameter.

Note: Structure recovery

Recovering a graphical structure from correlations in the data is a challenging thing. If you are interested in such
recovery keep in mind that:

• Recovery is easier from a correlation matrix than a covariance matrix: standardize your observations before
running GraphLasso

146 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Figure 1.4: A comparison of maximum likelihood, shrinkage and sparse estimates of the covariance and precision
matrix in the very small samples settings.

1.4. Unsupervised learning 147

scikit-learn user guide, Release 0.12-git

• If the underlying graph has nodes with much more connections than the average node, the algorithm will miss
some of these connections.

• If your number of observations is not large compared to the number of edges in your underlying graph, you will
not recover it.

• Even if you are in favorable recovery conditions, the alpha parameter chosen by cross-validation (e.g. using the
GraphLassoCV object) will lead to selecting too many edges. However, the relevant edges will have heavier
weights than the irrelevant ones.

The mathematical formulation is the following:

K̂ = argminK
(
trSK − logdetK + α‖K‖1

)
Where K is the precision matrix to be estimated, and S is the sample covariance matrix. ‖K‖1 is the sum of the absolute
values of off-diagonal coefficients of K. The algorithm employed to solve this problem is the GLasso algorithm, from
the Friedman 2008 Biostatistics paper. It is the same algorithm as in the R glasso package.

Examples:

• Sparse inverse covariance estimation: example on synthetic data showing some recovery of a structure,
and comparing to other covariance estimators.

• Visualizing the stock market structure: example on real stock market data, finding which symbols are most
linked.

References:

• Friedman et al, “Sparse inverse covariance estimation with the graphical lasso”, Biostatistics 9, pp 432,
2008

Robust Covariance Estimation

Real data set are often subjects to measurement or recording errors. Regular but uncommon observations may also
appear for a variety of reason. Every observation which is very uncommon is called an outlier. The empirical covari-
ance estimator and the shrunk covariance estimators presented above are very sensitive to the presence of outlying
observations in the data. Therefore, one should use robust covariance estimators to estimate the covariance of its real
data sets. Alternatively, robust covariance estimators can be used to perform outlier detection and discard/downweight
some observations according to further processing of the data.

The sklearn.covariance package implements a robust estimator of covariance, the Minimum Covariance Determinant
[3].

Minimum Covariance Determinant

The Minimum Covariance Determinant estimator is a robust estimator of a data set’s covariance introduced by
P.J.Rousseuw in [3]. The idea is to find a given proportion (h) of “good” observations which are not outliers and com-
pute their empirical covariance matrix. This empirical covariance matrix is then rescaled to compensate the performed
selection of observations (“consistency step”). Having computed the Minimum Covariance Determinant estimator,
one can give weights to observations according to their Mahalanobis distance, leading the a reweighted estimate of the
covariance matrix of the data set (“reweighting step”).

148 Chapter 1. User Guide

http://biostatistics.oxfordjournals.org/content/9/3/432.short

scikit-learn user guide, Release 0.12-git

Rousseuw and Van Driessen [4] developed the FastMCD algorithm in order to compute the Minimum Covariance
Determinant. This algorithm is used in scikit-learn when fitting an MCD object to data. The FastMCD algorithm also
computes a robust estimate of the data set location at the same time.

Raw estimates can be accessed as raw_location_ and raw_covariance_ attributes of a MinCovDet robust covariance
estimator object.

[3] P. J. Rousseeuw. Least median of squares regression.

10. Am Stat Ass, 79:871, 1984.

[4] A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Associa-
tion and the American Society for Quality, TECHNOMETRICS.

Examples:

• See Robust vs Empirical covariance estimate for an example on how to fit a MinCovDet object to data
and see how the estimate remains accurate despite the presence of outliers.

• See Robust covariance estimation and Mahalanobis distances relevance to visualize the difference be-
tween EmpiricalCovariance and MinCovDet covariance estimators in terms of Mahalanobis dis-
tance (so we get a better estimate of the precision matrix too).

Influence of outliers on location and covariance
estimates

Separating inliers from outliers using a Mahalonis
distance

1.4.6 Novelty and Outlier Detection

Many applications require being able to decide whether a new observation belongs to the same distribution as exiting
observations (it is an inlier), or should be considered as different (it is an outlier). Often, this ability is used to clean
real data sets. Two important distinction must be made:

novelty detection The training data is not polluted by outliers, and we are interested in detecting anoma-
lies in new observations.

outlier detection The training data contains outliers, and we need to fit the central mode of the training
data, ignoring the deviant observations.

The scikit-learn project provides a set of machine learning tools that can be used both for novelty or outliers detection.
This strategy is implemented with objects learning in an unsupervised way from the data:

estimor.fit(X_train)

new observations can then be sorted as inliers or outliers with a predict method:

estimator.predict(X_test)

Inliers are labeled 0, while outliers are labeled 1.

1.4. Unsupervised learning 149

scikit-learn user guide, Release 0.12-git

Novelty Detection

Consider a data set of n observations from the same distribution described by p features. Consider now that we add
one more observation to that data set. Is the new observation so different from the others that we can doubt it is
regular? (i.e. does it come from the same distribution?) Or on the contrary, is it so similar to the other that we cannot
distinguish it from the original observations? This is the question adressed by the novelty detection tools and methods.

In general, it is about to learn a rough, close frontier delimiting the contour of the initial observations distribution,
plotted in embedding p-dimensional space. Then, if further observations lay within the frontier-delimited subspace,
they are considered as coming from the same population than the initial observations. Otherwise, if they lay outside
the frontier, we can say that they are abnormal with a given confidence in our assessment.

The One-Class SVM has been introduced in [1] for that purpose and implemented in the Support Vector Machines
module in the svm.OneClassSVM object. It requires the choice of a kernel and a scalar parameter to define a
frontier. The RBF kernel is usually chosen although there exist no exact formula or algorithm to set its bandwith
parameter. This is the default in the scikit-learn implementation. The ν parameter, also known as the margin of the
One-Class SVM, corresponds to the probability of finding a new, but regular, observation outside the frontier.

Examples:

• See One-class SVM with non-linear kernel (RBF) for vizualizing the frontier learned around some data by
a svm.OneClassSVM object.

Outlier Detection

Outlier detection is similar to novelty detection in the sense that the goal is to separate a core of regular observations
from some polutting ones, called “outliers”. Yet, in the case of outlier detection, we don’t have a clean data set
representing the population of regular observations that can be used to train any tool.

150 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Fitting an elliptic envelop

One common way of performing outlier detection is to assume that the regular data come from a known distribution
(e.g. data are Gaussian distributed). From this assumption, we generaly try to define the “shape” of the data, and can
define outlying observations as observations which stand far enough from the fit shape.

The scikit-learn provides an object covariance.EllipticEnvelope that fits a robust covariance estimate to
the data, and thus fits an ellipse to the central data points, ignoring points outside the central mode.

For instance, assuming that the inlier data are Gaussian distributed, it will estimate the inlier location and covariance
in a robust way (i.e. whithout being influenced by outliers). The Mahalanobis distances obtained from this estimate is
used to derive a measure of outlyingness. This strategy is illustrated below.

Examples:

• See Robust covariance estimation and Mahalanobis distances relevance for an illustration of the dif-
ference between using a standard (covariance.EmpiricalCovariance) or a robust estimate
(covariance.MinCovDet) of location and covariance to assess the degree of outlyingness of an ob-
servation.

References:

One-class SVM versus elliptic envelop

Strictly-speaking, the One-class SVM is not an outlier-detection method, but a novelty-detection method: it’s training
set should not be contaminated by outliers as it may fit them. That said, outlier detection in high-dimension, or without

1.4. Unsupervised learning 151

scikit-learn user guide, Release 0.12-git

any assumptions on the distribution of the inlying data is very challenging, and a One-class SVM gives useful results
in these situations.

The examples below illustrate how the performance of the covariance.EllipticEnvelope degrades as the
data is less and less unimodal. svm.OneClassSVM works better on data with multiple modes.

Table 1.1: Comparing One-class SVM approach, and elliptic envelopp

For a inlier mode well-centered and elliptic, the svm.OneClassSVM is not able
to benefit from the rotational symmetry of the inlier population. In addition, it fits
a bit the outliers present in the training set. On the opposite, the decision rule
based on fitting an covariance.EllipticEnvelope learns an ellipse,
which fits well the inlier distribution.

As the inlier distribution becomes bimodal, the
covariance.EllipticEnvelope does not fit well the inliers. However, we
can see that the svm.OneClassSVM tends to overfit: because it has not model of
inliers, it interprets a region where, by chance some outliers are clustered, as
inliers.

If the inlier distribution is strongly non Gaussian, the svm.OneClassSVM is
able to recover a reasonable approximation, whereas the
covariance.EllipticEnvelope completely fails.

Examples:

• See Outlier detection with several methods. for a comparison of the svm.OneClassSVM
(tuned to perform like an outlier detection method) and a covariance-based outlier detection with
covariance.MinCovDet.

1.4.7 Hidden Markov Models

sklearn.hmm implements the algorithms of Hidden Markov Model (HMM). HMM is a generative probabilistic model,
in which a sequence of observable X variable is generated by a sequence of internal hidden state Z. The hidden
states can not be observed directly. The transition of hidden states is aussumed to be the first order Markov Chain. It
can be specified by the start probability vector Π and the transition probability matrix A. The emission probability
of observable can be any distribution with the parameters Θi conditioned on the current hidden state index. (e.g.
Multinomial, Gaussian). Thus the HMM can be completely determined by Π,A and Θi.

There are three fundamental problems of HMM:

• Given the model parameters and observed data, estimate the optimal sequence of hidden states.

• Given the model parameters and observed data, calculate the likelihood of the data.

• Given just the observed data, estimate the model parameters.

The first and the second problem can be solved by the dynamic programing algorithms known as the Viterbi algorithm
and the Forward-Backward algorithm respectively. The last one can be solved by an Expectation-Maximization (EM)
iterative algorithm, known as Baum-Welch algorithm.

See the ref listed below for further detailed information.

152 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

References:

[Rabiner89] A tutorial on hidden Markov models and selected applications in speech recognition Lawrence, R.
Rabiner, 1989

Using HMM

Classes in this module include MultinomalHMM GaussianHMM, and GMMHMM. They implement HMM with emis-
sion probability of Multimomial distribution, Gaussian distribution and the mixture of Gaussian distributions.

Building HMM and generating samples

You can build an HMM instance by passing the parameters described above to the constructor. Then, you can generate
samples from the HMM by calling sample.:

>>> import numpy as np
>>> from sklearn import hmm

>>> startprob = np.array([0.6, 0.3, 0.1])
>>> transmat = np.array([[0.7, 0.2, 0.1], [0.3, 0.5, 0.2], [0.3, 0.3, 0.4]])
>>> means = np.array([[0.0, 0.0], [3.0, -3.0], [5.0, 10.0]])
>>> covars = np.tile(np.identity(2), (3, 1, 1))
>>> model = hmm.GaussianHMM(3, "full", startprob, transmat)
>>> model.means_ = means
>>> model.covars_ = covars
>>> X, Z = model.sample(100)

1.4. Unsupervised learning 153

http://www.cs.ubc.ca/~murphyk/Bayes/rabiner.pdf

scikit-learn user guide, Release 0.12-git

Examples:

• Demonstration of sampling from HMM

Training HMM parameters and infering the hidden states

You can train the HMM by calling fit method. The input is “the list” of the sequence of observed value. Note, since
EM-algorithm is a gradient based optimization method, it will generally be stuck at local optimal. You should try to
run fit with various initialization and select the highest scored model. The score of the model can be calculated by the
score method. The infered optimal hidden states can be obtained by calling predict method. The predict method can
be specified with decoder algorithm. Currently Viterbi algorithm viterbi, and maximum a posteriori estimation map is
supported. This time, the input is a single sequence of observed values.:

>>> model2 = hmm.GaussianHMM(3, "full")
>>> model2.fit([X])
GaussianHMM(algorithm=’viterbi’,...
>>> Z2 = model.predict(X)

Examples:

• Gaussian HMM of stock data

Implementing HMMs with other emission probabilities

If you want to implement other emission probability (e.g. Poisson), you have to make you own HMM class by
inheriting the _BaseHMM and override necessary methods. They should be __init__, _compute_log_likelihood, _set
and _get for addiitional parameters, _initialize_sufficient_statistics, _accumulate_sufficient_statistics and _do_mstep.

1.5 Model Selection

1.5.1 Cross-Validation: evaluating estimator performance

Learning the parameters of a prediction function and testing it on the same data is a methodological mistake: a model
that would just repeat the labels of the samples that it has just seen would have a perfect score but would fail to predict
anything useful on yet-unseen data.

To avoid over-fitting, we have to define two different sets : a training set X_train, y_train which is used for
learning the parameters of a predictive model, and a testing set X_test, y_test which is used for evaluating the
fitted predictive model.

In scikit-learn such a random split can be quickly computed with the train_test_split helper function. Let load
the iris data set to fit a linear Support Vector Machine model on it:

>>> import numpy as np
>>> from sklearn import cross_validation
>>> from sklearn import datasets
>>> from sklearn import svm

>>> iris = datasets.load_iris()

154 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

>>> iris.data.shape, iris.target.shape
((150, 4), (150,))

We can now quickly sample a training set while holding out 40% of the data for testing (evaluating) our classifier:

>>> X_train, X_test, y_train, y_test = cross_validation.train_test_split(
... iris.data, iris.target, test_size=0.4, random_state=0)

>>> X_train.shape, y_train.shape
((90, 4), (90,))
>>> X_test.shape, y_test.shape
((60, 4), (60,))

>>> clf = svm.SVC(kernel=’linear’, C=1).fit(X_train, y_train)
>>> clf.score(X_test, y_test)
0.96...

However, by defining these two sets, we drastically reduce the number of samples which can be used for learning the
model, and the results can depend on a particular random choice for the pair of (train, test) sets.

A solution is to split the whole data several consecutive times in different train set and test set, and to return the
averaged value of the prediction scores obtained with the different sets. Such a procedure is called cross-validation.
This approach can be computationally expensive, but does not waste too much data (as it is the case when fixing
an arbitrary test set), which is a major advantage in problem such as inverse inference where the number of samples is
very small.

Computing cross-validated metrics

The simplest way to use perform cross-validation in to call the cross_val_score helper function on the estimator
and the dataset.

The following example demonstrates how to estimate the accuracy of a linear kernel Support Vector Machine on the
iris dataset by splitting the data and fitting a model and computing the score 5 consecutive times (with different splits
each time):

>>> clf = svm.SVC(kernel=’linear’, C=1)
>>> scores = cross_validation.cross_val_score(
... clf, iris.data, iris.target, cv=5)
...
>>> scores
array([1. ..., 0.96..., 0.9 ..., 0.96..., 1.])

The mean score and the standard deviation of the score estimate are hence given by:

>>> print "Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() / 2)
Accuracy: 0.97 (+/- 0.02)

By default, the score computed at each CV iteration is the score method of the estimator. It is possible to change
this by passing a custom scoring function, e.g. from the metrics module:

>>> from sklearn import metrics
>>> cross_validation.cross_val_score(clf, iris.data, iris.target, cv=5,
... score_func=metrics.f1_score)
...
array([1. ..., 0.96..., 0.89..., 0.96..., 1.])

In the case of the Iris dataset, the samples are balanced across target classes hence the accuracy and the F1-score are
almost equal.

1.5. Model Selection 155

scikit-learn user guide, Release 0.12-git

When the cv argument is an integer, cross_val_score uses the KFold or StratifiedKFold strategies by
default (depending on the absence or presence of the target array).

It is also possible to use othe cross validation strategies by passing a cross validation iterator instead, for instance:

>>> n_samples = iris.data.shape[0]
>>> cv = cross_validation.ShuffleSplit(n_samples, n_iterations=3,
... test_size=0.3, random_state=0)

>>> cross_validation.cross_val_score(clf, iris.data, iris.target, cv=cv)
...
array([0.97..., 0.97..., 1.])

The available cross validation iterators are introduced in the following.

Examples

• Receiver operating characteristic (ROC) with cross validation,
• Recursive feature elimination with cross-validation,
• Parameter estimation using grid search with a nested cross-validation,
• Sample pipeline for text feature extraction and evaluation,

Cross validation iterators

The following sections list utilities to generate boolean masks or indices that can be used to generate dataset splits
according to different cross validation strategies.

Boolean mask vs integer indices

Most cross validators support generating both boolean masks or integer indices to select the samples from a
given fold.
When the data matrix is sparse, only the integer indices will work as expected. Integer indexing is hence the
default behavior (since version 0.10).
You can explicitly pass indices=False to the constructor of the CV object (when supported) to use the
boolean mask method instead.

K-fold

KFold divides all the samples in math:K groups of samples, called folds (if K = n, this is equivalent to the Leave
One Out strategy), of equal sizes (if possible). The prediction function is learned using K − 1 folds, and the fold left
out is used for test.

Example of 2-fold:

>>> import numpy as np
>>> from sklearn.cross_validation import KFold
>>> X = np.array([[0., 0.], [1., 1.], [-1., -1.], [2., 2.]])
>>> Y = np.array([0, 1, 0, 1])

>>> kf = KFold(len(Y), 2, indices=False)
>>> print kf
sklearn.cross_validation.KFold(n=4, k=2)

156 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

>>> for train, test in kf:
... print train, test
[False False True True] [True True False False]
[True True False False] [False False True True]

Each fold is constituted by two arrays: the first one is related to the training set, and the second one to the test set.
Thus, one can create the training/test sets using:

>>> X_train, X_test, y_train, y_test = X[train], X[test], Y[train], Y[test]

If X or Y are scipy.sparse matrices, train and test need to be integer indices. It can be obtained by setting the parameter
indices to True when creating the cross-validation procedure:

>>> X = np.array([[0., 0.], [1., 1.], [-1., -1.], [2., 2.]])
>>> Y = np.array([0, 1, 0, 1])

>>> kf = KFold(len(Y), 2, indices=True)
>>> for train, test in kf:
... print train, test
[2 3] [0 1]
[0 1] [2 3]

Stratified K-Fold

StratifiedKFold is a variation of K-fold, which returns stratified folds, i.e which creates folds by preserving the
same percentage for each target class as in the complete set.

Example of stratified 2-fold:

>>> from sklearn.cross_validation import StratifiedKFold
>>> X = [[0., 0.],
... [1., 1.],
... [-1., -1.],
... [2., 2.],
... [3., 3.],
... [4., 4.],
... [0., 1.]]
>>> Y = [0, 0, 0, 1, 1, 1, 0]

>>> skf = StratifiedKFold(Y, 2)
>>> print skf
sklearn.cross_validation.StratifiedKFold(labels=[0 0 0 1 1 1 0], k=2)

>>> for train, test in skf:
... print train, test
[1 4 6] [0 2 3 5]
[0 2 3 5] [1 4 6]

Leave-One-Out - LOO

LeaveOneOut (or LOO) is a simple cross-validation. Each learning set is created by taking all the samples except
one, the test set being the sample left out. Thus, for n samples, we have n different learning sets and n different tests
set. This cross-validation procedure does not waste much data as only one sample is removed from the learning set:

>>> from sklearn.cross_validation import LeaveOneOut
>>> X = np.array([[0., 0.], [1., 1.], [-1., -1.], [2., 2.]])

1.5. Model Selection 157

scikit-learn user guide, Release 0.12-git

>>> Y = np.array([0, 1, 0, 1])

>>> loo = LeaveOneOut(len(Y))
>>> print loo
sklearn.cross_validation.LeaveOneOut(n=4)

>>> for train, test in loo:
... print train, test
[1 2 3] [0]
[0 2 3] [1]
[0 1 3] [2]
[0 1 2] [3]

Leave-P-Out - LPO

LeavePOut is very similar to Leave-One-Out, as it creates all the possible training/test sets by removing P samples
from the complete set.

Example of Leave-2-Out:

>>> from sklearn.cross_validation import LeavePOut
>>> X = [[0., 0.], [1., 1.], [-1., -1.], [2., 2.]]
>>> Y = [0, 1, 0, 1]

>>> lpo = LeavePOut(len(Y), 2)
>>> print lpo
sklearn.cross_validation.LeavePOut(n=4, p=2)

>>> for train, test in lpo:
... print train, test
[2 3] [0 1]
[1 3] [0 2]
[1 2] [0 3]
[0 3] [1 2]
[0 2] [1 3]
[0 1] [2 3]

Leave-One-Label-Out - LOLO

LeaveOneLabelOut (LOLO) is a cross-validation scheme which holds out the samples according to a third-party
provided label. This label information can be used to encode arbitrary domain specific stratifications of the samples as
integers.

Each training set is thus constituted by all the samples except the ones related to a specific label.

For example, in the cases of multiple experiments, LOLO can be used to create a cross-validation based on the different
experiments: we create a training set using the samples of all the experiments except one:

>>> from sklearn.cross_validation import LeaveOneLabelOut
>>> X = [[0., 0.], [1., 1.], [-1., -1.], [2., 2.]]
>>> Y = [0, 1, 0, 1]
>>> labels = [1, 1, 2, 2]

>>> lolo = LeaveOneLabelOut(labels)
>>> print lolo
sklearn.cross_validation.LeaveOneLabelOut(labels=[1, 1, 2, 2])

158 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

>>> for train, test in lolo:
... print train, test
[2 3] [0 1]
[0 1] [2 3]

Another common application is to use time information: for instance the labels could be the year of collection of the
samples and thus allow for cross-validation against time-based splits.

Leave-P-Label-Out

LeavePLabelOut is similar as Leave-One-Label-Out, but removes samples related to P labels for each training/test
set.

Example of Leave-2-Label Out:

>>> from sklearn.cross_validation import LeavePLabelOut
>>> X = [[0., 0.], [1., 1.], [-1., -1.], [2., 2.], [3., 3.], [4., 4.]]
>>> Y = [0, 1, 0, 1, 0, 1]
>>> labels = [1, 1, 2, 2, 3, 3]

>>> lplo = LeavePLabelOut(labels, 2)
>>> print lplo
sklearn.cross_validation.LeavePLabelOut(labels=[1, 1, 2, 2, 3, 3], p=2)

>>> for train, test in lplo:
... print train, test
[4 5] [0 1 2 3]
[2 3] [0 1 4 5]
[0 1] [2 3 4 5]

Random permutations cross-validation a.k.a. Shuffle & Split

ShuffleSplit

The ShuffleSplit iterator will generate a user defined number of independent train / test dataset splits. Samples
are first shuffled and then splitted into a pair of train and test sets.

It is possible to control the randomness for reproducibility of the results by explicitly seeding the random_state
pseudo random number generator.

Here is a usage example:

>>> ss = cross_validation.ShuffleSplit(5, n_iterations=3, test_size=0.25,
... random_state=0)
>>> len(ss)
3
>>> print ss
ShuffleSplit(5, n_iterations=3, test_size=0.25, indices=True, ...)

>>> for train_index, test_index in ss:
... print train_index, test_index
...
[1 3 4] [2 0]
[1 4 3] [0 2]
[4 0 2] [1 3]

1.5. Model Selection 159

scikit-learn user guide, Release 0.12-git

ShuffleSplit is thus a good alternative to KFold cross validation that allows a finer control on the number of
iterations and the proportion of samples in on each side of the train / test split.

See also

StratifiedShuffleSplit is a variation of ShuffleSplit, which returns stratified splits, i.e which creates splits
by preserving the same percentage for each target class as in the complete set.

Bootstrapping cross-validation

Bootstrap

Bootstrapping is a general statistics technique that iterates the computation of an estimator on a resampled dataset.

The Bootstrap iterator will generate a user defined number of independent train / test dataset splits. Samples are
then drawn (with replacement) on each side of the split. It furthermore possible to control the size of the train and test
subset to make their union smaller than the total dataset if it is very large.

Note: Contrary to other cross-validation strategies, bootstrapping will allow some samples to occur several times in
each splits.

>>> bs = cross_validation.Bootstrap(9, random_state=0)
>>> len(bs)
3
>>> print bs
Bootstrap(9, n_bootstraps=3, train_size=5, test_size=4, random_state=0)

>>> for train_index, test_index in bs:
... print train_index, test_index
...
[1 8 7 7 8] [0 3 0 5]
[5 4 2 4 2] [6 7 1 0]
[4 7 0 1 1] [5 3 6 5]

Cross validation and model selection

Cross validation iterators can also be used to directly perform model selection using Grid Search for the optimal
hyperparameters of the model. This is the topic if the next section: Grid Search: setting estimator parameters.

1.5.2 Grid Search: setting estimator parameters

Grid Search is used to optimize the parameters of a model (e.g. C, kernel and gamma for Support Vector Classifier,
alpha for Lasso, etc.) using an internal Cross-Validation: evaluating estimator performance scheme).

GridSearchCV

The main class for implementing hyperparameters grid search in scikit-learn is grid_search.GridSearchCV.
This class is passed a base model instance (for example sklearn.svm.SVC()) along with a grid of potential
hyper-parameter values such as:

160 Chapter 1. User Guide

http://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29

scikit-learn user guide, Release 0.12-git

[{’C’: [1, 10, 100, 1000], ’gamma’: [0.001, 0.0001], ’kernel’: [’rbf’]},
{’C’: [1, 10, 100, 1000], ’kernel’: [’linear’]}]

The grid_search.GridSearchCV instance implements the usual estimator API: when “fitting” it on a dataset
all the possible combinations of hyperparameter values are evaluated and the best combinations is retained.

Model selection: development and evaluation

Model selection with GridSearchCV can be seen as a way to use the labeled data to “train” the hyper-
parameters of the grid.
When evaluating the resulting model it is important to do it on held-out samples that were not seen during the grid
search process: it is recommended to split the data into a development set (to be fed to the GridSearchCV
instance) and an evaluation set to compute performance metrics.
This can be done by using the cross_validation.train_test_split utility function.

Examples

• See Parameter estimation using grid search with a nested cross-validation for an example of Grid Search com-
putation on the digits dataset.

• See Sample pipeline for text feature extraction and evaluation for an example of Grid Search coupling parame-
ters from a text documents feature extractor (n-gram count vectorizer and TF-IDF transformer) with a classifier
(here a linear SVM trained with SGD with either elastic net or L2 penalty) using a pipeline.Pipeline
instance.

Note: Computations can be run in parallel if your OS supports it, by using the keyword n_jobs=-1, see function
signature for more details.

Alternatives to brute force grid search

Model specific cross-validation

Some models can fit data for a range of value of some parameter almost as efficiently as fitting the estimator for a
single value of the parameter. This feature can be leveraged to perform a more efficient cross-validation used for
model selection of this parameter.

The most common parameter amenable to this strategy is the parameter encoding the strength of the regularizer. In
this case we say that we compute the regularization path of the estimator.

Here is the list of such models:

linear_model.RidgeCV([alphas, ...]) Ridge regression with built-in cross-validation.
linear_model.RidgeClassifierCV([alphas, ...]) Ridge classifier with built-in cross-validation.
linear_model.LarsCV([fit_intercept, ...]) Cross-validated Least Angle Regression model
linear_model.LassoLarsCV([fit_intercept, ...]) Cross-validated Lasso, using the LARS algorithm
linear_model.LassoCV([eps, n_alphas, ...]) Lasso linear model with iterative fitting along a regularization path
linear_model.ElasticNetCV([rho, eps, ...]) Elastic Net model with iterative fitting along a regularization path

sklearn.linear_model.RidgeCV

1.5. Model Selection 161

scikit-learn user guide, Release 0.12-git

class sklearn.linear_model.RidgeCV(alphas=array([0.1, 1., 10.]), fit_intercept=True, nor-
malize=False, score_func=None, loss_func=None, cv=None,
gcv_mode=None)

Ridge regression with built-in cross-validation.

By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-
validation.

Parameters alphas: numpy array of shape [n_alpha] :

Array of alpha values to try. Small positive values of alpha improve the conditioning of
the problem and reduce the variance of the estimates. Alpha corresponds to (2*C)^-1
in other linear models such as LogisticRegression or LinearSVC.

fit_intercept : boolean

Whether to calculate the intercept for this model. If set to false, no intercept will be
used in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional

If True, the regressors X are normalized

score_func: callable, optional :

function that takes 2 arguments and compares them in order to evaluate the performance
of prediction (big is good) if None is passed, the score of the estimator is maximized

loss_func: callable, optional :

function that takes 2 arguments and compares them in order to evaluate the performance
of prediction (small is good) if None is passed, the score of the estimator is maximized

cv : cross-validation generator, optional

If None, Generalized Cross-Validation (efficient Leave-One-Out) will be used.

See Also:

RidgeRidge regression

RidgeClassifierRidge classifier

RidgeCVRidge regression with built-in cross validation

Attributes

coef_ array, shape = [n_features] or
[n_classes, n_features]

Weight vector(s).

gcv_mode {None, ‘auto’, ‘svd’, eigen’}, op-
tional

Flag indicating which strategy to
use when performing Generalized
Cross-Validation. Options are:

’auto’ : use svd if n_samples > n_features, otherwise use eigen
’svd’ : force computation via singular value decomposition of X
’eigen’ : force computation via eigendecomposition of X^T X

The ‘auto’ mode is the default and
is intended to pick the cheaper op-
tion of the two depending upon the
shape of the training data.

162 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Methods

decision_function(X) Decision function of the linear model
fit(X, y[, sample_weight]) Fit Ridge regression model
get_params([deep]) Get parameters for the estimator
predict(X) Predict using the linear model
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

__init__(alphas=array([0.1, 1., 10.]), fit_intercept=True, normalize=False, score_func=None,
loss_func=None, cv=None, gcv_mode=None)

decision_function(X)
Decision function of the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

fit(X, y, sample_weight=1.0)
Fit Ridge regression model

Parameters X : array-like, shape = [n_samples, n_features]

Training data

y : array-like, shape = [n_samples] or [n_samples, n_responses]

Target values

sample_weight : float or array-like of shape [n_samples]

Sample weight

Returns self : Returns self.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict using the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

1.5. Model Selection 163

scikit-learn user guide, Release 0.12-git

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.linear_model.RidgeClassifierCV
class sklearn.linear_model.RidgeClassifierCV(alphas=array([0.1, 1., 10.]),

fit_intercept=True, normalize=False,
score_func=None, loss_func=None, cv=None,
class_weight=None)

Ridge classifier with built-in cross-validation.

By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-
validation. Currently, only the n_features > n_samples case is handled efficiently.

Parameters alphas: numpy array of shape [n_alpha] :

Array of alpha values to try. Small positive values of alpha improve the conditioning of
the problem and reduce the variance of the estimates. Alpha corresponds to (2*C)^-1 in
other linear models such as LogisticRegression or LinearSVC.

fit_intercept : boolean

Whether to calculate the intercept for this model. If set to false, no intercept will be
used in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional

If True, the regressors X are normalized

score_func: callable, optional :

function that takes 2 arguments and compares them in order to evaluate the performance
of prediction (big is good) if None is passed, the score of the estimator is maximized

loss_func: callable, optional :

function that takes 2 arguments and compares them in order to evaluate the performance
of prediction (small is good) if None is passed, the score of the estimator is maximized

cv : cross-validation generator, optional

If None, Generalized Cross-Validation (efficient Leave-One-Out) will be used.

class_weight : dict, optional

Weights associated with classes in the form {class_label : weight}. If not given, all
classes are supposed to have weight one.

See Also:

RidgeRidge regression

RidgeClassifierRidge classifier

164 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

RidgeCVRidge regression with built-in cross validation

Notes

For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is
implemented by taking advantage of the multi-variate response support in Ridge.

Methods

decision_function(X)
fit(X, y[, sample_weight, class_weight]) Fit the ridge classifier.
get_params([deep]) Get parameters for the estimator
predict(X) Predict target values according to the fitted model.
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

__init__(alphas=array([0.1, 1., 10.]), fit_intercept=True, normalize=False, score_func=None,
loss_func=None, cv=None, class_weight=None)

fit(X, y, sample_weight=1.0, class_weight=None)
Fit the ridge classifier.

Parameters X : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target values.

sample_weight : float or numpy array of shape [n_samples]

Sample weight

class_weight : dict, optional

Weights associated with classes in the form {class_label : weight}. If not given, all
classes are supposed to have weight one.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict target values according to the fitted model.

Parameters X : array-like, shape = [n_samples, n_features]

Returns y : array, shape = [n_samples]

1.5. Model Selection 165

scikit-learn user guide, Release 0.12-git

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.linear_model.LarsCV
class sklearn.linear_model.LarsCV(fit_intercept=True, verbose=False, max_iter=500, normal-

ize=True, precompute=’auto’, cv=None, max_n_alphas=1000,
n_jobs=1, eps=2.2204460492503131e-16, copy_X=True)

Cross-validated Least Angle Regression model

Parameters fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

verbose : boolean or integer, optional

Sets the verbosity amount

normalize : boolean, optional

If True, the regressors X are normalized

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let
us decide. The Gram matrix can also be passed as argument.

max_iter: integer, optional :

Maximum number of iterations to perform.

cv : crossvalidation generator, optional

see sklearn.cross_validation module. If None is passed, default to a 5-fold strategy

max_n_alphas : integer, optional

The maximum number of points on the path used to compute the residuals in the cross-
validation

n_jobs : integer, optional

166 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Number of CPUs to use during the cross validation. If ‘-1’, use all the CPUs

eps: float, optional :

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems.

See Also:

lars_path, LassoLARS, LassoLarsCV

Attributes

coef_ array, shape =
[n_features]

parameter vector (w in the fomulation
formula)

intercept_ float independent term in decision function.
coef_path: array, shape = [n_features,
n_alpha]

the varying values of the coefficients
along the path

Methods

decision_function(X) Decision function of the linear model
fit(X, y) Fit the model using X, y as training data.
get_params([deep]) Get parameters for the estimator
predict(X) Predict using the linear model
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

__init__(fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute=’auto’,
cv=None, max_n_alphas=1000, n_jobs=1, eps=2.2204460492503131e-16, copy_X=True)

decision_function(X)
Decision function of the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

fit(X, y)
Fit the model using X, y as training data.

Parameters X : array-like, shape = [n_samples, n_features]

Training data.

y : array-like, shape = [n_samples]

Target values.

Returns self : object

returns an instance of self.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

1.5. Model Selection 167

scikit-learn user guide, Release 0.12-git

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict using the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.linear_model.LassoLarsCV
class sklearn.linear_model.LassoLarsCV(fit_intercept=True, verbose=False, max_iter=500,

normalize=True, precompute=’auto’,
cv=None, max_n_alphas=1000, n_jobs=1,
eps=2.2204460492503131e-16, copy_X=True)

Cross-validated Lasso, using the LARS algorithm

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

Parameters fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

verbose : boolean or integer, optional

Sets the verbosity amount

normalize : boolean, optional

If True, the regressors X are normalized

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let
us decide. The Gram matrix can also be passed as argument.

168 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

max_iter: integer, optional :

Maximum number of iterations to perform.

cv : crossvalidation generator, optional

see sklearn.cross_validation module. If None is passed, default to a 5-fold strategy

max_n_alphas : integer, optional

The maximum number of points on the path used to compute the residuals in the cross-
validation

n_jobs : integer, optional

Number of CPUs to use during the cross validation. If ‘-1’, use all the CPUs

eps: float, optional :

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

See Also:

lars_path, LassoLars, LarsCV, LassoCV

Notes

The object solves the same problem as the LassoCV object. However, unlike the LassoCV, it find the relevent
alphas values by itself. In general, because of this property, it will be more stable. However, it is more fragile to
heavily multicollinear datasets.

It is more efficient than the LassoCV if only a small number of features are selected compared to the total
number, for instance if there are very few samples compared to the number of features.

Attributes

coef_ array, shape =
[n_features]

parameter vector (w in the fomulation formula)

intercept_ float independent term in decision function.
coef_path: array, shape =
[n_features, n_alpha]

the varying values of the coefficients along the path

alphas_: array, shape =
[n_alpha]

the different values of alpha along the path

cv_alphas: array, shape =
[n_cv_alphas]

all the values of alpha along the path for the different
folds

cv_mse_path_: array, shape =
[n_folds, n_cv_alphas]

the mean square error on left-out for each fold along
the path (alpha values given by cv_alphas)

Methods

decision_function(X) Decision function of the linear model
Continued on next page

1.5. Model Selection 169

scikit-learn user guide, Release 0.12-git

Table 1.6 – continued from previous page
fit(X, y) Fit the model using X, y as training data.
get_params([deep]) Get parameters for the estimator
predict(X) Predict using the linear model
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

__init__(fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute=’auto’,
cv=None, max_n_alphas=1000, n_jobs=1, eps=2.2204460492503131e-16, copy_X=True)

decision_function(X)
Decision function of the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

fit(X, y)
Fit the model using X, y as training data.

Parameters X : array-like, shape = [n_samples, n_features]

Training data.

y : array-like, shape = [n_samples]

Target values.

Returns self : object

returns an instance of self.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict using the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

170 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.linear_model.LassoCV
class sklearn.linear_model.LassoCV(eps=0.001, n_alphas=100, alphas=None, fit_intercept=True,

normalize=False, precompute=’auto’, max_iter=1000,
tol=0.0001, copy_X=True, cv=None, verbose=False)

Lasso linear model with iterative fitting along a regularization path

The best model is selected by cross-validation.

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

Parameters eps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3.

n_alphas : int, optional

Number of alphas along the regularization path

alphas : numpy array, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let
us decide. The Gram matrix can also be passed as argument.

max_iter: int, optional :

The maximum number of iterations

tol: float, optional :

The tolerance for the optimization: if the updates are smaller than ‘tol’, the optimization
code checks the dual gap for optimality and continues until it is smaller than tol.

cv : integer or crossvalidation generator, optional

If an integer is passed, it is the number of fold (default 3). Specific crossvalidation ob-
jects can be passed, see sklearn.cross_validation module for the list of possible objects

verbose : bool or integer

amount of verbosity

See Also:

lars_path, lasso_path, LassoLars, Lasso, LassoLarsCV

1.5. Model Selection 171

scikit-learn user guide, Release 0.12-git

Notes

See examples/linear_model/lasso_path_with_crossvalidation.py for an example.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a fortran
contiguous numpy array.

Attributes

alpha_: float The amount of penalization choosen by cross
validation

coef_ array, shape =
[n_features]

parameter vector (w in the fomulation
formula)

intercept_ float independent term in decision function.
mse_path_: array, shape =
[n_alphas, n_folds]

mean square error for the test set on each fold,
varying alpha

Methods

decision_function(X) Decision function of the linear model
fit(X, y) Fit linear model with coordinate descent along decreasing alphas
get_params([deep]) Get parameters for the estimator
path(X, y[, eps, n_alphas, alphas, ...]) Compute Lasso path with coordinate descent
predict(X) Predict using the linear model
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

__init__(eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precom-
pute=’auto’, max_iter=1000, tol=0.0001, copy_X=True, cv=None, verbose=False)

decision_function(X)
Decision function of the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

fit(X, y)
Fit linear model with coordinate descent along decreasing alphas using cross-validation

Parameters X : numpy array of shape [n_samples,n_features]

Training data. Pass directly as fortran contiguous data to avoid unnecessary memory
duplication

y : numpy array of shape [n_samples]

Target values

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

172 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

static path(X, y, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’, Xy=None,
fit_intercept=True, normalize=False, copy_X=True, verbose=False, **params)

Compute Lasso path with coordinate descent

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

Parameters X : numpy array of shape [n_samples,n_features]

Training data. Pass directly as fortran contiguous data to avoid unnecessary memory
duplication

y : numpy array of shape [n_samples]

Target values

eps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3

n_alphas : int, optional

Number of alphas along the regularization path

alphas : numpy array, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let
us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

fit_intercept : bool

Fit or not an intercept

normalize : boolean, optional

If True, the regressors X are normalized

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

verbose : bool or integer

Amount of verbosity

params : kwargs

keyword arguments passed to the Lasso objects

Returns models : a list of models along the regularization path

See Also:

lars_path, Lasso, LassoLars, LassoCV, LassoLarsCV,
sklearn.decomposition.sparse_encode

1.5. Model Selection 173

scikit-learn user guide, Release 0.12-git

Notes

See examples/linear_model/plot_lasso_coordinate_descent_path.py for an example.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
fortran contiguous numpy array.

predict(X)
Predict using the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.linear_model.ElasticNetCV
class sklearn.linear_model.ElasticNetCV(rho=0.5, eps=0.001, n_alphas=100, alphas=None,

fit_intercept=True, normalize=False, precom-
pute=’auto’, max_iter=1000, tol=0.0001, cv=None,
copy_X=True, verbose=0, n_jobs=1)

Elastic Net model with iterative fitting along a regularization path

The best model is selected by cross-validation.

Parameters rho : float, optional

float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For
rho = 0 the penalty is an L1 penalty. For rho = 1 it is an L2 penalty. For 0 < rho < 1,
the penalty is a combination of L1 and L2 This parameter can be a list, in which case
the different values are tested by cross-validation and the one giving the best prediction
score is used. Note that a good choice of list of values for rho is often to put more values
close to 1 (i.e. Lasso) and less close to 0 (i.e. Ridge), as in [.1, .5, .7, .9, .95, .99, 1]

eps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3.

n_alphas : int, optional

174 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Number of alphas along the regularization path

alphas : numpy array, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let
us decide. The Gram matrix can also be passed as argument.

max_iter: int, optional :

The maximum number of iterations

tol: float, optional :

The tolerance for the optimization: if the updates are smaller than ‘tol’, the optimization
code checks the dual gap for optimality and continues until it is smaller than tol.

cv : integer or crossvalidation generator, optional

If an integer is passed, it is the number of fold (default 3). Specific crossvalidation ob-
jects can be passed, see sklearn.cross_validation module for the list of possible objects

verbose : bool or integer

amount of verbosity

n_jobs : integer, optional

Number of CPUs to use during the cross validation. If ‘-1’, use all the CPUs. Note that
this is used only if multiple values for rho are given.

See Also:

enet_path, ElasticNet

Notes

See examples/linear_model/lasso_path_with_crossvalidation.py for an example.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a fortran
contiguous numpy array.

The parameter rho corresponds to alpha in the glmnet R package while alpha corresponds to the lambda param-
eter in glmnet. More specifically, the optimization objective is:

1 / (2 * n_samples) * ||y - Xw||^2_2 +
+ alpha * rho * ||w||_1 + 0.5 * alpha * (1 - rho) * ||w||^2_2

If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:

a * L1 + b * L2

for:

alpha = a + b and rho = a / (a + b)

1.5. Model Selection 175

scikit-learn user guide, Release 0.12-git

Attributes

alpha_: float The amount of penalization choosen by cross
validation

rho_: float The compromise between l1 and l2 penalization
choosen by cross validation

coef_ array, shape =
[n_features]

parameter vector (w in the fomulation formula)

intercept_ float independent term in decision function.
mse_path_: array, shape = [n_rho,
n_alpha, n_folds]

mean square error for the test set on each fold,
varying rho and alpha

Methods

decision_function(X) Decision function of the linear model
fit(X, y) Fit linear model with coordinate descent along decreasing alphas
get_params([deep]) Get parameters for the estimator
path(X, y[, rho, eps, n_alphas, alphas, ...]) Compute Elastic-Net path with coordinate descent
predict(X) Predict using the linear model
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

__init__(rho=0.5, eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False,
precompute=’auto’, max_iter=1000, tol=0.0001, cv=None, copy_X=True, verbose=0,
n_jobs=1)

decision_function(X)
Decision function of the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

fit(X, y)
Fit linear model with coordinate descent along decreasing alphas using cross-validation

Parameters X : numpy array of shape [n_samples,n_features]

Training data. Pass directly as fortran contiguous data to avoid unnecessary memory
duplication

y : numpy array of shape [n_samples]

Target values

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

static path(X, y, rho=0.5, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’, Xy=None,
fit_intercept=True, normalize=False, copy_X=True, verbose=False, **params)

Compute Elastic-Net path with coordinate descent

176 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

The Elastic Net optimization function is:

1 / (2 * n_samples) * ||y - Xw||^2_2 +
+ alpha * rho * ||w||_1 + 0.5 * alpha * (1 - rho) * ||w||^2_2

Parameters X : numpy array of shape [n_samples, n_features]

Training data. Pass directly as fortran contiguous data to avoid unnecessary memory
duplication

y : numpy array of shape [n_samples]

Target values

rho : float, optional

float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). rho=1
corresponds to the Lasso

eps : float

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3

n_alphas : int, optional

Number of alphas along the regularization path

alphas : numpy array, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let
us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

fit_intercept : bool

Fit or not an intercept

normalize : boolean, optional

If True, the regressors X are normalized

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

verbose : bool or integer

Amount of verbosity

params : kwargs

keyword arguments passed to the Lasso objects

Returns models : a list of models along the regularization path

See Also:

ElasticNet, ElasticNetCV

1.5. Model Selection 177

scikit-learn user guide, Release 0.12-git

Notes

See examples/plot_lasso_coordinate_descent_path.py for an example.

predict(X)
Predict using the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Information Criterion

Some models can offer an information-theoretic closed-form formula of the optimal estimate of the regularization
parameter by computing a single regularization path (instead of several when using cross-validation).

Here is the list of models benefitting from the Aikike Information Criterion (AIC) or the Bayesian Information Crite-
rion (BIC) for automated model selection:

linear_model.LassoLarsIC([criterion, ...]) Lasso model fit with Lars using BIC or AIC for model selection

sklearn.linear_model.LassoLarsIC
class sklearn.linear_model.LassoLarsIC(criterion=’aic’, fit_intercept=True, verbose=False,

normalize=True, precompute=’auto’, max_iter=500,
eps=2.2204460492503131e-16, copy_X=True)

Lasso model fit with Lars using BIC or AIC for model selection

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

AIC is the Akaike information criterion and BIC is the Bayes Information criterion. Such criteria are useful
to select the value of the regularization parameter by making a trade-off between the goodness of fit and the
complexity of the model. A good model should explain well the data while being simple.

178 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Parameters criterion: ‘bic’ | ‘aic’ :

The type of criterion to use.

fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

verbose : boolean or integer, optional

Sets the verbosity amount

normalize : boolean, optional

If True, the regressors X are normalized

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let
us decide. The Gram matrix can also be passed as argument.

max_iter: integer, optional :

Maximum number of iterations to perform. Can be used for early stopping.

eps: float, optional :

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems. Unlike the ‘tol’ parameter in some
iterative optimization-based algorithms, this parameter does not control the tolerance of
the optimization.

See Also:

lars_path, LassoLars, LassoLarsCV

Notes

The estimation of the number of degrees of freedom is given by:

“On the degrees of freedom of the lasso” Hui Zou, Trevor Hastie, and Robert Tibshirani Ann. Statist. Volume
35, Number 5 (2007), 2173-2192.

http://en.wikipedia.org/wiki/Akaike_information_criterion http://en.wikipedia.org/wiki/Bayesian_information_criterion

Examples

>>> from sklearn import linear_model
>>> clf = linear_model.LassoLarsIC(criterion=’bic’)
>>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111])
...
LassoLarsIC(copy_X=True, criterion=’bic’, eps=..., fit_intercept=True,

max_iter=500, normalize=True, precompute=’auto’,
verbose=False)

>>> print(clf.coef_)
[0. -1.11...]

1.5. Model Selection 179

http://en.wikipedia.org/wiki/Akaike_information_criterion
http://en.wikipedia.org/wiki/Bayesian_information_criterion

scikit-learn user guide, Release 0.12-git

Attributes

coef_ array, shape = [n_features] parameter vector (w in the fomulation formula)
intercept_ float independent term in decision function.
alpha_ float the alpha parameter chosen by the information criterion

Methods

decision_function(X) Decision function of the linear model
fit(X, y[, copy_X]) Fit the model using X, y as training data.
get_params([deep]) Get parameters for the estimator
predict(X) Predict using the linear model
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

__init__(criterion=’aic’, fit_intercept=True, verbose=False, normalize=True, precompute=’auto’,
max_iter=500, eps=2.2204460492503131e-16, copy_X=True)

decision_function(X)
Decision function of the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

fit(X, y, copy_X=True)
Fit the model using X, y as training data.

Parameters x : array-like, shape = [n_samples, n_features]

training data.

y : array-like, shape = [n_samples]

target values.

Returns self : object

returns an instance of self.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict using the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

180 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Out of Bag Estimates

When using ensemble methods base upon bagging, i.e. generating new training sets using sampling with replacement,
part of the training set remains unused. For each classifier in the ensemble, a different part of the training set is left
out.

This left out portion can be used to estimate the generalization error without having to rely on a separate validation
set. This estimate comes “for free” as no addictional data is needed and can be used for model selection.

This is currently implemented in the following classes:

ensemble.RandomForestClassifier([...]) A random forest classifier.
ensemble.RandomForestRegressor([...]) A random forest regressor.
ensemble.ExtraTreesClassifier([...]) An extra-trees classifier.
ensemble.ExtraTreesRegressor([n_estimators, ...]) An extra-trees regressor.
ensemble.GradientBoostingClassifier([loss, ...]) Gradient Boosting for classification.
ensemble.GradientBoostingRegressor([loss, ...]) Gradient Boosting for regression.

sklearn.ensemble.RandomForestClassifier
class sklearn.ensemble.RandomForestClassifier(n_estimators=10, criterion=’gini’,

max_depth=None, min_samples_split=1,
min_samples_leaf=1, min_density=0.1,
max_features=’auto’, bootstrap=True, com-
pute_importances=False, oob_score=False,
n_jobs=1, random_state=None, verbose=0)

A random forest classifier.

A random forest is a meta estimator that fits a number of classifical decision trees on various sub-samples of the
dataset and use averaging to improve the predictive accuracy and control over-fitting.

Parameters n_estimators : integer, optional (default=10)

The number of trees in the forest.

criterion : string, optional (default=”gini”)

1.5. Model Selection 181

scikit-learn user guide, Release 0.12-git

The function to measure the quality of a split. Supported criteria are “gini” for the Gini
impurity and “entropy” for the information gain. Note: this parameter is tree-specific.

max_depth : integer or None, optional (default=None)

The maximum depth of the tree. If None, then nodes are expanded until all leaves
are pure or until all leaves contain less than min_samples_split samples. Note: this
parameter is tree-specific.

min_samples_split : integer, optional (default=1)

The minimum number of samples required to split an internal node. Note: this parame-
ter is tree-specific.

min_samples_leaf : integer, optional (default=1)

The minimum number of samples in newly created leaves. A split is discarded if after
the split, one of the leaves would contain less then min_samples_leaf samples.
Note: this parameter is tree-specific.

min_density : float, optional (default=0.1)

This parameter controls a trade-off in an optimization heuristic. It controls the minimum
density of the sample_mask (i.e. the fraction of samples in the mask). If the density falls
below this threshold the mask is recomputed and the input data is packed which results
in data copying. If min_density equals to one, the partitions are always represented
as copies of the original data. Otherwise, partitions are represented as bit masks (aka
sample masks). Note: this parameter is tree-specific.

max_features : int, string or None, optional (default=”auto”)

The number of features to consider when looking for the best split:

•If “auto”, then max_features=sqrt(n_features) on classification tasks and
max_features=n_features on regression problems.

•If “sqrt”, then max_features=sqrt(n_features).

•If “log2”, then max_features=log2(n_features).

•If None, then max_features=n_features.

Note: this parameter is tree-specific.

bootstrap : boolean, optional (default=True)

Whether bootstrap samples are used when building trees.

compute_importances : boolean, optional (default=True)

Whether feature importances are computed and stored into the
feature_importances_ attribute when calling fit.

oob_score : bool

Whether to use out-of-bag samples to estimate the generalization error.

n_jobs : integer, optional (default=1)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number
of cores.

random_state : int, RandomState instance or None, optional (default=None)

182 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

verbose : int, optional (default=0)

Controlls the verbosity of the tree building process.

See Also:

DecisionTreeClassifier, ExtraTreesClassifier

References

[R59]

Attributes

fea-
ture_importances_

array, shape = [n_features] The feature importances (the higher, the more
important the feature).

oob_score_ float Score of the training dataset obtained using an
out-of-bag estimate.

oob_decision_function_array, shape = [n_samples,
n_classes]

Decision function computed with out-of-bag estimate
on the training set.

Methods

fit(X, y) Build a forest of trees from the training set (X, y).
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
predict(X) Predict class for X.
predict_log_proba(X) Predict class log-probabilities for X.
predict_proba(X) Predict class probabilities for X.
score(X, y) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of the estimator.
transform(X[, threshold]) Reduce X to its most important features.

__init__(n_estimators=10, criterion=’gini’, max_depth=None, min_samples_split=1,
min_samples_leaf=1, min_density=0.1, max_features=’auto’, bootstrap=True, com-
pute_importances=False, oob_score=False, n_jobs=1, random_state=None, verbose=0)

fit(X, y)
Build a forest of trees from the training set (X, y).

Parameters X : array-like of shape = [n_samples, n_features]

The training input samples.

y : array-like, shape = [n_samples]

The target values (integers that correspond to classes in classification, real numbers in
regression).

Returns self : object

1.5. Model Selection 183

scikit-learn user guide, Release 0.12-git

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict class for X.

The predicted class of an input sample is computed as the majority prediction of the trees in the forest.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns y : array of shape = [n_samples]

The predicted classes.

predict_log_proba(X)
Predict class log-probabilities for X.

The predicted class log-probabilities of an input sample is computed as the mean predicted class log-
probabilities of the trees in the forest.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns p : array of shape = [n_samples]

The class log-probabilities of the input samples. Classes are ordered by arithmetical
order.

predict_proba(X)
Predict class probabilities for X.

The predicted class probabilities of an input sample is computed as the mean predicted class probabilities
of the trees in the forest.

184 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns p : array of shape = [n_samples]

The class probabilities of the input samples. Classes are ordered by arithmetical order.

score(X, y)
Returns the mean accuracy on the given test data and labels.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, threshold=None)
Reduce X to its most important features.

Parameters X : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold : string, float or None, optional (default=None)

The threshold value to use for feature selection. Features whose importance is greater
or equal are kept while the others are discarded. If “median” (resp. “mean”), then the
threshold value is the median (resp. the mean) of the feature importances. A scaling
factor (e.g., “1.25*mean”) may also be used. If None and if available, the object attribute
threshold is used. Otherwise, “mean” is used by default.

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

sklearn.ensemble.RandomForestRegressor
class sklearn.ensemble.RandomForestRegressor(n_estimators=10, criterion=’mse’,

max_depth=None, min_samples_split=1,
min_samples_leaf=1, min_density=0.1,
max_features=’auto’, bootstrap=True, com-
pute_importances=False, oob_score=False,
n_jobs=1, random_state=None, verbose=0)

A random forest regressor.

A random forest is a meta estimator that fits a number of classifical decision trees on various sub-samples of the
dataset and use averaging to improve the predictive accuracy and control over-fitting.

Parameters n_estimators : integer, optional (default=10)

The number of trees in the forest.

1.5. Model Selection 185

scikit-learn user guide, Release 0.12-git

criterion : string, optional (default=”mse”)

The function to measure the quality of a split. The only supported criterion is “mse” for
the mean squared error. Note: this parameter is tree-specific.

max_depth : integer or None, optional (default=None)

The maximum depth of the tree. If None, then nodes are expanded until all leaves
are pure or until all leaves contain less than min_samples_split samples. Note: this
parameter is tree-specific.

min_samples_split : integer, optional (default=1)

The minimum number of samples required to split an internal node. Note: this parame-
ter is tree-specific.

min_samples_leaf : integer, optional (default=1)

The minimum number of samples in newly created leaves. A split is discarded if after
the split, one of the leaves would contain less then min_samples_leaf samples.
Note: this parameter is tree-specific.

min_density : float, optional (default=0.1)

This parameter controls a trade-off in an optimization heuristic. It controls the minimum
density of the sample_mask (i.e. the fraction of samples in the mask). If the density falls
below this threshold the mask is recomputed and the input data is packed which results
in data copying. If min_density equals to one, the partitions are always represented
as copies of the original data. Otherwise, partitions are represented as bit masks (aka
sample masks). Note: this parameter is tree-specific.

max_features : int, string or None, optional (default=”auto”)

The number of features to consider when looking for the best split:

•If “auto”, then max_features=sqrt(n_features) on classification tasks and
max_features=n_features on regression problems.

•If “sqrt”, then max_features=sqrt(n_features).

•If “log2”, then max_features=log2(n_features).

•If None, then max_features=n_features.

Note: this parameter is tree-specific.

bootstrap : boolean, optional (default=True)

Whether bootstrap samples are used when building trees.

compute_importances : boolean, optional (default=True)

Whether feature importances are computed and stored into the
feature_importances_ attribute when calling fit.

oob_score : bool

whether to use out-of-bag samples to estimate the generalization error.

n_jobs : integer, optional (default=1)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number
of cores.

random_state : int, RandomState instance or None, optional (default=None)

186 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

verbose : int, optional (default=0)

Controlls the verbosity of the tree building process.

See Also:

DecisionTreeRegressor, ExtraTreesRegressor

References

[R60]

Attributes

fea-
ture_importances_

array of shape =
[n_features]

The feature mportances (the higher, the more important
the feature).

oob_score_ float Score of the training dataset obtained using an out-of-bag
estimate.

oob_prediction_ array, shape =
[n_samples]

Prediction computed with out-of-bag estimate on the
training set.

Methods

fit(X, y) Build a forest of trees from the training set (X, y).
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
predict(X) Predict regression target for X.
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.
transform(X[, threshold]) Reduce X to its most important features.

__init__(n_estimators=10, criterion=’mse’, max_depth=None, min_samples_split=1,
min_samples_leaf=1, min_density=0.1, max_features=’auto’, bootstrap=True, com-
pute_importances=False, oob_score=False, n_jobs=1, random_state=None, verbose=0)

fit(X, y)
Build a forest of trees from the training set (X, y).

Parameters X : array-like of shape = [n_samples, n_features]

The training input samples.

y : array-like, shape = [n_samples]

The target values (integers that correspond to classes in classification, real numbers in
regression).

Returns self : object

Returns self.

1.5. Model Selection 187

scikit-learn user guide, Release 0.12-git

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict regression target for X.

The predicted regression target of an input sample is computed as the mean predicted regression targets of
the trees in the forest.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns y: array of shape = [n_samples] :

The predicted values.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

188 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Returns self :

transform(X, threshold=None)
Reduce X to its most important features.

Parameters X : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold : string, float or None, optional (default=None)

The threshold value to use for feature selection. Features whose importance is greater
or equal are kept while the others are discarded. If “median” (resp. “mean”), then the
threshold value is the median (resp. the mean) of the feature importances. A scaling
factor (e.g., “1.25*mean”) may also be used. If None and if available, the object attribute
threshold is used. Otherwise, “mean” is used by default.

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

sklearn.ensemble.ExtraTreesClassifier
class sklearn.ensemble.ExtraTreesClassifier(n_estimators=10, criterion=’gini’,

max_depth=None, min_samples_split=1,
min_samples_leaf=1, min_density=0.1,
max_features=’auto’, bootstrap=False, com-
pute_importances=False, oob_score=False,
n_jobs=1, random_state=None, verbose=0)

An extra-trees classifier.

This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on
various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting.

Parameters n_estimators : integer, optional (default=10)

The number of trees in the forest.

criterion : string, optional (default=”gini”)

The function to measure the quality of a split. Supported criteria are “gini” for the Gini
impurity and “entropy” for the information gain. Note: this parameter is tree-specific.

max_depth : integer or None, optional (default=None)

The maximum depth of the tree. If None, then nodes are expanded until all leaves
are pure or until all leaves contain less than min_samples_split samples. Note: this
parameter is tree-specific.

min_samples_split : integer, optional (default=1)

The minimum number of samples required to split an internal node. Note: this parame-
ter is tree-specific.

min_samples_leaf : integer, optional (default=1)

The minimum number of samples in newly created leaves. A split is discarded if after
the split, one of the leaves would contain less then min_samples_leaf samples.
Note: this parameter is tree-specific.

min_density : float, optional (default=0.1)

This parameter controls a trade-off in an optimization heuristic. It controls the minimum
density of the sample_mask (i.e. the fraction of samples in the mask). If the density falls

1.5. Model Selection 189

scikit-learn user guide, Release 0.12-git

below this threshold the mask is recomputed and the input data is packed which results
in data copying. If min_density equals to one, the partitions are always represented
as copies of the original data. Otherwise, partitions are represented as bit masks (aka
sample masks). Note: this parameter is tree-specific.

max_features : int, string or None, optional (default=”auto”)

The number of features to consider when looking for the best split.

•If “auto”, then max_features=sqrt(n_features) on classification tasks and
max_features=n_features on regression problems.

•If “sqrt”, then max_features=sqrt(n_features).

•If “log2”, then max_features=log2(n_features).

•If None, then max_features=n_features.

Note: this parameter is tree-specific.

bootstrap : boolean, optional (default=False)

Whether bootstrap samples are used when building trees.

compute_importances : boolean, optional (default=True)

Whether feature importances are computed and stored into the
feature_importances_ attribute when calling fit.

oob_score : bool

Whether to use out-of-bag samples to estimate the generalization error.

n_jobs : integer, optional (default=1)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number
of cores.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

verbose : int, optional (default=0)

Controlls the verbosity of the tree building process.

See Also:

sklearn.tree.ExtraTreeClassifierBase classifier for this ensemble.

RandomForestClassifierEnsemble Classifier based on trees with optimal splits.

References

[R57]

190 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Attributes

fea-
ture_importances_

array of shape =
[n_features]

The feature mportances (the higher, the more
important the feature).

oob_score_ float Score of the training dataset obtained using an
out-of-bag estimate.

oob_decision_function_array, shape = [n_samples,
n_classes]

Decision function computed with out-of-bag estimate
on the training set.

Methods

fit(X, y) Build a forest of trees from the training set (X, y).
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
predict(X) Predict class for X.
predict_log_proba(X) Predict class log-probabilities for X.
predict_proba(X) Predict class probabilities for X.
score(X, y) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of the estimator.
transform(X[, threshold]) Reduce X to its most important features.

__init__(n_estimators=10, criterion=’gini’, max_depth=None, min_samples_split=1,
min_samples_leaf=1, min_density=0.1, max_features=’auto’, bootstrap=False, com-
pute_importances=False, oob_score=False, n_jobs=1, random_state=None, verbose=0)

fit(X, y)
Build a forest of trees from the training set (X, y).

Parameters X : array-like of shape = [n_samples, n_features]

The training input samples.

y : array-like, shape = [n_samples]

The target values (integers that correspond to classes in classification, real numbers in
regression).

Returns self : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

1.5. Model Selection 191

scikit-learn user guide, Release 0.12-git

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict class for X.

The predicted class of an input sample is computed as the majority prediction of the trees in the forest.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns y : array of shape = [n_samples]

The predicted classes.

predict_log_proba(X)
Predict class log-probabilities for X.

The predicted class log-probabilities of an input sample is computed as the mean predicted class log-
probabilities of the trees in the forest.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns p : array of shape = [n_samples]

The class log-probabilities of the input samples. Classes are ordered by arithmetical
order.

predict_proba(X)
Predict class probabilities for X.

The predicted class probabilities of an input sample is computed as the mean predicted class probabilities
of the trees in the forest.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns p : array of shape = [n_samples]

The class probabilities of the input samples. Classes are ordered by arithmetical order.

score(X, y)
Returns the mean accuracy on the given test data and labels.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns z : float

192 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, threshold=None)
Reduce X to its most important features.

Parameters X : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold : string, float or None, optional (default=None)

The threshold value to use for feature selection. Features whose importance is greater
or equal are kept while the others are discarded. If “median” (resp. “mean”), then the
threshold value is the median (resp. the mean) of the feature importances. A scaling
factor (e.g., “1.25*mean”) may also be used. If None and if available, the object attribute
threshold is used. Otherwise, “mean” is used by default.

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

sklearn.ensemble.ExtraTreesRegressor
class sklearn.ensemble.ExtraTreesRegressor(n_estimators=10, criterion=’mse’,

max_depth=None, min_samples_split=1,
min_samples_leaf=1, min_density=0.1,
max_features=’auto’, bootstrap=False, com-
pute_importances=False, oob_score=False,
n_jobs=1, random_state=None, verbose=0)

An extra-trees regressor.

This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on
various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting.

Parameters n_estimators : integer, optional (default=10)

The number of trees in the forest.

criterion : string, optional (default=”mse”)

The function to measure the quality of a split. The only supported criterion is “mse” for
the mean squared error. Note: this parameter is tree-specific.

max_depth : integer or None, optional (default=None)

The maximum depth of the tree. If None, then nodes are expanded until all leaves
are pure or until all leaves contain less than min_samples_split samples. Note: this
parameter is tree-specific.

min_samples_split : integer, optional (default=1)

The minimum number of samples required to split an internal node. Note: this parame-
ter is tree-specific.

min_samples_leaf : integer, optional (default=1)

1.5. Model Selection 193

scikit-learn user guide, Release 0.12-git

The minimum number of samples in newly created leaves. A split is discarded if after
the split, one of the leaves would contain less then min_samples_leaf samples.
Note: this parameter is tree-specific.

min_density : float, optional (default=0.1)

This parameter controls a trade-off in an optimization heuristic. It controls the minimum
density of the sample_mask (i.e. the fraction of samples in the mask). If the density falls
below this threshold the mask is recomputed and the input data is packed which results
in data copying. If min_density equals to one, the partitions are always represented
as copies of the original data. Otherwise, partitions are represented as bit masks (aka
sample masks). Note: this parameter is tree-specific.

max_features : int, string or None, optional (default=”auto”)

The number of features to consider when looking for the best split:

•If “auto”, then max_features=sqrt(n_features) on classification tasks and
max_features=n_features on regression problems.

•If “sqrt”, then max_features=sqrt(n_features).

•If “log2”, then max_features=log2(n_features).

•If None, then max_features=n_features.

Note: this parameter is tree-specific.

bootstrap : boolean, optional (default=False)

Whether bootstrap samples are used when building trees. Note: this parameter is tree-
specific.

compute_importances : boolean, optional (default=True)

Whether feature importances are computed and stored into the
feature_importances_ attribute when calling fit.

oob_score : bool

Whether to use out-of-bag samples to estimate the generalization error.

n_jobs : integer, optional (default=1)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number
of cores.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

verbose : int, optional (default=0)

Controlls the verbosity of the tree building process.

See Also:

sklearn.tree.ExtraTreeRegressorBase estimator for this ensemble.

RandomForestRegressorEnsemble regressor using trees with optimal splits.

194 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

References

[R58]

Attributes

fea-
ture_importances_

array of shape =
[n_features]

The feature mportances (the higher, the more important
the feature).

oob_score_ float Score of the training dataset obtained using an out-of-bag
estimate.

oob_prediction_ array, shape =
[n_samples]

Prediction computed with out-of-bag estimate on the
training set.

Methods

fit(X, y) Build a forest of trees from the training set (X, y).
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
predict(X) Predict regression target for X.
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.
transform(X[, threshold]) Reduce X to its most important features.

__init__(n_estimators=10, criterion=’mse’, max_depth=None, min_samples_split=1,
min_samples_leaf=1, min_density=0.1, max_features=’auto’, bootstrap=False, com-
pute_importances=False, oob_score=False, n_jobs=1, random_state=None, verbose=0)

fit(X, y)
Build a forest of trees from the training set (X, y).

Parameters X : array-like of shape = [n_samples, n_features]

The training input samples.

y : array-like, shape = [n_samples]

The target values (integers that correspond to classes in classification, real numbers in
regression).

Returns self : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

1.5. Model Selection 195

scikit-learn user guide, Release 0.12-git

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict regression target for X.

The predicted regression target of an input sample is computed as the mean predicted regression targets of
the trees in the forest.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns y: array of shape = [n_samples] :

The predicted values.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, threshold=None)
Reduce X to its most important features.

Parameters X : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold : string, float or None, optional (default=None)

196 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

The threshold value to use for feature selection. Features whose importance is greater
or equal are kept while the others are discarded. If “median” (resp. “mean”), then the
threshold value is the median (resp. the mean) of the feature importances. A scaling
factor (e.g., “1.25*mean”) may also be used. If None and if available, the object attribute
threshold is used. Otherwise, “mean” is used by default.

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

sklearn.ensemble.GradientBoostingClassifier
class sklearn.ensemble.GradientBoostingClassifier(loss=’deviance’, learn_rate=0.1,

n_estimators=100, subsam-
ple=1.0, min_samples_split=1,
min_samples_leaf=1, max_depth=3,
init=None, random_state=None)

Gradient Boosting for classification.

GB builds an additive model in a forward stage-wise fashion; it allows for the optimization of arbitrary differen-
tiable loss functions. In each stage n_classes_ regression trees are fit on the negative gradient of the binomial
or multinomial deviance loss function. Binary classification is a special case where only a single regression tree
is induced.

Parameters loss : {‘deviance’, ‘ls’}, optional (default=’deviance’)

loss function to be optimized. ‘deviance’ refers to deviance (= logistic regression) for
classification with probabilistic outputs. ‘ls’ refers to least squares regression.

learn_rate : float, optional (default=0.1)

learning rate shrinks the contribution of each tree by learn_rate. There is a trade-off
between learn_rate and n_estimators.

n_estimators : int (default=100)

The number of boosting stages to perform. Gradient boosting is fairly robust to over-
fitting so a large number usually results in better performance.

max_depth : integer, optional (default=3)

maximum depth of the individual regression estimators. The maximum depth limits the
number of nodes in the tree. Tune this parameter for best performance; the best value
depends on the interaction of the input variables.

min_samples_split : integer, optional (default=1)

The minimum number of samples required to split an internal node.

min_samples_leaf : integer, optional (default=1)

The minimum number of samples required to be at a leaf node.

subsample : float, optional (default=1.0)

The fraction of samples to be used for fitting the individual base learners. If smaller than
1.0 this results in Stochastic Gradient Boosting. subsample interacts with the parameter
n_estimators.

See Also:

sklearn.tree.DecisionTreeClassifier, RandomForestClassifier

1.5. Model Selection 197

scikit-learn user guide, Release 0.12-git

References

J. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The Annals of Statistics, Vol. 29,
No. 5, 2001.

10.Friedman, Stochastic Gradient Boosting, 1999

T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical Learning Ed. 2, Springer, 2009.

Examples

>>> samples = [[0, 0, 2], [1, 0, 0]]
>>> labels = [0, 1]
>>> from sklearn.ensemble import GradientBoostingClassifier
>>> gb = GradientBoostingClassifier().fit(samples, labels)
>>> print gb.predict([[0.5, 0, 0]])
[0]

Methods

fit(X, y) Fit the gradient boosting model.
fit_stage(i, X, X_argsorted, y, y_pred, ...) Fit another stage of n_classes_ trees to the boosting model.
get_params([deep]) Get parameters for the estimator
predict(X) Predict class for X.
predict_proba(X) Predict class probabilities for X.
score(X, y) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of the estimator.
staged_decision_function(X) Compute decision function for X.

__init__(loss=’deviance’, learn_rate=0.1, n_estimators=100, subsample=1.0, min_samples_split=1,
min_samples_leaf=1, max_depth=3, init=None, random_state=None)

fit(X, y)
Fit the gradient boosting model.

Parameters X : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features. Use fortran-style to avoid memory copies.

y : array-like, shape = [n_samples]

Target values (integers in classification, real numbers in regression) For classification,
labels must correspond to classes 0, 1, ..., n_classes_-1

Returns self : object

Returns self.

fit_stage(i, X, X_argsorted, y, y_pred, sample_mask)
Fit another stage of n_classes_ trees to the boosting model.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

198 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict class for X.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns y : array of shape = [n_samples]

The predicted classes.

predict_proba(X)
Predict class probabilities for X.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns p : array of shape = [n_samples]

The class probabilities of the input samples. Classes are ordered by arithmetical order.

score(X, y)
Returns the mean accuracy on the given test data and labels.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

staged_decision_function(X)
Compute decision function for X.

This method allows monitoring (i.e. determine error on testing set) after each stage.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns f : array of shape = [n_samples, n_classes]

The decision function of the input samples. Classes are ordered by arithmetical order.
Regression and binary classification are special cases with n_classes == 1.

sklearn.ensemble.GradientBoostingRegressor

1.5. Model Selection 199

scikit-learn user guide, Release 0.12-git

class sklearn.ensemble.GradientBoostingRegressor(loss=’ls’, learn_rate=0.1,
n_estimators=100, subsam-
ple=1.0, min_samples_split=1,
min_samples_leaf=1, max_depth=3,
init=None, random_state=None)

Gradient Boosting for regression.

GB builds an additive model in a forward stage-wise fashion; it allows for the optimization of arbitrary differ-
entiable loss functions. In each stage a regression tree is fit on the negative gradient of the given loss function.

Parameters loss : {‘ls’, ‘lad’}, optional (default=’ls’)

loss function to be optimized. ‘ls’ refers to least squares regression. ‘lad’ (least absolute
deviation) is a highly robust loss function soley based on order information of the input
variables.

learn_rate : float, optional (default=0.1)

learning rate shrinks the contribution of each tree by learn_rate. There is a trade-off
between learn_rate and n_estimators.

n_estimators : int (default=100)

The number of boosting stages to perform. Gradient boosting is fairly robust to over-
fitting so a large number usually results in better performance.

max_depth : integer, optional (default=3)

maximum depth of the individual regression estimators. The maximum depth limits the
number of nodes in the tree. Tune this parameter for best performance; the best value
depends on the interaction of the input variables.

min_samples_split : integer, optional (default=1)

The minimum number of samples required to split an internal node.

min_samples_leaf : integer, optional (default=1)

The minimum number of samples required to be at a leaf node.

subsample : float, optional (default=1.0)

The fraction of samples to be used for fitting the individual base learners. If smaller than
1.0 this results in Stochastic Gradient Boosting. subsample interacts with the parameter
n_estimators.

See Also:

sklearn.tree.DecisionTreeRegressor, RandomForestRegressor

References

J. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The Annals of Statistics, Vol. 29,
No. 5, 2001.

10.Friedman, Stochastic Gradient Boosting, 1999

T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical Learning Ed. 2, Springer, 2009.

200 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Examples

>>> samples = [[0, 0, 2], [1, 0, 0]]
>>> labels = [0, 1]
>>> from sklearn.ensemble import GradientBoostingRegressor
>>> gb = GradientBoostingRegressor().fit(samples, labels)
>>> print gb.predict([[0, 0, 0]])
[1.32806997e-05]

Attributes

fea-
ture_importances_

array, shape
=
[n_features]

The feature importances (the higher, the more important the feature).

oob_score_ array, shape
=
[n_estimators]

Score of the training dataset obtained using an out-of-bag estimate. The i-th
score oob_score_[i] is the deviance (= loss) of the model at iteration i
on the out-of-bag sample.

train_score_ array, shape
=
[n_estimators]

The i-th score train_score_[i] is the deviance (= loss) of the model at
iteration i on the in-bag sample. If subsample == 1 this is the deviance
on the training data.

Methods

fit(X, y) Fit the gradient boosting model.
fit_stage(i, X, X_argsorted, y, y_pred, ...) Fit another stage of n_classes_ trees to the boosting model.
get_params([deep]) Get parameters for the estimator
predict(X) Predict regression target for X.
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.
staged_decision_function(X) Compute decision function for X.
staged_predict(X) Predict regression target at each stage for X.

__init__(loss=’ls’, learn_rate=0.1, n_estimators=100, subsample=1.0, min_samples_split=1,
min_samples_leaf=1, max_depth=3, init=None, random_state=None)

fit(X, y)
Fit the gradient boosting model.

Parameters X : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features. Use fortran-style to avoid memory copies.

y : array-like, shape = [n_samples]

Target values (integers in classification, real numbers in regression) For classification,
labels must correspond to classes 0, 1, ..., n_classes_-1

Returns self : object

Returns self.

fit_stage(i, X, X_argsorted, y, y_pred, sample_mask)
Fit another stage of n_classes_ trees to the boosting model.

1.5. Model Selection 201

scikit-learn user guide, Release 0.12-git

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict regression target for X.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns y: array of shape = [n_samples] :

The predicted values.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

staged_decision_function(X)
Compute decision function for X.

This method allows monitoring (i.e. determine error on testing set) after each stage.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns f : array of shape = [n_samples, n_classes]

The decision function of the input samples. Classes are ordered by arithmetical order.
Regression and binary classification are special cases with n_classes == 1.

staged_predict(X)
Predict regression target at each stage for X.

This method allows monitoring (i.e. determine error on testing set) after each stage.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns y : array of shape = [n_samples]

202 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

The predicted value of the input samples.

1.5.3 Pipeline: chaining estimators

Pipeline can be used to chain multiple estimators into one. This is useful as there is often a fixed sequence of
steps in processing the data, for example feature selection, normalization and classification. Pipeline serves two
purposes here:

Convenience: You only have to call fit and predict once on your data to fit a whole sequence of
estimators.

Joint parameter selection: You can grid search over parameters of all estimators in the pipeline at once.

For estimators to be usable within a pipeline, all except the last one need to have a transform function. Otherwise,
the dataset can not be passed through this estimator.

Usage

The Pipeline is build using a list of (key, value) pairs, where the key a string containing the name you want
to give this step and value is an estimator object:

>>> from sklearn.pipeline import Pipeline
>>> from sklearn.svm import SVC
>>> from sklearn.decomposition import PCA
>>> estimators = [(’reduce_dim’, PCA()), (’svm’, SVC())]
>>> clf = Pipeline(estimators)
>>> clf
Pipeline(steps=[(’reduce_dim’, PCA(copy=True, n_components=None,

whiten=False)), (’svm’, SVC(C=1.0, cache_size=200, class_weight=None,
coef0=0.0, degree=3, gamma=0.0, kernel=’rbf’, probability=False,
shrinking=True, tol=0.001, verbose=False))])

The estimators of the pipeline are stored as a list in the steps attribute:

>>> clf.steps[0]
(’reduce_dim’, PCA(copy=True, n_components=None, whiten=False))

and as a dict in named_steps:

>>> clf.named_steps[’reduce_dim’]
PCA(copy=True, n_components=None, whiten=False)

Parameters of the estimators in the pipeline can be accessed using the <estimator>__<parameter> syntax:

>>> clf.set_params(svm__C=10) # NORMALIZE_WHITESPACE
Pipeline(steps=[(’reduce_dim’, PCA(copy=True, n_components=None, whiten=False)), (’svm’, SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,

kernel=’rbf’, probability=False, shrinking=True, tol=0.001,
verbose=False))])

This is particularly important for doing grid searches:

>>> from sklearn.grid_search import GridSearchCV
>>> params = dict(reduce_dim__n_components=[2, 5, 10],
... svm__C=[0.1, 10, 100])
>>> grid_search = GridSearchCV(clf, param_grid=params)

1.5. Model Selection 203

scikit-learn user guide, Release 0.12-git

Examples:

• Pipeline Anova SVM
• Sample pipeline for text feature extraction and evaluation
• Pipelining: chaining a PCA and a logistic regression
• Explicit feature map approximation for RBF kernels
• SVM-Anova: SVM with univariate feature selection

Notes

Calling fit on the pipeline is the same as calling fit on each estimator in turn, transform the input and pass it
on to the next step. The pipeline has all the methods that the last estimator in the pipline has, i.e. if the last estimator
is a classifier, the Pipeline can be used as a classifier. If the last estimator is a transformer, again, so is the pipeline.

1.6 Dataset transformations

1.6.1 Preprocessing data

The sklearn.preprocessing package provides several common utility functions and transformer classes to
change raw feature vectors into a representation that is more suitable for the downstream estimators.

Standardization or Mean Removal and Variance Scaling

Standardization of datasets is a common requirement for many machine learning estimators implemented in the
scikit: they might behave badly if the individual feature do not more or less look like standard normally distributed
data: Gaussian with zero mean and unit variance.

In practice we often ignore the shape of the distribution and just transform the data to center it by removing the mean
value of each feature, then scale it by dividing non-constant features by their standard deviation.

For instance, many elements used in the objective function of a learning algorithm (such as the RBF kernel of Support
Vector Machines or the l1 and l2 regularizers of linear models) assume that all features are centered around zero and
have variance in the same order. If a feature has a variance that is orders of magnitude larger that others, it might
dominate the objective function and make the estimator unable to learn from other features correctly as expected.

The function scale provides a quick and easy way to perform this operation on a single array-like dataset:

>>> from sklearn import preprocessing
>>> X = [[1., -1., 2.],
... [2., 0., 0.],
... [0., 1., -1.]]
>>> X_scaled = preprocessing.scale(X)

>>> X_scaled
array([[0. ..., -1.22..., 1.33...],

[1.22..., 0. ..., -0.26...],
[-1.22..., 1.22..., -1.06...]])

Scaled data has zero mean and unit variance:

204 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

>>> X_scaled.mean(axis=0)
array([0., 0., 0.])

>>> X_scaled.std(axis=0)
array([1., 1., 1.])

The preprocessing module further provides a utility class Scaler that implements the Transformer API to
compute the mean and standard deviation on a training set so as to be able to later reapply the same transformation on
the testing set. This class is hence suitable for use in the early steps of a sklearn.pipeline.Pipeline:

>>> scaler = preprocessing.Scaler().fit(X)
>>> scaler
Scaler(copy=True, with_mean=True, with_std=True)

>>> scaler.mean_
array([1. ..., 0. ..., 0.33...])

>>> scaler.std_
array([0.81..., 0.81..., 1.24...])

>>> scaler.transform(X)
array([[0. ..., -1.22..., 1.33...],

[1.22..., 0. ..., -0.26...],
[-1.22..., 1.22..., -1.06...]])

The scaler instance can then be used on new data to transform it the same way it did on the training set:

>>> scaler.transform([[-1., 1., 0.]])
array([[-2.44..., 1.22..., -0.26...]])

It is possible to disable either centering or scaling by either passing with_mean=False or with_std=False to
the constructor of Scaler.

References:

Further discussion on the importance of centering and scaling data is available on this FAQ: Should I normal-
ize/standardize/rescale the data?

Scaling vs Whitening

It is sometimes not enough to center and scale the features independently, since a downstream model can further
make some assumption on the linear independence of the features.
To address this issue you can use sklearn.decomposition.PCA or
sklearn.decomposition.RandomizedPCA with whiten=True to further remove the linear
correlation across features.

1.6. Dataset transformations 205

http://www.faqs.org/faqs/ai-faq/neural-nets/part2/section-16.html
http://www.faqs.org/faqs/ai-faq/neural-nets/part2/section-16.html

scikit-learn user guide, Release 0.12-git

Sparse input

scale and Scaler accept scipy.sparse matrices as input only when with_mean=False is explicitly
passed to the constructor. Otherwise a ValueError will be raised as silently centering would break the
sparsity and would often crash the execution by allocating excessive amounts of memory unintentionally.
If the centered data is expected to be small enough, explicitly convert the input to an array using the toarray
method of sparse matrices instead.
For sparse input the data is converted to the Compressed Sparse Rows representation (see
scipy.sparse.csr_matrix). To avoid unnecessary memory copies, it is recommended to choose the
CSR representation upstream.

Scaling target variables in regression

scale and Scaler work out-of-the-box with 1d arrays. This is very useful for scaling the target / response
variables used for regression.

Normalization

Normalization is the process of scaling individual samples to have unit norm. This process can be useful if you plan
to use a quadratic form such as the dot-product or any other kernel to quantify the similarity of any pair of samples.

This assumption is the base of the Vector Space Model often used in text classification and clustering contexts.

The function normalize provides a quick and easy way to perform this operation on a single array-like dataset,
either using the l1 or l2 norms:

>>> X = [[1., -1., 2.],
... [2., 0., 0.],
... [0., 1., -1.]]
>>> X_normalized = preprocessing.normalize(X, norm=’l2’)

>>> X_normalized
array([[0.40..., -0.40..., 0.81...],

[1. ..., 0. ..., 0. ...],
[0. ..., 0.70..., -0.70...]])

The preprocessing module further provides a utility class Normalizer that implements the same operation
using the Transformer API (even though the fit method is useless in this case: the class is stateless as this
operation treats samples independently).

This class is hence suitable for use in the early steps of a sklearn.pipeline.Pipeline:

>>> normalizer = preprocessing.Normalizer().fit(X) # fit does nothing
>>> normalizer
Normalizer(copy=True, norm=’l2’)

The normalizer instance can then be used on sample vectors as any transformer:

>>> normalizer.transform(X)
array([[0.40..., -0.40..., 0.81...],

[1. ..., 0. ..., 0. ...],
[0. ..., 0.70..., -0.70...]])

>>> normalizer.transform([[-1., 1., 0.]])
array([[-0.70..., 0.70..., 0. ...]])

206 Chapter 1. User Guide

http://en.wikipedia.org/wiki/Vector_Space_Model

scikit-learn user guide, Release 0.12-git

Sparse input

normalize and Normalizer accept both dense array-like and sparse matrices from scipy.sparse as
input.
For sparse input the data is converted to the Compressed Sparse Rows representation (see
scipy.sparse.csr_matrix) before being fed to efficient Cython routines. To avoid unnecessary memory
copies, it is recommended to choose the CSR representation upstream.

Binarization

Feature binarization

Feature binarization is the process of thresholding numerical features to get boolean values. This can be useful for
downsteam probabilistic estimators that make assumption that the input data is distributed according to a multi-variate
Bernoulli distribution. For instance, this is the case for the most common class of (Restricted) Boltzmann Machines
(not yet implemented in the scikit).

It is also commmon among the text processing community to use binary feature values (probably to simplify the
probabilistic reasoning) even if normalized counts (a.k.a. term frequencies) or TF-IDF valued features often perform
slightly better in practice.

As for the Normalizer, the utility class Binarizer is meant to be used in the early stages of
sklearn.pipeline.Pipeline. The fit method does nothing as each sample is treated independently of
others:

>>> X = [[1., -1., 2.],
... [2., 0., 0.],
... [0., 1., -1.]]

>>> binarizer = preprocessing.Binarizer().fit(X) # fit does nothing
>>> binarizer
Binarizer(copy=True, threshold=0.0)

>>> binarizer.transform(X)
array([[1., 0., 1.],

[1., 0., 0.],
[0., 1., 0.]])

It is possible to adjust the threshold of the binarizer:

>>> binarizer = preprocessing.Binarizer(threshold=1.1)
>>> binarizer.transform(X)
array([[0., 0., 1.],

[1., 0., 0.],
[0., 0., 0.]])

As for the Scaler and Normalizer classes, the preprocessing module provides a companion function binarize
to be used when the transformer API is not necessary.

1.6. Dataset transformations 207

http://en.wikipedia.org/wiki/Bernoulli_distribution
http://en.wikipedia.org/wiki/Boltzmann_machine

scikit-learn user guide, Release 0.12-git

Sparse input

binarize and Binarizer accept both dense array-like and sparse matrices from scipy.sparse as input.
For sparse input the data is converted to the Compressed Sparse Rows representation (see
scipy.sparse.csr_matrix). To avoid unnecessary memory copies, it is recommended to choose the
CSR representation upstream.

Label preprocessing

Label binarization

LabelBinarizer is a utility class to help create a label indicator matrix from a list of multi-class labels:

>>> lb = preprocessing.LabelBinarizer()
>>> lb.fit([1, 2, 6, 4, 2])
LabelBinarizer(neg_label=0, pos_label=1)
>>> lb.classes_
array([1, 2, 4, 6])
>>> lb.transform([1, 6])
array([[1., 0., 0., 0.],

[0., 0., 0., 1.]])

LabelBinarizer also supports multiple labels per instance:

>>> lb.fit_transform([(1, 2), (3,)])
array([[1., 1., 0.],

[0., 0., 1.]])
>>> lb.classes_
array([1, 2, 3])

Label encoding

LabelEncoder is a utility class to help normalize labels such that they contain only values between 0 and n_classes-
1. This is sometimes useful for writing efficient Cython routines. LabelEncoder can be used as follows:

>>> from sklearn import preprocessing
>>> le = preprocessing.LabelEncoder()
>>> le.fit([1, 2, 2, 6])
LabelEncoder()
>>> le.classes_
array([1, 2, 6])
>>> le.transform([1, 1, 2, 6])
array([0, 0, 1, 2])
>>> le.inverse_transform([0, 0, 1, 2])
array([1, 1, 2, 6])

It can also be used to transform non-numerical labels (as long as they are hashable and comparable) to numerical
labels:

>>> le = preprocessing.LabelEncoder()
>>> le.fit(["paris", "paris", "tokyo", "amsterdam"])
LabelEncoder()
>>> list(le.classes_)
[’amsterdam’, ’paris’, ’tokyo’]
>>> le.transform(["tokyo", "tokyo", "paris"])

208 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

array([2, 2, 1])
>>> list(le.inverse_transform([2, 2, 1]))
[’tokyo’, ’tokyo’, ’paris’]

1.6.2 Feature extraction

The sklearn.feature_extraction module can be used to extract features in a format supported by machine
learning algorithms from datasets consisting of formats such as text and image.

Note: Feature extraction is very different from Feature selection: the former consists in transforming arbitrary data,
such as text or images, into numerical features usable for machine learning. The later is a machine learning technique
applied on these features.

Loading features from dicts

The class DictVectorizer can be used to convert feature arrays represented as lists of standard Python dict
objects to the NumPy/SciPy representation used by scikit-learn estimators.

While not particularly fast to process, Python’s dict has the advantages of being convenient to use, being sparse
(absent features need not be stored) and storing feature names in addition to values.

DictVectorizer implements what is called one-of-K or “one-hot” coding for categorical (aka nominal, discrete)
features. Categorical features are “attribute-value” pairs where the value is restricted to a list of discrete of possibilities
without ordering (e.g. topic identifiers, types of objects, tags, names...).

In the following, “city” is a categorical attribute while “temperature” is a traditional numerical feature:

>>> measurements = [
... {’city’: ’Dubai’, ’temperature’: 33.},
... {’city’: ’London’, ’temperature’: 12.},
... {’city’: ’San Fransisco’, ’temperature’: 18.},
...]

>>> from sklearn.feature_extraction import DictVectorizer
>>> vec = DictVectorizer()

>>> vec.fit_transform(measurements).toarray()
array([[1., 0., 0., 33.],

[0., 1., 0., 12.],
[0., 0., 1., 18.]])

>>> vec.get_feature_names()
[’city=Dubai’, ’city=London’, ’city=San Fransisco’, ’temperature’]

DictVectorizer is also a useful representation transformation for training sequence classifiers in Natural Lan-
guage Processing models that typically work by extracting feature windows around a particular word of interest.

For example, suppose that we have a first algorithm that extracts Part of Speech (PoS) tags that we want to use as
complementary tags for training a sequence classifier (e.g. a chunker). The following dict could be such a window of
feature extracted around the word ‘sat’ in the sentence ‘The cat sat on the mat.’:

>>> pos_window = [
... {
... ’word-2’: ’the’,
... ’pos-2’: ’DT’,

1.6. Dataset transformations 209

scikit-learn user guide, Release 0.12-git

... ’word-1’: ’cat’,

... ’pos-1’: ’NN’,

... ’word+1’: ’on’,

... ’pos+1’: ’PP’,

... },

... # in a real application one would extract many such dictionaries

...]

This description can be vectorized into a sparse two-dimensional matrix suitable for feeding into a classifier (maybe
after being piped into a text.TfidfTransformer for normalization):

>>> vec = DictVectorizer()
>>> pos_vectorized = vec.fit_transform(pos_window)
>>> pos_vectorized
<1x6 sparse matrix of type ’<type ’numpy.float64’>’

with 6 stored elements in COOrdinate format>
>>> pos_vectorized.toarray()
array([[1., 1., 1., 1., 1., 1.]])
>>> vec.get_feature_names()
[’pos+1=PP’, ’pos-1=NN’, ’pos-2=DT’, ’word+1=on’, ’word-1=cat’, ’word-2=the’]

As you can imagine, if one extracts such a context around each individual word of a corpus of documents the resulting
matrix will be very wide (many one-hot-features) with most of them being valued to zero most of the time. So as to
make the resulting data structure able to fit in memory the DictVectorizer class uses a scipy.sparse matrix
by default instead of a numpy.ndarray.

Text feature extraction

The Bag of Words representation

Text Analysis is a major application field for machine learning algorithms. However the raw data, a sequence of
symbols cannot be fed directly to the algorithms themselves as most of them expect numerical feature vectors with a
fixed size rather than the raw text documents with variable length.

In order to address this, scikit-learn provides utilities for the most common ways to extract numerical features from
text content, namely:

• tokenizing strings and giving an integer id for each possible token, for instance by using whitespaces and
punctuation as token separators.

• counting the occurrences of tokens in each document.

• normalizing and weighting with diminishing importance tokens that occur in the majority of samples / docu-
ments.

In this scheme, features and samples are defined as follows:

• each individual token occurrence frequency (normalized or not) is treated as a feature.

• the vector of all the token frequencies for a given document is considered a multivariate sample.

A corpus of documents can thus be represented by a matrix with one row per document and one column per token
(e.g. word) occurring in the corpus.

We call vectorization the general process of turning a collection of text documents into numerical feature vectors. This
specific stragegy (tokenization, counting and normalization) is called the Bag of Words or “Bag of n-grams” repre-
sentation. Documents are described by word occurrences while completely ignoring the relative position information
of the words in the document.

When combined with TF-IDF normalization, the bag of words encoding is also known as the Vector Space Model.

210 Chapter 1. User Guide

https://en.wikipedia.org/wiki/Vector_space_model

scikit-learn user guide, Release 0.12-git

Sparsity

As most documents will typically use a very subset of a the words used in the corpus, the resulting matrix will have
many feature values that are zeros (typically more than 99% of them).

For instance a collection of 10,000 short text documents (such as emails) will use a vocabulary with a size in the order
of 100,000 unique words in total while each document will use 100 to 1000 unique words individually.

In order to be able to store such a matrix in memory but also to speed up algebraic operations matrix / vector, imple-
mentations will typically use a sparse representation such as the implementations available in the scipy.sparse
package.

Common Vectorizer usage

CountVectorizer implements both tokenization and occurrence counting in a single class:

>>> from sklearn.feature_extraction.text import CountVectorizer

This model has many parameters, however the default values are quite reasonable (please see the reference documen-
tation for the details):

>>> vectorizer = CountVectorizer()
>>> vectorizer
CountVectorizer(analyzer=’word’, binary=False, charset=’utf-8’,

charset_error=’strict’, dtype=<type ’long’>, input=’content’,
lowercase=True, max_df=1.0, max_features=None, max_n=1, min_n=1,
preprocessor=None, stop_words=None, strip_accents=None,
token_pattern=u’\\b\\w\\w+\\b’, tokenizer=None, vocabulary=None)

Let’s use it to tokenize and count the word occurrences of a minimalistic corpus of text documents:

>>> corpus = [
... ’This is the first document.’,
... ’This is the second second document.’,
... ’And the third one.’,
... ’Is this the first document?’,
...]
>>> X = vectorizer.fit_transform(corpus)
>>> X
<4x9 sparse matrix of type ’<type ’numpy.int64’>’

with 19 stored elements in COOrdinate format>

The default configuration tokenizes the string by extracting words of at least 2 letters. The specific function that does
this step can be requested explicitly:

>>> analyze = vectorizer.build_analyzer()
>>> analyze("This is a text document to analyze.")
[u’this’, u’is’, u’text’, u’document’, u’to’, u’analyze’]

Each term found by the analyzer during the fit is assigned a unique integer index corresponding to a column in the
resulting matrix. This interpretation of the columns can be retrieved as follows:

>>> vectorizer.get_feature_names()
[u’and’, u’document’, u’first’, u’is’, u’one’, u’second’, u’the’, u’third’, u’this’]

>>> X.toarray()
array([[0, 1, 1, 1, 0, 0, 1, 0, 1],

[0, 1, 0, 1, 0, 2, 1, 0, 1],

1.6. Dataset transformations 211

scikit-learn user guide, Release 0.12-git

[1, 0, 0, 0, 1, 0, 1, 1, 0],
[0, 1, 1, 1, 0, 0, 1, 0, 1]]...)

The converse mapping from feature name to column index is stored in the vocabulary_ attribute of the vectorizer:

>>> vectorizer.vocabulary_.get(’document’)
1

Hence words that were not seen in the training corpus will be completely ignored in future calls to the transform
method:

>>> vectorizer.transform([’Something completely new.’]).toarray()
...
array([[0, 0, 0, 0, 0, 0, 0, 0, 0]]...)

Note that in the previous corpus, the first and the last documents have exactly the same words hence are encoded in
equal vectors. In particular we lose the information that the last document is an interogative form. To preserve some
of the local ordering information we can extract 2-grams of words in addition to the 1-grams (the word themselvs):

>>> bigram_vectorizer = CountVectorizer(min_n=1, max_n=2,
... token_pattern=ur’\b\w+\b’)
>>> analyze = bigram_vectorizer.build_analyzer()
>>> analyze(’Bi-grams are cool!’)
[u’bi’, u’grams’, u’are’, u’cool’, u’bi grams’, u’grams are’, u’are cool’]

The vocabulary extracted by this vectorizer is hence much bigger and can now resolve ambiguities encoded in local
positioning patterns:

>>> X_2 = bigram_vectorizer.fit_transform(corpus).toarray()
>>> X_2
...
array([[0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0],

[0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0],
[1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1]]...)

In particular the interogative form “Is this” is only present in the last document:

>>> feature_index = bigram_vectorizer.vocabulary_.get(u’is this’)
>>> X_2[:, feature_index]
array([0, 0, 0, 1]...)

TF-IDF normalization

In a large text corpus, some words will be very present (e.g. “the”, “a”, “is” in English) hence carrying very little
meaningul information about the actual contents of the document. If we were to feed the direct count data directly to
a classifier those very frequent terms would shadow the frequencies of rarer yet more interesting terms.

In order to re-weight the count features into floating point values suitable for usage by a classifier it is very common
to use the tf–idf transform.

Tf means term-frequency while tf–idf means term-frequency times inverse document-frequency. This is a orginally
a term weighting scheme developed for information retrieval (as a ranking function for search engines results), that
has also found good use in document classification and clustering.

This normalization is implemented by the text.TfidfTransformer class:

212 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

>>> from sklearn.feature_extraction.text import TfidfTransformer
>>> transformer = TfidfTransformer()
>>> transformer
TfidfTransformer(norm=’l2’, smooth_idf=True, sublinear_tf=False, use_idf=True)

Again please see the reference documentation for the details on all the parameters.

Let’s take an example with the following counts. The first term is present 100% of the time hence not very interesting.
The two other features only in less than 50% of the time hence probably more representative of the content of the
documents:

>>> counts = [[3, 0, 1],
... [2, 0, 0],
... [3, 0, 0],
... [4, 0, 0],
... [3, 2, 0],
... [3, 0, 2]]
...
>>> tfidf = transformer.fit_transform(counts)
>>> tfidf
<6x3 sparse matrix of type ’<type ’numpy.float64’>’

with 9 stored elements in Compressed Sparse Row format>

>>> tfidf.toarray()
array([[0.85..., 0. ..., 0.52...],

[1. ..., 0. ..., 0. ...],
[1. ..., 0. ..., 0. ...],
[1. ..., 0. ..., 0. ...],
[0.55..., 0.83..., 0. ...],
[0.63..., 0. ..., 0.77...]])

Each row is normalized to have unit euclidean norm. The weights of each feature computed by the fit method call
are stored in a model attribute:

>>> transformer.idf_
array([1. ..., 2.25..., 1.84...])

As tf–idf is a very often used for text features, there is also another class called TfidfVectorizer that combines
all the option of CountVectorizer and TfidfTransformer in a single model:

>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> vectorizer = TfidfVectorizer()
>>> vectorizer.fit_transform(corpus)
...
<4x9 sparse matrix of type ’<type ’numpy.float64’>’

with 19 stored elements in Compressed Sparse Row format>

While the tf–idf normalization is often very useful, there might be cases where the binary occurrence markers might
offer better features. This can be achieved by using the binary parameter of CountVectorizer. In particular,
some estimators such as Bernoulli Naive Bayes explicitly model discrete boolean random variables. Also very short
text are likely to have noisy tf–idf values while the binary occurrence info is more stable.

As usual the only way how to best adjust the feature extraction parameters is to use a cross-validated grid search, for
instance by pipelining the feature extractor with a classifier:

• Sample pipeline for text feature extraction and evaluation

1.6. Dataset transformations 213

scikit-learn user guide, Release 0.12-git

Applications and examples

The bag of words representation is quite simplistic but surprisingly useful in practice.

In particular in a supervised setting it can be successfully combined with fast and scalable linear models to train
document classificers, for instance:

• Classification of text documents using sparse features

In an unsupervised setting it can be used to group similar documents together by applying clustering algorithms such
as K-means:

• Clustering text documents using k-means

Finally it is possible to discover the main topics of a corpus by relaxing the hard assignement constraint of clustering,
for instance by using Non-negative matrix factorization (NMF or NNMF):

• Topics extraction with Non-Negative Matrix Factorization

Limitations of the Bag of Words representation

While some local positioning information can be preserved by extracting n-grams instead of individual words, Bag of
Words and Bag of n-grams destroy most of the inner structure of the document and hence most of the meaning carried
by that internal structure.

In order to address the wider task of Natural Language Understanding, the local structure of sentences and paragraphs
should thus be taken into account. Many such models will thus be casted as “Structured output” problems which are
currently outside of the scope of scikit-learn.

Customizing the vectorizer classes

It is possible to customize the behavior by passing some callable as parameters of the vectorizer:

>>> def my_tokenizer(s):
... return s.split()
...
>>> vectorizer = CountVectorizer(tokenizer=my_tokenizer)
>>> vectorizer.build_analyzer()(u"Some... punctuation!")
[u’some...’, u’punctuation!’]

In particular we name:

• preprocessor a callable that takes a string as input and return another string (removing HTML tags or
converting to lower case for instance)

• tokenizer a callable that takes a string as input and output a sequence of feature occurrences (a.k.a. the
tokens).

• analyzer a callable that wraps calls to the preprocessor and tokenizer and further perform some filtering or
n-grams extractions on the tokens.

To make the preprocessor, tokenizer and analyzers aware of the model parameters it is possible to derive from the
class and override the build_preprocessor, build_tokenizer‘ and build_analyzer factory method
instead.

Customizing the vectorizer can be very useful to handle Asian languages that do not use an explicit word separator
such as the whitespace for instance.

214 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Image feature extraction

Patch extraction

The extract_patches_2d function extracts patches from an image stored as a two-dimensional array, or
three-dimensional with color information along the third axis. For rebuilding an image from all its patches, use
reconstruct_from_patches_2d. For example let use generate a 4x4 pixel picture with 3 color channels (e.g.
in RGB format):

>>> import numpy as np
>>> from sklearn.feature_extraction import image

>>> one_image = np.arange(4 * 4 * 3).reshape((4, 4, 3))
>>> one_image[:, :, 0] # R channel of a fake RGB picture
array([[0, 3, 6, 9],

[12, 15, 18, 21],
[24, 27, 30, 33],
[36, 39, 42, 45]])

>>> patches = image.extract_patches_2d(one_image, (2, 2), max_patches=2,
... random_state=0)
>>> patches.shape
(2, 2, 2, 3)
>>> patches[:, :, :, 0]
array([[[0, 3],

[12, 15]],

[[15, 18],
[27, 30]]])

>>> patches = image.extract_patches_2d(one_image, (2, 2))
>>> patches.shape
(9, 2, 2, 3)
>>> patches[4, :, :, 0]
array([[15, 18],

[27, 30]])

Let us now try to reconstruct the original image from the patches by averaging on overlapping areas:

>>> reconstructed = image.reconstruct_from_patches_2d(patches, (4, 4, 3))
>>> np.testing.assert_array_equal(one_image, reconstructed)

The PatchExtractor class works in the same way as extract_patches_2d, only it supports multiple images
as input. It is implemented as an estimator, so it can be used in pipelines. See:

>>> five_images = np.arange(5 * 4 * 4 * 3).reshape(5, 4, 4, 3)
>>> patches = image.PatchExtractor((2, 2)).transform(five_images)
>>> patches.shape
(45, 2, 2, 3)

Connectivity graph of an image

Several estimators in the scikit-learn can use connectivity information between features or samples. For instance Ward
clustering (Hierarchical clustering) can cluster together only neighboring pixels of an image, thus forming contiguous
patches:

For this purpose, the estimators use a ‘connectivity’ matrix, giving which samples are connected.

1.6. Dataset transformations 215

scikit-learn user guide, Release 0.12-git

The function img_to_graph returns such a matrix from a 2D or 3D image. Similarly, grid_to_graph build a
connectivity matrix for images given the shape of these image.

These matrices can be used to impose connectivity in estimators that use connectivity information, such as Ward
clustering (Hierarchical clustering), but also to build precomputed kernels, or similarity matrices.

Note: Examples

• A demo of structured Ward hierarchical clustering on Lena image

• Spectral clustering for image segmentation

• Feature agglomeration vs. univariate selection

1.6.3 Kernel Approximation

This submodule contains functions that approximate the feature mappings that correspond to certain kernels, as they
are used for example in support vector machines (see Support Vector Machines). The following feature functions
perform non-linear transformations of the input, which can serve as a basis for linear classification or other algorithms.

The advantage of using approximate explicit feature maps compared to the kernel trick, which makes use of feature
maps implicitly, is that explicit mappings can be better suited for online learning and can significantly reduce the
cost of learning with very large datasets. Standard kernelized SVMs do not scale well to large datasets, but using an
approximate kernel map it is possible to use much more efficient linear SVMs. In particularly the combination of
kernel map approximations with SGDClassifier can make nonlinear learning on large datasets possible.

Since there has not been much empirical work using approximate embeddings, it is advisable to compare results
against exact kernel methods when possible.

Radial Basis Function Kernel

The RBFSampler constructs an approximate mapping for the radial basis function kernel.

The mapping relies on a Monte Carlo approximation to the kernel values. The fit function performs the Monte Carlo
sampling, whereas the transform method performs the mapping of the data. Because of the inherent randomness
of the process, results may vary between different calls to the fit function.

The fit function takes two arguments: n_components, which is the target dimensionality of the feature transform,
and gamma, the parameter of the RBF-kernel. A higher n_components will result in a better approximation of the
kernel and will yield results more similar to those produced by a kernel SVM. Note that “fitting” the feature function
does not actually depend on the data given to the fit function. Only the dimensionality of the data is used. Details
on the method can be found in [RR2007].

216 Chapter 1. User Guide

http://en.wikipedia.org/wiki/Kernel_trick

scikit-learn user guide, Release 0.12-git

Figure 1.5: Comparing an exact RBF kernel (left) with the approximation (right)

Examples:

• Explicit feature map approximation for RBF kernels

Additive Chi Squared Kernel

The chi squared kernel is a kernel on histograms, often used in computer vision.

The chi squared kernel is given by

k(x, y) =
∑
i

2xiyi
xi + yi

Since the kernel is additive, it is possible to treat all components xi separately for embedding. This makes it possible
to sample the Fourier transform in regular intervals, instead of approximating using Monte Carlo sampling.

The class AdditiveChi2Sampler implements this component wise deterministic sampling. Each component is
sampled n times, yielding 2n+1 dimensions per input dimension (the multiple of two stems from the real and complex
part of the Fourier transform). In the literature, n is usually choosen to be 1 or 2, transforming the dataset to size
n_samples x 5 * n_features (in the case of n=2).

The approximate feature map provided by AdditiveChi2Sampler can be combined with the approximate feature
map provided by RBFSampler to yield an approximate feature map for the exponentiated chi squared kernel. See
the [VZ2010] for details and [VVZ2010] for combination with the RBFSampler.

Skewed Chi Squared Kernel

The skewed chi squared kernel is given by:

k(x, y) =
∏
i

2
√
xi + c

√
yi + c

xi + yi + 2c

It has properties that are similar to the exponentiated chi squared kernel often used in computer vision, but allows for
a simple Monte Carlo approximation of the feature map.

The usage of the SkewedChi2Sampler is the same as the usage described above for the RBFSampler. The only
difference is in the free parameter, that is called c. For a motivation for this mapping and the mathematical details see
[LS2010].

1.6. Dataset transformations 217

scikit-learn user guide, Release 0.12-git

Mathematical Details

Kernel methods like support vector machines or kernelized PCA rely on a property of reproducing kernel Hilbert
spaces. For any positive definite kernel function k (a so called Mercer kernel), it is guaranteed that there exists a
mapping φ into a Hilbert spaceH, such that

k(x, y) =< φ(x), φ(y) >

Where < ·, · > denotes the inner product in the Hilbert space.

If an algorithm, such as a linear support vector machine or PCA, relies only on the scalar product of data points xi,
one may use the value of k(xi, xj), which corresponds to applying the algorithm to the mapped data points φ(xi). The
advantage of using k is that the mapping φ never has to be calculated explicitly, allowing for arbitrary large features
(even infinite).

One drawback of kernel methods is, that it might be necessary to store many kernel values k(xi, xj) during optimiza-
tion. If a kernelized classifier is applied to new data yj , k(xi, yj) needs to be computed to make predictions, possibly
for many different xi in the training set.

The classes in this submodule allow to approximate the embedding φ, thereby working explicitly with the representa-
tions φ(xi), which obviates the need to apply the kernel or store training examples.

References:

1.7 Dataset loading utilities

The sklearn.datasets package embeds some small toy datasets as introduced in the Getting Started section.

To evaluate the impact of the scale of the dataset (n_samples and n_features) while controlling the statistical
properties of the data (typically the correlation and informativeness of the features), it is also possible to generate
synthetic data.

This package also features helpers to fetch larger datasets commonly used by the machine learning community to
benchmark algorithm on data that comes from the ‘real world’.

1.7.1 General dataset API

There are three distinct kinds of dataset interfaces for different types of datasets. The simplest one is the interface for
sample images, which is described below in the Sample images section.

The dataset generation functions and the svmlight loader share a simplistic interface, returning a tuple (X, y) con-
sisting of a n_samples x n_features numpy array X and an array of length n_samples containing the targets y.

The toy datasets as well as the ‘real world’ datasets and the datasets fetched from mldata.org have more sophisti-
cated structure. These functions return a bunch (which is a dictionary that is accessible with the ‘dict.key’ syntax).
All datasets have at least two keys, data, containg an array of shape n_samples x n_features (except for
20newsgroups) and target, a numpy array of length n_features, containing the targets.

The datasets also contain a description in DESCR and some contain feature_names and target_names. See
the dataset descriptions below for details.

218 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

1.7.2 Toy datasets

scikit-learn comes with a few small standard datasets that do not require to download any file from some external
website.

load_boston() Load and return the boston house-prices dataset (regression).
load_iris() Load and return the iris dataset (classification).
load_diabetes() Load and return the diabetes dataset (regression).
load_digits([n_class]) Load and return the digits dataset (classification).
load_linnerud() Load and return the linnerud dataset (multivariate regression).

These datasets are useful to quickly illustrate the behavior of the various algorithms implemented in the scikit. They
are however often too small to be representative of real world machine learning tasks.

1.7.3 Sample images

The scikit also embed a couple of sample JPEG images published under Creative Commons license by their authors.
Those image can be useful to test algorithms and pipeline on 2D data.

load_sample_images() Load sample images for image manipulation.
load_sample_image(image_name) Load the numpy array of a single sample image

Warning: The default coding of images is based on the uint8 dtype to spare memory. Often machine learning
algorithms work best if the input is converted to a floating point representation first. Also, if you plan to use
pylab.imshow don’t forget to scale to the range 0 - 1 as done in the following example.

Examples:

• Color Quantization using K-Means

1.7. Dataset loading utilities 219

scikit-learn user guide, Release 0.12-git

1.7.4 Sample generators

In addition, scikit-learn includes various random sample generators that can be used to build artifical datasets of

controled size and complexity.

make_classification([n_samples, n_features, ...]) Generate a random n-class classification problem.
make_multilabel_classification([n_samples, ...]) Generate a random multilabel classification problem.
make_regression([n_samples, n_features, ...]) Generate a random regression problem.
make_blobs([n_samples, n_features, centers, ...]) Generate isotropic Gaussian blobs for clustering.
make_friedman1([n_samples, n_features, ...]) Generate the “Friedman #1” regression problem
make_friedman2([n_samples, noise, random_state]) Generate the “Friedman #2” regression problem
make_friedman3([n_samples, noise, random_state]) Generate the “Friedman #3” regression problem
make_hastie_10_2([n_samples, random_state]) Generates data for binary classification used in
make_low_rank_matrix([n_samples, ...]) Generate a mostly low rank matrix with bell-shaped singular values
make_sparse_coded_signal(n_samples, ...[, ...]) Generate a signal as a sparse combination of dictionary elements.
make_sparse_uncorrelated([n_samples, ...]) Generate a random regression problem with sparse uncorrelated design
make_spd_matrix(n_dim[, random_state]) Generate a random symmetric, positive-definite matrix.
make_swiss_roll([n_samples, noise, random_state]) Generate a swiss roll dataset.
make_s_curve([n_samples, noise, random_state]) Generate an S curve dataset.
make_sparse_spd_matrix([dim, alpha, ...]) Generate a sparse symetric definite positive matrix.

1.7.5 Datasets in svmlight / libsvm format

scikit-learn includes utility functions for loading datasets in the svmlight / libsvm format. In this format, each
line takes the form <label> <feature-id>:<feature-value> <feature-id>:<feature-value>
.... This format is especially suitable for sparse datasets. In this module, scipy sparse CSR matrices are used for X
and numpy arrays are used for y.

You may load a dataset like as follows:

>>> from sklearn.datasets import load_svmlight_file
>>> X_train, y_train = load_svmlight_file("/path/to/train_dataset.txt")
...

You may also load two (or more) datasets at once:

>>> X_train, y_train, X_test, y_test = load_svmlight_files(
... ("/path/to/train_dataset.txt", "/path/to/test_dataset.txt"))
...

220 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

In this case, X_train and X_test are guaranteed to have the same number of features. Another way to achieve the
same result is to fix the number of features:

>>> X_test, y_test = load_svmlight_file(
... "/path/to/test_dataset.txt", n_features=X_train.shape[1])
...

Related links:

Public datasets in svmlight / libsvm format: http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
Faster API-compatible implementation: https://github.com/mblondel/svmlight-loader

1.7.6 The Olivetti faces dataset

This dataset contains a set of face images taken between April 1992 and April 1994 at AT&T Laboratories Cambridge.
The website describing the original dataset is now defunct, but archived copies can be accessed through the Internet
Archive’s Wayback Machine.

As described on the original website:

There are ten different images of each of 40 distinct subjects. For some subjects, the images were taken
at different times, varying the lighting, facial expressions (open / closed eyes, smiling / not smiling) and
facial details (glasses / no glasses). All the images were taken against a dark homogeneous background
with the subjects in an upright, frontal position (with tolerance for some side movement).

The image is quantized to 256 grey levels and stored as unsigned 8-bit integers; the loader will convert these to floating
point values on the interval [0, 1], which are easier to work with for many algorithms.

The “target” for this database is an integer from 0 to 39 indicating the identity of the person pictured; however, with
only 10 examples per class, this relatively small dataset is more interesting from an unsupervised or semi-supervised
perspective.

The original dataset consisted of 92 x 112, while the version available here consists of 64x64 images.

When using these images, please give credit to AT&T Laboratories Cambridge.

1.7.7 The 20 newsgroups text dataset

The 20 newsgroups dataset comprises around 18000 newsgroups posts on 20 topics splitted in two subsets: one for
training (or development) and the other one for testing (or for performance evaluation). The split between the train
and test set is based upon a messages posted before and after a specific date.

This module contains two loaders. The first one, sklearn.datasets.fetch_20newsgroups,
returns a list of the raw text files that can be fed to text feature extractors such as
sklearn.feature_extraction.text.Vectorizer with custom parameters so as to extract feature
vectors. The second one, sklearn.datasets.fetch_20newsgroups_vectorized, returns ready-to-use
features, i.e., it is not necessary to use a feature extractor.

Usage

The sklearn.datasets.fetch_20newsgroups function is a data fetching / caching functions that
downloads the data archive from the original 20 newsgroups website, extracts the archive contents in the
~/scikit_learn_data/20news_home folder and calls the sklearn.datasets.load_file on either
the training or testing set folder, or both of them:

1.7. Dataset loading utilities 221

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://github.com/mblondel/svmlight-loader
http://wayback.archive.org/web/*/http://www.uk.research.att.com/facedatabase.html
http://wayback.archive.org/web/*/http://www.uk.research.att.com/facedatabase.html
http://people.csail.mit.edu/jrennie/20Newsgroups/

scikit-learn user guide, Release 0.12-git

>>> from sklearn.datasets import fetch_20newsgroups
>>> newsgroups_train = fetch_20newsgroups(subset=’train’)

>>> from pprint import pprint
>>> pprint(list(newsgroups_train.target_names))
[’alt.atheism’,
’comp.graphics’,
’comp.os.ms-windows.misc’,
’comp.sys.ibm.pc.hardware’,
’comp.sys.mac.hardware’,
’comp.windows.x’,
’misc.forsale’,
’rec.autos’,
’rec.motorcycles’,
’rec.sport.baseball’,
’rec.sport.hockey’,
’sci.crypt’,
’sci.electronics’,
’sci.med’,
’sci.space’,
’soc.religion.christian’,
’talk.politics.guns’,
’talk.politics.mideast’,
’talk.politics.misc’,
’talk.religion.misc’]

The real data lies in the filenames and target attributes. The target attribute is the integer index of the category:

>>> newsgroups_train.filenames.shape
(11314,)
>>> newsgroups_train.target.shape
(11314,)
>>> newsgroups_train.target[:10]
array([12, 6, 9, 8, 6, 7, 9, 2, 13, 19])

It is possible to load only a sub-selection of the categories by passing the list of the categories to load to the
fetch_20newsgroups function:

>>> cats = [’alt.atheism’, ’sci.space’]
>>> newsgroups_train = fetch_20newsgroups(subset=’train’, categories=cats)

>>> list(newsgroups_train.target_names)
[’alt.atheism’, ’sci.space’]
>>> newsgroups_train.filenames.shape
(1073,)
>>> newsgroups_train.target.shape
(1073,)
>>> newsgroups_train.target[:10]
array([1, 1, 1, 0, 1, 0, 0, 1, 1, 1])

In order to feed predictive or clustering models with the text data, one first need to turn the text into vec-
tors of numerical values suitable for statistical analysis. This can be achieved with the utilities of the
sklearn.feature_extraction.text as demonstrated in the following example that extract TF-IDF vectors
of unigram tokens:

>>> from sklearn.feature_extraction.text import Vectorizer
>>> documents = [open(f).read() for f in newsgroups_train.filenames]
>>> vectorizer = Vectorizer()
>>> vectors = vectorizer.fit_transform(documents)

222 Chapter 1. User Guide

http://en.wikipedia.org/wiki/Tf-idf

scikit-learn user guide, Release 0.12-git

>>> vectors.shape
(1073, 21108)

The extracted TF-IDF vectors are very sparse with an average of 118 non zero components by sample in a more than
20000 dimensional space (less than 1% non zero features):

>>> vectors.nnz / vectors.shape[0]
118

sklearn.datasets.fetch_20newsgroups_vectorized is a function which returns ready-to-use tfidf
features instead of file names.

Examples

• Sample pipeline for text feature extraction and evaluation
• Classification of text documents using sparse features

1.7.8 Downloading datasets from the mldata.org repository

mldata.org is a public repository for machine learning data, supported by the PASCAL network .

The sklearn.datasets package is able to directly download data sets from the repository using the function
fetch_mldata(dataname).

For example, to download the MNIST digit recognition database:

>>> from sklearn.datasets import fetch_mldata
>>> mnist = fetch_mldata(’MNIST original’, data_home=custom_data_home)

The MNIST database contains a total of 70000 examples of handwritten digits of size 28x28 pixels, labeled from 0 to
9:

>>> mnist.data.shape
(70000, 784)
>>> mnist.target.shape
(70000,)
>>> np.unique(mnist.target)
array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])

After the first download, the dataset is cached locally in the path specified by the data_home keyword argument,
which defaults to ~/scikit_learn_data/:

>>> os.listdir(os.path.join(custom_data_home, ’mldata’))
[’mnist-original.mat’]

Data sets in mldata.org do not adhere to a strict naming or formatting convention. fetch_mldata is able to make
sense of the most common cases, but allows to tailor the defaults to individual datasets:

• The data arrays in mldata.org are most often shaped as (n_features, n_samples). This is the op-
posite of the scikit-learn convention, so fetch_mldata transposes the matrix by default. The
transpose_data keyword controls this behavior:

>>> iris = fetch_mldata(’iris’, data_home=custom_data_home)
>>> iris.data.shape
(150, 4)
>>> iris = fetch_mldata(’iris’, transpose_data=False,
... data_home=custom_data_home)

1.7. Dataset loading utilities 223

http://mldata.org
http://www.pascal-network.org
http://mldata.org
http://mldata.org

scikit-learn user guide, Release 0.12-git

>>> iris.data.shape
(4, 150)

• For datasets with multiple columns, fetch_mldata tries to identify the target and data columns and rename
them to target and data. This is done by looking for arrays named label and data in the dataset, and
failing that by choosing the first array to be target and the second to be data. This behavior can be changed
with the target_name and data_name keywords, setting them to a specific name or index number (the
name and order of the columns in the datasets can be found at its mldata.org under the tab “Data”:

>>> iris2 = fetch_mldata(’datasets-UCI iris’, target_name=1, data_name=0,
... data_home=custom_data_home)
>>> iris3 = fetch_mldata(’datasets-UCI iris’, target_name=’class’,
... data_name=’double0’, data_home=custom_data_home)

1.7.9 The Labeled Faces in the Wild face recognition dataset

This dataset is a collection of JPEG pictures of famous people collected over the internet, all details are available on
the official website:

http://vis-www.cs.umass.edu/lfw/

Each picture is centered on a single face. The typical task is called Face Verification: given a pair of two pictures, a
binary classifier must predict whether the two images are from the same person.

An alternative task, Face Recognition or Face Identification is: given the picture of the face of an unknown person,
identify the name of the person by referring to a gallery of previously seen pictures of identified persons.

Both Face Verification and Face Recognition are tasks that are typically performed on the output of a model trained to
perform Face Detection. The most popular model for Face Detection is called Viola-Jones and is implemented in the
OpenCV library. The LFW faces were extracted by this face detector from various online websites.

Usage

scikit-learn provides two loaders that will automatically download, cache, parse the metadata files, decode
the jpeg and convert the interesting slices into memmaped numpy arrays. This dataset size is more than 200 MB.
The first load typically takes more than a couple of minutes to fully decode the relevant part of the JPEG files into
numpy arrays. If the dataset has been loaded once, the following times the loading times less than 200ms by using a
memmaped version memoized on the disk in the ~/scikit_learn_data/lfw_home/ folder using joblib.

The first loader is used for the Face Identification task: a multi-class classification task (hence supervised learning):

>>> from sklearn.datasets import fetch_lfw_people
>>> lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

>>> for name in lfw_people.target_names:
... print name
...
Ariel Sharon
Colin Powell
Donald Rumsfeld
George W Bush
Gerhard Schroeder
Hugo Chavez
Tony Blair

The default slice is a rectangular shape around the face, removing most of the background:

224 Chapter 1. User Guide

http://mldata.org
http://vis-www.cs.umass.edu/lfw/

scikit-learn user guide, Release 0.12-git

>>> lfw_people.data.dtype
dtype(’float32’)

>>> lfw_people.data.shape
(1288, 1850)

>>> lfw_people.images.shape
(1288, 50, 37)

Each of the 1140 faces is assigned to a single person id in the target array:

>>> lfw_people.target.shape
(1288,)

>>> list(lfw_people.target[:10])
[5, 6, 3, 1, 0, 1, 3, 4, 3, 0]

The second loader is typically used for the face verification task: each sample is a pair of two picture belonging or not
to the same person:

>>> from sklearn.datasets import fetch_lfw_pairs
>>> lfw_pairs_train = fetch_lfw_pairs(subset=’train’)

>>> list(lfw_pairs_train.target_names)
[’Different persons’, ’Same person’]

>>> lfw_pairs_train.pairs.shape
(2200, 2, 62, 47)

>>> lfw_pairs_train.data.shape
(2200, 5828)

>>> lfw_pairs_train.target.shape
(2200,)

Both for the fetch_lfw_people and fetch_lfw_pairs function it is possible to get an additional dimension
with the RGB color channels by passing color=True, in that case the shape will be (2200, 2, 62, 47, 3).

The fetch_lfw_pairs datasets is subdived in 3 subsets: the development train set, the development test set
and an evaluation 10_folds set meant to compute performance metrics using a 10-folds cross validation scheme.

References:

• Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments.
Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. University of Massachusetts,
Amherst, Technical Report 07-49, October, 2007.

Examples

Faces recognition example using eigenfaces and SVMs

1.7. Dataset loading utilities 225

http://vis-www.cs.umass.edu/lfw/lfw.pdf

scikit-learn user guide, Release 0.12-git

1.8 Reference

This is the class and function reference of scikit-learn. Please refer to the full user guide for further details, as the class
and function raw specifications may not be enough to give full guidelines on their uses.

List of modules

• sklearn.cluster: Clustering
– Classes
– Functions

• sklearn.covariance: Covariance Estimators
• sklearn.cross_validation: Cross Validation
• sklearn.datasets: Datasets

– Loaders
– Samples generator

• sklearn.decomposition: Matrix Decomposition
• sklearn.ensemble: Ensemble Methods
• sklearn.feature_extraction: Feature Extraction

– From images
– From text

• sklearn.feature_selection: Feature Selection
• sklearn.gaussian_process: Gaussian Processes
• sklearn.grid_search: Grid Search
• sklearn.hmm: Hidden Markov Models
• sklearn.kernel_approximation Kernel Approximation
• sklearn.semi_supervised Semi-Supervised Learning
• sklearn.lda: Linear Discriminant Analysis
• sklearn.linear_model: Generalized Linear Models

– For dense data
– For sparse data

• sklearn.manifold: Manifold Learning
• sklearn.metrics: Metrics

– Classification metrics
– Regression metrics
– Clustering metrics
– Pairwise metrics

• sklearn.mixture: Gaussian Mixture Models
• sklearn.multiclass: Multiclass and multilabel classification

– Multiclass and multilabel classification strategies
• sklearn.naive_bayes: Naive Bayes
• sklearn.neighbors: Nearest Neighbors
• sklearn.pls: Partial Least Squares
• sklearn.pipeline: Pipeline
• sklearn.preprocessing: Preprocessing and Normalization
• sklearn.qda: Quadratic Discriminant Analysis
• sklearn.svm: Support Vector Machines

– Estimators
– Low-level methods

• sklearn.tree: Decision Trees
• sklearn.utils: Utilities

226 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

1.8.1 sklearn.cluster: Clustering

The sklearn.cluster module gathers popular unsupervised clustering algorithms.

User guide: See the Clustering section for further details.

Classes

cluster.AffinityPropagation([damping, ...]) Perform Affinity Propagation Clustering of data
cluster.DBSCAN([eps, min_samples, metric, ...]) Perform DBSCAN clustering from vector array or distance matrix.
cluster.KMeans([n_clusters, init, n_init, ...]) K-Means clustering
cluster.MiniBatchKMeans([n_clusters, init, ...]) Mini-Batch K-Means clustering
cluster.MeanShift([bandwidth, seeds, ...]) MeanShift clustering
cluster.SpectralClustering([n_clusters, ...]) Apply k-means to a projection to the normalized laplacian
cluster.Ward([n_clusters, memory, ...]) Ward hierarchical clustering: constructs a tree and cuts it.

sklearn.cluster.AffinityPropagation

class sklearn.cluster.AffinityPropagation(damping=0.5, max_iter=200, convit=30,
copy=True)

Perform Affinity Propagation Clustering of data

Parameters damping : float, optional

Damping factor

max_iter : int, optional

Maximum number of iterations

convit : int, optional

Number of iterations with no change in the number of estimated clusters that stops the
convergence.

copy: boolean, optional :

Make a copy of input data. True by default.

Notes

See examples/plot_affinity_propagation.py for an example.

The algorithmic complexity of affinity propagation is quadratic in the number of points.

References

Brendan J. Frey and Delbert Dueck, “Clustering by Passing Messages Between Data Points”, Science Feb. 2007

Attributes

cluster_centers_indices_ array, [n_clusters] Indices of cluster centers
labels_ array, [n_samples] Labels of each point

1.8. Reference 227

scikit-learn user guide, Release 0.12-git

Methods

fit(S[, p]) Compute affinity propagation clustering.
get_params([deep]) Get parameters for the estimator
set_params(**params) Set the parameters of the estimator.

__init__(damping=0.5, max_iter=200, convit=30, copy=True)

fit(S, p=None)
Compute affinity propagation clustering.

Parameters S: array [n_points, n_points] :

Matrix of similarities between points

p: array [n_points,] or float, optional :

Preferences for each point - points with larger values of preferences are more likely to
be chosen as exemplars. The number of exemplars, ie of clusters, is influenced by the
input preferences value. If the preferences are not passed as arguments, they will be set
to the median of the input similarities.

damping : float, optional

Damping factor

copy: boolean, optional :

If copy is False, the affinity matrix is modified inplace by the algorithm, for memory
efficiency

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.cluster.DBSCAN

class sklearn.cluster.DBSCAN(eps=0.5, min_samples=5, metric=’euclidean’, random_state=None)
Perform DBSCAN clustering from vector array or distance matrix.

DBSCAN - Density-Based Spatial Clustering of Applications with Noise. Finds core samples of high density
and expands clusters from them. Good for data which contains clusters of similar density.

Parameters eps : float, optional

The maximum distance between two samples for them to be considered as in the same
neighborhood.

228 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

min_samples : int, optional

The number of samples in a neighborhood for a point to be considered as a core point.

metric : string, or callable

The metric to use when calculating distance between instances in a feature array.
If metric is a string or callable, it must be one of the options allowed by met-
rics.pairwise.calculate_distance for its metric parameter. If metric is “precomputed”,
X is assumed to be a distance matrix and must be square.

random_state : numpy.RandomState, optional

The generator used to initialize the centers. Defaults to numpy.random.

Notes

See examples/plot_dbscan.py for an example.

References

Ester, M., H. P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise”. In: Proceedings of the 2nd International Conference on Knowledge Discovery
and Data Mining, Portland, OR, AAAI Press, pp. 226–231. 1996

Attributes

core_sample_indices_array, shape =
[n_core_samples]

Indices of core samples.

components_ array, shape =
[n_core_samples,
n_features]

Copy of each core sample found by training.

labels_ array, shape = [n_samples] Cluster labels for each point in the dataset given to fit().
Noisy samples are given the label -1.

Methods

fit(X, **params) Perform DBSCAN clustering from vector array or distance matrix.
get_params([deep]) Get parameters for the estimator
set_params(**params) Set the parameters of the estimator.

__init__(eps=0.5, min_samples=5, metric=’euclidean’, random_state=None)

fit(X, **params)
Perform DBSCAN clustering from vector array or distance matrix.

Parameters X: array [n_samples, n_samples] or [n_samples, n_features] :

Array of distances between samples, or a feature array. The array is treated as a feature
array unless the metric is given as ‘precomputed’.

params: dict :

Overwrite keywords from __init__.

1.8. Reference 229

scikit-learn user guide, Release 0.12-git

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.cluster.KMeans

class sklearn.cluster.KMeans(n_clusters=8, init=’k-means++’, n_init=10, max_iter=300,
tol=0.0001, precompute_distances=True, verbose=0, ran-
dom_state=None, copy_x=True, n_jobs=1, k=None)

K-Means clustering

Parameters n_clusters : int, optional, default: 8

The number of clusters to form as well as the number of centroids to generate.

max_iter : int

Maximum number of iterations of the k-means algorithm for a single run.

n_init: int, optional, default: 10 :

Number of time the k-means algorithm will be run with different centroid seeds. The
final results will be the best output of n_init consecutive runs in terms of inertia.

init : {‘k-means++’, ‘random’ or an ndarray}

Method for initialization, defaults to ‘k-means++’:

‘k-means++’ : selects initial cluster centers for k-mean clustering in a smart way to
speed up convergence. See section Notes in k_init for more details.

‘random’: choose k observations (rows) at random from data for the initial centroids.

if init is an 2d array, it is used as a seed for the centroids

precompute_distances : boolean

Precompute distances (faster but takes more memory).

tol: float, optional default: 1e-4 :

Relative tolerance w.r.t. inertia to declare convergence

n_jobs: int :

The number of jobs to use for the computation. This works by breaking down the
pairwise matrix into n_jobs even slices and computing them in parallel.

If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which
is useful for debuging. For n_jobs below -1, (n_cpus + 1 - n_jobs) are used. Thus for
n_jobs = -2, all CPUs but one are used.

230 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

random_state: integer or numpy.RandomState, optional :

The generator used to initialize the centers. If an integer is given, it fixes the seed.
Defaults to the global numpy random number generator.

See Also:

MiniBatchKMeansAlternative online implementation that does incremental updates of the centers positions
using mini-batches. For large scale learning (say n_samples > 10k) MiniBatchKMeans is probably much
faster to than the default batch implementation.

Notes

The k-means problem is solved using Lloyd’s algorithm.

The average complexity is given by O(k n T), were n is the number of samples and T is the number of iteration.

The worst case complexity is given by O(n^(k+2/p)) with n = n_samples, p = n_features. (D. Arthur and S.
Vassilvitskii, ‘How slow is the k-means method?’ SoCG2006)

In practice, the k-means algorithm is very fast (one of the fastest clustering algorithms available), but it falls in
local minima. That’s why it can be useful to restart it several times.

Attributes

cluster_centers_: array, [n_clusters,
n_features]

Coordinates of cluster centers

labels_: Labels of each point
inertia_: float The value of the inertia criterion associated with the chosen

partition.

Methods

fit(X[, y]) Compute k-means
fit_predict(X) Compute cluster centers and predict cluster index for each sample.
get_params([deep]) Get parameters for the estimator
predict(X) Predict the closest cluster each sample in X belongs to.
score(X) Opposite of the value of X on the K-means objective.
set_params(**params) Set the parameters of the estimator.
transform(X[, y]) Transform the data to a cluster-distance space

__init__(n_clusters=8, init=’k-means++’, n_init=10, max_iter=300, tol=0.0001, precom-
pute_distances=True, verbose=0, random_state=None, copy_x=True, n_jobs=1, k=None)

fit(X, y=None)
Compute k-means

fit_predict(X)
Compute cluster centers and predict cluster index for each sample.

Convenience method; equivalent to calling fit(X) followed by predict(X).

get_params(deep=True)
Get parameters for the estimator

1.8. Reference 231

scikit-learn user guide, Release 0.12-git

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict the closest cluster each sample in X belongs to.

In the vector quantization literature, cluster_centers_ is called the code book and each value returned by
predict is the index of the closest code in the code book.

Parameters X: {array-like, sparse matrix}, shape = [n_samples, n_features] :

New data to predict.

Returns Y : array, shape [n_samples,]

Index of the closest center each sample belongs to.

score(X)
Opposite of the value of X on the K-means objective.

Parameters X: {array-like, sparse matrix}, shape = [n_samples, n_features] :

New data.

Returns score: float :

Opposite of the value of X on the K-means objective.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, y=None)
Transform the data to a cluster-distance space

In the new space, each dimension is the distance to the cluster centers. Note that even if X is sparse, the
array returned by transform will typically be dense.

Parameters X: {array-like, sparse matrix}, shape = [n_samples, n_features] :

New data to transform.

Returns X_new : array, shape [n_samples, k]

X transformed in the new space.

sklearn.cluster.MiniBatchKMeans

class sklearn.cluster.MiniBatchKMeans(n_clusters=8, init=’k-means++’, max_iter=100,
batch_size=100, verbose=0, compute_labels=True,
random_state=None, tol=0.0, max_no_improvement=10,
init_size=None, n_init=3, chunk_size=None, k=None)

Mini-Batch K-Means clustering

Parameters n_clusters : int, optional, default: 8

The number of clusters to form as well as the number of centroids to generate.

232 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

max_iter : int, optional

Maximum number of iterations over the complete dataset before stopping independently
of any early stopping criterion heuristics.

max_no_improvement : int, optional

Control early stopping based on the consecutive number of mini batches that does not
yield an improvement on the smoothed inertia.

To disable convergence detection based on inertia, set max_no_improvement to None.

tol : float, optional

Control early stopping based on the relative center changes as measured by a smoothed,
variance-normalized of the mean center squared position changes. This early stopping
heuristics is closer to the one used for the batch variant of the algorithms but induces a
slight computational and memory overhead over the inertia heuristic.

To disable convergence detection based on normalized center change, set tol to 0.0
(default).

batch_size: int, optional, default: 100 :

Size of the mini batches.

init_size: int, optional, default: 3 * batch_size :

Number of samples to randomly sample for speeding up the initialization (sometimes at
the expense of accurracy): the only algorithm is initialized by running a batch KMeans
on a random subset of the data. This needs to be larger than k.

init : {‘k-means++’, ‘random’ or an ndarray}

Method for initialization, defaults to ‘k-means++’:

‘k-means++’ : selects initial cluster centers for k-mean clustering in a smart way to
speed up convergence. See section Notes in k_init for more details.

‘random’: choose k observations (rows) at random from data for the initial centroids.

if init is an 2d array, it is used as a seed for the centroids

compute_labels: boolean :

Compute label assignements and inertia for the complete dataset once the minibatch
optimization has converged in fit.

random_state: integer or numpy.RandomState, optional :

The generator used to initialize the centers. If an integer is given, it fixes the seed.
Defaults to the global numpy random number generator.

Notes

See http://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf

1.8. Reference 233

http://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf

scikit-learn user guide, Release 0.12-git

Attributes

cluster_centers_:
array, [n_clusters,
n_features]

Coordinates of cluster centers

labels_: Labels of each point (if compute_labels is set to True).
inertia_: float The value of the inertia criterion associated with the chosen partition (if

compute_labels is set to True). The inertia is defined as the sum of square
distances of samples to their nearest neighbor.

Methods

fit(X[, y]) Compute the centroids on X by chunking it into mini-batches.
fit_predict(X) Compute cluster centers and predict cluster index for each sample.
get_params([deep]) Get parameters for the estimator
partial_fit(X[, y]) Update k means estimate on a single mini-batch X.
predict(X) Predict the closest cluster each sample in X belongs to.
score(X) Opposite of the value of X on the K-means objective.
set_params(**params) Set the parameters of the estimator.
transform(X[, y]) Transform the data to a cluster-distance space

__init__(n_clusters=8, init=’k-means++’, max_iter=100, batch_size=100, verbose=0,
compute_labels=True, random_state=None, tol=0.0, max_no_improvement=10,
init_size=None, n_init=3, chunk_size=None, k=None)

fit(X, y=None)
Compute the centroids on X by chunking it into mini-batches.

Parameters X: array-like, shape = [n_samples, n_features] :

Coordinates of the data points to cluster

fit_predict(X)
Compute cluster centers and predict cluster index for each sample.

Convenience method; equivalent to calling fit(X) followed by predict(X).

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

partial_fit(X, y=None)
Update k means estimate on a single mini-batch X.

Parameters X: array-like, shape = [n_samples, n_features] :

Coordinates of the data points to cluster.

predict(X)
Predict the closest cluster each sample in X belongs to.

In the vector quantization literature, cluster_centers_ is called the code book and each value returned by
predict is the index of the closest code in the code book.

234 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Parameters X: {array-like, sparse matrix}, shape = [n_samples, n_features] :

New data to predict.

Returns Y : array, shape [n_samples,]

Index of the closest center each sample belongs to.

score(X)
Opposite of the value of X on the K-means objective.

Parameters X: {array-like, sparse matrix}, shape = [n_samples, n_features] :

New data.

Returns score: float :

Opposite of the value of X on the K-means objective.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, y=None)
Transform the data to a cluster-distance space

In the new space, each dimension is the distance to the cluster centers. Note that even if X is sparse, the
array returned by transform will typically be dense.

Parameters X: {array-like, sparse matrix}, shape = [n_samples, n_features] :

New data to transform.

Returns X_new : array, shape [n_samples, k]

X transformed in the new space.

sklearn.cluster.MeanShift

class sklearn.cluster.MeanShift(bandwidth=None, seeds=None, bin_seeding=False, clus-
ter_all=True)

MeanShift clustering

Parameters bandwidth: float, optional :

Bandwith used in the RBF kernel If not set, the bandwidth is estimated. See cluster-
ing.estimate_bandwidth

seeds: array [n_samples, n_features], optional :

Seeds used to initialize kernels. If not set, the seeds are calculated by cluster-
ing.get_bin_seeds with bandwidth as the grid size and default values for other parame-
ters.

cluster_all: boolean, default True :

If true, then all points are clustered, even those orphans that are not within any kernel.
Orphans are assigned to the nearest kernel. If false, then orphans are given cluster label
-1.

1.8. Reference 235

scikit-learn user guide, Release 0.12-git

Notes

Scalability:

Because this implementation uses a flat kernel and a Ball Tree to look up members of each kernel, the complexity
will is to O(T*n*log(n)) in lower dimensions, with n the number of samples and T the number of points. In
higher dimensions the complexity will tend towards O(T*n^2).

Scalability can be boosted by using fewer seeds, for examply by using a higher value of min_bin_freq in the
get_bin_seeds function.

Note that the estimate_bandwidth function is much less scalable than the mean shift algorithm and will be the
bottleneck if it is used.

References

Dorin Comaniciu and Peter Meer, “Mean Shift: A robust approach toward feature space analysis”. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619.

Attributes

cluster_centers_ array, [n_clusters, n_features] Coordinates of cluster centers
labels_ : Labels of each point

Methods

fit(X) Compute MeanShift
get_params([deep]) Get parameters for the estimator
set_params(**params) Set the parameters of the estimator.

__init__(bandwidth=None, seeds=None, bin_seeding=False, cluster_all=True)

fit(X)
Compute MeanShift

Parameters X : array [n_samples, n_features]

Input points

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

236 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

sklearn.cluster.SpectralClustering

class sklearn.cluster.SpectralClustering(n_clusters=8, mode=None, random_state=None,
n_init=10, k=None)

Apply k-means to a projection to the normalized laplacian

In practice Spectral Clustering is very useful when the structure of the individual clusters is highly non-convex
or more generally when a measure of the center and spread of the cluster is not a suitable description of the
complete cluster. For instance when clusters are nested circles on the 2D plan.

If affinity is the adjacency matrix of a graph, this method can be used to find normalized graph cuts.

Parameters n_clusters : integer, optional

The dimension of the projection subspace.

mode : {None, ‘arpack’ or ‘amg’}

The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It
can be faster on very large, sparse problems, but may also lead to instabilities

random_state : int seed, RandomState instance, or None (default)

A pseudo random number generator used for the initialization of the lobpcg eigen vec-
tors decomposition when mode == ‘amg’ and by the K-Means initialization.

n_init : int, optional, default: 10

Number of time the k-means algorithm will be run with different centroid seeds. The
final results will be the best output of n_init consecutive runs in terms of inertia.

References

•Normalized cuts and image segmentation, 2000 Jianbo Shi, Jitendra Malik
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324

•A Tutorial on Spectral Clustering, 2007 Ulrike von Luxburg
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323

Attributes

labels_ : Labels of each point

Methods

fit(X) Compute the spectral clustering from the affinity matrix
get_params([deep]) Get parameters for the estimator
set_params(**params) Set the parameters of the estimator.

__init__(n_clusters=8, mode=None, random_state=None, n_init=10, k=None)

fit(X)
Compute the spectral clustering from the affinity matrix

Parameters X: array-like or sparse matrix, shape: (n_samples, n_samples) :

1.8. Reference 237

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323

scikit-learn user guide, Release 0.12-git

An affinity matrix describing the pairwise similarity of the data. If can also be an ad-
jacency matrix of the graph to embed. X must be symmetric and its entries must be
positive or zero. Zero means that elements have nothing in common, whereas high
values mean that elements are strongly similar.

Notes

If you have an affinity matrix, such as a distance matrix, for which 0 means identical elements, and high
values means very dissimilar elements, it can be transformed in a similarity matrix that is well suited for
the algorithm by applying the gaussian (heat) kernel:

np.exp(- X ** 2 / (2. * delta ** 2))

Another alternative is to take a symmetric version of the k nearest neighbors connectivity matrix of the
points.

If the pyamg package is installed, it is used: this greatly speeds up computation.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.cluster.Ward

class sklearn.cluster.Ward(n_clusters=2, memory=Memory(cachedir=None), connectivity=None,
copy=True, n_components=None)

Ward hierarchical clustering: constructs a tree and cuts it.

Parameters n_clusters : int or ndarray

The number of clusters to find.

connectivity : sparse matrix.

Connectivity matrix. Defines for each sample the neigbhoring samples following a
given structure of the data. Default is None, i.e, the hiearchical clustering algorithm is
unstructured.

memory : Instance of joblib.Memory or string

Used to cache the output of the computation of the tree. By default, no caching is done.
If a string is given, it is the path to the caching directory.

copy : bool

Copy the connectivity matrix or work inplace.

n_components : int (optional)

238 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

The number of connected components in the graph defined by the connectivity matrix.
If not set, it is estimated.

Attributes

children_ array-like, shape = [n_nodes, 2] List of the children of each nodes. Leaves of the tree do not appear.
labels_ array [n_points] cluster labels for each point
n_leaves_ int Number of leaves in the hiearchical tree.

Methods

fit(X) Fit the hierarchical clustering on the data
get_params([deep]) Get parameters for the estimator
set_params(**params) Set the parameters of the estimator.

__init__(n_clusters=2, memory=Memory(cachedir=None), connectivity=None, copy=True,
n_components=None)

fit(X)
Fit the hierarchical clustering on the data

Parameters X : array-like, shape = [n_samples, n_features]

The samples a.k.a. observations.

Returns self :

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Functions

cluster.estimate_bandwidth(X[, quantile, ...]) Estimate the bandwith to use with MeanShift algorithm
cluster.k_means(X, n_clusters[, init, ...]) K-means clustering algorithm.
cluster.ward_tree(X[, connectivity, ...]) Ward clustering based on a Feature matrix.
cluster.affinity_propagation(S[, p, convit, ...]) Perform Affinity Propagation Clustering of data
cluster.dbscan(X[, eps, min_samples, ...]) Perform DBSCAN clustering from vector array or distance matrix.
cluster.mean_shift(X[, bandwidth, seeds, ...]) Perform MeanShift Clustering of data using a flat kernel
cluster.spectral_clustering(affinity[, ...]) Apply k-means to a projection to the normalized laplacian

1.8. Reference 239

scikit-learn user guide, Release 0.12-git

sklearn.cluster.estimate_bandwidth

sklearn.cluster.estimate_bandwidth(X, quantile=0.3, n_samples=None, random_state=0)
Estimate the bandwith to use with MeanShift algorithm

Parameters X: array [n_samples, n_features] :

Input points

quantile: float, default 0.3 :

should be between [0, 1] 0.5 means that the median is all pairwise distances is used

n_samples: int :

The number of samples to use. If None, all samples are used.

random_state: int or RandomState :

Pseudo number generator state used for random sampling.

Returns bandwidth: float :

The bandwidth parameter

sklearn.cluster.k_means

sklearn.cluster.k_means(X, n_clusters, init=’k-means++’, precompute_distances=True, n_init=10,
max_iter=300, verbose=False, tol=0.0001, random_state=None,
copy_x=True, n_jobs=1, k=None)

K-means clustering algorithm.

Parameters X: array-like of floats, shape (n_samples, n_features) :

The observations to cluster.

n_clusters: int :

The number of clusters to form as well as the number of centroids to generate.

max_iter: int, optional, default 300 :

Maximum number of iterations of the k-means algorithm to run.

n_init: int, optional, default: 10 :

Number of time the k-means algorithm will be run with different centroid seeds. The
final results will be the best output of n_init consecutive runs in terms of inertia.

init: {‘k-means++’, ‘random’, or ndarray, or a callable}, optional :

Method for initialization, default to ‘k-means++’:

‘k-means++’ : selects initial cluster centers for k-mean clustering in a smart way to
speed up convergence. See section Notes in k_init for more details.

‘random’: generate k centroids from a Gaussian with mean and variance estimated from
the data.

If an ndarray is passed, it should be of shape (k, p) and gives the initial centers.

If a callable is passed, it should take arguments X, k and and a random state and return
an initialization.

tol: float, optional :

240 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

The relative increment in the results before declaring convergence.

verbose: boolean, optional :

Verbosity mode

random_state: integer or numpy.RandomState, optional :

The generator used to initialize the centers. If an integer is given, it fixes the seed.
Defaults to the global numpy random number generator.

copy_x: boolean, optional :

When pre-computing distances it is more numerically accurate to center the data first.
If copy_x is True, then the original data is not modified. If False, the original data is
modified, and put back before the function returns, but small numerical differences may
be introduced by subtracting and then adding the data mean.

n_jobs: int :

The number of jobs to use for the computation. This works by breaking down the
pairwise matrix into n_jobs even slices and computing them in parallel.

If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which
is useful for debuging. For n_jobs below -1, (n_cpus + 1 - n_jobs) are used. Thus for
n_jobs = -2, all CPUs but one are used.

Returns centroid: float ndarray with shape (k, n_features) :

Centroids found at the last iteration of k-means.

label: integer ndarray with shape (n_samples,) :

label[i] is the code or index of the centroid the i’th observation is closest to.

inertia: float :

The final value of the inertia criterion (sum of squared distances to the closest centroid
for all observations in the training set).

sklearn.cluster.ward_tree

sklearn.cluster.ward_tree(X, connectivity=None, n_components=None, copy=True)
Ward clustering based on a Feature matrix.

The inertia matrix uses a Heapq-based representation.

This is the structured version, that takes into account a some topological structure between samples.

Parameters X : array of shape (n_samples, n_features)

feature matrix representing n_samples samples to be clustered

connectivity : sparse matrix.

connectivity matrix. Defines for each sample the neigbhoring samples following a given
structure of the data. The matrix is assumed to be symmetric and only the upper trian-
gular half is used. Default is None, i.e, the Ward algorithm is unstructured.

n_components : int (optional)

Number of connected components. If None the number of connected components is
estimated from the connectivity matrix.

copy : bool (optional)

1.8. Reference 241

scikit-learn user guide, Release 0.12-git

Make a copy of connectivity or work inplace. If connectivity is not of LIL type there
will be a copy in any case.

Returns children : list of pairs. Lenght of n_nodes

list of the children of each nodes. Leaves of the tree have empty list of children.

n_components : sparse matrix.

The number of connected components in the graph.

n_leaves : int

The number of leaves in the tree

sklearn.cluster.affinity_propagation

sklearn.cluster.affinity_propagation(S, p=None, convit=30, max_iter=200, damping=0.5,
copy=True, verbose=False)

Perform Affinity Propagation Clustering of data

Parameters S: array [n_points, n_points] :

Matrix of similarities between points

p: array [n_points,] or float, optional :

Preferences for each point - points with larger values of preferences are more likely to
be chosen as exemplars. The number of exemplars, ie of clusters, is influenced by the
input preferences value. If the preferences are not passed as arguments, they will be set
to the median of the input similarities (resulting in a moderate number of clusters). For
a smaller amount of clusters, this can be set to the minimum value of the similarities.

damping : float, optional

Damping factor

copy: boolean, optional :

If copy is False, the affinity matrix is modified inplace by the algorithm, for memory
efficiency

verbose: boolean, optional :

The verbosity level

Returns cluster_centers_indices: array [n_clusters] :

index of clusters centers

labels : array [n_points]

cluster labels for each point

Notes

See examples/plot_affinity_propagation.py for an example.

References

Brendan J. Frey and Delbert Dueck, “Clustering by Passing Messages Between Data Points”, Science Feb. 2007

242 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

sklearn.cluster.dbscan

sklearn.cluster.dbscan(X, eps=0.5, min_samples=5, metric=’euclidean’, random_state=None)
Perform DBSCAN clustering from vector array or distance matrix.

Parameters X: array [n_samples, n_samples] or [n_samples, n_features] :

Array of distances between samples, or a feature array. The array is treated as a feature
array unless the metric is given as ‘precomputed’.

eps: float, optional :

The maximum distance between two samples for them to be considered as in the same
neighborhood.

min_samples: int, optional :

The number of samples in a neighborhood for a point to be considered as a core point.

metric: string, or callable :

The metric to use when calculating distance between instances in a feature array.
If metric is a string or callable, it must be one of the options allowed by met-
rics.pairwise.calculate_distance for its metric parameter. If metric is “precomputed”,
X is assumed to be a distance matrix and must be square.

random_state: numpy.RandomState, optional :

The generator used to initialize the centers. Defaults to numpy.random.

Returns core_samples: array [n_core_samples] :

Indices of core samples.

labels : array [n_samples]

Cluster labels for each point. Noisy samples are given the label -1.

Notes

See examples/plot_dbscan.py for an example.

References

Ester, M., H. P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise”. In: Proceedings of the 2nd International Conference on Knowledge Discovery
and Data Mining, Portland, OR, AAAI Press, pp. 226–231. 1996

sklearn.cluster.mean_shift

sklearn.cluster.mean_shift(X, bandwidth=None, seeds=None, bin_seeding=False, clus-
ter_all=True, max_iterations=300)

Perform MeanShift Clustering of data using a flat kernel

Seed using a binning technique for scalability.

Parameters X : array [n_samples, n_features]

Input points

1.8. Reference 243

scikit-learn user guide, Release 0.12-git

bandwidth : float, optional

kernel bandwidth If bandwidth is not defined, it is set using a heuristic given by the
median of all pairwise distances

seeds: array [n_seeds, n_features] :

point used as initial kernel locations

bin_seeding: boolean :

If true, initial kernel locations are not locations of all points, but rather the location of
the discretized version of points, where points are binned onto a grid whose coarseness
corresponds to the bandwidth. Setting this option to True will speed up the algorithm
because fewer seeds will be initialized. default value: False Ignored if seeds argument
is not None

min_bin_freq: int, optional :

To speed up the algorithm, accept only those bins with at least min_bin_freq points as
seeds. If not defined, set to 1.

Returns cluster_centers : array [n_clusters, n_features]

Coordinates of cluster centers

labels : array [n_samples]

cluster labels for each point

Notes

See examples/plot_meanshift.py for an example.

sklearn.cluster.spectral_clustering

sklearn.cluster.spectral_clustering(affinity, n_clusters=8, n_components=None,
mode=None, random_state=None, n_init=10, k=None)

Apply k-means to a projection to the normalized laplacian

In practice Spectral Clustering is very useful when the structure of the individual clusters is highly non-convex
or more generally when a measure of the center and spread of the cluster is not a suitable description of the
complete cluster. For instance when clusters are nested circles on the 2D plan.

If affinity is the adjacency matrix of a graph, this method can be used to find normalized graph cuts.

Parameters affinity: array-like or sparse matrix, shape: (n_samples, n_samples) :

The affinity matrix describing the relationship of the samples to embed. Must be sy-
metric.

Possible examples:

•adjacency matrix of a graph,

•heat kernel of the pairwise distance matrix of the samples,

•symmetic k-nearest neighbours connectivity matrix of the samples.

n_clusters: integer, optional :

Number of clusters to extract.

244 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

n_components: integer, optional, default is k :

Number of eigen vectors to use for the spectral embedding

mode: {None, ‘arpack’ or ‘amg’} :

The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It
can be faster on very large, sparse problems, but may also lead to instabilities

random_state: int seed, RandomState instance, or None (default) :

A pseudo random number generator used for the initialization of the lobpcg eigen vec-
tors decomposition when mode == ‘amg’ and by the K-Means initialization.

n_init: int, optional, default: 10 :

Number of time the k-means algorithm will be run with different centroid seeds. The
final results will be the best output of n_init consecutive runs in terms of inertia.

Returns labels: array of integers, shape: n_samples :

The labels of the clusters.

centers: array of integers, shape: k :

The indices of the cluster centers

Notes

The graph should contain only one connect component, elsewhere the results make little sense.

This algorithm solves the normalized cut for k=2: it is a normalized spectral clustering.

References

•Normalized cuts and image segmentation, 2000 Jianbo Shi, Jitendra Malik
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324

•A Tutorial on Spectral Clustering, 2007 Ulrike von Luxburg
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323

1.8.2 sklearn.covariance: Covariance Estimators

The sklearn.covariance module includes methods and algorithms to robustly estimate the covariance of fea-
tures given a set of points. The precision matrix defined as the inverse of the covariance is also estimated. Covariance
estimation is closely related to the theory of Gaussian Graphical Models.

User guide: See the Covariance estimation section for further details.

covariance.EmpiricalCovariance([...]) Maximum likelihood covariance estimator
covariance.EllipticEnvelope([...]) An object for detecting outliers in a Gaussian distributed dataset.
covariance.GraphLasso([alpha, mode, tol, ...]) Sparse inverse covariance estimation with an l1-penalized estimator.
covariance.GraphLassoCV([alphas, ...]) Sparse inverse covariance w/ cross-validated choice of the l1 penality
covariance.LedoitWolf([store_precision, ...]) LedoitWolf Estimator
covariance.MinCovDet([store_precision, ...]) Minimum Covariance Determinant (MCD): robust estimator of covariance
covariance.OAS([store_precision, ...]) Oracle Approximating Shrinkage Estimator
covariance.ShrunkCovariance([...]) Covariance estimator with shrinkage

1.8. Reference 245

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323

scikit-learn user guide, Release 0.12-git

sklearn.covariance.EmpiricalCovariance

class sklearn.covariance.EmpiricalCovariance(store_precision=True, as-
sume_centered=False)

Maximum likelihood covariance estimator

Parameters store_precision : bool

Specifies if the estimated precision is stored

Attributes

covari-
ance_

2D ndarray, shape (n_features,
n_features)

Estimated covariance matrix

preci-
sion_

2D ndarray, shape (n_features,
n_features)

Estimated pseudo-inverse matrix. (stored only if
store_precision is True)

Methods

error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two covariance estimators.
fit(X) Fits the Maximum Likelihood Estimator covariance model
get_params([deep]) Get parameters for the estimator
mahalanobis(observations) Computes the mahalanobis distances of given observations.
score(X_test[, assume_centered]) Computes the log-likelihood of a gaussian data set with self.covariance_ as an estimator of its covariance matrix.
set_params(**params) Set the parameters of the estimator.

__init__(store_precision=True, assume_centered=False)

Parameters store_precision: bool :

Specify if the estimated precision is stored

assume_centered: Boolean :

If True, data are not centered before computation. Useful when working with data
whose mean is almost, but not exactly zero. If False, data are centered before computa-
tion.

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm)

Parameters comp_cov: array-like, shape = [n_features, n_features] :

The covariance to compare with.

norm: str :

The type of norm used to compute the error. Available error types: - ‘frobenius’ (de-
fault): sqrt(tr(A^t.A)) - ‘spectral’: sqrt(max(eigenvalues(A^t.A)) where A is the error
(comp_cov - self.covariance_).

scaling: bool :

If True (default), the squared error norm is divided by n_features. If False, the squared
error norm is not rescaled.

246 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

squared: bool :

Whether to compute the squared error norm or the error norm. If True (default), the
squared error norm is returned. If False, the error norm is returned.

Returns The Mean Squared Error (in the sense of the Frobenius norm) between :

‘self‘ and ‘comp_cov‘ covariance estimators. :

fit(X)
Fits the Maximum Likelihood Estimator covariance model according to the given training data and param-
eters.

Parameters X : array-like, shape = [n_samples, n_features]

Training data, where n_samples is the number of samples and n_features is the number
of features.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

mahalanobis(observations)
Computes the mahalanobis distances of given observations.

The provided observations are assumed to be centered. One may want to center them using a location
estimate first.

Parameters observations: array-like, shape = [n_observations, n_features] :

The observations, the Mahalanobis distances of the which we compute.

Returns mahalanobis_distance: array, shape = [n_observations,] :

Mahalanobis distances of the observations.

score(X_test, assume_centered=False)
Computes the log-likelihood of a gaussian data set with self.covariance_ as an estimator of its covariance
matrix.

Parameters X_test : array-like, shape = [n_samples, n_features]

Test data of which we compute the likelihood, where n_samples is the number of sam-
ples and n_features is the number of features.

Returns res : float

The likelihood of the data set with self.covariance_ as an estimator of its covariance
matrix.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

1.8. Reference 247

scikit-learn user guide, Release 0.12-git

sklearn.covariance.EllipticEnvelope

class sklearn.covariance.EllipticEnvelope(store_precision=True, assume_centered=False,
support_fraction=None, contamination=0.1)

An object for detecting outliers in a Gaussian distributed dataset.

Parameters store_precision: bool :

Specify if the estimated precision is stored

assume_centered: Boolean :

If True, the support of robust location and covariance estimates is computed, and a
covariance estimate is recomputed from it, without centering the data. Useful to work
with data whose mean is significantly equal to zero but is not exactly zero. If False,
the robust location and covariance are directly computed with the FastMCD algorithm
without additional treatment.

support_fraction: float, 0 < support_fraction < 1 :

The proportion of points to be included in the support of the raw MCD estimate. Default
is None, which implies that the minimum value of support_fraction will be used within
the algorithm: [n_sample + n_features + 1] / 2

contamination: float, 0. < contamination < 0.5 :

The amount of contamination of the data set, i.e. the proportion of outliers in the data
set.

See Also:

EmpiricalCovariance, MinCovDet

Notes

Outlier detection from covariance estimation may break or not perform well in high-dimensional settings. In
particular, one will always take care to work with n_samples > n_features ** 2.

References

Attributes

contamination: float, 0. <
contamination < 0.5

The amount of contamination of the data set, i.e. the proportion of
outliers in the data set.

location_: array-like, shape
(n_features,)

Estimated robust location

covariance_: array-like, shape
(n_features, n_features)

Estimated robust covariance matrix

precision_: array-like, shape
(n_features, n_features)

Estimated pseudo inverse matrix. (stored only if store_precision is
True)

support_: array-like, shape
(n_samples,)

A mask of the observations that have been used to compute the
robust estimates of location and shape.

Methods

248 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

correct_covariance(data) Apply a correction to raw Minimum Covariance Determinant estimates.
decision_function(X[, raw_mahalanobis]) Compute the decision function of the given observations.
error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two covariance estimators.
fit(X)
get_params([deep]) Get parameters for the estimator
mahalanobis(observations) Computes the mahalanobis distances of given observations.
predict(X) Outlyingness of observations in X according to the fitted model.
reweight_covariance(data) Reweight raw Minimum Covariance Determinant estimates.
score(X, y) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of the estimator.

__init__(store_precision=True, assume_centered=False, support_fraction=None, contamina-
tion=0.1)

correct_covariance(data)
Apply a correction to raw Minimum Covariance Determinant estimates.

Correction using the empirical correction factor suggested by Rousseeuw and Van Driessen in
[Rouseeuw1984].

Parameters data: array-like, shape (n_samples, n_features) :

The data matrix, with p features and n samples. The data set must be the one which was
used to compute the raw estimates.

Returns covariance_corrected: array-like, shape (n_features, n_features) :

Corrected robust covariance estimate.

decision_function(X, raw_mahalanobis=False)
Compute the decision function of the given observations.

Parameters X: array-like, shape (n_samples, n_features) :

raw_mahalanobis: bool :

Whether or not to consider raw Mahalanobis distances as the decision function. Must
be False (default) for compatibility with the others outlier detection tools.

Returns decision: array-like, shape (n_samples,) :

The values of the decision function for each observations. It is equal to the Mahalanobis
distances if raw_mahalanobis is True. By default (raw_mahalanobis=True), it is
equal to the cubic root of the shifted Mahalanobis distances. In that case, the threshold
for being an outlier is 0, which ensures a compatibility with other outlier detection tools
such as the One-Class SVM.

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm)

Parameters comp_cov: array-like, shape = [n_features, n_features] :

The covariance to compare with.

norm: str :

The type of norm used to compute the error. Available error types: - ‘frobenius’ (de-
fault): sqrt(tr(A^t.A)) - ‘spectral’: sqrt(max(eigenvalues(A^t.A)) where A is the error
(comp_cov - self.covariance_).

1.8. Reference 249

scikit-learn user guide, Release 0.12-git

scaling: bool :

If True (default), the squared error norm is divided by n_features. If False, the squared
error norm is not rescaled.

squared: bool :

Whether to compute the squared error norm or the error norm. If True (default), the
squared error norm is returned. If False, the error norm is returned.

Returns The Mean Squared Error (in the sense of the Frobenius norm) between :

‘self‘ and ‘comp_cov‘ covariance estimators. :

fit(X)

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

mahalanobis(observations)
Computes the mahalanobis distances of given observations.

The provided observations are assumed to be centered. One may want to center them using a location
estimate first.

Parameters observations: array-like, shape = [n_observations, n_features] :

The observations, the Mahalanobis distances of the which we compute.

Returns mahalanobis_distance: array, shape = [n_observations,] :

Mahalanobis distances of the observations.

predict(X)
Outlyingness of observations in X according to the fitted model.

Parameters X: array-like, shape = (n_samples, n_features) :

Returns is_outliers: array, shape = (n_samples,), dtype = bool :

For each observations, tells whether or not it should be considered as an outlier accord-
ing to the fitted model.

threshold: float, :

The values of the less outlying point’s decision function.

reweight_covariance(data)
Reweight raw Minimum Covariance Determinant estimates.

Reweight observations using Rousseeuw’s method (equivalent to deleting outlying observations from the
data set before computing location and covariance estimates). [Rouseeuw1984]

Parameters data: array-like, shape (n_samples, n_features) :

The data matrix, with p features and n samples. The data set must be the one which was
used to compute the raw estimates.

Returns location_reweighted: array-like, shape (n_features,) :

Reweighted robust location estimate.

covariance_reweighted: array-like, shape (n_features, n_features) :

250 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Reweighted robust covariance estimate.

support_reweighted: array-like, type boolean, shape (n_samples,) :

A mask of the observations that have been used to compute the reweighted robust loca-
tion and covariance estimates.

score(X, y)
Returns the mean accuracy on the given test data and labels.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.covariance.GraphLasso

class sklearn.covariance.GraphLasso(alpha=0.01, mode=’cd’, tol=0.0001, max_iter=100, ver-
bose=False)

Sparse inverse covariance estimation with an l1-penalized estimator.

Parameters alpha: positive float, optional :

The regularization parameter: the higher alpha, the more regularization, the sparser the
inverse covariance

cov_init: 2D array (n_features, n_features), optional :

The initial guess for the covariance

mode: {‘cd’, ‘lars’} :

The Lasso solver to use: coordinate descent or LARS. Use LARS for very sparse un-
derlying graphs, where p > n. Elsewhere prefer cd which is more numerically stable.

tol: positive float, optional :

The tolerance to declare convergence: if the dual gap goes below this value, iterations
are stopped

max_iter: integer, optional :

The maximum number of iterations

verbose: boolean, optional :

If verbose is True, the objective function and dual gap are plotted at each iteration

See Also:

graph_lasso, GraphLassoCV

1.8. Reference 251

scikit-learn user guide, Release 0.12-git

Attributes

covariance_ array-like, shape (n_features, n_features) Estimated covariance matrix
precision_ array-like, shape (n_features, n_features) Estimated pseudo inverse matrix.

Methods

error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two covariance estimators.
fit(X[, y])
get_params([deep]) Get parameters for the estimator
mahalanobis(observations) Computes the mahalanobis distances of given observations.
score(X_test[, assume_centered]) Computes the log-likelihood of a gaussian data set with self.covariance_ as an estimator of its covariance matrix.
set_params(**params) Set the parameters of the estimator.

__init__(alpha=0.01, mode=’cd’, tol=0.0001, max_iter=100, verbose=False)

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm)

Parameters comp_cov: array-like, shape = [n_features, n_features] :

The covariance to compare with.

norm: str :

The type of norm used to compute the error. Available error types: - ‘frobenius’ (de-
fault): sqrt(tr(A^t.A)) - ‘spectral’: sqrt(max(eigenvalues(A^t.A)) where A is the error
(comp_cov - self.covariance_).

scaling: bool :

If True (default), the squared error norm is divided by n_features. If False, the squared
error norm is not rescaled.

squared: bool :

Whether to compute the squared error norm or the error norm. If True (default), the
squared error norm is returned. If False, the error norm is returned.

Returns The Mean Squared Error (in the sense of the Frobenius norm) between :

‘self‘ and ‘comp_cov‘ covariance estimators. :

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

mahalanobis(observations)
Computes the mahalanobis distances of given observations.

The provided observations are assumed to be centered. One may want to center them using a location
estimate first.

Parameters observations: array-like, shape = [n_observations, n_features] :

252 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

The observations, the Mahalanobis distances of the which we compute.

Returns mahalanobis_distance: array, shape = [n_observations,] :

Mahalanobis distances of the observations.

score(X_test, assume_centered=False)
Computes the log-likelihood of a gaussian data set with self.covariance_ as an estimator of its covariance
matrix.

Parameters X_test : array-like, shape = [n_samples, n_features]

Test data of which we compute the likelihood, where n_samples is the number of sam-
ples and n_features is the number of features.

Returns res : float

The likelihood of the data set with self.covariance_ as an estimator of its covariance
matrix.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.covariance.GraphLassoCV

class sklearn.covariance.GraphLassoCV(alphas=4, n_refinements=4, cv=None, tol=0.0001,
max_iter=100, mode=’cd’, n_jobs=1, verbose=False)

Sparse inverse covariance w/ cross-validated choice of the l1 penality

Parameters alphas: integer, or list positive float, optional :

If an integer is given, it fixes the number of points on the grids of alpha to be used. If
a list is given, it gives the grid to be used. See the notes in the class docstring for more
details.

n_refinements: strictly positive integer :

The number of time the grid is refined. Not used if explicit values of alphas are passed.

cv : crossvalidation generator, optional

see sklearn.cross_validation module. If None is passed, default to a 3-fold strategy

tol: positive float, optional :

The tolerance to declare convergence: if the dual gap goes below this value, iterations
are stopped

max_iter: integer, optional :

The maximum number of iterations

mode: {‘cd’, ‘lars’} :

The Lasso solver to use: coordinate descent or LARS. Use LARS for very sparse un-
derlying graphs, where p > n. Elsewhere prefer cd which is more numerically stable.

n_jobs: int, optional :

1.8. Reference 253

scikit-learn user guide, Release 0.12-git

number of jobs to run in parallel (default 1)

verbose: boolean, optional :

If verbose is True, the objective function and dual gap are print at each iteration

See Also:

graph_lasso, GraphLasso

Notes

The search for the optimal alpha is done on an iteratively refined grid: first the cross-validated scores on a grid
are computed, then a new refined grid is center around the maximum...

One of the challenges that we have to face is that the solvers can fail to converge to a well-conditioned estimate.
The corresponding values of alpha then come out as missing values, but the optimum may be close to these
missing values.

Attributes

covariance_ array-like, shape (n_features,
n_features)

Estimated covariance matrix

precision_ array-like, shape (n_features,
n_features)

Estimated precision matrix (inverse
covariance).

alpha_: float Penalization parameter selected
cv_alphas_: list of float All the penalization parameters explored
cv_scores: 2D array
(n_alphas, n_folds)

The log-likelihood score on left-out data
across the folds.

Methods

error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two covariance estimators.
fit(X[, y])
get_params([deep]) Get parameters for the estimator
mahalanobis(observations) Computes the mahalanobis distances of given observations.
score(X_test[, assume_centered]) Computes the log-likelihood of a gaussian data set with self.covariance_ as an estimator of its covariance matrix.
set_params(**params) Set the parameters of the estimator.

__init__(alphas=4, n_refinements=4, cv=None, tol=0.0001, max_iter=100, mode=’cd’, n_jobs=1,
verbose=False)

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm)

Parameters comp_cov: array-like, shape = [n_features, n_features] :

The covariance to compare with.

norm: str :

The type of norm used to compute the error. Available error types: - ‘frobenius’ (de-
fault): sqrt(tr(A^t.A)) - ‘spectral’: sqrt(max(eigenvalues(A^t.A)) where A is the error
(comp_cov - self.covariance_).

254 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

scaling: bool :

If True (default), the squared error norm is divided by n_features. If False, the squared
error norm is not rescaled.

squared: bool :

Whether to compute the squared error norm or the error norm. If True (default), the
squared error norm is returned. If False, the error norm is returned.

Returns The Mean Squared Error (in the sense of the Frobenius norm) between :

‘self‘ and ‘comp_cov‘ covariance estimators. :

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

mahalanobis(observations)
Computes the mahalanobis distances of given observations.

The provided observations are assumed to be centered. One may want to center them using a location
estimate first.

Parameters observations: array-like, shape = [n_observations, n_features] :

The observations, the Mahalanobis distances of the which we compute.

Returns mahalanobis_distance: array, shape = [n_observations,] :

Mahalanobis distances of the observations.

score(X_test, assume_centered=False)
Computes the log-likelihood of a gaussian data set with self.covariance_ as an estimator of its covariance
matrix.

Parameters X_test : array-like, shape = [n_samples, n_features]

Test data of which we compute the likelihood, where n_samples is the number of sam-
ples and n_features is the number of features.

Returns res : float

The likelihood of the data set with self.covariance_ as an estimator of its covariance
matrix.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.covariance.LedoitWolf

class sklearn.covariance.LedoitWolf(store_precision=True, assume_centered=False)
LedoitWolf Estimator

1.8. Reference 255

scikit-learn user guide, Release 0.12-git

Ledoit-Wolf is a particular form of shrinkage, where the shrinkage coefficient is computed using O.Ledoit and
M.Wolf’s formula as described in “A Well-Conditioned Estimator for Large-Dimensional Covariance Matrices”,
Ledoit and Wolf, Journal of Multivariate Analysis, Volume 88, Issue 2, February 2004, pages 365-411.

Parameters store_precision : bool

Specify if the estimated precision is stored

Notes

The regularised covariance is:

(1 - shrinkage)*cov
+ shrinkage*mu*np.identity(n_features)

where mu = trace(cov) / n_features and shinkage is given by the Ledoit and Wolf formula (see References)

References

“A Well-Conditioned Estimator for Large-Dimensional Covariance Matrices”, Ledoit and Wolf, Journal of Mul-
tivariate Analysis, Volume 88, Issue 2, February 2004, pages 365-411.

Attributes

covariance_ array-like, shape
(n_features, n_features)

Estimated covariance matrix

precision_ array-like, shape
(n_features, n_features)

Estimated pseudo inverse matrix. (stored only if
store_precision is True)

shrinkage_: float, 0 <=
shrinkage <= 1

coefficient in the convex combination used for the
computation of the shrunk estimate.

Methods

error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two covariance estimators.
fit(X[, assume_centered]) Fits the Ledoit-Wolf shrunk covariance model
get_params([deep]) Get parameters for the estimator
mahalanobis(observations) Computes the mahalanobis distances of given observations.
score(X_test[, assume_centered]) Computes the log-likelihood of a gaussian data set with self.covariance_ as an estimator of its covariance matrix.
set_params(**params) Set the parameters of the estimator.

__init__(store_precision=True, assume_centered=False)

Parameters store_precision: bool :

Specify if the estimated precision is stored

assume_centered: Boolean :

If True, data are not centered before computation. Useful when working with data
whose mean is almost, but not exactly zero. If False, data are centered before computa-
tion.

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)

256 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm)

Parameters comp_cov: array-like, shape = [n_features, n_features] :

The covariance to compare with.

norm: str :

The type of norm used to compute the error. Available error types: - ‘frobenius’ (de-
fault): sqrt(tr(A^t.A)) - ‘spectral’: sqrt(max(eigenvalues(A^t.A)) where A is the error
(comp_cov - self.covariance_).

scaling: bool :

If True (default), the squared error norm is divided by n_features. If False, the squared
error norm is not rescaled.

squared: bool :

Whether to compute the squared error norm or the error norm. If True (default), the
squared error norm is returned. If False, the error norm is returned.

Returns The Mean Squared Error (in the sense of the Frobenius norm) between :

‘self‘ and ‘comp_cov‘ covariance estimators. :

fit(X, assume_centered=False)
Fits the Ledoit-Wolf shrunk covariance model according to the given training data and parameters.

Parameters X : array-like, shape = [n_samples, n_features]

Training data, where n_samples is the number of samples and n_features is the number
of features.

assume_centered: Boolean :

If True, data are not centered before computation. Usefull to work with data whose
mean is significantly equal to zero but is not exactly zero. If False, data are centered
before computation.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

mahalanobis(observations)
Computes the mahalanobis distances of given observations.

The provided observations are assumed to be centered. One may want to center them using a location
estimate first.

Parameters observations: array-like, shape = [n_observations, n_features] :

The observations, the Mahalanobis distances of the which we compute.

Returns mahalanobis_distance: array, shape = [n_observations,] :

Mahalanobis distances of the observations.

1.8. Reference 257

scikit-learn user guide, Release 0.12-git

score(X_test, assume_centered=False)
Computes the log-likelihood of a gaussian data set with self.covariance_ as an estimator of its covariance
matrix.

Parameters X_test : array-like, shape = [n_samples, n_features]

Test data of which we compute the likelihood, where n_samples is the number of sam-
ples and n_features is the number of features.

Returns res : float

The likelihood of the data set with self.covariance_ as an estimator of its covariance
matrix.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.covariance.MinCovDet

class sklearn.covariance.MinCovDet(store_precision=True, assume_centered=False, sup-
port_fraction=None, random_state=None)

Minimum Covariance Determinant (MCD): robust estimator of covariance

Parameters store_precision: bool :

Specify if the estimated precision is stored

assume_centered: Boolean :

If True, the support of robust location and covariance estimates is computed, and a
covariance estimate is recomputed from it, without centering the data. Useful to work
with data whose mean is significantly equal to zero but is not exactly zero. If False,
the robust location and covariance are directly computed with the FastMCD algorithm
without additional treatment.

support_fraction: float, 0 < support_fraction < 1 :

The proportion of points to be included in the support of the raw MCD estimate. Default
is None, which implies that the minimum value of support_fraction will be used within
the algorithm: [n_sample + n_features + 1] / 2

random_state: integer or numpy.RandomState, optional :

The random generator used. If an integer is given, it fixes the seed. Defaults to the
global numpy random number generator.

References

[Rouseeuw1984], [Rouseeuw1999], [Butler1993]

258 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Attributes

raw_location_: array-like,
shape (n_features,)

The raw robust estimated location before correction and reweighting

raw_covariance_: array-like,
shape (n_features, n_features)

The raw robust estimated covariance before correction and reweighting

raw_support_: array-like,
shape (n_samples,)

A mask of the observations that have been used to compute the raw
robust estimates of location and shape, before correction and reweighting.

location_: array-like, shape
(n_features,)

Estimated robust location

covariance_: array-like, shape
(n_features, n_features)

Estimated robust covariance matrix

precision_: array-like, shape
(n_features, n_features)

Estimated pseudo inverse matrix. (stored only if store_precision is True)

support_: array-like, shape
(n_samples,)

A mask of the observations that have been used to compute the robust
estimates of location and shape.

Methods

correct_covariance(data) Apply a correction to raw Minimum Covariance Determinant estimates.
error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two covariance estimators.
fit(X) Fits a Minimum Covariance Determinant with the FastMCD algorithm.
get_params([deep]) Get parameters for the estimator
mahalanobis(observations) Computes the mahalanobis distances of given observations.
reweight_covariance(data) Reweight raw Minimum Covariance Determinant estimates.
score(X_test[, assume_centered]) Computes the log-likelihood of a gaussian data set with self.covariance_ as an estimator of its covariance matrix.
set_params(**params) Set the parameters of the estimator.

__init__(store_precision=True, assume_centered=False, support_fraction=None, ran-
dom_state=None)

correct_covariance(data)
Apply a correction to raw Minimum Covariance Determinant estimates.

Correction using the empirical correction factor suggested by Rousseeuw and Van Driessen in
[Rouseeuw1984].

Parameters data: array-like, shape (n_samples, n_features) :

The data matrix, with p features and n samples. The data set must be the one which was
used to compute the raw estimates.

Returns covariance_corrected: array-like, shape (n_features, n_features) :

Corrected robust covariance estimate.

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm)

Parameters comp_cov: array-like, shape = [n_features, n_features] :

The covariance to compare with.

norm: str :

1.8. Reference 259

scikit-learn user guide, Release 0.12-git

The type of norm used to compute the error. Available error types: - ‘frobenius’ (de-
fault): sqrt(tr(A^t.A)) - ‘spectral’: sqrt(max(eigenvalues(A^t.A)) where A is the error
(comp_cov - self.covariance_).

scaling: bool :

If True (default), the squared error norm is divided by n_features. If False, the squared
error norm is not rescaled.

squared: bool :

Whether to compute the squared error norm or the error norm. If True (default), the
squared error norm is returned. If False, the error norm is returned.

Returns The Mean Squared Error (in the sense of the Frobenius norm) between :

‘self‘ and ‘comp_cov‘ covariance estimators. :

fit(X)
Fits a Minimum Covariance Determinant with the FastMCD algorithm.

Parameters X: array-like, shape = [n_samples, n_features] :

Training data, where n_samples is the number of samples and n_features is the number
of features.

Returns self: object :

Returns self.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

mahalanobis(observations)
Computes the mahalanobis distances of given observations.

The provided observations are assumed to be centered. One may want to center them using a location
estimate first.

Parameters observations: array-like, shape = [n_observations, n_features] :

The observations, the Mahalanobis distances of the which we compute.

Returns mahalanobis_distance: array, shape = [n_observations,] :

Mahalanobis distances of the observations.

reweight_covariance(data)
Reweight raw Minimum Covariance Determinant estimates.

Reweight observations using Rousseeuw’s method (equivalent to deleting outlying observations from the
data set before computing location and covariance estimates). [Rouseeuw1984]

Parameters data: array-like, shape (n_samples, n_features) :

The data matrix, with p features and n samples. The data set must be the one which was
used to compute the raw estimates.

Returns location_reweighted: array-like, shape (n_features,) :

Reweighted robust location estimate.

260 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

covariance_reweighted: array-like, shape (n_features, n_features) :

Reweighted robust covariance estimate.

support_reweighted: array-like, type boolean, shape (n_samples,) :

A mask of the observations that have been used to compute the reweighted robust loca-
tion and covariance estimates.

score(X_test, assume_centered=False)
Computes the log-likelihood of a gaussian data set with self.covariance_ as an estimator of its covariance
matrix.

Parameters X_test : array-like, shape = [n_samples, n_features]

Test data of which we compute the likelihood, where n_samples is the number of sam-
ples and n_features is the number of features.

Returns res : float

The likelihood of the data set with self.covariance_ as an estimator of its covariance
matrix.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.covariance.OAS

class sklearn.covariance.OAS(store_precision=True, assume_centered=False)
Oracle Approximating Shrinkage Estimator

OAS is a particular form of shrinkage described in “Shrinkage Algorithms for MMSE Covariance Estimation”
Chen et al., IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010.

The formula used here does not correspond to the one given in the article. It has been taken from the matlab
programm available from the authors webpage (https://tbayes.eecs.umich.edu/yilun/covestimation).

Parameters store_precision : bool

Specify if the estimated precision is stored

Notes

The regularised covariance is:

(1 - shrinkage)*cov
+ shrinkage*mu*np.identity(n_features)

where mu = trace(cov) / n_features and shinkage is given by the OAS formula (see References)

References

“Shrinkage Algorithms for MMSE Covariance Estimation” Chen et al., IEEE Trans. on Sign. Proc., Volume 58,
Issue 10, October 2010.

1.8. Reference 261

https://tbayes.eecs.umich.edu/yilun/covestimation

scikit-learn user guide, Release 0.12-git

Attributes

covariance_ array-like, shape
(n_features, n_features)

Estimated covariance matrix

precision_ array-like, shape
(n_features, n_features)

Estimated pseudo inverse matrix. (stored only if
store_precision is True)

shrinkage_: float, 0 <=
shrinkage <= 1

coefficient in the convex combination used for the
computation of the shrunk estimate.

Methods

error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two covariance estimators.
fit(X[, assume_centered]) Fits the Oracle Approximating Shrinkage covariance model
get_params([deep]) Get parameters for the estimator
mahalanobis(observations) Computes the mahalanobis distances of given observations.
score(X_test[, assume_centered]) Computes the log-likelihood of a gaussian data set with self.covariance_ as an estimator of its covariance matrix.
set_params(**params) Set the parameters of the estimator.

__init__(store_precision=True, assume_centered=False)

Parameters store_precision: bool :

Specify if the estimated precision is stored

assume_centered: Boolean :

If True, data are not centered before computation. Useful when working with data
whose mean is almost, but not exactly zero. If False, data are centered before computa-
tion.

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm)

Parameters comp_cov: array-like, shape = [n_features, n_features] :

The covariance to compare with.

norm: str :

The type of norm used to compute the error. Available error types: - ‘frobenius’ (de-
fault): sqrt(tr(A^t.A)) - ‘spectral’: sqrt(max(eigenvalues(A^t.A)) where A is the error
(comp_cov - self.covariance_).

scaling: bool :

If True (default), the squared error norm is divided by n_features. If False, the squared
error norm is not rescaled.

squared: bool :

Whether to compute the squared error norm or the error norm. If True (default), the
squared error norm is returned. If False, the error norm is returned.

Returns The Mean Squared Error (in the sense of the Frobenius norm) between :

‘self‘ and ‘comp_cov‘ covariance estimators. :

262 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

fit(X, assume_centered=False)
Fits the Oracle Approximating Shrinkage covariance model according to the given training data and pa-
rameters.

Parameters X : array-like, shape = [n_samples, n_features]

Training data, where n_samples is the number of samples and n_features is the number
of features.

assume_centered: boolean :

If True, data are not centered before computation. Usefull to work with data whose
mean is significantly equal to zero but is not exactly zero. If False, data are centered
before computation.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

mahalanobis(observations)
Computes the mahalanobis distances of given observations.

The provided observations are assumed to be centered. One may want to center them using a location
estimate first.

Parameters observations: array-like, shape = [n_observations, n_features] :

The observations, the Mahalanobis distances of the which we compute.

Returns mahalanobis_distance: array, shape = [n_observations,] :

Mahalanobis distances of the observations.

score(X_test, assume_centered=False)
Computes the log-likelihood of a gaussian data set with self.covariance_ as an estimator of its covariance
matrix.

Parameters X_test : array-like, shape = [n_samples, n_features]

Test data of which we compute the likelihood, where n_samples is the number of sam-
ples and n_features is the number of features.

Returns res : float

The likelihood of the data set with self.covariance_ as an estimator of its covariance
matrix.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

1.8. Reference 263

scikit-learn user guide, Release 0.12-git

sklearn.covariance.ShrunkCovariance

class sklearn.covariance.ShrunkCovariance(store_precision=True, shrinkage=0.1)
Covariance estimator with shrinkage

Parameters store_precision : bool

Specify if the estimated precision is stored

shrinkage: float, 0 <= shrinkage <= 1 :

coefficient in the convex combination used for the computation of the shrunk estimate.

Notes

The regularized covariance is given by

(1 - shrinkage)*cov

•shrinkage*mu*np.identity(n_features)

where mu = trace(cov) / n_features

Attributes

covariance_ array-like, shape
(n_features, n_features)

Estimated covariance matrix

precision_ array-like, shape
(n_features, n_features)

Estimated pseudo inverse matrix. (stored only if
store_precision is True)

shrinkage: float, 0 <=
shrinkage <= 1

coefficient in the convex combination used for the
computation of the shrunk estimate.

Methods

error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two covariance estimators.
fit(X[, assume_centered]) Fits the shrunk covariance model according to the given training data and parameters.
get_params([deep]) Get parameters for the estimator
mahalanobis(observations) Computes the mahalanobis distances of given observations.
score(X_test[, assume_centered]) Computes the log-likelihood of a gaussian data set with self.covariance_ as an estimator of its covariance matrix.
set_params(**params) Set the parameters of the estimator.

__init__(store_precision=True, shrinkage=0.1)

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm)

Parameters comp_cov: array-like, shape = [n_features, n_features] :

The covariance to compare with.

norm: str :

The type of norm used to compute the error. Available error types: - ‘frobenius’ (de-
fault): sqrt(tr(A^t.A)) - ‘spectral’: sqrt(max(eigenvalues(A^t.A)) where A is the error

264 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

(comp_cov - self.covariance_).

scaling: bool :

If True (default), the squared error norm is divided by n_features. If False, the squared
error norm is not rescaled.

squared: bool :

Whether to compute the squared error norm or the error norm. If True (default), the
squared error norm is returned. If False, the error norm is returned.

Returns The Mean Squared Error (in the sense of the Frobenius norm) between :

‘self‘ and ‘comp_cov‘ covariance estimators. :

fit(X, assume_centered=False)
Fits the shrunk covariance model according to the given training data and parameters.

Parameters X : array-like, shape = [n_samples, n_features]

Training data, where n_samples is the number of samples and n_features is the number
of features.

assume_centered: Boolean :

If True, data are not centered before computation. Usefull to work with data whose
mean is significantly equal to zero but is not exactly zero. If False, data are centered
before computation.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

mahalanobis(observations)
Computes the mahalanobis distances of given observations.

The provided observations are assumed to be centered. One may want to center them using a location
estimate first.

Parameters observations: array-like, shape = [n_observations, n_features] :

The observations, the Mahalanobis distances of the which we compute.

Returns mahalanobis_distance: array, shape = [n_observations,] :

Mahalanobis distances of the observations.

score(X_test, assume_centered=False)
Computes the log-likelihood of a gaussian data set with self.covariance_ as an estimator of its covariance
matrix.

Parameters X_test : array-like, shape = [n_samples, n_features]

Test data of which we compute the likelihood, where n_samples is the number of sam-
ples and n_features is the number of features.

Returns res : float

1.8. Reference 265

scikit-learn user guide, Release 0.12-git

The likelihood of the data set with self.covariance_ as an estimator of its covariance
matrix.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

covariance.empirical_covariance(X[, ...]) Computes the Maximum likelihood covariance estimator
covariance.ledoit_wolf(X[, assume_centered]) Estimates the shrunk Ledoit-Wolf covariance matrix.
covariance.shrunk_covariance(emp_cov[, ...]) Calculates a covariance matrix shrunk on the diagonal
covariance.oas(X[, assume_centered]) Estimate covariance with the Oracle Approximating Shrinkage algorithm.
covariance.graph_lasso(emp_cov, alpha[, ...]) l1-penalized covariance estimator

sklearn.covariance.empirical_covariance

sklearn.covariance.empirical_covariance(X, assume_centered=False)
Computes the Maximum likelihood covariance estimator

Parameters X: 2D ndarray, shape (n_samples, n_features) :

Data from which to compute the covariance estimate

assume_centered: Boolean :

If True, data are not centered before computation. Useful when working with data
whose mean is almost, but not exactly zero. If False, data are centered before computa-
tion.

Returns covariance: 2D ndarray, shape (n_features, n_features) :

Empirical covariance (Maximum Likelihood Estimator)

sklearn.covariance.ledoit_wolf

sklearn.covariance.ledoit_wolf(X, assume_centered=False)
Estimates the shrunk Ledoit-Wolf covariance matrix.

Parameters X: array-like, shape (n_samples, n_features) :

Data from which to compute the covariance estimate

assume_centered: Boolean :

If True, data are not centered before computation. Usefull to work with data whose
mean is significantly equal to zero but is not exactly zero. If False, data are centered
before computation.

Returns shrunk_cov: array-like, shape (n_features, n_features) :

Shrunk covariance

shrinkage: float :

coefficient in the convex combination used for the computation of the shrunk estimate.

266 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Notes

The regularised (shrunk) covariance is:

(1 - shrinkage)*cov

•shrinkage * mu * np.identity(n_features)

where mu = trace(cov) / n_features

sklearn.covariance.shrunk_covariance

sklearn.covariance.shrunk_covariance(emp_cov, shrinkage=0.1)
Calculates a covariance matrix shrunk on the diagonal

Parameters emp_cov: array-like, shape (n_features, n_features) :

Covariance matrix to be shrunk

shrinkage: float, 0 <= shrinkage <= 1 :

coefficient in the convex combination used for the computation of the shrunk estimate.

Returns shrunk_cov: array-like :

shrunk covariance

Notes

The regularized (shrunk) covariance is given by

(1 - shrinkage)*cov

•shrinkage*mu*np.identity(n_features)

where mu = trace(cov) / n_features

sklearn.covariance.oas

sklearn.covariance.oas(X, assume_centered=False)
Estimate covariance with the Oracle Approximating Shrinkage algorithm.

Parameters X: array-like, shape (n_samples, n_features) :

Data from which to compute the covariance estimate

assume_centered: boolean :

If True, data are not centered before computation. Usefull to work with data whose
mean is significantly equal to zero but is not exactly zero. If False, data are centered
before computation.

Returns shrunk_cov: array-like, shape (n_features, n_features) :

Shrunk covariance

shrinkage: float :

coefficient in the convex combination used for the computation of the shrunk estimate.

1.8. Reference 267

scikit-learn user guide, Release 0.12-git

Notes

The regularised (shrunk) covariance is:

(1 - shrinkage)*cov

•shrinkage * mu * np.identity(n_features)

where mu = trace(cov) / n_features

sklearn.covariance.graph_lasso

sklearn.covariance.graph_lasso(emp_cov, alpha, cov_init=None, mode=’cd’, tol=0.0001,
max_iter=100, verbose=False, return_costs=False,
eps=2.2204460492503131e-16)

l1-penalized covariance estimator

Parameters emp_cov: 2D ndarray, shape (n_features, n_features) :

Empirical covariance from which to compute the covariance estimate

alpha: positive float :

The regularization parameter: the higher alpha, the more regularization, the sparser the
inverse covariance

cov_init: 2D array (n_features, n_features), optional :

The initial guess for the covariance

mode: {‘cd’, ‘lars’} :

The Lasso solver to use: coordinate descent or LARS. Use LARS for very sparse un-
derlying graphs, where p > n. Elsewhere prefer cd which is more numerically stable.

tol: positive float, optional :

The tolerance to declare convergence: if the dual gap goes below this value, iterations
are stopped

max_iter: integer, optional :

The maximum number of iterations

verbose: boolean, optional :

If verbose is True, the objective function and dual gap are printed at each iteration

return_costs: boolean, optional :

If return_costs is True, the objective function and dual gap at each iteration are returned

eps: float, optional :

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems.

Returns covariance : 2D ndarray, shape (n_features, n_features)

The estimated covariance matrix

precision : 2D ndarray, shape (n_features, n_features)

The estimated (sparse) precision matrix

costs : list of (objective, dual_gap) pairs

268 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

The list of values of the objective function and the dual gap at each iteration. Returned
only if return_costs is True

See Also:

GraphLasso, GraphLassoCV

Notes

The algorithm employed to solve this problem is the GLasso algorithm, from the Friedman 2008 Biostatistics
paper. It is the same algorithm as in the R glasso package.

One possible difference with the glasso R package is that the diagonal coefficients are not penalized.

1.8.3 sklearn.cross_validation: Cross Validation

The sklearn.cross_validation module includes utilities for cross- validation and performance evaluation.

User guide: See the Cross-Validation: evaluating estimator performance section for further details.

cross_validation.Bootstrap(n[, ...]) Random sampling with replacement cross-validation iterator
cross_validation.KFold(n, k[, indices, ...]) K-Folds cross validation iterator
cross_validation.LeaveOneLabelOut(labels[, ...]) Leave-One-Label_Out cross-validation iterator
cross_validation.LeaveOneOut(n[, indices]) Leave-One-Out cross validation iterator.
cross_validation.LeavePLabelOut(labels, p[, ...]) Leave-P-Label_Out cross-validation iterator
cross_validation.LeavePOut(n, p[, indices]) Leave-P-Out cross validation iterator
cross_validation.StratifiedKFold(y, k[, indices]) Stratified K-Folds cross validation iterator
cross_validation.ShuffleSplit(n[, ...]) Random permutation cross-validation iterator.
cross_validation.StratifiedShuffleSplit(y[, ...]) Stratified ShuffleSplit cross validation iterator

sklearn.cross_validation.Bootstrap

class sklearn.cross_validation.Bootstrap(n, n_bootstraps=3, train_size=0.5, test_size=None,
n_train=None, n_test=None, random_state=None)

Random sampling with replacement cross-validation iterator

Provides train/test indices to split data in train test sets while resampling the input n_bootstraps times: each time
a new random split of the data is performed and then samples are drawn (with replacement) on each side of the
split to build the training and test sets.

Note: contrary to other cross-validation strategies, bootstrapping will allow some samples to occur several times
in each splits. However a sample that occurs in the train split will never occur in the test split and vice-versa.

If you want each sample to occur at most once you should probably use ShuffleSplit cross validation instead.

Parameters n : int

Total number of elements in the dataset.

n_bootstraps : int (default is 3)

Number of bootstrapping iterations

train_size : int or float (default is 0.5)

If int, number of samples to include in the training split (should be smaller than the total
number of samples passed in the dataset).

1.8. Reference 269

scikit-learn user guide, Release 0.12-git

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to
include in the train split.

test_size : int or float or None (default is None)

If int, number of samples to include in the training set (should be smaller than the total
number of samples passed in the dataset).

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to
include in the test split.

If None, n_test is set as the complement of n_train.

random_state : int or RandomState

Pseudo number generator state used for random sampling.

See Also:

ShuffleSplitcross validation using random permutations.

Examples

>>> from sklearn import cross_validation
>>> bs = cross_validation.Bootstrap(9, random_state=0)
>>> len(bs)
3
>>> print(bs)
Bootstrap(9, n_bootstraps=3, train_size=5, test_size=4, random_state=0)
>>> for train_index, test_index in bs:
... print("TRAIN: %s TEST: %s" % (train_index, test_index))
...
TRAIN: [1 8 7 7 8] TEST: [0 3 0 5]
TRAIN: [5 4 2 4 2] TEST: [6 7 1 0]
TRAIN: [4 7 0 1 1] TEST: [5 3 6 5]

__init__(n, n_bootstraps=3, train_size=0.5, test_size=None, n_train=None, n_test=None, ran-
dom_state=None)

sklearn.cross_validation.KFold

class sklearn.cross_validation.KFold(n, k, indices=True, shuffle=False, random_state=None)
K-Folds cross validation iterator

Provides train/test indices to split data in train test sets. Split dataset into k consecutive folds (without shuffling).

Each fold is then used a validation set once while the k - 1 remaining fold form the training set.

Parameters n: int :

Total number of elements

k: int :

Number of folds

indices: boolean, optional (default True) :

Return train/test split as arrays of indices, rather than a boolean mask array. Integer
indices are required when dealing with sparse matrices, since those cannot be indexed
by boolean masks.

270 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

shuffle: boolean, optional :

whether to shuffle the data before splitting into batches

random_state: int or RandomState :

Pseudo number generator state used for random sampling.

See Also:

StratifiedKFoldtake label information into account to avoid building

folds, classification

Notes

All the folds have size trunc(n_samples / n_folds), the last one has the complementary.

Examples

>>> from sklearn import cross_validation
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([1, 2, 3, 4])
>>> kf = cross_validation.KFold(4, k=2)
>>> len(kf)
2
>>> print(kf)
sklearn.cross_validation.KFold(n=4, k=2)
>>> for train_index, test_index in kf:
... print("TRAIN: %s TEST: %s" % (train_index, test_index))
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [2 3] TEST: [0 1]
TRAIN: [0 1] TEST: [2 3]

__init__(n, k, indices=True, shuffle=False, random_state=None)

sklearn.cross_validation.LeaveOneLabelOut

class sklearn.cross_validation.LeaveOneLabelOut(labels, indices=True)
Leave-One-Label_Out cross-validation iterator

Provides train/test indices to split data according to a third-party provided label. This label information can be
used to encode arbitrary domain specific stratifications of the samples as integers.

For instance the labels could be the year of collection of the samples and thus allow for cross-validation against
time-based splits.

Parameters labels : array-like of int with shape (n_samples,)

Arbitrary domain-specific stratification of the data to be used to draw the splits.

indices: boolean, optional (default True) :

Return train/test split as arrays of indices, rather than a boolean mask array. Integer
indices are required when dealing with sparse matrices, since those cannot be indexed
by boolean masks.

1.8. Reference 271

scikit-learn user guide, Release 0.12-git

Examples

>>> from sklearn import cross_validation
>>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
>>> y = np.array([1, 2, 1, 2])
>>> labels = np.array([1, 1, 2, 2])
>>> lol = cross_validation.LeaveOneLabelOut(labels)
>>> len(lol)
2
>>> print(lol)
sklearn.cross_validation.LeaveOneLabelOut(labels=[1 1 2 2])
>>> for train_index, test_index in lol:
... print("TRAIN: %s TEST: %s" % (train_index, test_index))
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
... print("%s %s %s %s" % (X_train, X_test, y_train, y_test))
TRAIN: [2 3] TEST: [0 1]
[[5 6]
[7 8]] [[1 2]
[3 4]] [1 2] [1 2]

TRAIN: [0 1] TEST: [2 3]
[[1 2]
[3 4]] [[5 6]
[7 8]] [1 2] [1 2]

__init__(labels, indices=True)

sklearn.cross_validation.LeaveOneOut

class sklearn.cross_validation.LeaveOneOut(n, indices=True)
Leave-One-Out cross validation iterator.

Provides train/test indices to split data in train test sets. Each sample is used once as a test set (singleton) while
the remaining samples form the training set.

Due to the high number of test sets (which is the same as the number of samples) this cross validation method
can be very costly. For large datasets one should favor KFold, StratifiedKFold or ShuffleSplit.

Parameters n: int :

Total number of elements

indices: boolean, optional (default True) :

Return train/test split as arrays of indices, rather than a boolean mask array. Integer
indices are required when dealing with sparse matrices, since those cannot be indexed
by boolean masks.

See Also:

LeaveOneLabelOut, domain-specific

Examples

>>> from sklearn import cross_validation
>>> X = np.array([[1, 2], [3, 4]])
>>> y = np.array([1, 2])
>>> loo = cross_validation.LeaveOneOut(2)

272 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

>>> len(loo)
2
>>> print(loo)
sklearn.cross_validation.LeaveOneOut(n=2)
>>> for train_index, test_index in loo:
... print("TRAIN: %s TEST: %s" % (train_index, test_index))
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
... print("%s %s %s %s" % (X_train, X_test, y_train, y_test))
TRAIN: [1] TEST: [0]
[[3 4]] [[1 2]] [2] [1]
TRAIN: [0] TEST: [1]
[[1 2]] [[3 4]] [1] [2]

__init__(n, indices=True)

sklearn.cross_validation.LeavePLabelOut

class sklearn.cross_validation.LeavePLabelOut(labels, p, indices=True)
Leave-P-Label_Out cross-validation iterator

Provides train/test indices to split data according to a third-party provided label. This label information can be
used to encode arbitrary domain specific stratifications of the samples as integers.

For instance the labels could be the year of collection of the samples and thus allow for cross-validation against
time-based splits.

The difference between LeavePLabelOut and LeaveOneLabelOut is that the former builds the test sets with all
the samples assigned to p different values of the labels while the latter uses samples all assigned the same labels.

Parameters labels : array-like of int with shape (n_samples,)

Arbitrary domain-specific stratification of the data to be used to draw the splits.

p : int

Number of samples to leave out in the test split.

indices: boolean, optional (default True) :

Return train/test split as arrays of indices, rather than a boolean mask array. Integer
indices are required when dealing with sparse matrices, since those cannot be indexed
by boolean masks.

Examples

>>> from sklearn import cross_validation
>>> X = np.array([[1, 2], [3, 4], [5, 6]])
>>> y = np.array([1, 2, 1])
>>> labels = np.array([1, 2, 3])
>>> lpl = cross_validation.LeavePLabelOut(labels, p=2)
>>> len(lpl)
3
>>> print(lpl)
sklearn.cross_validation.LeavePLabelOut(labels=[1 2 3], p=2)
>>> for train_index, test_index in lpl:
... print("TRAIN: %s TEST: %s" % (train_index, test_index))
... X_train, X_test = X[train_index], X[test_index]

1.8. Reference 273

scikit-learn user guide, Release 0.12-git

... y_train, y_test = y[train_index], y[test_index]

... print("%s %s %s %s" % (X_train, X_test, y_train, y_test))
TRAIN: [2] TEST: [0 1]
[[5 6]] [[1 2]
[3 4]] [1] [1 2]
TRAIN: [1] TEST: [0 2]
[[3 4]] [[1 2]
[5 6]] [2] [1 1]
TRAIN: [0] TEST: [1 2]
[[1 2]] [[3 4]
[5 6]] [1] [2 1]

__init__(labels, p, indices=True)

sklearn.cross_validation.LeavePOut

class sklearn.cross_validation.LeavePOut(n, p, indices=True)
Leave-P-Out cross validation iterator

Provides train/test indices to split data in train test sets. The test set is built using p samples while the remaining
samples form the training set.

Due to the high number of iterations which grows with the number of samples this cross validation method can
be very costly. For large datasets one should favor KFold, StratifiedKFold or ShuffleSplit.

Parameters n: int :

Total number of elements

p: int :

Size of the test sets

indices: boolean, optional (default True) :

Return train/test split as arrays of indices, rather than a boolean mask array. Integer
indices are required when dealing with sparse matrices, since those cannot be indexed
by boolean masks.

Examples

>>> from sklearn import cross_validation
>>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
>>> y = np.array([1, 2, 3, 4])
>>> lpo = cross_validation.LeavePOut(4, 2)
>>> len(lpo)
6
>>> print(lpo)
sklearn.cross_validation.LeavePOut(n=4, p=2)
>>> for train_index, test_index in lpo:
... print("TRAIN: %s TEST: %s" % (train_index, test_index))
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [2 3] TEST: [0 1]
TRAIN: [1 3] TEST: [0 2]
TRAIN: [1 2] TEST: [0 3]
TRAIN: [0 3] TEST: [1 2]

274 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

TRAIN: [0 2] TEST: [1 3]
TRAIN: [0 1] TEST: [2 3]

__init__(n, p, indices=True)

sklearn.cross_validation.StratifiedKFold

class sklearn.cross_validation.StratifiedKFold(y, k, indices=True)
Stratified K-Folds cross validation iterator

Provides train/test indices to split data in train test sets.

This cross-validation object is a variation of KFold, which returns stratified folds. The folds are made by
preserving the percentage of samples for each class.

Parameters y: array, [n_samples] :

Samples to split in K folds

k: int :

Number of folds

indices: boolean, optional (default True) :

Return train/test split as arrays of indices, rather than a boolean mask array. Integer
indices are required when dealing with sparse matrices, since those cannot be indexed
by boolean masks.

Notes

All the folds have size trunc(n_samples / n_folds), the last one has the complementary.

Examples

>>> from sklearn import cross_validation
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([0, 0, 1, 1])
>>> skf = cross_validation.StratifiedKFold(y, k=2)
>>> len(skf)
2
>>> print(skf)
sklearn.cross_validation.StratifiedKFold(labels=[0 0 1 1], k=2)
>>> for train_index, test_index in skf:
... print("TRAIN: %s TEST: %s" % (train_index, test_index))
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [1 3] TEST: [0 2]
TRAIN: [0 2] TEST: [1 3]

__init__(y, k, indices=True)

1.8. Reference 275

scikit-learn user guide, Release 0.12-git

sklearn.cross_validation.ShuffleSplit

class sklearn.cross_validation.ShuffleSplit(n, n_iterations=10, test_size=0.1,
train_size=None, indices=True, ran-
dom_state=None, test_fraction=None,
train_fraction=None)

Random permutation cross-validation iterator.

Yields indices to split data into training and test sets.

Note: contrary to other cross-validation strategies, random splits do not guarantee that all folds will be different,
although this is still very likely for sizeable datasets.

Parameters n : int

Total number of elements in the dataset.

n_iterations : int (default 10)

Number of re-shuffling & splitting iterations.

test_size : float (default 0.1) or int

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to
include in the test split. If int, represents the absolute number of test samples.

train_size : float, int, or None (default is None)

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to
include in the train split. If int, represents the absolute number of train samples. If
None, the value is automatically set to the complement of the test fraction.

indices : boolean, optional (default True)

Return train/test split as arrays of indices, rather than a boolean mask array. Integer
indices are required when dealing with sparse matrices, since those cannot be indexed
by boolean masks.

random_state : int or RandomState

Pseudo-random number generator state used for random sampling.

See Also:

Bootstrapcross-validation using re-sampling with replacement.

Examples

>>> from sklearn import cross_validation
>>> rs = cross_validation.ShuffleSplit(4, n_iterations=3,
... test_size=.25, random_state=0)
>>> len(rs)
3
>>> print(rs)
...
ShuffleSplit(4, n_iterations=3, test_size=0.25, indices=True, ...)
>>> for train_index, test_index in rs:
... print("TRAIN: %s TEST: %s" % (train_index, test_index))
...
TRAIN: [3 1 0] TEST: [2]

276 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

TRAIN: [2 1 3] TEST: [0]
TRAIN: [0 2 1] TEST: [3]

>>> rs = cross_validation.ShuffleSplit(4, n_iterations=3,
... train_size=0.5, test_size=.25, random_state=0)
>>> for train_index, test_index in rs:
... print("TRAIN: %s TEST: %s" % (train_index, test_index))
...
TRAIN: [3 1] TEST: [2]
TRAIN: [2 1] TEST: [0]
TRAIN: [0 2] TEST: [3]

__init__(n, n_iterations=10, test_size=0.1, train_size=None, indices=True, random_state=None,
test_fraction=None, train_fraction=None)

sklearn.cross_validation.StratifiedShuffleSplit

class sklearn.cross_validation.StratifiedShuffleSplit(y, n_iterations=10, test_size=0.1,
train_size=None, indices=True,
random_state=None)

Stratified ShuffleSplit cross validation iterator

Provides train/test indices to split data in train test sets.

This cross-validation object is a merge of StratifiedKFold and ShuffleSplit, which returns stratified randomized
folds. The folds are made by preserving the percentage of samples for each class.

Note: like the ShuffleSplit strategy, stratified random splits do not guarantee that all folds will be different,
although this is still very likely for sizeable datasets.

Parameters y: array, [n_samples] :

Labels of samples.

n_iterations : int (default 10)

Number of re-shuffling & splitting iterations.

test_size : float (default 0.1) or int

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to
include in the test split. If int, represents the absolute number of test samples.

train_size : float, int, or None (default is None)

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to
include in the train split. If int, represents the absolute number of train samples. If
None, the value is automatically set to the complement of the test fraction.

indices: boolean, optional (default True) :

Return train/test split as arrays of indices, rather than a boolean mask array. Integer
indices are required when dealing with sparse matrices, since those cannot be indexed
by boolean masks.

Examples

1.8. Reference 277

scikit-learn user guide, Release 0.12-git

>>> from sklearn.cross_validation import StratifiedShuffleSplit
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([0, 0, 1, 1])
>>> sss = StratifiedShuffleSplit(y, 3, test_size=0.5, random_state=0)
>>> len(sss)
3
>>> print(sss)
StratifiedShuffleSplit(labels=[0 0 1 1], n_iterations=3, ...)
>>> for train_index, test_index in sss:
... print("TRAIN: %s TEST: %s" % (train_index, test_index))
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [0 3] TEST: [1 2]
TRAIN: [0 2] TEST: [1 3]
TRAIN: [1 2] TEST: [0 3]

__init__(y, n_iterations=10, test_size=0.1, train_size=None, indices=True, random_state=None)

cross_validation.train_test_split(*arrays, ...) Split arrays or matrices into random train and test subsets
cross_validation.cross_val_score(estimator, X) Evaluate a score by cross-validation
cross_validation.permutation_test_score(...) Evaluate the significance of a cross-validated score with permutations
cross_validation.check_cv(cv[, X, y, classifier]) Input checker utility for building a CV in a user friendly way.

sklearn.cross_validation.train_test_split

sklearn.cross_validation.train_test_split(*arrays, **options)
Split arrays or matrices into random train and test subsets

Quick utility that wraps calls to check_arrays and iter(ShuffleSplit(n_samples)).next()
and application to input data into a single call for splitting (and optionally subsampling) data in a oneliner.

Parameters *arrays : sequence of arrays or scipy.sparse matrices with same shape[0]

Python lists or tuples occurring in arrays are converted to 1D numpy arrays.

test_size : float (default 0.25) or int

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to
include in the test split. If int, represents the absolute number of test samples.

train_size : float, int, or None (default is None)

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to
include in the train split. If int, represents the absolute number of train samples. If
None, the value is automatically set to the complement of the test fraction.

random_state : int or RandomState

Pseudo-random number generator state used for random sampling.

dtype : a numpy dtype instance, None by default

Enforce a specific dtype.

Examples

278 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

>>> import numpy as np
>>> from sklearn.cross_validation import train_test_split
>>> a, b = np.arange(10).reshape((5, 2)), range(5)
>>> a
array([[0, 1],

[2, 3],
[4, 5],
[6, 7],
[8, 9]])

>>> list(b)
[0, 1, 2, 3, 4]

>>> a_train, a_test, b_train, b_test = train_test_split(
... a, b, test_size=0.33, random_state=42)
...
>>> a_train
array([[4, 5],

[0, 1],
[6, 7]])

>>> b_train
array([2, 0, 3])
>>> a_test
array([[2, 3],

[8, 9]])
>>> b_test
array([1, 4])

sklearn.cross_validation.cross_val_score

sklearn.cross_validation.cross_val_score(estimator, X, y=None, score_func=None,
cv=None, n_jobs=1, verbose=0)

Evaluate a score by cross-validation

Parameters estimator: estimator object implementing ‘fit’ :

The object to use to fit the data

X: array-like of shape at least 2D :

The data to fit.

y: array-like, optional :

The target variable to try to predict in the case of supervised learning.

score_func: callable, optional :

callable, has priority over the score function in the estimator. In a non-supervised set-
ting, where y is None, it takes the test data (X_test) as its only argument. In a supervised
setting it takes the test target (y_true) and the test prediction (y_pred) as arguments.

cv: cross-validation generator, optional :

A cross-validation generator. If None, a 3-fold cross validation is used or 3-fold strati-
fied cross-validation when y is supplied and estimator is a classifier.

n_jobs: integer, optional :

The number of CPUs to use to do the computation. -1 means ‘all CPUs’.

verbose: integer, optional :

1.8. Reference 279

scikit-learn user guide, Release 0.12-git

The verbosity level

sklearn.cross_validation.permutation_test_score

sklearn.cross_validation.permutation_test_score(estimator, X, y, score_func, cv=None,
n_permutations=100, n_jobs=1,
labels=None, random_state=0, ver-
bose=0)

Evaluate the significance of a cross-validated score with permutations

Parameters estimator: estimator object implementing ‘fit’ :

The object to use to fit the data

X: array-like of shape at least 2D :

The data to fit.

y: array-like :

The target variable to try to predict in the case of supervised learning.

score_func: callable :

Callable taking as arguments the test targets (y_test) and the predicted targets (y_pred)
and returns a float. The score functions are expected to return a bigger value for a better
result otherwise the returned value does not correspond to a p-value (see Returns below
for further details).

cv : integer or crossvalidation generator, optional

If an integer is passed, it is the number of fold (default 3). Specific crossvalidation ob-
jects can be passed, see sklearn.cross_validation module for the list of possible objects

n_jobs: integer, optional :

The number of CPUs to use to do the computation. -1 means ‘all CPUs’.

labels: array-like of shape [n_samples] (optional) :

Labels constrain the permutation among groups of samples with a same label.

random_state: RandomState or an int seed (0 by default) :

A random number generator instance to define the state of the random permutations
generator.

verbose: integer, optional :

The verbosity level

Returns score: float :

The true score without permuting targets.

permutation_scores : array, shape = [n_permutations]

The scores obtained for each permutations.

pvalue: float :

The returned value equals p-value if score_func returns bigger numbers for better scores
(e.g., zero_one). If score_func is rather a loss function (i.e. when lower is better such
as with mean_squared_error) then this is actually the complement of the p-value: 1 -
p-value.

280 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Notes

This function implements Test 1 in:

Ojala and Garriga. Permutation Tests for Studying Classifier Performance. The Journal of Machine
Learning Research (2010) vol. 11

sklearn.cross_validation.check_cv

sklearn.cross_validation.check_cv(cv, X=None, y=None, classifier=False)
Input checker utility for building a CV in a user friendly way.

Parameters cv: an integer, a cv generator instance, or None :

The input specifying which cv generator to use. It can be an integer, in which case it is
the number of folds in a KFold, None, in which case 3 fold is used, or another object,
that will then be used as a cv generator.

X: 2D ndarray :

the data the cross-val object will be applied on

y: 1D ndarray :

the target variable for a supervised learning problem

classifier: boolean optional :

whether the task is a classification task, in which case stratified KFold will be used.

1.8.4 sklearn.datasets: Datasets

The sklearn.datasets module includes utilities to load datasets, including methods to load and fetch popular
reference datasets. It also features some artificial data generators.

User guide: See the Dataset loading utilities section for further details.

Loaders

datasets.load_20newsgroups(*args, **kwargs) DEPRECATED: Use fetch_20newsgroups instead with download_if_missing=False
datasets.fetch_20newsgroups([data_home, ...]) Load the filenames of the 20 newsgroups dataset.
datasets.fetch_20newsgroups_vectorized([...]) Load the 20 newsgroups dataset and transform it into tf-idf vectors.
datasets.load_boston() Load and return the boston house-prices dataset (regression).
datasets.load_diabetes() Load and return the diabetes dataset (regression).
datasets.load_digits([n_class]) Load and return the digits dataset (classification).
datasets.load_files(container_path[, ...]) Load text files with categories as subfolder names.
datasets.load_iris() Load and return the iris dataset (classification).
datasets.load_lfw_pairs([download_if_missing]) Alias for fetch_lfw_pairs(download_if_missing=False)
datasets.fetch_lfw_pairs([subset, ...]) Loader for the Labeled Faces in the Wild (LFW) pairs dataset
datasets.load_lfw_people([download_if_missing]) Alias for fetch_lfw_people(download_if_missing=False)
datasets.fetch_lfw_people([data_home, ...]) Loader for the Labeled Faces in the Wild (LFW) people dataset
datasets.load_linnerud() Load and return the linnerud dataset (multivariate regression).
datasets.fetch_olivetti_faces([data_home, ...]) Loader for the Olivetti faces data-set from AT&T.
datasets.load_sample_image(image_name) Load the numpy array of a single sample image

Continued on next page

1.8. Reference 281

scikit-learn user guide, Release 0.12-git

Table 1.42 – continued from previous page
datasets.load_sample_images() Load sample images for image manipulation.
datasets.load_svmlight_file(f[, n_features, ...]) Load datasets in the svmlight / libsvm format into sparse CSR matrix

sklearn.datasets.load_20newsgroups

sklearn.datasets.load_20newsgroups(*args, **kwargs)
DEPRECATED: Use fetch_20newsgroups instead with download_if_missing=False

Alias for fetch_20newsgroups(download_if_missing=False).

See fetch_20newsgroups.__doc__ for documentation and parameter list.

sklearn.datasets.fetch_20newsgroups

sklearn.datasets.fetch_20newsgroups(data_home=None, subset=’train’, cate-
gories=None, shuffle=True, random_state=42, down-
load_if_missing=True)

Load the filenames of the 20 newsgroups dataset.

Parameters subset: ‘train’ or ‘test’, ‘all’, optional :

Select the dataset to load: ‘train’ for the training set, ‘test’ for the test set, ‘all’ for both,
with shuffled ordering.

data_home: optional, default: None :

Specify an download and cache folder for the datasets. If None, all scikit-learn data is
stored in ‘~/scikit_learn_data’ subfolders.

categories: None or collection of string or unicode :

If None (default), load all the categories. If not None, list of category names to load
(other categories ignored).

shuffle: bool, optional :

Whether or not to shuffle the data: might be important for models that make the as-
sumption that the samples are independent and identically distributed (i.i.d.), such as
stochastic gradient descent.

random_state: numpy random number generator or seed integer :

Used to shuffle the dataset.

download_if_missing: optional, True by default :

If False, raise an IOError if the data is not locally available instead of trying to download
the data from the source site.

sklearn.datasets.fetch_20newsgroups_vectorized

sklearn.datasets.fetch_20newsgroups_vectorized(subset=’train’, data_home=None)
Load the 20 newsgroups dataset and transform it into tf-idf vectors.

This is a convenience function; the tf-idf transformation is done using the default settings for
sklearn.feature_extraction.text.Vectorizer. For more advanced usage (stopword filtering, n-gram extraction,
etc.), combine fetch_20newsgroups with a custom Vectorizer or CountVectorizer.

282 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Parameters subset: ‘train’ or ‘test’, ‘all’, optional :

Select the dataset to load: ‘train’ for the training set, ‘test’ for the test set, ‘all’ for both,
with shuffled ordering.

data_home: optional, default: None :

Specify an download and cache folder for the datasets. If None, all scikit-learn data is
stored in ‘~/scikit_learn_data’ subfolders.

Returns bunch : Bunch object

bunch.data: sparse matrix, shape [n_samples, n_features] bunch.target: array, shape
[n_samples] bunch.target_names: list, length [n_classes]

sklearn.datasets.load_boston

sklearn.datasets.load_boston()
Load and return the boston house-prices dataset (regression).

Samples total 506
Dimensionality 13
Features real, positive
Targets real 5. - 50.

Returns data : Bunch

Dictionary-like object, the interesting attributes are: ‘data’, the data to learn, ‘target’,
the regression targets, ‘target_names’, the meaning of the labels, and ‘DESCR’, the full
description of the dataset.

Examples

>>> from sklearn.datasets import load_boston
>>> boston = load_boston()
>>> boston.data.shape
(506, 13)

sklearn.datasets.load_diabetes

sklearn.datasets.load_diabetes()
Load and return the diabetes dataset (regression).

Samples total 442
Dimensionality 10
Features real, -.2 < x < .2
Targets integer 25 - 346

Returns data : Bunch

Dictionary-like object, the interesting attributes are: ‘data’, the data to learn and ‘target’,
the regression target for each sample.

1.8. Reference 283

scikit-learn user guide, Release 0.12-git

sklearn.datasets.load_digits

sklearn.datasets.load_digits(n_class=10)
Load and return the digits dataset (classification).

Each datapoint is a 8x8 image of a digit.

Classes 10
Samples per class ~180
Samples total 1797
Dimensionality 64
Features integers 0-16

Parameters n_class : integer, between 0 and 10, optional (default=10)

The number of classes to return.

Returns data : Bunch

Dictionary-like object, the interesting attributes are: ‘data’, the data to learn, ‘images’,
the images corresponding to each sample, ‘target’, the classification labels for each
sample, ‘target_names’, the meaning of the labels, and ‘DESCR’, the full description of
the dataset.

Examples

To load the data and visualize the images:

>>> from sklearn.datasets import load_digits
>>> digits = load_digits()
>>> digits.data.shape
(1797, 64)
>>> import pylab as pl
>>> pl.gray()
>>> pl.matshow(digits.images[0])
>>> pl.show()

sklearn.datasets.load_files

sklearn.datasets.load_files(container_path, description=None, categories=None,
load_content=True, shuffle=True, charset=None,
charse_error=’strict’, random_state=0)

Load text files with categories as subfolder names.

Individual samples are assumed to be files stored a two levels folder structure such as the following:

container_folder/

category_1_folder/file_1.txt file_2.txt ... file_42.txt

category_2_folder/file_43.txt file_44.txt ...

The folder names are used has supervised signal label names. The indivial file names are not important.

This function does not try to extract features into a numpy array or scipy sparse matrix. In addition, if
load_content is false it does not try to load the files in memory.

To use utf-8 text files in a scikit-learn classification or clustering algorithm you will first need to use the
sklearn.features.text module to build a feature extraction transformer that suits your problem.

284 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Similar feature extractors should be build for other kind of unstructured data input such as images, audio, video,
...

Parameters container_path : string or unicode

Path to the main folder holding one subfolder per category

description: string or unicode, optional (default=None) :

A paragraph describing the characteristic of the dataset: its source, reference, etc.

categories : A collection of strings or None, optional (default=None)

If None (default), load all the categories. If not None, list of category names to load
(other categories ignored).

load_content : boolean, optional (default=True)

Whether to load or not the content of the different files. If true a ‘data’ attribute con-
taining the text information is present in the data structure returned. If not, a filenames
attribute gives the path to the files.

charset : string or None (default is None)

If None, do not try to decode the content of the files (e.g. for images or other non-text
content). If not None, charset to use to decode text files if load_content is True.

charset_error: {‘strict’, ‘ignore’, ‘replace’} :

Instruction on what to do if a byte sequence is given to analyze that contains characters
not of the given charset. By default, it is ‘strict’, meaning that a UnicodeDecodeError
will be raised. Other values are ‘ignore’ and ‘replace’.

shuffle : bool, optional (default=True)

Whether or not to shuffle the data: might be important for models that make the as-
sumption that the samples are independent and identically distributed (i.i.d.), such as
stochastic gradient descent.

random_state : int, RandomState instance or None, optional (default=0)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns data : Bunch

Dictionary-like object, the interesting attributes are: either data, the raw text data to
learn, or ‘filenames’, the files holding it, ‘target’, the classification labels (integer index),
‘target_names’, the meaning of the labels, and ‘DESCR’, the full description of the
dataset.

sklearn.datasets.load_iris

sklearn.datasets.load_iris()
Load and return the iris dataset (classification).

The iris dataset is a classic and very easy multi-class classification dataset.

1.8. Reference 285

scikit-learn user guide, Release 0.12-git

Classes 3
Samples per class 50
Samples total 150
Dimensionality 4
Features real, positive

Returns data : Bunch

Dictionary-like object, the interesting attributes are: ‘data’, the data to learn, ‘target’,
the classification labels, ‘target_names’, the meaning of the labels, ‘feature_names’, the
meaning of the features, and ‘DESCR’, the full description of the dataset.

Examples

Let’s say you are interested in the samples 10, 25, and 50, and want to know their class name.

>>> from sklearn.datasets import load_iris
>>> data = load_iris()
>>> data.target[[10, 25, 50]]
array([0, 0, 1])
>>> list(data.target_names)
[’setosa’, ’versicolor’, ’virginica’]

sklearn.datasets.load_lfw_pairs

sklearn.datasets.load_lfw_pairs(download_if_missing=False, **kwargs)
Alias for fetch_lfw_pairs(download_if_missing=False)

Check fetch_lfw_pairs.__doc__ for the documentation and parameter list.

sklearn.datasets.fetch_lfw_pairs

sklearn.datasets.fetch_lfw_pairs(subset=’train’, data_home=None, funneled=True, re-
size=0.5, color=False, slice_=(slice(70, 195, None), slice(78,
172, None)), download_if_missing=True)

Loader for the Labeled Faces in the Wild (LFW) pairs dataset

This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available
on the official website:

http://vis-www.cs.umass.edu/lfw/

Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in
range 0.0 - 1.0.

The task is called Face Verification: given a pair of two pictures, a binary classifier must predict whether the
two images are from the same person.

In the official README.txt this task is described as the “Restricted” task. As I am not sure as to implement the
“Unrestricted” variant correctly, I left it as unsupported for now.

Parameters subset: optional, default: ‘train’ :

286 Chapter 1. User Guide

http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/README.txt

scikit-learn user guide, Release 0.12-git

Select the dataset to load: ‘train’ for the development training set, ‘test’ for the develop-
ment test set, and ‘10_folds’ for the official evaluation set that is meant to be used with
a 10-folds cross validation.

data_home: optional, default: None :

Specify another download and cache folder for the datasets. By default all scikit learn
data is stored in ‘~/scikit_learn_data’ subfolders.

funneled: boolean, optional, default: True :

Download and use the funneled variant of the dataset.

resize: float, optional, default 0.5 :

Ratio used to resize the each face picture.

color: boolean, optional, default False :

Keep the 3 RGB channels instead of averaging them to a single gray level channel. If
color is True the shape of the data has one more dimension than than the shape with
color = False.

slice_: optional :

Provide a custom 2D slice (height, width) to extract the ‘interesting’ part of the jpeg
files and avoid use statistical correlation from the background

download_if_missing: optional, True by default :

If False, raise a IOError if the data is not locally available instead of trying to download
the data from the source site.

sklearn.datasets.load_lfw_people

sklearn.datasets.load_lfw_people(download_if_missing=False, **kwargs)
Alias for fetch_lfw_people(download_if_missing=False)

Check fetch_lfw_people.__doc__ for the documentation and parameter list.

sklearn.datasets.fetch_lfw_people

sklearn.datasets.fetch_lfw_people(data_home=None, funneled=True, resize=0.5,
min_faces_per_person=None, color=False,
slice_=(slice(70, 195, None), slice(78, 172, None)),
download_if_missing=True)

Loader for the Labeled Faces in the Wild (LFW) people dataset

This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available
on the official website:

http://vis-www.cs.umass.edu/lfw/

Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in
range 0.0 - 1.0.

The task is called Face Recognition (or Identification): given the picture of a face, find the name of the person
given a training set (gallery).

Parameters data_home: optional, default: None :

1.8. Reference 287

http://vis-www.cs.umass.edu/lfw/

scikit-learn user guide, Release 0.12-git

Specify another download and cache folder for the datasets. By default all scikit learn
data is stored in ‘~/scikit_learn_data’ subfolders.

funneled: boolean, optional, default: True :

Download and use the funneled variant of the dataset.

resize: float, optional, default 0.5 :

Ratio used to resize the each face picture.

min_faces_per_person: int, optional, default None :

The extracted dataset will only retain pictures of people that have at least
min_faces_per_person different pictures.

color: boolean, optional, default False :

Keep the 3 RGB channels instead of averaging them to a single gray level channel. If
color is True the shape of the data has one more dimension than than the shape with
color = False.

slice_: optional :

Provide a custom 2D slice (height, width) to extract the ‘interesting’ part of the jpeg
files and avoid use statistical correlation from the background

download_if_missing: optional, True by default :

If False, raise a IOError if the data is not locally available instead of trying to download
the data from the source site.

sklearn.datasets.load_linnerud

sklearn.datasets.load_linnerud()
Load and return the linnerud dataset (multivariate regression).

Samples total: 20 Dimensionality: 3 for both data and targets Features: integer Targets: integer

Returns data : Bunch

Dictionary-like object, the interesting attributes are: ‘data’ and ‘targets’, the two mul-
tivariate datasets, with ‘data’ corresponding to the exercise and ‘targets’ corresponding
to the physiological measurements, as well as ‘feature_names’ and ‘target_names’.

sklearn.datasets.fetch_olivetti_faces

sklearn.datasets.fetch_olivetti_faces(data_home=None, shuffle=False, random_state=0,
download_if_missing=True)

Loader for the Olivetti faces data-set from AT&T.

Parameters data_home : optional, default: None

Specify another download and cache folder for the datasets. By default all scikit learn
data is stored in ‘~/scikit_learn_data’ subfolders.

shuffle : boolean, optional

If True the order of the dataset is shuffled to avoid having images of the same person
grouped.

download_if_missing: optional, True by default :

288 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

If False, raise a IOError if the data is not locally available instead of trying to download
the data from the source site.

random_state : optional, integer or RandomState object

The seed or the random number generator used to shuffle the data.

Notes

This dataset consists of 10 pictures each of 40 individuals. The original database was available from (now
defunct)

http://www.uk.research.att.com/facedatabase.html

The version retrieved here comes in MATLAB format from the personal web page of Sam Roweis:

http://www.cs.nyu.edu/~roweis/

sklearn.datasets.load_sample_image

sklearn.datasets.load_sample_image(image_name)
Load the numpy array of a single sample image

Parameters image_name: {‘china.jpg‘, ‘flower.jpg‘} :

The name of the sample image loaded

Returns img: 3D array :

The image as a numpy array: height x width x color

Examples

>>> from sklearn.datasets import load_sample_image
>>> china = load_sample_image(’china.jpg’)
>>> china.dtype
dtype(’uint8’)
>>> china.shape
(427, 640, 3)
>>> flower = load_sample_image(’flower.jpg’)
>>> flower.dtype
dtype(’uint8’)
>>> flower.shape
(427, 640, 3)

sklearn.datasets.load_sample_images

sklearn.datasets.load_sample_images()
Load sample images for image manipulation. Loads both, china and flower.

Returns data : Bunch

Dictionary-like object with the following attributes : ‘images’, the two sample images,
‘filenames’, the file names for the images, and ‘DESCR’ the full description of the
dataset.

1.8. Reference 289

http://www.uk.research.att.com/facedatabase.html
http://www.cs.nyu.edu/~roweis/

scikit-learn user guide, Release 0.12-git

Examples

To load the data and visualize the images:

>>> from sklearn.datasets import load_sample_images
>>> dataset = load_sample_images()
>>> len(dataset.images)
2
>>> first_img_data = dataset.images[0]
>>> first_img_data.shape
(427, 640, 3)
>>> first_img_data.dtype
dtype(’uint8’)

sklearn.datasets.load_svmlight_file

sklearn.datasets.load_svmlight_file(f, n_features=None, dtype=<type ‘numpy.float64’>, mul-
tilabel=False, zero_based=’auto’)

Load datasets in the svmlight / libsvm format into sparse CSR matrix

This format is a text-based format, with one sample per line. It does not store zero valued features hence is
suitable for sparse dataset.

The first element of each line can be used to store a target variable to predict.

This format is used as the default format for both svmlight and the libsvm command line programs.

Parsing a text based source can be expensive. When working on repeatedly on the same dataset, it is recom-
mended to wrap this loader with joblib.Memory.cache to store a memmapped backup of the CSR results of the
first call and benefit from the near instantaneous loading of memmapped structures for the subsequent calls.

This implementation is naive: it does allocate too much memory and is slow since written in python. On large
datasets it is recommended to use an optimized loader such as:

https://github.com/mblondel/svmlight-loader

Parameters f: str or file-like open in binary mode. :

(Path to) a file to load.

n_features: int or None :

The number of features to use. If None, it will be inferred. This argument is useful to
load several files that are subsets of a bigger sliced dataset: each subset might not have
example of every feature, hence the inferred shape might vary from one slice to another.

multilabel: boolean, optional :

Samples may have several labels each (see http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html)

zero_based: boolean or “auto”, optional :

Whether column indices in f are zero-based (True) or one-based (False). If set to “auto”,
a heuristic check is applied to determine this from the file contents. Both kinds of files
occur “in the wild”, but they are unfortunately not self-identifying. Using “auto” or
True should always be safe.

Returns (X, y) :

where X is a scipy.sparse matrix of shape (n_samples, n_features), :

290 Chapter 1. User Guide

https://github.com/mblondel/svmlight-loader
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html

scikit-learn user guide, Release 0.12-git

y is a ndarray of shape (n_samples,), or, in the multilabel case, a list of tuples of length
n_samples.

See Also:

load_svmlight_filessimilar function for loading multiple files in this

format, enforcing

Samples generator

datasets.make_blobs([n_samples, n_features, ...]) Generate isotropic Gaussian blobs for clustering.
datasets.make_classification([n_samples, ...]) Generate a random n-class classification problem.
datasets.make_circles([n_samples, shuffle, ...]) Make a large circle containing a smaller circle in 2di
datasets.make_friedman1([n_samples, ...]) Generate the “Friedman #1” regression problem
datasets.make_friedman2([n_samples, noise, ...]) Generate the “Friedman #2” regression problem
datasets.make_friedman3([n_samples, noise, ...]) Generate the “Friedman #3” regression problem
datasets.make_hastie_10_2([n_samples, ...]) Generates data for binary classification used in
datasets.make_low_rank_matrix([n_samples, ...]) Generate a mostly low rank matrix with bell-shaped singular values
datasets.make_moons([n_samples, shuffle, ...]) Make two interleaving half circles
datasets.make_multilabel_classification([...]) Generate a random multilabel classification problem.
datasets.make_regression([n_samples, ...]) Generate a random regression problem.
datasets.make_s_curve([n_samples, noise, ...]) Generate an S curve dataset.
datasets.make_sparse_coded_signal(n_samples, ...) Generate a signal as a sparse combination of dictionary elements.
datasets.make_sparse_spd_matrix([dim, ...]) Generate a sparse symetric definite positive matrix.
datasets.make_sparse_uncorrelated([...]) Generate a random regression problem with sparse uncorrelated design
datasets.make_spd_matrix(n_dim[, random_state]) Generate a random symmetric, positive-definite matrix.
datasets.make_swiss_roll([n_samples, noise, ...]) Generate a swiss roll dataset.

sklearn.datasets.make_blobs

sklearn.datasets.make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0,
center_box=(-10.0, 10.0), shuffle=True, random_state=None)

Generate isotropic Gaussian blobs for clustering.

Parameters n_samples : int, optional (default=100)

The total number of points equally divided among clusters.

n_features : int, optional (default=2)

The number of features for each sample.

centers : int or array of shape [n_centers, n_features], optional

(default=3) The number of centers to generate, or the fixed center locations.

cluster_std: float or sequence of floats, optional (default=1.0) :

The standard deviation of the clusters.

center_box: pair of floats (min, max), optional (default=(-10.0, 10.0)) :

The bounding box for each cluster center when centers are generated at random.

shuffle : boolean, optional (default=True)

1.8. Reference 291

scikit-learn user guide, Release 0.12-git

Shuffle the samples.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns X : array of shape [n_samples, n_features]

The generated samples.

y : array of shape [n_samples]

The integer labels for cluster membership of each sample.

Examples

>>> from sklearn.datasets.samples_generator import make_blobs
>>> X, y = make_blobs(n_samples=10, centers=3, n_features=2,
... random_state=0)
>>> X.shape
(10, 2)
>>> y
array([0, 0, 1, 0, 2, 2, 2, 1, 1, 0])

sklearn.datasets.make_classification

sklearn.datasets.make_classification(n_samples=100, n_features=20, n_informative=2,
n_redundant=2, n_repeated=0, n_classes=2,
n_clusters_per_class=2, weights=None, flip_y=0.01,
class_sep=1.0, hypercube=True, shift=0.0, scale=1.0,
shuffle=True, random_state=None)

Generate a random n-class classification problem.

Parameters n_samples : int, optional (default=100)

The number of samples.

n_features : int, optional (default=20)

The total number of features. These comprise n_informative informative features,
n_redundant redundant features, n_repeated dupplicated features and n_features-
n_informative-n_redundant- n_repeated useless features drawn at random.

n_informative : int, optional (default=2)

The number of informative features. Each class is composed of a number of gaussian
clusters each located around the vertices of a hypercube in a subspace of dimension
n_informative. For each cluster, informative features are drawn independently from
N(0, 1) and then randomly linearly combined in order to add covariance. The clusters
are then placed on the vertices of the hypercube.

n_redundant : int, optional (default=2)

The number of redundant features. These features are generated as random linear com-
binations of the informative features.

n_repeated : int, optional (default=2)

292 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

The number of dupplicated features, drawn randomly from the informative and the re-
dundant features.

n_classes : int, optional (default=2)

The number of classes (or labels) of the classification problem.

n_clusters_per_class : int, optional (default=2)

The number of clusters per class.

weights : list of floats or None (default=None)

The proportions of samples assigned to each class. If None, then classes are balanced.
Note that if len(weights) == n_classes - 1, then the last class weight is automatically
inferred.

flip_y : float, optional (default=0.01)

The fraction of samples whose class are randomly exchanged.

class_sep : float, optional (default=1.0)

The factor multiplying the hypercube dimension.

hypercube : boolean, optional (default=True)

If True, the clusters are put on the vertices of a hypercube. If False, the clusters are put
on the vertices of a random polytope.

shift : float or None, optional (default=0.0)

Shift all features by the specified value. If None, then features are shifted by a random
value drawn in [-class_sep, class_sep].

scale : float or None, optional (default=1.0)

Multiply all features by the specified value. If None, then features are scaled by a
random value drawn in [1, 100]. Note that scaling happens after shifting.

shuffle : boolean, optional (default=True)

Shuffle the samples and the features.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns X : array of shape [n_samples, n_features]

The generated samples.

y : array of shape [n_samples]

The integer labels for class membership of each sample.

Notes

The algorithm is adapted from Guyon [1] and was designed to generate the “Madelon” dataset.

1.8. Reference 293

scikit-learn user guide, Release 0.12-git

References

[R48]

sklearn.datasets.make_circles

sklearn.datasets.make_circles(n_samples=100, shuffle=True, noise=None, random_state=None,
factor=0.8)

Make a large circle containing a smaller circle in 2di

A simple toy dataset to visualize clustering and classification algorithms.

Parameters n_samples : int, optional (default=100)

The total number of points generated.

shuffle: bool, optional (default=True) :

Whether to shuffle the samples.

noise : double or None (default=None)

Standard deviation of Gaussian noise added to the data.

factor : double < 1 (default=.8)

Scale factor between inner and outer circle.

sklearn.datasets.make_friedman1

sklearn.datasets.make_friedman1(n_samples=100, n_features=10, noise=0.0, ran-
dom_state=None)

Generate the “Friedman #1” regression problem

This dataset is described in Friedman [1] and Breiman [2].

Inputs X are independent features uniformly distributed on the interval [0, 1]. The output y is created according
to the formula:

y(X) = 10 * sin(pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 + 10 * X[:, 3] + 5 * X[:, 4] + noise * N(0, 1).

Out of the n_features features, only 5 are actually used to compute y. The remaining features are independent
of y.

The number of features has to be >= 5.

Parameters n_samples : int, optional (default=100)

The number of samples.

n_features : int, optional (default=10)

The number of features. Should be at least 5.

noise : float, optional (default=0.0)

The standard deviation of the gaussian noise applied to the output.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

294 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Returns X : array of shape [n_samples, n_features]

The input samples.

y : array of shape [n_samples]

The output values.

References

[R49], [R50]

sklearn.datasets.make_friedman2

sklearn.datasets.make_friedman2(n_samples=100, noise=0.0, random_state=None)
Generate the “Friedman #2” regression problem

This dataset is described in Friedman [1] and Breiman [2].

Inputs X are 4 independent features uniformly distributed on the intervals:

0 <= X[:, 0] <= 100,
40 * pi <= X[:, 1] <= 560 * pi,
0 <= X[:, 2] <= 1,
1 <= X[:, 3] <= 11.

The output y is created according to the formula:

y(X) = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 + noise * N(0, 1).

Parameters n_samples : int, optional (default=100)

The number of samples.

noise : float, optional (default=0.0)

The standard deviation of the gaussian noise applied to the output.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns X : array of shape [n_samples, 4]

The input samples.

y : array of shape [n_samples]

The output values.

References

[R51], [R52]

1.8. Reference 295

scikit-learn user guide, Release 0.12-git

sklearn.datasets.make_friedman3

sklearn.datasets.make_friedman3(n_samples=100, noise=0.0, random_state=None)
Generate the “Friedman #3” regression problem

This dataset is described in Friedman [1] and Breiman [2].

Inputs X are 4 independent features uniformly distributed on the intervals:

0 <= X[:, 0] <= 100,
40 * pi <= X[:, 1] <= 560 * pi,
0 <= X[:, 2] <= 1,
1 <= X[:, 3] <= 11.

The output y is created according to the formula:

y(X) = arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0]) + noise * N(0, 1).

Parameters n_samples : int, optional (default=100)

The number of samples.

noise : float, optional (default=0.0)

The standard deviation of the gaussian noise applied to the output.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns X : array of shape [n_samples, 4]

The input samples.

y : array of shape [n_samples]

The output values.

References

[R53], [R54]

sklearn.datasets.make_hastie_10_2

sklearn.datasets.make_hastie_10_2(n_samples=12000, random_state=None)
Generates data for binary classification used in Hastie et al. 2009, Example 10.2.

The ten features are standard independent Gaussian and the target y is defined by:

y[i] = 1 if np.sum(X[i] > 9.34 else -1

Parameters n_samples : int, optional (default=12000)

The number of samples.

random_state : int, RandomState instance or None, optional (default=None)

296 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns X : array of shape [n_samples, 10]

The input samples.

y : array of shape [n_samples]

The output values.

References: :

.. [1] T. Hastie, R. Tibshirani and J. Friedman, “Elements of Statistical :

Learning Ed. 2”, Springer, 2009. :

sklearn.datasets.make_low_rank_matrix

sklearn.datasets.make_low_rank_matrix(n_samples=100, n_features=100, effective_rank=10,
tail_strength=0.5, random_state=None)

Generate a mostly low rank matrix with bell-shaped singular values

Most of the variance can be explained by a bell-shaped curve of width effective_rank: the low rank part of the
singular values profile is:

(1 - tail_strength) * exp(-1.0 * (i / effective_rank) ** 2)

The remaining singular values’ tail is fat, decreasing as:

tail_strength * exp(-0.1 * i / effective_rank).

The low rank part of the profile can be considered the structured signal part of the data while the tail can be
considered the noisy part of the data that cannot be summarized by a low number of linear components (singular
vectors).

This kind of singular profiles is often seen in practice, for instance:

•gray level pictures of faces

•TF-IDF vectors of text documents crawled from the web

Parameters n_samples : int, optional (default=100)

The number of samples.

n_features : int, optional (default=100)

The number of features.

effective_rank : int, optional (default=10)

The approximate number of singular vectors required to explain most of the data by
linear combinations.

tail_strength : float between 0.0 and 1.0, optional (default=0.5)

The relative importance of the fat noisy tail of the singular values profile.

random_state : int, RandomState instance or None, optional (default=None)

1.8. Reference 297

scikit-learn user guide, Release 0.12-git

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns X : array of shape [n_samples, n_features]

The matrix.

sklearn.datasets.make_moons

sklearn.datasets.make_moons(n_samples=100, shuffle=True, noise=None, random_state=None)
Make two interleaving half circles

A simple toy dataset to visualize clustering and classification algorithms.

Parameters n_samples : int, optional (default=100)

The total number of points generated.

shuffle : bool, optional (default=True)

Whether to shuffle the samples.

noise : double or None (default=None)

Standard deviation of Gaussian noise added to the data.

sklearn.datasets.make_multilabel_classification

sklearn.datasets.make_multilabel_classification(n_samples=100, n_features=20,
n_classes=5, n_labels=2, length=50,
allow_unlabeled=True, ran-
dom_state=None)

Generate a random multilabel classification problem.

For each sample, the generative process is:

•pick the number of labels: n ~ Poisson(n_labels)

•n times, choose a class c: c ~ Multinomial(theta)

•pick the document length: k ~ Poisson(length)

•k times, choose a word: w ~ Multinomial(theta_c)

In the above process, rejection sampling is used to make sure that n is never zero or more than n_classes, and
that the document length is never zero. Likewise, we reject classes which have already been chosen.

Parameters n_samples : int, optional (default=100)

The number of samples.

n_features : int, optional (default=20)

The total number of features.

n_classes : int, optional (default=5)

The number of classes of the classification problem.

n_labels : int, optional (default=2)

The average number of labels per instance. Number of labels follows a Poisson distri-
bution that never takes the value 0.

298 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

length : int, optional (default=50)

Sum of the features (number of words if documents).

allow_unlabeled : bool, optional (default=True)

If True, some instances might not belong to any class.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns X : array of shape [n_samples, n_features]

The generated samples.

Y : list of tuples

The label sets.

sklearn.datasets.make_regression

sklearn.datasets.make_regression(n_samples=100, n_features=100, n_informative=10,
bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0,
shuffle=True, coef=False, random_state=None)

Generate a random regression problem.

The input set can either be well conditioned (by default) or have a low rank-fat tail singular profile. See the
make_low_rank_matrix for more details.

The output is generated by applying a (potentially biased) random linear regression model with n_informative
nonzero regressors to the previously generated input and some gaussian centered noise with some adjustable
scale.

Parameters n_samples : int, optional (default=100)

The number of samples.

n_features : int, optional (default=100)

The number of features.

n_informative : int, optional (default=10)

The number of informative features, i.e., the number of features used to build the linear
model used to generate the output.

bias : float, optional (default=0.0)

The bias term in the underlying linear model.

effective_rank : int or None, optional (default=None)

if not None:The approximate number of singular vectors required to explain most of
the input data by linear combinations. Using this kind of singular spectrum in the
input allows the generator to reproduce the correlations often observed in practice.

if None:The input set is well conditioned, centered and gaussian with unit variance.

tail_strength : float between 0.0 and 1.0, optional (default=0.5)

The relative importance of the fat noisy tail of the singular values profile if effec-
tive_rank is not None.

1.8. Reference 299

scikit-learn user guide, Release 0.12-git

noise : float, optional (default=0.0)

The standard deviation of the gaussian noise applied to the output.

shuffle : boolean, optional (default=True)

Shuffle the samples and the features.

coef : boolean, optional (default=False)

If True, the coefficients of the underlying linear model are returned.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns X : array of shape [n_samples, n_features]

The input samples.

y : array of shape [n_samples]

The output values.

coef : array of shape [n_features], optional

The coefficient of the underlying linear model. It is returned only if coef is True.

sklearn.datasets.make_s_curve

sklearn.datasets.make_s_curve(n_samples=100, noise=0.0, random_state=None)
Generate an S curve dataset.

Parameters n_samples : int, optional (default=100)

The number of sample points on the S curve.

noise : float, optional (default=0.0)

The standard deviation of the gaussian noise.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns X : array of shape [n_samples, 3]

The points.

t : array of shape [n_samples]

The univariate position of the sample according to the main dimension of the points in
the manifold.

sklearn.datasets.make_sparse_coded_signal

sklearn.datasets.make_sparse_coded_signal(n_samples, n_components, n_features,
n_nonzero_coefs, random_state=None)

Generate a signal as a sparse combination of dictionary elements.

300 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Returns a matrix Y = DX, such as D is (n_features, n_components), X is (n_components, n_samples) and each
column of X has exactly n_nonzero_coefs non-zero elements.

Parameters n_samples : int

number of samples to generate

n_components: int, :

number of components in the dictionary

n_features : int

number of features of the dataset to generate

n_nonzero_coefs : int

number of active (non-zero) coefficients in each sample

random_state: int or RandomState instance, optional (default=None) :

seed used by the pseudo random number generator

Returns data: array of shape [n_features, n_samples] :

The encoded signal (Y).

dictionary: array of shape [n_features, n_components] :

The dictionary with normalized components (D).

code: array of shape [n_components, n_samples] :

The sparse code such that each column of this matrix has exactly n_nonzero_coefs non-
zero items (X).

sklearn.datasets.make_sparse_spd_matrix

sklearn.datasets.make_sparse_spd_matrix(dim=1, alpha=0.95, norm_diag=False,
smallest_coef=0.1, largest_coef=0.9, ran-
dom_state=None)

Generate a sparse symetric definite positive matrix.

Parameters dim: integer, optional (default=1) :

The size of the random (matrix to generate.

alpha: float between 0 and 1, optional (default=0.95) :

The probability that a coefficient is non zero (see notes).

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns prec: array of shape = [dim, dim] :

Notes

The sparsity is actually imposed on the cholesky factor of the matrix. Thus alpha does not translate directly into
the filling fraction of the matrix itself.

1.8. Reference 301

scikit-learn user guide, Release 0.12-git

sklearn.datasets.make_sparse_uncorrelated

sklearn.datasets.make_sparse_uncorrelated(n_samples=100, n_features=10, ran-
dom_state=None)

Generate a random regression problem with sparse uncorrelated design

This dataset is described in Celeux et al [1]. as:

X ~ N(0, 1)
y(X) = X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3]

Only the first 4 features are informative. The remaining features are useless.

Parameters n_samples : int, optional (default=100)

The number of samples.

n_features : int, optional (default=10)

The number of features.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns X : array of shape [n_samples, n_features]

The input samples.

y : array of shape [n_samples]

The output values.

References

[R55]

sklearn.datasets.make_spd_matrix

sklearn.datasets.make_spd_matrix(n_dim, random_state=None)
Generate a random symmetric, positive-definite matrix.

Parameters n_dim : int

The matrix dimension.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns X : array of shape [n_dim, n_dim]

The random symmetric, positive-definite matrix.

302 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

sklearn.datasets.make_swiss_roll

sklearn.datasets.make_swiss_roll(n_samples=100, noise=0.0, random_state=None)
Generate a swiss roll dataset.

Parameters n_samples : int, optional (default=100)

The number of sample points on the S curve.

noise : float, optional (default=0.0)

The standard deviation of the gaussian noise.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns X : array of shape [n_samples, 3]

The points.

t : array of shape [n_samples]

The univariate position of the sample according to the main dimension of the points in
the manifold.

Notes

The algorithm is from Marsland [1].

References

[R56]

1.8.5 sklearn.decomposition: Matrix Decomposition

The sklearn.decomposition module includes matrix decomposition algorithms, including among others PCA,
NMF or ICA. Most of the algorithms of this module can be regarded as dimensionality reduction techniques.

User guide: See the Decomposing signals in components (matrix factorization problems) section for further details.

decomposition.PCA([n_components, copy, whiten]) Principal component analysis (PCA)
decomposition.ProbabilisticPCA([...]) Additional layer on top of PCA that adds a probabilistic evaluationPrincipal component analysis (PCA)
decomposition.ProjectedGradientNMF([...]) Non-Negative matrix factorization by Projected Gradient (NMF)
decomposition.RandomizedPCA(n_components[, ...]) Principal component analysis (PCA) using randomized SVD
decomposition.KernelPCA([n_components, ...]) Kernel Principal component analysis (KPCA)
decomposition.FastICA([n_components, ...]) FastICA; a fast algorithm for Independent Component Analysis
decomposition.NMF([n_components, init, ...]) Non-Negative matrix factorization by Projected Gradient (NMF)
decomposition.SparsePCA(n_components[, ...]) Sparse Principal Components Analysis (SparsePCA)
decomposition.MiniBatchSparsePCA(n_components) Mini-batch Sparse Principal Components Analysis
decomposition.SparseCoder(dictionary[, ...]) Sparse coding
decomposition.DictionaryLearning(n_atoms[, ...]) Dictionary learning
decomposition.MiniBatchDictionaryLearning(n_atoms) Mini-batch dictionary learning

1.8. Reference 303

scikit-learn user guide, Release 0.12-git

sklearn.decomposition.PCA

class sklearn.decomposition.PCA(n_components=None, copy=True, whiten=False)
Principal component analysis (PCA)

Linear dimensionality reduction using Singular Value Decomposition of the data and keeping only the most
significant singular vectors to project the data to a lower dimensional space.

This implementation uses the scipy.linalg implementation of the singular value decomposition. It only works
for dense arrays and is not scalable to large dimensional data.

The time complexity of this implementation is O(n ** 3) assuming n ~ n_samples ~ n_features.

Parameters n_components : int, None or string

Number of components to keep. if n_components is not set all components are kept:

n_components == min(n_samples, n_features)

if n_components == ‘mle’, Minka’s MLE is used to guess the dimension if 0 <
n_components < 1, select the number of components such that the amount of vari-
ance that needs to be explained is greater than the percentage specified by n_components

copy : bool

If False, data passed to fit are overwritten

whiten : bool, optional

When True (False by default) the components_ vectors are divided by n_samples times
singular values to ensure uncorrelated outputs with unit component-wise variances.

Whitening will remove some information from the transformed signal (the relative vari-
ance scales of the components) but can sometime improve the predictive accuracy of
the downstream estimators by making there data respect some hard-wired assumptions.

See Also:

ProbabilisticPCA, RandomizedPCA, KernelPCA, SparsePCA

Notes

For n_components=’mle’, this class uses the method of Thomas P. Minka: Automatic Choice of Dimensionality
for PCA. NIPS 2000: 598-604

Due to implementation subtleties of the Singular Value Decomposition (SVD), which is used in this imple-
mentation, running fit twice on the same matrix can lead to principal components with signs flipped (change
in direction). For this reason, it is important to always use the same estimator object to transform data in a
consistent fashion.

Examples

>>> import numpy as np
>>> from sklearn.decomposition import PCA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> pca = PCA(n_components=2)
>>> pca.fit(X)
PCA(copy=True, n_components=2, whiten=False)

304 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

>>> print(pca.explained_variance_ratio_)
[0.99244... 0.00755...]

Attributes

compo-
nents_

array,
[n_components,
n_features]

Components with maximum variance.

ex-
plained_variance_ratio_

array,
[n_components]

Percentage of variance explained by each of the selected components. k is
not set then all components are stored and the sum of explained variances
is equal to 1.0

Methods

fit(X[, y]) Fit the model with X.
fit_transform(X[, y]) Fit the model with X and apply the dimensionality reduction on X.
get_params([deep]) Get parameters for the estimator
inverse_transform(X) Transform data back to its original space, i.e.,
set_params(**params) Set the parameters of the estimator.
transform(X) Apply the dimensionality reduction on X.

__init__(n_components=None, copy=True, whiten=False)

fit(X, y=None, **params)
Fit the model with X.

Parameters X: array-like, shape (n_samples, n_features) :

Training data, where n_samples in the number of samples and n_features is the number
of features.

Returns self : object

Returns the instance itself.

fit_transform(X, y=None, **params)
Fit the model with X and apply the dimensionality reduction on X.

Parameters X : array-like, shape (n_samples, n_features)

Training data, where n_samples in the number of samples and n_features is the number
of features.

Returns X_new : array-like, shape (n_samples, n_components)

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

inverse_transform(X)
Transform data back to its original space, i.e., return an input X_original whose transform would be X

Parameters X : array-like, shape (n_samples, n_components)

1.8. Reference 305

scikit-learn user guide, Release 0.12-git

New data, where n_samples in the number of samples and n_components is the number
of components.

Returns X_original array-like, shape (n_samples, n_features) :

Notes

If whitening is enabled, inverse_transform does not compute the exact inverse operation as transform.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Apply the dimensionality reduction on X.

Parameters X : array-like, shape (n_samples, n_features)

New data, where n_samples in the number of samples and n_features is the number of
features.

Returns X_new : array-like, shape (n_samples, n_components)

sklearn.decomposition.ProbabilisticPCA

class sklearn.decomposition.ProbabilisticPCA(n_components=None, copy=True,
whiten=False)

Additional layer on top of PCA that adds a probabilistic evaluationPrincipal component analysis (PCA)

Linear dimensionality reduction using Singular Value Decomposition of the data and keeping only the most
significant singular vectors to project the data to a lower dimensional space.

This implementation uses the scipy.linalg implementation of the singular value decomposition. It only works
for dense arrays and is not scalable to large dimensional data.

The time complexity of this implementation is O(n ** 3) assuming n ~ n_samples ~ n_features.

Parameters n_components : int, None or string

Number of components to keep. if n_components is not set all components are kept:

n_components == min(n_samples, n_features)

if n_components == ‘mle’, Minka’s MLE is used to guess the dimension if 0 <
n_components < 1, select the number of components such that the amount of vari-
ance that needs to be explained is greater than the percentage specified by n_components

copy : bool

If False, data passed to fit are overwritten

whiten : bool, optional

When True (False by default) the components_ vectors are divided by n_samples times
singular values to ensure uncorrelated outputs with unit component-wise variances.

306 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Whitening will remove some information from the transformed signal (the relative vari-
ance scales of the components) but can sometime improve the predictive accuracy of
the downstream estimators by making there data respect some hard-wired assumptions.

See Also:

ProbabilisticPCA, RandomizedPCA, KernelPCA, SparsePCA

Notes

For n_components=’mle’, this class uses the method of Thomas P. Minka: Automatic Choice of Dimensionality
for PCA. NIPS 2000: 598-604

Due to implementation subtleties of the Singular Value Decomposition (SVD), which is used in this imple-
mentation, running fit twice on the same matrix can lead to principal components with signs flipped (change
in direction). For this reason, it is important to always use the same estimator object to transform data in a
consistent fashion.

Examples

>>> import numpy as np
>>> from sklearn.decomposition import PCA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> pca = PCA(n_components=2)
>>> pca.fit(X)
PCA(copy=True, n_components=2, whiten=False)
>>> print(pca.explained_variance_ratio_)
[0.99244... 0.00755...]

Attributes

compo-
nents_

array,
[n_components,
n_features]

Components with maximum variance.

ex-
plained_variance_ratio_

array,
[n_components]

Percentage of variance explained by each of the selected components. k is
not set then all components are stored and the sum of explained variances
is equal to 1.0

Methods

fit(X[, y, homoscedastic]) Additionally to PCA.fit, learns a covariance model
fit_transform(X[, y]) Fit the model with X and apply the dimensionality reduction on X.
get_params([deep]) Get parameters for the estimator
inverse_transform(X) Transform data back to its original space, i.e.,
score(X[, y]) Return a score associated to new data
set_params(**params) Set the parameters of the estimator.
transform(X) Apply the dimensionality reduction on X.

__init__(n_components=None, copy=True, whiten=False)

fit(X, y=None, homoscedastic=True)

1.8. Reference 307

scikit-learn user guide, Release 0.12-git

Additionally to PCA.fit, learns a covariance model

Parameters X : array of shape(n_samples, n_dim)

The data to fit

homoscedastic : bool, optional,

If True, average variance across remaining dimensions

fit_transform(X, y=None, **params)
Fit the model with X and apply the dimensionality reduction on X.

Parameters X : array-like, shape (n_samples, n_features)

Training data, where n_samples in the number of samples and n_features is the number
of features.

Returns X_new : array-like, shape (n_samples, n_components)

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

inverse_transform(X)
Transform data back to its original space, i.e., return an input X_original whose transform would be X

Parameters X : array-like, shape (n_samples, n_components)

New data, where n_samples in the number of samples and n_components is the number
of components.

Returns X_original array-like, shape (n_samples, n_features) :

Notes

If whitening is enabled, inverse_transform does not compute the exact inverse operation as transform.

score(X, y=None)
Return a score associated to new data

Parameters X: array of shape(n_samples, n_dim) :

The data to test

Returns ll: array of shape (n_samples), :

log-likelihood of each row of X under the current model

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Apply the dimensionality reduction on X.

308 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Parameters X : array-like, shape (n_samples, n_features)

New data, where n_samples in the number of samples and n_features is the number of
features.

Returns X_new : array-like, shape (n_samples, n_components)

sklearn.decomposition.ProjectedGradientNMF

class sklearn.decomposition.ProjectedGradientNMF(n_components=None, init=’nndsvdar’,
sparseness=None, beta=1, eta=0.1,
tol=0.0001, max_iter=200,
nls_max_iter=2000)

Non-Negative matrix factorization by Projected Gradient (NMF)

Parameters X: {array-like, sparse matrix}, shape = [n_samples, n_features] :

Data the model will be fit to.

n_components: int or None :

Number of components, if n_components is not set all components are kept

init: ‘nndsvd’ | ‘nndsvda’ | ‘nndsvdar’ | int | RandomState :

Method used to initialize the procedure. Default: ‘nndsvdar’ Valid options:

’nndsvd’: Nonnegative Double Singular Value Decomposition (NNDSVD)
initialization (better for sparseness)

’nndsvda’: NNDSVD with zeros filled with the average of X
(better when sparsity is not desired)

’nndsvdar’: NNDSVD with zeros filled with small random values
(generally faster, less accurate alternative to NNDSVDa
for when sparsity is not desired)

int seed or RandomState: non-negative random matrices

sparseness: ‘data’ | ‘components’ | None, default: None :

Where to enforce sparsity in the model.

beta: double, default: 1 :

Degree of sparseness, if sparseness is not None. Larger values mean more sparseness.

eta: double, default: 0.1 :

Degree of correctness to mantain, if sparsity is not None. Smaller values mean larger
error.

tol: double, default: 1e-4 :

Tolerance value used in stopping conditions.

max_iter: int, default: 200 :

Number of iterations to compute.

nls_max_iter: int, default: 2000 :

Number of iterations in NLS subproblem.

1.8. Reference 309

scikit-learn user guide, Release 0.12-git

Notes

This implements

C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007),
2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/

P. Hoyer. Non-negative Matrix Factorization with Sparseness Constraints. Journal of Machine Learning Re-
search 2004.

NNDSVD is introduced in

C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for nonnegative matrix factorization -
Pattern Recognition, 2008 http://www.cs.rpi.edu/~boutsc/files/nndsvd.pdf

Examples

>>> import numpy as np
>>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
>>> from sklearn.decomposition import ProjectedGradientNMF
>>> model = ProjectedGradientNMF(n_components=2, init=0)
>>> model.fit(X)
ProjectedGradientNMF(beta=1, eta=0.1, init=0, max_iter=200, n_components=2,

nls_max_iter=2000, sparseness=None, tol=0.0001)
>>> model.components_
array([[0.77032744, 0.11118662],

[0.38526873, 0.38228063]])
>>> model.reconstruction_err_
0.00746...
>>> model = ProjectedGradientNMF(n_components=2, init=0,
... sparseness=’components’)
>>> model.fit(X)
ProjectedGradientNMF(beta=1, eta=0.1, init=0, max_iter=200, n_components=2,

nls_max_iter=2000, sparseness=’components’, tol=0.0001)
>>> model.components_
array([[1.67481991, 0.29614922],

[-0. , 0.4681982]])
>>> model.reconstruction_err_
0.513...

Attributes

compo-
nents_

array,
[n_components,
n_features]

Non-negative components of the data

recon-
struc-
tion_err_

number Frobenius norm of the matrix difference between the training data and the
reconstructed data from the fit produced by the model. || X - WH ||_2
Not computed for sparse input matrices because it is too expensive in terms
of memory.

Methods

fit(X[, y]) Learn a NMF model for the data X.
Continued on next page

310 Chapter 1. User Guide

http://www.csie.ntu.edu.tw/~cjlin/nmf/
http://www.cs.rpi.edu/~boutsc/files/nndsvd.pdf

scikit-learn user guide, Release 0.12-git

Table 1.47 – continued from previous page
fit_transform(X[, y]) Learn a NMF model for the data X and returns the transformed data.
get_params([deep]) Get parameters for the estimator
set_params(**params) Set the parameters of the estimator.
transform(X) Transform the data X according to the fitted NMF model

__init__(n_components=None, init=’nndsvdar’, sparseness=None, beta=1, eta=0.1, tol=0.0001,
max_iter=200, nls_max_iter=2000)

fit(X, y=None, **params)
Learn a NMF model for the data X.

Parameters X: {array-like, sparse matrix}, shape = [n_samples, n_features] :

Data matrix to be decomposed

Returns self :

fit_transform(X, y=None)
Learn a NMF model for the data X and returns the transformed data.

This is more efficient than calling fit followed by transform.

Parameters X: {array-like, sparse matrix}, shape = [n_samples, n_features] :

Data matrix to be decomposed

Returns data: array, [n_samples, n_components] :

Transformed data

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Transform the data X according to the fitted NMF model

Parameters X: {array-like, sparse matrix}, shape = [n_samples, n_features] :

Data matrix to be transformed by the model

Returns data: array, [n_samples, n_components] :

Transformed data

sklearn.decomposition.RandomizedPCA

class sklearn.decomposition.RandomizedPCA(n_components, copy=True, iterated_power=3,
whiten=False, random_state=None)

Principal component analysis (PCA) using randomized SVD

1.8. Reference 311

scikit-learn user guide, Release 0.12-git

Linear dimensionality reduction using approximated Singular Value Decomposition of the data and keeping
only the most significant singular vectors to project the data to a lower dimensional space.

This implementation uses a randomized SVD implementation and can handle both scipy.sparse and numpy
dense arrays as input.

Parameters n_components : int

Maximum number of components to keep: default is 50.

copy : bool

If False, data passed to fit are overwritten

iterated_power : int, optional

Number of iteration for the power method. 3 by default.

whiten : bool, optional

When True (False by default) the components_ vectors are divided by the singular values
to ensure uncorrelated outputs with unit component-wise variances.

Whitening will remove some information from the transformed signal (the relative vari-
ance scales of the components) but can sometime improve the predictive accuracy of
the downstream estimators by making there data respect some hard-wired assumptions.

random_state : int or RandomState instance or None (default)

Pseudo Random Number generator seed control. If None, use the numpy.random sin-
gleton.

See Also:

PCA, ProbabilisticPCA

References

[Halko2009], [MRT]

Examples

>>> import numpy as np
>>> from sklearn.decomposition import RandomizedPCA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> pca = RandomizedPCA(n_components=2)
>>> pca.fit(X)
RandomizedPCA(copy=True, iterated_power=3, n_components=2,

random_state=<mtrand.RandomState object at 0x...>, whiten=False)
>>> print(pca.explained_variance_ratio_)
[0.99244... 0.00755...]

312 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Attributes

compo-
nents_

array,
[n_components,
n_features]

Components with maximum variance.

ex-
plained_variance_ratio_

array,
[n_components]

Percentage of variance explained by each of the selected components. k is
not set then all components are stored and the sum of explained variances
is equal to 1.0

Methods

fit(X[, y]) Fit the model to the data X.
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
inverse_transform(X) Transform data back to its original space, i.e.,
set_params(**params) Set the parameters of the estimator.
transform(X) Apply the dimensionality reduction on X.

__init__(n_components, copy=True, iterated_power=3, whiten=False, random_state=None)

fit(X, y=None)
Fit the model to the data X.

Parameters X: array-like or scipy.sparse matrix, shape (n_samples, n_features) :

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

Returns self : object

Returns the instance itself.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

1.8. Reference 313

scikit-learn user guide, Release 0.12-git

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

inverse_transform(X)
Transform data back to its original space, i.e., return an input X_original whose transform would be X

Parameters X : array-like or scipy.sparse matrix, shape (n_samples, n_components)

New data, where n_samples in the number of samples and n_components is the number
of components.

Returns X_original array-like, shape (n_samples, n_features) :

Notes

If whitening is enabled, inverse_transform does not compute the exact inverse operation as transform.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Apply the dimensionality reduction on X.

Parameters X : array-like or scipy.sparse matrix, shape (n_samples, n_features)

New data, where n_samples in the number of samples and n_features is the number of
features.

Returns X_new : array-like, shape (n_samples, n_components)

sklearn.decomposition.KernelPCA

class sklearn.decomposition.KernelPCA(n_components=None, kernel=’linear’,
gamma=0, degree=3, coef0=1, alpha=1.0,
fit_inverse_transform=False, eigen_solver=’auto’,
tol=0, max_iter=None)

Kernel Principal component analysis (KPCA)

Non-linear dimensionality reduction through the use of kernels.

Parameters n_components: int or None :

Number of components. If None, all non-zero components are kept.

kernel: “linear” | “poly” | “rbf” | “sigmoid” | “precomputed” :

Kernel. Default: “linear”

degree : int, optional

Degree for poly, rbf and sigmoid kernels. Default: 3.

gamma : float, optional

Kernel coefficient for rbf and poly kernels. Default: 1/n_features.

314 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

coef0 : float, optional

Independent term in poly and sigmoid kernels.

alpha: int :

Hyperparameter of the ridge regression that learns the inverse transform (when
fit_inverse_transform=True). Default: 1.0

fit_inverse_transform: bool :

Learn the inverse transform for non-precomputed kernels. (i.e. learn to find the pre-
image of a point) Default: False

eigen_solver: string [’auto’|’dense’|’arpack’] :

Select eigensolver to use. If n_components is much less than the number of training
samples, arpack may be more efficient than the dense eigensolver.

tol: float :

convergence tolerance for arpack. Default: 0 (optimal value will be chosen by arpack)

max_iter : int

maximum number of iterations for arpack Default: None (optimal value will be chosen
by arpack)

References

Kernel PCA was intoduced in:Bernhard Schoelkopf, Alexander J. Smola, and Klaus-Robert Mueller. 1999.
Kernel principal component analysis. In Advances in kernel methods, MIT Press, Cambridge, MA, USA
327-352.

Attributes

lambdas_, alphas_: Eigenvalues and eigenvectors of the centered kernel matrix
dual_coef_: Inverse transform matrix
X_transformed_fit_: Projection of the fitted data on the kernel principal components

Methods

fit(X[, y]) Fit the model from data in X.
fit_transform(X[, y]) Fit the model from data in X and transform X.
get_params([deep]) Get parameters for the estimator
inverse_transform(X) Transform X back to original space.
set_params(**params) Set the parameters of the estimator.
transform(X) Transform X.

__init__(n_components=None, kernel=’linear’, gamma=0, degree=3, coef0=1, alpha=1.0,
fit_inverse_transform=False, eigen_solver=’auto’, tol=0, max_iter=None)

fit(X, y=None)
Fit the model from data in X.

Parameters X: array-like, shape (n_samples, n_features) :

1.8. Reference 315

scikit-learn user guide, Release 0.12-git

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

Returns self : object

Returns the instance itself.

fit_transform(X, y=None, **params)
Fit the model from data in X and transform X.

Parameters X: array-like, shape (n_samples, n_features) :

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

Returns X_new: array-like, shape (n_samples, n_components) :

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

inverse_transform(X)
Transform X back to original space.

Parameters X: array-like, shape (n_samples, n_components) :

Returns X_new: array-like, shape (n_samples, n_features) :

References

“Learning to Find Pre-Images”, G BakIr et al, 2004.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Transform X.

Parameters X: array-like, shape (n_samples, n_features) :

Returns X_new: array-like, shape (n_samples, n_components) :

sklearn.decomposition.FastICA

class sklearn.decomposition.FastICA(n_components=None, algorithm=’parallel’, whiten=True,
fun=’logcosh’, fun_prime=’‘, fun_args=None,
max_iter=200, tol=0.0001, w_init=None, ran-
dom_state=None)

FastICA; a fast algorithm for Independent Component Analysis

Parameters n_components : int, optional

Number of components to use. If none is passed, all are used.

316 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

algorithm : {‘parallel’, ‘deflation’}

Apply parallel or deflational algorithm for FastICA

whiten : boolean, optional

If whiten is false, the data is already considered to be whitened, and no whitening is
performed.

fun : {‘logcosh’, ‘exp’, or ‘cube’}, or a callable

The non-linear function used in the FastICA loop to approximate negentropy. If a func-
tion is passed, it derivative should be passed as the ‘fun_prime’ argument.

fun_prime : None or a callable

The derivative of the non-linearity used.

max_iter : int, optional

Maximum number of iterations during fit

tol : float, optional

Tolerance on update at each iteration

w_init : None of an (n_components, n_components) ndarray

The mixing matrix to be used to initialize the algorithm.

random_state: int or RandomState :

Pseudo number generator state used for random sampling.

Notes

Implementation based on A. Hyvarinen and E. Oja, Independent Component Analysis: Algorithms and Appli-
cations, Neural Networks, 13(4-5), 2000, pp. 411-430

Attributes

components_ 2D array, [n_components,
n_features]

The unmixing matrix

sources_: 2D array, [n_samples,
n_components]

The estimated latent sources of
the data.

Methods

fit(X)
get_mixing_matrix() Compute the mixing matrix
get_params([deep]) Get parameters for the estimator
set_params(**params) Set the parameters of the estimator.
transform(X) Apply un-mixing matrix “W” to X to recover the sources

__init__(n_components=None, algorithm=’parallel’, whiten=True, fun=’logcosh’, fun_prime=’‘,
fun_args=None, max_iter=200, tol=0.0001, w_init=None, random_state=None)

get_mixing_matrix()

1.8. Reference 317

scikit-learn user guide, Release 0.12-git

Compute the mixing matrix

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Apply un-mixing matrix “W” to X to recover the sources

S = X * W.T

unmixing_matrix_
DEPRECATED: Renamed to components_

sklearn.decomposition.NMF

class sklearn.decomposition.NMF(n_components=None, init=’nndsvdar’, sparseness=None, beta=1,
eta=0.1, tol=0.0001, max_iter=200, nls_max_iter=2000)

Non-Negative matrix factorization by Projected Gradient (NMF)

Parameters X: {array-like, sparse matrix}, shape = [n_samples, n_features] :

Data the model will be fit to.

n_components: int or None :

Number of components, if n_components is not set all components are kept

init: ‘nndsvd’ | ‘nndsvda’ | ‘nndsvdar’ | int | RandomState :

Method used to initialize the procedure. Default: ‘nndsvdar’ Valid options:

’nndsvd’: Nonnegative Double Singular Value Decomposition (NNDSVD)
initialization (better for sparseness)

’nndsvda’: NNDSVD with zeros filled with the average of X
(better when sparsity is not desired)

’nndsvdar’: NNDSVD with zeros filled with small random values
(generally faster, less accurate alternative to NNDSVDa
for when sparsity is not desired)

int seed or RandomState: non-negative random matrices

sparseness: ‘data’ | ‘components’ | None, default: None :

Where to enforce sparsity in the model.

beta: double, default: 1 :

Degree of sparseness, if sparseness is not None. Larger values mean more sparseness.

eta: double, default: 0.1 :

318 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Degree of correctness to mantain, if sparsity is not None. Smaller values mean larger
error.

tol: double, default: 1e-4 :

Tolerance value used in stopping conditions.

max_iter: int, default: 200 :

Number of iterations to compute.

nls_max_iter: int, default: 2000 :

Number of iterations in NLS subproblem.

Notes

This implements

C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007),
2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/

P. Hoyer. Non-negative Matrix Factorization with Sparseness Constraints. Journal of Machine Learning Re-
search 2004.

NNDSVD is introduced in

C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for nonnegative matrix factorization -
Pattern Recognition, 2008 http://www.cs.rpi.edu/~boutsc/files/nndsvd.pdf

Examples

>>> import numpy as np
>>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
>>> from sklearn.decomposition import ProjectedGradientNMF
>>> model = ProjectedGradientNMF(n_components=2, init=0)
>>> model.fit(X)
ProjectedGradientNMF(beta=1, eta=0.1, init=0, max_iter=200, n_components=2,

nls_max_iter=2000, sparseness=None, tol=0.0001)
>>> model.components_
array([[0.77032744, 0.11118662],

[0.38526873, 0.38228063]])
>>> model.reconstruction_err_
0.00746...
>>> model = ProjectedGradientNMF(n_components=2, init=0,
... sparseness=’components’)
>>> model.fit(X)
ProjectedGradientNMF(beta=1, eta=0.1, init=0, max_iter=200, n_components=2,

nls_max_iter=2000, sparseness=’components’, tol=0.0001)
>>> model.components_
array([[1.67481991, 0.29614922],

[-0. , 0.4681982]])
>>> model.reconstruction_err_
0.513...

1.8. Reference 319

http://www.csie.ntu.edu.tw/~cjlin/nmf/
http://www.cs.rpi.edu/~boutsc/files/nndsvd.pdf

scikit-learn user guide, Release 0.12-git

Attributes

compo-
nents_

array,
[n_components,
n_features]

Non-negative components of the data

recon-
struc-
tion_err_

number Frobenius norm of the matrix difference between the training data and the
reconstructed data from the fit produced by the model. || X - WH ||_2
Not computed for sparse input matrices because it is too expensive in terms
of memory.

Methods

fit(X[, y]) Learn a NMF model for the data X.
fit_transform(X[, y]) Learn a NMF model for the data X and returns the transformed data.
get_params([deep]) Get parameters for the estimator
set_params(**params) Set the parameters of the estimator.
transform(X) Transform the data X according to the fitted NMF model

__init__(n_components=None, init=’nndsvdar’, sparseness=None, beta=1, eta=0.1, tol=0.0001,
max_iter=200, nls_max_iter=2000)

fit(X, y=None, **params)
Learn a NMF model for the data X.

Parameters X: {array-like, sparse matrix}, shape = [n_samples, n_features] :

Data matrix to be decomposed

Returns self :

fit_transform(X, y=None)
Learn a NMF model for the data X and returns the transformed data.

This is more efficient than calling fit followed by transform.

Parameters X: {array-like, sparse matrix}, shape = [n_samples, n_features] :

Data matrix to be decomposed

Returns data: array, [n_samples, n_components] :

Transformed data

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

320 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

transform(X)
Transform the data X according to the fitted NMF model

Parameters X: {array-like, sparse matrix}, shape = [n_samples, n_features] :

Data matrix to be transformed by the model

Returns data: array, [n_samples, n_components] :

Transformed data

sklearn.decomposition.SparsePCA

class sklearn.decomposition.SparsePCA(n_components, alpha=1, ridge_alpha=0.01,
max_iter=1000, tol=1e-08, method=’lars’, n_jobs=1,
U_init=None, V_init=None, verbose=False, ran-
dom_state=None)

Sparse Principal Components Analysis (SparsePCA)

Finds the set of sparse components that can optimally reconstruct the data. The amount of sparseness is control-
lable by the coefficient of the L1 penalty, given by the parameter alpha.

Parameters n_components : int,

Number of sparse atoms to extract.

alpha : float,

Sparsity controlling parameter. Higher values lead to sparser components.

ridge_alpha : float,

Amount of ridge shrinkage to apply in order to improve conditioning when calling the
transform method.

max_iter : int,

Maximum number of iterations to perform.

tol : float,

Tolerance for the stopping condition.

method : {‘lars’, ‘cd’}

lars: uses the least angle regression method to solve the lasso problem (lin-
ear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso so-
lution (linear_model.Lasso). Lars will be faster if the estimated components are sparse.

n_jobs : int,

Number of parallel jobs to run.

U_init : array of shape (n_samples, n_atoms),

Initial values for the loadings for warm restart scenarios.

V_init : array of shape (n_atoms, n_features),

Initial values for the components for warm restart scenarios.

verbose : :

Degree of verbosity of the printed output.

random_state : int or RandomState

1.8. Reference 321

scikit-learn user guide, Release 0.12-git

Pseudo number generator state used for random sampling.

See Also:

PCA, MiniBatchSparsePCA, DictionaryLearning

Attributes

components_ array, [n_components, n_features] Sparse components extracted from the data.
error_ array Vector of errors at each iteration.

Methods

fit(X[, y]) Fit the model from data in X.
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
set_params(**params) Set the parameters of the estimator.
transform(X[, ridge_alpha]) Least Squares projection of the data onto the sparse components.

__init__(n_components, alpha=1, ridge_alpha=0.01, max_iter=1000, tol=1e-08, method=’lars’,
n_jobs=1, U_init=None, V_init=None, verbose=False, random_state=None)

fit(X, y=None)
Fit the model from data in X.

Parameters X: array-like, shape (n_samples, n_features) :

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

Returns self : object

Returns the instance itself.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

322 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, ridge_alpha=None)
Least Squares projection of the data onto the sparse components.

To avoid instability issues in case the system is under-determined, regularization can be applied (Ridge
regression) via the ridge_alpha parameter.

Note that Sparse PCA components orthogonality is not enforced as in PCA hence one cannot use a simple
linear projection.

Parameters X: array of shape (n_samples, n_features) :

Test data to be transformed, must have the same number of features as the data used to
train the model.

ridge_alpha: float, default: 0.01 :

Amount of ridge shrinkage to apply in order to improve conditioning.

Returns X_new array, shape (n_samples, n_components) :

Transformed data.

sklearn.decomposition.MiniBatchSparsePCA

class sklearn.decomposition.MiniBatchSparsePCA(n_components, alpha=1,
ridge_alpha=0.01, n_iter=100, call-
back=None, chunk_size=3, verbose=False,
shuffle=True, n_jobs=1, method=’lars’,
random_state=None)

Mini-batch Sparse Principal Components Analysis

Finds the set of sparse components that can optimally reconstruct the data. The amount of sparseness is control-
lable by the coefficient of the L1 penalty, given by the parameter alpha.

Parameters n_components : int,

number of sparse atoms to extract

alpha : int,

Sparsity controlling parameter. Higher values lead to sparser components.

ridge_alpha : float,

Amount of ridge shrinkage to apply in order to improve conditioning when calling the
transform method.

n_iter : int,

number of iterations to perform for each mini batch

1.8. Reference 323

scikit-learn user guide, Release 0.12-git

callback : callable,

callable that gets invoked every five iterations

chunk_size : int,

the number of features to take in each mini batch

verbose : :

degree of output the procedure will print

shuffle : boolean,

whether to shuffle the data before splitting it in batches

n_jobs : int,

number of parallel jobs to run, or -1 to autodetect.

method : {‘lars’, ‘cd’}

lars: uses the least angle regression method to solve the lasso problem (lin-
ear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso so-
lution (linear_model.Lasso). Lars will be faster if the estimated components are sparse.

random_state : int or RandomState

Pseudo number generator state used for random sampling.

See Also:

PCA, SparsePCA, DictionaryLearning

Attributes

components_ array, [n_components, n_features] Sparse components extracted from the data.
error_ array Vector of errors at each iteration.

Methods

fit(X[, y]) Fit the model from data in X.
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
set_params(**params) Set the parameters of the estimator.
transform(X[, ridge_alpha]) Least Squares projection of the data onto the sparse components.

__init__(n_components, alpha=1, ridge_alpha=0.01, n_iter=100, callback=None, chunk_size=3,
verbose=False, shuffle=True, n_jobs=1, method=’lars’, random_state=None)

fit(X, y=None)
Fit the model from data in X.

Parameters X: array-like, shape (n_samples, n_features) :

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

Returns self : object

Returns the instance itself.

324 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, ridge_alpha=None)
Least Squares projection of the data onto the sparse components.

To avoid instability issues in case the system is under-determined, regularization can be applied (Ridge
regression) via the ridge_alpha parameter.

Note that Sparse PCA components orthogonality is not enforced as in PCA hence one cannot use a simple
linear projection.

Parameters X: array of shape (n_samples, n_features) :

Test data to be transformed, must have the same number of features as the data used to
train the model.

ridge_alpha: float, default: 0.01 :

Amount of ridge shrinkage to apply in order to improve conditioning.

Returns X_new array, shape (n_samples, n_components) :

Transformed data.

1.8. Reference 325

scikit-learn user guide, Release 0.12-git

sklearn.decomposition.SparseCoder

class sklearn.decomposition.SparseCoder(dictionary, transform_algorithm=’omp’,
transform_n_nonzero_coefs=None, trans-
form_alpha=None, split_sign=False, n_jobs=1)

Sparse coding

Finds a sparse representation of data against a fixed, precomputed dictionary.

Each row of the result is the solution to a sparse coding problem. The goal is to find a sparse array code such
that:

X ~= code * dictionary

Parameters dictionary : array, [n_atoms, n_features]

The dictionary atoms used for sparse coding. Lines are assumed to be normalized to
unit norm.

transform_algorithm : {‘lasso_lars’, ‘lasso_cd’, ‘lars’, ‘omp’, ‘threshold’}

Algorithm used to transform the data: lars: uses the least angle regression method (lin-
ear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses
the coordinate descent method to compute the Lasso solution (linear_model.Lasso).
lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal
matching pursuit to estimate the sparse solution threshold: squashes to zero all coeffi-
cients less than alpha from the projection dictionary * X’

transform_n_nonzero_coefs : int, 0.1 * n_features by default

Number of nonzero coefficients to target in each column of the solution. This is only
used by algorithm=’lars’ and algorithm=’omp’ and is overridden by alpha in the omp
case.

transform_alpha : float, 1. by default

If algorithm=’lasso_lars’ or algorithm=’lasso_cd’, alpha is the penalty applied to the
L1 norm. If algorithm=’threshold’, alpha is the absolute value of the threshold below
which coefficients will be squashed to zero. If algorithm=’omp’, alpha is the toler-
ance parameter: the value of the reconstruction error targeted. In this case, it overrides
n_nonzero_coefs.

split_sign : bool, False by default

Whether to split the sparse feature vector into the concatenation of its negative part and
its positive part. This can improve the performance of downstream classifiers.

n_jobs : int,

number of parallel jobs to run

See Also:

DictionaryLearning, MiniBatchDictionaryLearning, SparsePCA,
MiniBatchSparsePCA, sparse_encode

Attributes

components_ array, [n_atoms, n_features] The unchanged dictionary atoms

326 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Methods

fit(X[, y]) Do nothing and return the estimator unchanged
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
set_params(**params) Set the parameters of the estimator.
transform(X[, y]) Encode the data as a sparse combination of the dictionary atoms.

__init__(dictionary, transform_algorithm=’omp’, transform_n_nonzero_coefs=None, trans-
form_alpha=None, split_sign=False, n_jobs=1)

fit(X, y=None)
Do nothing and return the estimator unchanged

This method is just there to implement the usual API and hence work in pipelines.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, y=None)
Encode the data as a sparse combination of the dictionary atoms.

Coding method is determined by the object parameter transform_algorithm.

Parameters X : array of shape (n_samples, n_features)

1.8. Reference 327

scikit-learn user guide, Release 0.12-git

Test data to be transformed, must have the same number of features as the data used to
train the model.

Returns X_new : array, shape (n_samples, n_components)

Transformed data

sklearn.decomposition.DictionaryLearning

class sklearn.decomposition.DictionaryLearning(n_atoms, alpha=1, max_iter=1000,
tol=1e-08, fit_algorithm=’lars’,
transform_algorithm=’omp’, trans-
form_n_nonzero_coefs=None, trans-
form_alpha=None, n_jobs=1,
code_init=None, dict_init=None, ver-
bose=False, split_sign=False, ran-
dom_state=None)

Dictionary learning

Finds a dictionary (a set of atoms) that can best be used to represent data using a sparse code.

Solves the optimization problem:

(U^*,V^*) = argmin 0.5 || Y - U V ||_2^2 + alpha * || U ||_1
(U,V)
with || V_k ||_2 = 1 for all 0 <= k < n_atoms

Parameters n_atoms : int,

number of dictionary elements to extract

alpha : int,

sparsity controlling parameter

max_iter : int,

maximum number of iterations to perform

tol : float,

tolerance for numerical error

fit_algorithm : {‘lars’, ‘cd’}

lars: uses the least angle regression method to solve the lasso problem (lin-
ear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso so-
lution (linear_model.Lasso). Lars will be faster if the estimated components are sparse.

transform_algorithm : {‘lasso_lars’, ‘lasso_cd’, ‘lars’, ‘omp’, ‘threshold’}

Algorithm used to transform the data lars: uses the least angle regression method (lin-
ear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses
the coordinate descent method to compute the Lasso solution (linear_model.Lasso).
lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal
matching pursuit to estimate the sparse solution threshold: squashes to zero all coeffi-
cients less than alpha from the projection dictionary * X’

transform_n_nonzero_coefs : int, 0.1 * n_features by default

328 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Number of nonzero coefficients to target in each column of the solution. This is only
used by algorithm=’lars’ and algorithm=’omp’ and is overridden by alpha in the omp
case.

transform_alpha : float, 1. by default

If algorithm=’lasso_lars’ or algorithm=’lasso_cd’, alpha is the penalty applied to the
L1 norm. If algorithm=’threshold’, alpha is the absolute value of the threshold below
which coefficients will be squashed to zero. If algorithm=’omp’, alpha is the toler-
ance parameter: the value of the reconstruction error targeted. In this case, it overrides
n_nonzero_coefs.

split_sign : bool, False by default

Whether to split the sparse feature vector into the concatenation of its negative part and
its positive part. This can improve the performance of downstream classifiers.

n_jobs : int,

number of parallel jobs to run

code_init : array of shape (n_samples, n_atoms),

initial value for the code, for warm restart

dict_init : array of shape (n_atoms, n_features),

initial values for the dictionary, for warm restart

verbose : :

degree of verbosity of the printed output

random_state : int or RandomState

Pseudo number generator state used for random sampling.

See Also:

SparseCoder, MiniBatchDictionaryLearning, SparsePCA, MiniBatchSparsePCA

Notes

References:

J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning for sparse coding
(http://www.di.ens.fr/sierra/pdfs/icml09.pdf)

Attributes

components_ array, [n_atoms, n_features] dictionary atoms extracted from the data
error_ array vector of errors at each iteration

Methods

fit(X[, y]) Fit the model from data in X.
fit_transform(X[, y]) Fit to data, then transform it

Continued on next page

1.8. Reference 329

http://www.di.ens.fr/sierra/pdfs/icml09.pdf

scikit-learn user guide, Release 0.12-git

Table 1.55 – continued from previous page
get_params([deep]) Get parameters for the estimator
set_params(**params) Set the parameters of the estimator.
transform(X[, y]) Encode the data as a sparse combination of the dictionary atoms.

__init__(n_atoms, alpha=1, max_iter=1000, tol=1e-08, fit_algorithm=’lars’, trans-
form_algorithm=’omp’, transform_n_nonzero_coefs=None, transform_alpha=None,
n_jobs=1, code_init=None, dict_init=None, verbose=False, split_sign=False, ran-
dom_state=None)

fit(X, y=None)
Fit the model from data in X.

Parameters X: array-like, shape (n_samples, n_features) :

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

Returns self: object :

Returns the object itself

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

330 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

transform(X, y=None)
Encode the data as a sparse combination of the dictionary atoms.

Coding method is determined by the object parameter transform_algorithm.

Parameters X : array of shape (n_samples, n_features)

Test data to be transformed, must have the same number of features as the data used to
train the model.

Returns X_new : array, shape (n_samples, n_components)

Transformed data

sklearn.decomposition.MiniBatchDictionaryLearning

class sklearn.decomposition.MiniBatchDictionaryLearning(n_atoms, al-
pha=1, n_iter=1000,
fit_algorithm=’lars’,
n_jobs=1, chunk_size=3,
shuffle=True,
dict_init=None, trans-
form_algorithm=’omp’, trans-
form_n_nonzero_coefs=None,
transform_alpha=None, ver-
bose=False, split_sign=False,
random_state=None)

Mini-batch dictionary learning

Finds a dictionary (a set of atoms) that can best be used to represent data using a sparse code.

Solves the optimization problem:

(U^*,V^*) = argmin 0.5 || Y - U V ||_2^2 + alpha * || U ||_1
(U,V)
with || V_k ||_2 = 1 for all 0 <= k < n_atoms

Parameters n_atoms : int,

number of dictionary elements to extract

alpha : int,

sparsity controlling parameter

n_iter : int,

total number of iterations to perform

fit_algorithm : {‘lars’, ‘cd’}

lars: uses the least angle regression method to solve the lasso problem (lin-
ear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso so-
lution (linear_model.Lasso). Lars will be faster if the estimated components are sparse.

transform_algorithm : {‘lasso_lars’, ‘lasso_cd’, ‘lars’, ‘omp’, ‘threshold’}

Algorithm used to transform the data. lars: uses the least angle regression method (lin-
ear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses
the coordinate descent method to compute the Lasso solution (linear_model.Lasso).
lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal

1.8. Reference 331

scikit-learn user guide, Release 0.12-git

matching pursuit to estimate the sparse solution threshold: squashes to zero all coeffi-
cients less than alpha from the projection dictionary * X’

transform_n_nonzero_coefs : int, 0.1 * n_features by default

Number of nonzero coefficients to target in each column of the solution. This is only
used by algorithm=’lars’ and algorithm=’omp’ and is overridden by alpha in the omp
case.

transform_alpha : float, 1. by default

If algorithm=’lasso_lars’ or algorithm=’lasso_cd’, alpha is the penalty applied to the
L1 norm. If algorithm=’threshold’, alpha is the absolute value of the threshold below
which coefficients will be squashed to zero. If algorithm=’omp’, alpha is the toler-
ance parameter: the value of the reconstruction error targeted. In this case, it overrides
n_nonzero_coefs.

split_sign : bool, False by default

Whether to split the sparse feature vector into the concatenation of its negative part and
its positive part. This can improve the performance of downstream classifiers.

n_jobs : int,

number of parallel jobs to run

dict_init : array of shape (n_atoms, n_features),

initial value of the dictionary for warm restart scenarios

verbose : :

degree of verbosity of the printed output

chunk_size : int,

number of samples in each mini-batch

shuffle : bool,

whether to shuffle the samples before forming batches

random_state : int or RandomState

Pseudo number generator state used for random sampling.

See Also:

SparseCoder, DictionaryLearning, SparsePCA, MiniBatchSparsePCA

Notes

References:

J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning for sparse coding
(http://www.di.ens.fr/sierra/pdfs/icml09.pdf)

Attributes

components_ array, [n_atoms, n_features] components extracted from the data

332 Chapter 1. User Guide

http://www.di.ens.fr/sierra/pdfs/icml09.pdf

scikit-learn user guide, Release 0.12-git

Methods

fit(X[, y]) Fit the model from data in X.
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
partial_fit(X[, y, iter_offset]) Updates the model using the data in X as a mini-batch.
set_params(**params) Set the parameters of the estimator.
transform(X[, y]) Encode the data as a sparse combination of the dictionary atoms.

__init__(n_atoms, alpha=1, n_iter=1000, fit_algorithm=’lars’, n_jobs=1, chunk_size=3, shuf-
fle=True, dict_init=None, transform_algorithm=’omp’, transform_n_nonzero_coefs=None,
transform_alpha=None, verbose=False, split_sign=False, random_state=None)

fit(X, y=None)
Fit the model from data in X.

Parameters X: array-like, shape (n_samples, n_features) :

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

Returns self : object

Returns the instance itself.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

partial_fit(X, y=None, iter_offset=0)
Updates the model using the data in X as a mini-batch.

Parameters X: array-like, shape (n_samples, n_features) :

1.8. Reference 333

scikit-learn user guide, Release 0.12-git

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

Returns self : object

Returns the instance itself.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, y=None)
Encode the data as a sparse combination of the dictionary atoms.

Coding method is determined by the object parameter transform_algorithm.

Parameters X : array of shape (n_samples, n_features)

Test data to be transformed, must have the same number of features as the data used to
train the model.

Returns X_new : array, shape (n_samples, n_components)

Transformed data

decomposition.fastica(X[, n_components, ...]) Perform Fast Independent Component Analysis.
decomposition.dict_learning(X, n_atoms, alpha) Solves a dictionary learning matrix factorization problem.
decomposition.dict_learning_online(X, ...[, ...]) Solves a dictionary learning matrix factorization problem online.
decomposition.sparse_encode(X, dictionary[, ...]) Sparse coding

sklearn.decomposition.fastica

sklearn.decomposition.fastica(X, n_components=None, algorithm=’parallel’, whiten=True,
fun=’logcosh’, fun_prime=’‘, fun_args={}, max_iter=200,
tol=0.0001, w_init=None, random_state=None)

Perform Fast Independent Component Analysis.

Parameters X : array-like, shape = [n_samples, n_features]

Training vector, where n_samples is the number of samples and n_features is the number
of features.

n_components : int, optional

Number of components to extract. If None no dimension reduction is performed.

algorithm : {‘parallel’, ‘deflation’}, optional

Apply a parallel or deflational FASTICA algorithm.

whiten: boolean, optional :

If True perform an initial whitening of the data. If False, the data is assumed to have
already been preprocessed: it should be centered, normed and white. Otherwise you
will get incorrect results. In this case the parameter n_components will be ignored.

fun : string or function, optional

334 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

The functional form of the G function used in the approximation to neg-entropy. Could
be either ‘logcosh’, ‘exp’, or ‘cube’. You can also provide your own function but in this
case, its derivative should be provided via argument fun_prime

fun_prime : empty string (‘’) or function, optional

See fun.

fun_args: dictionary, optional :

If empty and if fun=’logcosh’, fun_args will take value {‘alpha’ : 1.0}

max_iter: int, optional :

Maximum number of iterations to perform

tol: float, optional :

A positive scalar giving the tolerance at which the un-mixing matrix is considered to
have converged

w_init: (n_components, n_components) array, optional :

Initial un-mixing array of dimension (n.comp,n.comp). If None (default) then an array
of normal r.v.’s is used

source_only: boolean, optional :

if True, only the sources matrix is returned

random_state: int or RandomState :

Pseudo number generator state used for random sampling.

Returns K: (n_components, p) array or None. :

If whiten is ‘True’, K is the pre-whitening matrix that projects data onto the first n.comp
principal components. If whiten is ‘False’, K is ‘None’.

W: (n_components, n_components) array :

estimated un-mixing matrix The mixing matrix can be obtained by:

w = np.dot(W, K.T)
A = w.T * (w * w.T).I

S: (n_components, n) array :

estimated source matrix

Notes

The data matrix X is considered to be a linear combination of non-Gaussian (independent) components i.e. X
= AS where columns of S contain the independent components and A is a linear mixing matrix. In short ICA
attempts to un-mix’ the data by estimating an un-mixing matrix W where ‘‘S = W K X.‘

This implementation was originally made for data of shape [n_features, n_samples]. Now the input is transposed
before the algorithm is applied. This makes it slightly faster for Fortran-ordered input.

Implemented using FastICA: A. Hyvarinen and E. Oja, Independent Component Analysis: Algorithms and
Applications, Neural Networks, 13(4-5), 2000, pp. 411-430

1.8. Reference 335

scikit-learn user guide, Release 0.12-git

sklearn.decomposition.dict_learning

sklearn.decomposition.dict_learning(X, n_atoms, alpha, max_iter=100, tol=1e-
08, method=’lars’, n_jobs=1, dict_init=None,
code_init=None, callback=None, verbose=False,
random_state=None)

Solves a dictionary learning matrix factorization problem.

Finds the best dictionary and the corresponding sparse code for approximating the data matrix X by solving:

(U^*, V^*) = argmin 0.5 || X - U V ||_2^2 + alpha * || U ||_1
(U,V)

with || V_k ||_2 = 1 for all 0 <= k < n_atoms

where V is the dictionary and U is the sparse code.

Parameters X: array of shape (n_samples, n_features) :

Data matrix.

n_atoms: int, :

Number of dictionary atoms to extract.

alpha: int, :

Sparsity controlling parameter.

max_iter: int, :

Maximum number of iterations to perform.

tol: float, :

Tolerance for the stopping condition.

method: {‘lars’, ‘cd’} :

lars: uses the least angle regression method to solve the lasso problem (lin-
ear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso so-
lution (linear_model.Lasso). Lars will be faster if the estimated components are sparse.

n_jobs: int, :

Number of parallel jobs to run, or -1 to autodetect.

dict_init: array of shape (n_atoms, n_features), :

Initial value for the dictionary for warm restart scenarios.

code_init: array of shape (n_samples, n_atoms), :

Initial value for the sparse code for warm restart scenarios.

callback: :

Callable that gets invoked every five iterations.

verbose: :

Degree of output the procedure will print.

random_state: int or RandomState :

Pseudo number generator state used for random sampling.

Returns code: array of shape (n_samples, n_atoms) :

336 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

The sparse code factor in the matrix factorization.

dictionary: array of shape (n_atoms, n_features), :

The dictionary factor in the matrix factorization.

errors: array :

Vector of errors at each iteration.

See Also:

dict_learning_online, DictionaryLearning, MiniBatchDictionaryLearning,
SparsePCA, MiniBatchSparsePCA

sklearn.decomposition.dict_learning_online

sklearn.decomposition.dict_learning_online(X, n_atoms, alpha, n_iter=100, re-
turn_code=True, dict_init=None, call-
back=None, chunk_size=3, verbose=False,
shuffle=True, n_jobs=1, method=’lars’,
iter_offset=0, random_state=None)

Solves a dictionary learning matrix factorization problem online.

Finds the best dictionary and the corresponding sparse code for approximating the data matrix X by solving:

(U^*, V^*) = argmin 0.5 || X - U V ||_2^2 + alpha * || U ||_1
(U,V)
with || V_k ||_2 = 1 for all 0 <= k < n_atoms

where V is the dictionary and U is the sparse code. This is accomplished by repeatedly iterating over mini-
batches by slicing the input data.

Parameters X: array of shape (n_samples, n_features) :

data matrix

n_atoms: int, :

number of dictionary atoms to extract

alpha: int, :

sparsity controlling parameter

n_iter: int, :

number of iterations to perform

return_code: boolean, :

whether to also return the code U or just the dictionary V

dict_init: array of shape (n_atoms, n_features), :

initial value for the dictionary for warm restart scenarios

callback: :

callable that gets invoked every five iterations

chunk_size: int, :

the number of samples to take in each batch

verbose: :

1.8. Reference 337

scikit-learn user guide, Release 0.12-git

degree of output the procedure will print

shuffle: boolean, :

whether to shuffle the data before splitting it in batches

n_jobs: int, :

number of parallel jobs to run, or -1 to autodetect.

method: {‘lars’, ‘cd’} :

lars: uses the least angle regression method to solve the lasso problem (lin-
ear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso so-
lution (linear_model.Lasso). Lars will be faster if the estimated components are sparse.

iter_offset: int, default 0 :

number of previous iterations completed on the dictionary used for initialization

random_state: int or RandomState :

Pseudo number generator state used for random sampling.

Returns code: array of shape (n_samples, n_atoms), :

the sparse code (only returned if return_code=True)

dictionary: array of shape (n_atoms, n_features), :

the solutions to the dictionary learning problem

See Also:

dict_learning, DictionaryLearning, MiniBatchDictionaryLearning, SparsePCA,
MiniBatchSparsePCA

sklearn.decomposition.sparse_encode

sklearn.decomposition.sparse_encode(X, dictionary, gram=None, cov=None, algo-
rithm=’lasso_lars’, n_nonzero_coefs=None, al-
pha=None, copy_gram=None, copy_cov=True,
init=None, max_iter=1000, n_jobs=1)

Sparse coding

Each row of the result is the solution to a sparse coding problem. The goal is to find a sparse array code such
that:

X ~= code * dictionary

Parameters X: array of shape (n_samples, n_features) :

Data matrix

dictionary: array of shape (n_atoms, n_features) :

The dictionary matrix against which to solve the sparse coding of the data. Some of the
algorithms assume normalized rows for meaningful output.

gram: array, shape=(n_atoms, n_atoms) :

Precomputed Gram matrix, dictionary * dictionary’

cov: array, shape=(n_atoms, n_samples) :

338 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Precomputed covariance, dictionary’ * X

algorithm: {‘lasso_lars’, ‘lasso_cd’, ‘lars’, ‘omp’, ‘threshold’} :

lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses
Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to
compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the es-
timated components are sparse. omp: uses orthogonal matching pursuit to estimate
the sparse solution threshold: squashes to zero all coefficients less than alpha from the
projection dictionary * X’

n_nonzero_coefs: int, 0.1 * n_features by default :

Number of nonzero coefficients to target in each column of the solution. This is only
used by algorithm=’lars’ and algorithm=’omp’ and is overridden by alpha in the omp
case.

alpha: float, 1. by default :

If algorithm=’lasso_lars’ or algorithm=’lasso_cd’, alpha is the penalty applied to the
L1 norm. If algorithm=’threhold’, alpha is the absolute value of the threshold below
which coefficients will be squashed to zero. If algorithm=’omp’, alpha is the toler-
ance parameter: the value of the reconstruction error targeted. In this case, it overrides
n_nonzero_coefs.

init: array of shape (n_samples, n_atoms) :

Initialization value of the sparse codes. Only used if algorithm=’lasso_cd’.

max_iter: int, 1000 by default :

Maximum number of iterations to perform if algorithm=’lasso_cd’.

copy_cov: boolean, optional :

Whether to copy the precomputed covariance matrix; if False, it may be overwritten.

n_jobs: int, optional :

Number of parallel jobs to run.

Returns code: array of shape (n_samples, n_atoms) :

The sparse codes

See Also:

sklearn.linear_model.lars_path, sklearn.linear_model.orthogonal_mp,
sklearn.linear_model.Lasso, SparseCoder

1.8.6 sklearn.ensemble: Ensemble Methods

The sklearn.ensemble module includes ensemble-based methods for classification and regression.

User guide: See the Ensemble methods section for further details.

ensemble.RandomForestClassifier([...]) A random forest classifier.
ensemble.RandomForestRegressor([...]) A random forest regressor.
ensemble.ExtraTreesClassifier([...]) An extra-trees classifier.
ensemble.ExtraTreesRegressor([n_estimators, ...]) An extra-trees regressor.
ensemble.GradientBoostingClassifier([loss, ...]) Gradient Boosting for classification.

Continued on next page

1.8. Reference 339

scikit-learn user guide, Release 0.12-git

Table 1.58 – continued from previous page
ensemble.GradientBoostingRegressor([loss, ...]) Gradient Boosting for regression.

sklearn.ensemble.RandomForestClassifier

class sklearn.ensemble.RandomForestClassifier(n_estimators=10, criterion=’gini’,
max_depth=None, min_samples_split=1,
min_samples_leaf=1, min_density=0.1,
max_features=’auto’, bootstrap=True, com-
pute_importances=False, oob_score=False,
n_jobs=1, random_state=None, verbose=0)

A random forest classifier.

A random forest is a meta estimator that fits a number of classifical decision trees on various sub-samples of the
dataset and use averaging to improve the predictive accuracy and control over-fitting.

Parameters n_estimators : integer, optional (default=10)

The number of trees in the forest.

criterion : string, optional (default=”gini”)

The function to measure the quality of a split. Supported criteria are “gini” for the Gini
impurity and “entropy” for the information gain. Note: this parameter is tree-specific.

max_depth : integer or None, optional (default=None)

The maximum depth of the tree. If None, then nodes are expanded until all leaves
are pure or until all leaves contain less than min_samples_split samples. Note: this
parameter is tree-specific.

min_samples_split : integer, optional (default=1)

The minimum number of samples required to split an internal node. Note: this parame-
ter is tree-specific.

min_samples_leaf : integer, optional (default=1)

The minimum number of samples in newly created leaves. A split is discarded if after
the split, one of the leaves would contain less then min_samples_leaf samples.
Note: this parameter is tree-specific.

min_density : float, optional (default=0.1)

This parameter controls a trade-off in an optimization heuristic. It controls the minimum
density of the sample_mask (i.e. the fraction of samples in the mask). If the density falls
below this threshold the mask is recomputed and the input data is packed which results
in data copying. If min_density equals to one, the partitions are always represented
as copies of the original data. Otherwise, partitions are represented as bit masks (aka
sample masks). Note: this parameter is tree-specific.

max_features : int, string or None, optional (default=”auto”)

The number of features to consider when looking for the best split:

•If “auto”, then max_features=sqrt(n_features) on classification tasks and
max_features=n_features on regression problems.

•If “sqrt”, then max_features=sqrt(n_features).

•If “log2”, then max_features=log2(n_features).

•If None, then max_features=n_features.

340 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Note: this parameter is tree-specific.

bootstrap : boolean, optional (default=True)

Whether bootstrap samples are used when building trees.

compute_importances : boolean, optional (default=True)

Whether feature importances are computed and stored into the
feature_importances_ attribute when calling fit.

oob_score : bool

Whether to use out-of-bag samples to estimate the generalization error.

n_jobs : integer, optional (default=1)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number
of cores.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

verbose : int, optional (default=0)

Controlls the verbosity of the tree building process.

See Also:

DecisionTreeClassifier, ExtraTreesClassifier

References

[R59]

Attributes

fea-
ture_importances_

array, shape = [n_features] The feature importances (the higher, the more
important the feature).

oob_score_ float Score of the training dataset obtained using an
out-of-bag estimate.

oob_decision_function_array, shape = [n_samples,
n_classes]

Decision function computed with out-of-bag estimate
on the training set.

Methods

fit(X, y) Build a forest of trees from the training set (X, y).
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
predict(X) Predict class for X.
predict_log_proba(X) Predict class log-probabilities for X.
predict_proba(X) Predict class probabilities for X.
score(X, y) Returns the mean accuracy on the given test data and labels.

Continued on next page

1.8. Reference 341

scikit-learn user guide, Release 0.12-git

Table 1.59 – continued from previous page
set_params(**params) Set the parameters of the estimator.
transform(X[, threshold]) Reduce X to its most important features.

__init__(n_estimators=10, criterion=’gini’, max_depth=None, min_samples_split=1,
min_samples_leaf=1, min_density=0.1, max_features=’auto’, bootstrap=True, com-
pute_importances=False, oob_score=False, n_jobs=1, random_state=None, verbose=0)

fit(X, y)
Build a forest of trees from the training set (X, y).

Parameters X : array-like of shape = [n_samples, n_features]

The training input samples.

y : array-like, shape = [n_samples]

The target values (integers that correspond to classes in classification, real numbers in
regression).

Returns self : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict class for X.

The predicted class of an input sample is computed as the majority prediction of the trees in the forest.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns y : array of shape = [n_samples]

342 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

The predicted classes.

predict_log_proba(X)
Predict class log-probabilities for X.

The predicted class log-probabilities of an input sample is computed as the mean predicted class log-
probabilities of the trees in the forest.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns p : array of shape = [n_samples]

The class log-probabilities of the input samples. Classes are ordered by arithmetical
order.

predict_proba(X)
Predict class probabilities for X.

The predicted class probabilities of an input sample is computed as the mean predicted class probabilities
of the trees in the forest.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns p : array of shape = [n_samples]

The class probabilities of the input samples. Classes are ordered by arithmetical order.

score(X, y)
Returns the mean accuracy on the given test data and labels.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, threshold=None)
Reduce X to its most important features.

Parameters X : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold : string, float or None, optional (default=None)

The threshold value to use for feature selection. Features whose importance is greater
or equal are kept while the others are discarded. If “median” (resp. “mean”), then the
threshold value is the median (resp. the mean) of the feature importances. A scaling
factor (e.g., “1.25*mean”) may also be used. If None and if available, the object attribute
threshold is used. Otherwise, “mean” is used by default.

1.8. Reference 343

scikit-learn user guide, Release 0.12-git

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

sklearn.ensemble.RandomForestRegressor

class sklearn.ensemble.RandomForestRegressor(n_estimators=10, criterion=’mse’,
max_depth=None, min_samples_split=1,
min_samples_leaf=1, min_density=0.1,
max_features=’auto’, bootstrap=True, com-
pute_importances=False, oob_score=False,
n_jobs=1, random_state=None, verbose=0)

A random forest regressor.

A random forest is a meta estimator that fits a number of classifical decision trees on various sub-samples of the
dataset and use averaging to improve the predictive accuracy and control over-fitting.

Parameters n_estimators : integer, optional (default=10)

The number of trees in the forest.

criterion : string, optional (default=”mse”)

The function to measure the quality of a split. The only supported criterion is “mse” for
the mean squared error. Note: this parameter is tree-specific.

max_depth : integer or None, optional (default=None)

The maximum depth of the tree. If None, then nodes are expanded until all leaves
are pure or until all leaves contain less than min_samples_split samples. Note: this
parameter is tree-specific.

min_samples_split : integer, optional (default=1)

The minimum number of samples required to split an internal node. Note: this parame-
ter is tree-specific.

min_samples_leaf : integer, optional (default=1)

The minimum number of samples in newly created leaves. A split is discarded if after
the split, one of the leaves would contain less then min_samples_leaf samples.
Note: this parameter is tree-specific.

min_density : float, optional (default=0.1)

This parameter controls a trade-off in an optimization heuristic. It controls the minimum
density of the sample_mask (i.e. the fraction of samples in the mask). If the density falls
below this threshold the mask is recomputed and the input data is packed which results
in data copying. If min_density equals to one, the partitions are always represented
as copies of the original data. Otherwise, partitions are represented as bit masks (aka
sample masks). Note: this parameter is tree-specific.

max_features : int, string or None, optional (default=”auto”)

The number of features to consider when looking for the best split:

•If “auto”, then max_features=sqrt(n_features) on classification tasks and
max_features=n_features on regression problems.

•If “sqrt”, then max_features=sqrt(n_features).

•If “log2”, then max_features=log2(n_features).

344 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

•If None, then max_features=n_features.

Note: this parameter is tree-specific.

bootstrap : boolean, optional (default=True)

Whether bootstrap samples are used when building trees.

compute_importances : boolean, optional (default=True)

Whether feature importances are computed and stored into the
feature_importances_ attribute when calling fit.

oob_score : bool

whether to use out-of-bag samples to estimate the generalization error.

n_jobs : integer, optional (default=1)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number
of cores.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

verbose : int, optional (default=0)

Controlls the verbosity of the tree building process.

See Also:

DecisionTreeRegressor, ExtraTreesRegressor

References

[R60]

Attributes

fea-
ture_importances_

array of shape =
[n_features]

The feature mportances (the higher, the more important
the feature).

oob_score_ float Score of the training dataset obtained using an out-of-bag
estimate.

oob_prediction_ array, shape =
[n_samples]

Prediction computed with out-of-bag estimate on the
training set.

Methods

fit(X, y) Build a forest of trees from the training set (X, y).
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
predict(X) Predict regression target for X.
score(X, y) Returns the coefficient of determination R^2 of the prediction.

Continued on next page

1.8. Reference 345

scikit-learn user guide, Release 0.12-git

Table 1.60 – continued from previous page
set_params(**params) Set the parameters of the estimator.
transform(X[, threshold]) Reduce X to its most important features.

__init__(n_estimators=10, criterion=’mse’, max_depth=None, min_samples_split=1,
min_samples_leaf=1, min_density=0.1, max_features=’auto’, bootstrap=True, com-
pute_importances=False, oob_score=False, n_jobs=1, random_state=None, verbose=0)

fit(X, y)
Build a forest of trees from the training set (X, y).

Parameters X : array-like of shape = [n_samples, n_features]

The training input samples.

y : array-like, shape = [n_samples]

The target values (integers that correspond to classes in classification, real numbers in
regression).

Returns self : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict regression target for X.

The predicted regression target of an input sample is computed as the mean predicted regression targets of
the trees in the forest.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

346 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Returns y: array of shape = [n_samples] :

The predicted values.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, threshold=None)
Reduce X to its most important features.

Parameters X : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold : string, float or None, optional (default=None)

The threshold value to use for feature selection. Features whose importance is greater
or equal are kept while the others are discarded. If “median” (resp. “mean”), then the
threshold value is the median (resp. the mean) of the feature importances. A scaling
factor (e.g., “1.25*mean”) may also be used. If None and if available, the object attribute
threshold is used. Otherwise, “mean” is used by default.

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

sklearn.ensemble.ExtraTreesClassifier

class sklearn.ensemble.ExtraTreesClassifier(n_estimators=10, criterion=’gini’,
max_depth=None, min_samples_split=1,
min_samples_leaf=1, min_density=0.1,
max_features=’auto’, bootstrap=False, com-
pute_importances=False, oob_score=False,
n_jobs=1, random_state=None, verbose=0)

An extra-trees classifier.

This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on
various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting.

Parameters n_estimators : integer, optional (default=10)

The number of trees in the forest.

1.8. Reference 347

scikit-learn user guide, Release 0.12-git

criterion : string, optional (default=”gini”)

The function to measure the quality of a split. Supported criteria are “gini” for the Gini
impurity and “entropy” for the information gain. Note: this parameter is tree-specific.

max_depth : integer or None, optional (default=None)

The maximum depth of the tree. If None, then nodes are expanded until all leaves
are pure or until all leaves contain less than min_samples_split samples. Note: this
parameter is tree-specific.

min_samples_split : integer, optional (default=1)

The minimum number of samples required to split an internal node. Note: this parame-
ter is tree-specific.

min_samples_leaf : integer, optional (default=1)

The minimum number of samples in newly created leaves. A split is discarded if after
the split, one of the leaves would contain less then min_samples_leaf samples.
Note: this parameter is tree-specific.

min_density : float, optional (default=0.1)

This parameter controls a trade-off in an optimization heuristic. It controls the minimum
density of the sample_mask (i.e. the fraction of samples in the mask). If the density falls
below this threshold the mask is recomputed and the input data is packed which results
in data copying. If min_density equals to one, the partitions are always represented
as copies of the original data. Otherwise, partitions are represented as bit masks (aka
sample masks). Note: this parameter is tree-specific.

max_features : int, string or None, optional (default=”auto”)

The number of features to consider when looking for the best split.

•If “auto”, then max_features=sqrt(n_features) on classification tasks and
max_features=n_features on regression problems.

•If “sqrt”, then max_features=sqrt(n_features).

•If “log2”, then max_features=log2(n_features).

•If None, then max_features=n_features.

Note: this parameter is tree-specific.

bootstrap : boolean, optional (default=False)

Whether bootstrap samples are used when building trees.

compute_importances : boolean, optional (default=True)

Whether feature importances are computed and stored into the
feature_importances_ attribute when calling fit.

oob_score : bool

Whether to use out-of-bag samples to estimate the generalization error.

n_jobs : integer, optional (default=1)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number
of cores.

random_state : int, RandomState instance or None, optional (default=None)

348 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

verbose : int, optional (default=0)

Controlls the verbosity of the tree building process.

See Also:

sklearn.tree.ExtraTreeClassifierBase classifier for this ensemble.

RandomForestClassifierEnsemble Classifier based on trees with optimal splits.

References

[R57]

Attributes

fea-
ture_importances_

array of shape =
[n_features]

The feature mportances (the higher, the more
important the feature).

oob_score_ float Score of the training dataset obtained using an
out-of-bag estimate.

oob_decision_function_array, shape = [n_samples,
n_classes]

Decision function computed with out-of-bag estimate
on the training set.

Methods

fit(X, y) Build a forest of trees from the training set (X, y).
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
predict(X) Predict class for X.
predict_log_proba(X) Predict class log-probabilities for X.
predict_proba(X) Predict class probabilities for X.
score(X, y) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of the estimator.
transform(X[, threshold]) Reduce X to its most important features.

__init__(n_estimators=10, criterion=’gini’, max_depth=None, min_samples_split=1,
min_samples_leaf=1, min_density=0.1, max_features=’auto’, bootstrap=False, com-
pute_importances=False, oob_score=False, n_jobs=1, random_state=None, verbose=0)

fit(X, y)
Build a forest of trees from the training set (X, y).

Parameters X : array-like of shape = [n_samples, n_features]

The training input samples.

y : array-like, shape = [n_samples]

The target values (integers that correspond to classes in classification, real numbers in
regression).

1.8. Reference 349

scikit-learn user guide, Release 0.12-git

Returns self : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict class for X.

The predicted class of an input sample is computed as the majority prediction of the trees in the forest.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns y : array of shape = [n_samples]

The predicted classes.

predict_log_proba(X)
Predict class log-probabilities for X.

The predicted class log-probabilities of an input sample is computed as the mean predicted class log-
probabilities of the trees in the forest.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns p : array of shape = [n_samples]

The class log-probabilities of the input samples. Classes are ordered by arithmetical
order.

predict_proba(X)
Predict class probabilities for X.

350 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

The predicted class probabilities of an input sample is computed as the mean predicted class probabilities
of the trees in the forest.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns p : array of shape = [n_samples]

The class probabilities of the input samples. Classes are ordered by arithmetical order.

score(X, y)
Returns the mean accuracy on the given test data and labels.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, threshold=None)
Reduce X to its most important features.

Parameters X : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold : string, float or None, optional (default=None)

The threshold value to use for feature selection. Features whose importance is greater
or equal are kept while the others are discarded. If “median” (resp. “mean”), then the
threshold value is the median (resp. the mean) of the feature importances. A scaling
factor (e.g., “1.25*mean”) may also be used. If None and if available, the object attribute
threshold is used. Otherwise, “mean” is used by default.

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

sklearn.ensemble.ExtraTreesRegressor

class sklearn.ensemble.ExtraTreesRegressor(n_estimators=10, criterion=’mse’,
max_depth=None, min_samples_split=1,
min_samples_leaf=1, min_density=0.1,
max_features=’auto’, bootstrap=False, com-
pute_importances=False, oob_score=False,
n_jobs=1, random_state=None, verbose=0)

An extra-trees regressor.

This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on
various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting.

1.8. Reference 351

scikit-learn user guide, Release 0.12-git

Parameters n_estimators : integer, optional (default=10)

The number of trees in the forest.

criterion : string, optional (default=”mse”)

The function to measure the quality of a split. The only supported criterion is “mse” for
the mean squared error. Note: this parameter is tree-specific.

max_depth : integer or None, optional (default=None)

The maximum depth of the tree. If None, then nodes are expanded until all leaves
are pure or until all leaves contain less than min_samples_split samples. Note: this
parameter is tree-specific.

min_samples_split : integer, optional (default=1)

The minimum number of samples required to split an internal node. Note: this parame-
ter is tree-specific.

min_samples_leaf : integer, optional (default=1)

The minimum number of samples in newly created leaves. A split is discarded if after
the split, one of the leaves would contain less then min_samples_leaf samples.
Note: this parameter is tree-specific.

min_density : float, optional (default=0.1)

This parameter controls a trade-off in an optimization heuristic. It controls the minimum
density of the sample_mask (i.e. the fraction of samples in the mask). If the density falls
below this threshold the mask is recomputed and the input data is packed which results
in data copying. If min_density equals to one, the partitions are always represented
as copies of the original data. Otherwise, partitions are represented as bit masks (aka
sample masks). Note: this parameter is tree-specific.

max_features : int, string or None, optional (default=”auto”)

The number of features to consider when looking for the best split:

•If “auto”, then max_features=sqrt(n_features) on classification tasks and
max_features=n_features on regression problems.

•If “sqrt”, then max_features=sqrt(n_features).

•If “log2”, then max_features=log2(n_features).

•If None, then max_features=n_features.

Note: this parameter is tree-specific.

bootstrap : boolean, optional (default=False)

Whether bootstrap samples are used when building trees. Note: this parameter is tree-
specific.

compute_importances : boolean, optional (default=True)

Whether feature importances are computed and stored into the
feature_importances_ attribute when calling fit.

oob_score : bool

Whether to use out-of-bag samples to estimate the generalization error.

n_jobs : integer, optional (default=1)

352 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number
of cores.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

verbose : int, optional (default=0)

Controlls the verbosity of the tree building process.

See Also:

sklearn.tree.ExtraTreeRegressorBase estimator for this ensemble.

RandomForestRegressorEnsemble regressor using trees with optimal splits.

References

[R58]

Attributes

fea-
ture_importances_

array of shape =
[n_features]

The feature mportances (the higher, the more important
the feature).

oob_score_ float Score of the training dataset obtained using an out-of-bag
estimate.

oob_prediction_ array, shape =
[n_samples]

Prediction computed with out-of-bag estimate on the
training set.

Methods

fit(X, y) Build a forest of trees from the training set (X, y).
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
predict(X) Predict regression target for X.
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.
transform(X[, threshold]) Reduce X to its most important features.

__init__(n_estimators=10, criterion=’mse’, max_depth=None, min_samples_split=1,
min_samples_leaf=1, min_density=0.1, max_features=’auto’, bootstrap=False, com-
pute_importances=False, oob_score=False, n_jobs=1, random_state=None, verbose=0)

fit(X, y)
Build a forest of trees from the training set (X, y).

Parameters X : array-like of shape = [n_samples, n_features]

The training input samples.

y : array-like, shape = [n_samples]

1.8. Reference 353

scikit-learn user guide, Release 0.12-git

The target values (integers that correspond to classes in classification, real numbers in
regression).

Returns self : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict regression target for X.

The predicted regression target of an input sample is computed as the mean predicted regression targets of
the trees in the forest.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns y: array of shape = [n_samples] :

The predicted values.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

354 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, threshold=None)
Reduce X to its most important features.

Parameters X : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold : string, float or None, optional (default=None)

The threshold value to use for feature selection. Features whose importance is greater
or equal are kept while the others are discarded. If “median” (resp. “mean”), then the
threshold value is the median (resp. the mean) of the feature importances. A scaling
factor (e.g., “1.25*mean”) may also be used. If None and if available, the object attribute
threshold is used. Otherwise, “mean” is used by default.

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

sklearn.ensemble.GradientBoostingClassifier

class sklearn.ensemble.GradientBoostingClassifier(loss=’deviance’, learn_rate=0.1,
n_estimators=100, subsam-
ple=1.0, min_samples_split=1,
min_samples_leaf=1, max_depth=3,
init=None, random_state=None)

Gradient Boosting for classification.

GB builds an additive model in a forward stage-wise fashion; it allows for the optimization of arbitrary differen-
tiable loss functions. In each stage n_classes_ regression trees are fit on the negative gradient of the binomial
or multinomial deviance loss function. Binary classification is a special case where only a single regression tree
is induced.

Parameters loss : {‘deviance’, ‘ls’}, optional (default=’deviance’)

loss function to be optimized. ‘deviance’ refers to deviance (= logistic regression) for
classification with probabilistic outputs. ‘ls’ refers to least squares regression.

learn_rate : float, optional (default=0.1)

learning rate shrinks the contribution of each tree by learn_rate. There is a trade-off
between learn_rate and n_estimators.

n_estimators : int (default=100)

The number of boosting stages to perform. Gradient boosting is fairly robust to over-
fitting so a large number usually results in better performance.

max_depth : integer, optional (default=3)

maximum depth of the individual regression estimators. The maximum depth limits the
number of nodes in the tree. Tune this parameter for best performance; the best value
depends on the interaction of the input variables.

1.8. Reference 355

scikit-learn user guide, Release 0.12-git

min_samples_split : integer, optional (default=1)

The minimum number of samples required to split an internal node.

min_samples_leaf : integer, optional (default=1)

The minimum number of samples required to be at a leaf node.

subsample : float, optional (default=1.0)

The fraction of samples to be used for fitting the individual base learners. If smaller than
1.0 this results in Stochastic Gradient Boosting. subsample interacts with the parameter
n_estimators.

See Also:

sklearn.tree.DecisionTreeClassifier, RandomForestClassifier

References

J. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The Annals of Statistics, Vol. 29,
No. 5, 2001.

10.Friedman, Stochastic Gradient Boosting, 1999

T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical Learning Ed. 2, Springer, 2009.

Examples

>>> samples = [[0, 0, 2], [1, 0, 0]]
>>> labels = [0, 1]
>>> from sklearn.ensemble import GradientBoostingClassifier
>>> gb = GradientBoostingClassifier().fit(samples, labels)
>>> print gb.predict([[0.5, 0, 0]])
[0]

Methods

fit(X, y) Fit the gradient boosting model.
fit_stage(i, X, X_argsorted, y, y_pred, ...) Fit another stage of n_classes_ trees to the boosting model.
get_params([deep]) Get parameters for the estimator
predict(X) Predict class for X.
predict_proba(X) Predict class probabilities for X.
score(X, y) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of the estimator.
staged_decision_function(X) Compute decision function for X.

__init__(loss=’deviance’, learn_rate=0.1, n_estimators=100, subsample=1.0, min_samples_split=1,
min_samples_leaf=1, max_depth=3, init=None, random_state=None)

fit(X, y)
Fit the gradient boosting model.

Parameters X : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-

356 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

ber of features. Use fortran-style to avoid memory copies.

y : array-like, shape = [n_samples]

Target values (integers in classification, real numbers in regression) For classification,
labels must correspond to classes 0, 1, ..., n_classes_-1

Returns self : object

Returns self.

fit_stage(i, X, X_argsorted, y, y_pred, sample_mask)
Fit another stage of n_classes_ trees to the boosting model.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict class for X.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns y : array of shape = [n_samples]

The predicted classes.

predict_proba(X)
Predict class probabilities for X.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns p : array of shape = [n_samples]

The class probabilities of the input samples. Classes are ordered by arithmetical order.

score(X, y)
Returns the mean accuracy on the given test data and labels.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

1.8. Reference 357

scikit-learn user guide, Release 0.12-git

staged_decision_function(X)
Compute decision function for X.

This method allows monitoring (i.e. determine error on testing set) after each stage.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns f : array of shape = [n_samples, n_classes]

The decision function of the input samples. Classes are ordered by arithmetical order.
Regression and binary classification are special cases with n_classes == 1.

sklearn.ensemble.GradientBoostingRegressor

class sklearn.ensemble.GradientBoostingRegressor(loss=’ls’, learn_rate=0.1,
n_estimators=100, subsam-
ple=1.0, min_samples_split=1,
min_samples_leaf=1, max_depth=3,
init=None, random_state=None)

Gradient Boosting for regression.

GB builds an additive model in a forward stage-wise fashion; it allows for the optimization of arbitrary differ-
entiable loss functions. In each stage a regression tree is fit on the negative gradient of the given loss function.

Parameters loss : {‘ls’, ‘lad’}, optional (default=’ls’)

loss function to be optimized. ‘ls’ refers to least squares regression. ‘lad’ (least absolute
deviation) is a highly robust loss function soley based on order information of the input
variables.

learn_rate : float, optional (default=0.1)

learning rate shrinks the contribution of each tree by learn_rate. There is a trade-off
between learn_rate and n_estimators.

n_estimators : int (default=100)

The number of boosting stages to perform. Gradient boosting is fairly robust to over-
fitting so a large number usually results in better performance.

max_depth : integer, optional (default=3)

maximum depth of the individual regression estimators. The maximum depth limits the
number of nodes in the tree. Tune this parameter for best performance; the best value
depends on the interaction of the input variables.

min_samples_split : integer, optional (default=1)

The minimum number of samples required to split an internal node.

min_samples_leaf : integer, optional (default=1)

The minimum number of samples required to be at a leaf node.

subsample : float, optional (default=1.0)

The fraction of samples to be used for fitting the individual base learners. If smaller than
1.0 this results in Stochastic Gradient Boosting. subsample interacts with the parameter
n_estimators.

358 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

See Also:

sklearn.tree.DecisionTreeRegressor, RandomForestRegressor

References

J. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The Annals of Statistics, Vol. 29,
No. 5, 2001.

10.Friedman, Stochastic Gradient Boosting, 1999

T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical Learning Ed. 2, Springer, 2009.

Examples

>>> samples = [[0, 0, 2], [1, 0, 0]]
>>> labels = [0, 1]
>>> from sklearn.ensemble import GradientBoostingRegressor
>>> gb = GradientBoostingRegressor().fit(samples, labels)
>>> print gb.predict([[0, 0, 0]])
[1.32806997e-05]

Attributes

fea-
ture_importances_

array, shape
=
[n_features]

The feature importances (the higher, the more important the feature).

oob_score_ array, shape
=
[n_estimators]

Score of the training dataset obtained using an out-of-bag estimate. The i-th
score oob_score_[i] is the deviance (= loss) of the model at iteration i
on the out-of-bag sample.

train_score_ array, shape
=
[n_estimators]

The i-th score train_score_[i] is the deviance (= loss) of the model at
iteration i on the in-bag sample. If subsample == 1 this is the deviance
on the training data.

Methods

fit(X, y) Fit the gradient boosting model.
fit_stage(i, X, X_argsorted, y, y_pred, ...) Fit another stage of n_classes_ trees to the boosting model.
get_params([deep]) Get parameters for the estimator
predict(X) Predict regression target for X.
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.
staged_decision_function(X) Compute decision function for X.
staged_predict(X) Predict regression target at each stage for X.

__init__(loss=’ls’, learn_rate=0.1, n_estimators=100, subsample=1.0, min_samples_split=1,
min_samples_leaf=1, max_depth=3, init=None, random_state=None)

fit(X, y)
Fit the gradient boosting model.

1.8. Reference 359

scikit-learn user guide, Release 0.12-git

Parameters X : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features. Use fortran-style to avoid memory copies.

y : array-like, shape = [n_samples]

Target values (integers in classification, real numbers in regression) For classification,
labels must correspond to classes 0, 1, ..., n_classes_-1

Returns self : object

Returns self.

fit_stage(i, X, X_argsorted, y, y_pred, sample_mask)
Fit another stage of n_classes_ trees to the boosting model.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict regression target for X.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns y: array of shape = [n_samples] :

The predicted values.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

staged_decision_function(X)
Compute decision function for X.

This method allows monitoring (i.e. determine error on testing set) after each stage.

Parameters X : array-like of shape = [n_samples, n_features]

360 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

The input samples.

Returns f : array of shape = [n_samples, n_classes]

The decision function of the input samples. Classes are ordered by arithmetical order.
Regression and binary classification are special cases with n_classes == 1.

staged_predict(X)
Predict regression target at each stage for X.

This method allows monitoring (i.e. determine error on testing set) after each stage.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns y : array of shape = [n_samples]

The predicted value of the input samples.

1.8.7 sklearn.feature_extraction: Feature Extraction

The sklearn.feature_extraction module deals with feature extraction from raw data. It currently includes
methods to extract features from text and images.

User guide: See the Feature extraction section for further details.

feature_extraction.DictVectorizer([dtype, ...]) Transforms lists of feature-value mappings to vectors.

sklearn.feature_extraction.DictVectorizer

class sklearn.feature_extraction.DictVectorizer(dtype=<type ‘numpy.float64’>, separa-
tor=’=’, sparse=True)

Transforms lists of feature-value mappings to vectors.

This transformer turns lists of mappings (dict-like objects) of feature names to feature values into Numpy arrays
or scipy.sparse matrices for use with scikit-learn estimators.

When feature values are strings, this transformer will do a binary one-hot (aka one-of-K) coding: one boolean-
valued feature is constructed for each of the possible string values that the feature can take on. For instance, a
feature “f” that can take on the values “ham” and “spam” will become two features in the output, one signifying
“f=ham”, the other “f=spam”.

Features that do not occur in a sample (mapping) will have a zero value in the resulting array/matrix.

Parameters dtype : callable, optional

The type of feature values. Passed to Numpy array/scipy.sparse matrix constructors as
the dtype argument.

separator: string, optional :

Separator string used when constructing new features for one-hot coding.

sparse: boolean, optional. :

Whether transform should produce scipy.sparse matrices. True by default.

1.8. Reference 361

scikit-learn user guide, Release 0.12-git

Examples

>>> from sklearn.feature_extraction import DictVectorizer
>>> v = DictVectorizer(sparse=False)
>>> D = [{’foo’: 1, ’bar’: 2}, {’foo’: 3, ’baz’: 1}]
>>> X = v.fit_transform(D)
>>> X
array([[2., 0., 1.],

[0., 1., 3.]])
>>> v.inverse_transform(X) == [{’bar’: 2.0, ’foo’: 1.0}, {’baz’: 1.0, ’foo’: 3.0}]
True
>>> v.transform({’foo’: 4, ’unseen_feature’: 3})
array([[0., 0., 4.]])

Methods

fit(X[, y]) Learn a list of feature name -> indices mappings.
fit_transform(X[, y]) Learn a list of feature name -> indices mappings and transform X.
get_feature_names() Returns a list of feature names, ordered by their indices.
get_params([deep]) Get parameters for the estimator
inverse_transform(X[, dict_type]) Transform array or sparse matrix X back to feature mappings.
restrict(support[, indices]) Restrict the features to those in support.
set_params(**params) Set the parameters of the estimator.
transform(X[, y]) Transform feature->value dicts to array or sparse matrix.

__init__(dtype=<type ‘numpy.float64’>, separator=’=’, sparse=True)

fit(X, y=None)
Learn a list of feature name -> indices mappings.

Parameters X : Mapping or iterable over Mappings

Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values
(strings or convertible to dtype).

y : (ignored)

Returns self :

fit_transform(X, y=None)
Learn a list of feature name -> indices mappings and transform X.

Like fit(X) followed by transform(X).

Parameters X : Mapping or iterable over Mappings

Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values
(strings or convertible to dtype).

y : (ignored)

Returns Xa : {array, sparse matrix}

Feature vectors; always 2-d.

get_feature_names()
Returns a list of feature names, ordered by their indices.

362 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

If one-of-K coding is applied to categorical features, this will include the constructed feature names but
not the original ones.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

inverse_transform(X, dict_type=<type ‘dict’>)
Transform array or sparse matrix X back to feature mappings.

X must have been produced by this DictVectorizer’s transform or fit_transform method; it may only have
passed through transformers that preserve the number of features and their order.

In the case of one-hot/one-of-K coding, the constructed feature names and values are returned rather than
the original ones.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Sample matrix.

dict_type : callable, optional

Constructor for feature mappings. Must conform to the collections.Mapping API.

Returns D : list of dict_type objects, length = n_samples

Feature mappings for the samples in X.

restrict(support, indices=False)
Restrict the features to those in support.

Parameters support : array-like

Boolean mask or list of indices (as returned by the get_support member of feature se-
lectors).

indices : boolean, optional

Whether support is a list of indices.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, y=None)
Transform feature->value dicts to array or sparse matrix.

Named features not encountered during fit or fit_transform will be silently ignored.

Parameters X : Mapping or iterable over Mappings, length = n_samples

Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values
(strings or convertible to dtype).

y : (ignored)

Returns Xa : {array, sparse matrix}

1.8. Reference 363

scikit-learn user guide, Release 0.12-git

Feature vectors; always 2-d.

From images

The sklearn.feature_extraction.image submodule gathers utilities to extract features from images.

feature_extraction.image.img_to_graph(img[, ...]) Graph of the pixel-to-pixel gradient connections
feature_extraction.image.grid_to_graph(n_x, n_y) Graph of the pixel-to-pixel connections
feature_extraction.image.extract_patches_2d(...) Reshape a 2D image into a collection of patches
feature_extraction.image.reconstruct_from_patches_2d(...) Reconstruct the image from all of its patches.
feature_extraction.image.PatchExtractor(...) Extracts patches from a collection of images

sklearn.feature_extraction.image.img_to_graph

sklearn.feature_extraction.image.img_to_graph(img, mask=None, return_as=<class
‘scipy.sparse.coo.coo_matrix’>,
dtype=None)

Graph of the pixel-to-pixel gradient connections

Edges are weighted with the gradient values.

Parameters img: ndarray, 2D or 3D :

2D or 3D image

mask : ndarray of booleans, optional

An optional mask of the image, to consider only part of the pixels.

return_as: np.ndarray or a sparse matrix class, optional :

The class to use to build the returned adjacency matrix.

dtype: None or dtype, optional :

The data of the returned sparse matrix. By default it is the dtype of img

sklearn.feature_extraction.image.grid_to_graph

sklearn.feature_extraction.image.grid_to_graph(n_x, n_y, n_z=1,
mask=None, return_as=<class
‘scipy.sparse.coo.coo_matrix’>,
dtype=<type ‘int’>)

Graph of the pixel-to-pixel connections

Edges exist if 2 voxels are connected.

Parameters n_x: int :

Dimension in x axis

n_y: int :

Dimension in y axis

n_z: int, optional, default 1 :

Dimension in z axis

mask : ndarray of booleans, optional

364 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

An optional mask of the image, to consider only part of the pixels.

return_as: np.ndarray or a sparse matrix class, optional :

The class to use to build the returned adjacency matrix.

dtype: dtype, optional, default int :

The data of the returned sparse matrix. By default it is int

sklearn.feature_extraction.image.extract_patches_2d

sklearn.feature_extraction.image.extract_patches_2d(image, patch_size,
max_patches=None, ran-
dom_state=None)

Reshape a 2D image into a collection of patches

The resulting patches are allocated in a dedicated array.

Parameters image: array, shape = (image_height, image_width) or :

(image_height, image_width, n_channels) The original image data. For color images,
the last dimension specifies the channel: a RGB image would have n_channels=3.

patch_size: tuple of ints (patch_height, patch_width) :

the dimensions of one patch

max_patches: integer or float, optional default is None :

The maximum number of patches to extract. If max_patches is a float between 0 and 1,
it is taken to be a proportion of the total number of patches.

random_state: int or RandomState :

Pseudo number generator state used for random sampling to use if max_patches is not
None.

Returns patches: array, shape = (n_patches, patch_height, patch_width) or :

(n_patches, patch_height, patch_width, n_channels) The collection of patches extracted
from the image, where n_patches is either max_patches or the total number of patches
that can be extracted.

Examples

>>> from sklearn.feature_extraction import image
>>> one_image = np.arange(16).reshape((4, 4))
>>> one_image
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11],
[12, 13, 14, 15]])

>>> patches = image.extract_patches_2d(one_image, (2, 2))
>>> patches.shape
(9, 2, 2)
>>> patches[0]
array([[0, 1],

[4, 5]])
>>> patches[1]
array([[1, 2],

1.8. Reference 365

scikit-learn user guide, Release 0.12-git

[5, 6]])
>>> patches[8]
array([[10, 11],

[14, 15]])

sklearn.feature_extraction.image.reconstruct_from_patches_2d

sklearn.feature_extraction.image.reconstruct_from_patches_2d(patches, im-
age_size)

Reconstruct the image from all of its patches.

Patches are assumed to overlap and the image is constructed by filling in the patches from left to right, top to
bottom, averaging the overlapping regions.

Parameters patches: array, shape = (n_patches, patch_height, patch_width) or :

(n_patches, patch_height, patch_width, n_channels) The complete set of patches. If
the patches contain colour information, channels are indexed along the last dimension:
RGB patches would have n_channels=3.

image_size: tuple of ints (image_height, image_width) or :

(image_height, image_width, n_channels) the size of the image that will be recon-
structed

Returns image: array, shape = image_size :

the reconstructed image

sklearn.feature_extraction.image.PatchExtractor

class sklearn.feature_extraction.image.PatchExtractor(patch_size, max_patches=None,
random_state=None)

Extracts patches from a collection of images

Parameters patch_size: tuple of ints (patch_height, patch_width) :

the dimensions of one patch

max_patches: integer or float, optional default is None :

The maximum number of patches per image to extract. If max_patches is a float in (0,
1), it is taken to mean a proportion of the total number of patches.

random_state: int or RandomState :

Pseudo number generator state used for random sampling.

Methods

fit(X[, y]) Do nothing and return the estimator unchanged
get_params([deep]) Get parameters for the estimator
set_params(**params) Set the parameters of the estimator.
transform(X) Transforms the image samples in X into a matrix of patch data.

__init__(patch_size, max_patches=None, random_state=None)

366 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

fit(X, y=None)
Do nothing and return the estimator unchanged

This method is just there to implement the usual API and hence work in pipelines.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Transforms the image samples in X into a matrix of patch data.

Parameters X : array, shape = (n_samples, image_height, image_width) or

(n_samples, image_height, image_width, n_channels) Array of images from which to
extract patches. For color images, the last dimension specifies the channel: a RGB
image would have n_channels=3.

Returns patches: array, shape = (n_patches, patch_height, patch_width) or :

(n_patches, patch_height, patch_width, n_channels) The collection of patches extracted
from the images, where n_patches is either n_samples * max_patches or the total num-
ber of patches that can be extracted.

From text

The sklearn.feature_extraction.text submodule gathers utilities to build feature vectors from text doc-
uments.

feature_extraction.text.CountVectorizer([...]) Convert a collection of raw documents to a matrix of token counts
feature_extraction.text.TfidfTransformer([...]) Transform a count matrix to a normalized tf or tf–idf representation
feature_extraction.text.TfidfVectorizer([...]) Convert a collection of raw documents to a matrix of TF-IDF features.

1.8. Reference 367

scikit-learn user guide, Release 0.12-git

sklearn.feature_extraction.text.CountVectorizer

class sklearn.feature_extraction.text.CountVectorizer(input=’content’, charset=’utf-
8’, charset_error=’strict’,
strip_accents=None, low-
ercase=True, preproces-
sor=None, tokenizer=None,
stop_words=None, to-
ken_pattern=u’\b\w\w+\b’,
min_n=1, max_n=1, ana-
lyzer=’word’, max_df=1.0,
max_features=None, vocab-
ulary=None, binary=False,
dtype=<type ‘long’>)

Convert a collection of raw documents to a matrix of token counts

This implementation produces a sparse representation of the counts using scipy.sparse.coo_matrix.

If you do not provide an a-priori dictionary and you do not use an analyzer that does some kind of feature
selection then the number of features will be equal to the vocabulary size found by analysing the data. The
default analyzer does simple stop word filtering for English.

Parameters input: string {‘filename’, ‘file’, ‘content’} :

If filename, the sequence passed as an argument to fit is expected to be a list of filenames
that need reading to fetch the raw content to analyze.

If ‘file’, the sequence items must have ‘read’ method (file-like object) it is called to fetch
the bytes in memory.

Otherwise the input is expected to be the sequence strings or bytes items are expected
to be analyzed directly.

charset: string, ‘utf-8’ by default. :

If bytes or files are given to analyze, this charset is used to decode.

charset_error: {‘strict’, ‘ignore’, ‘replace’} :

Instruction on what to do if a byte sequence is given to analyze that contains characters
not of the given charset. By default, it is ‘strict’, meaning that a UnicodeDecodeError
will be raised. Other values are ‘ignore’ and ‘replace’.

strip_accents: {‘ascii’, ‘unicode’, None} :

Remove accents during the preprocessing step. ‘ascii’ is a fast method that only works
on characters that have an direct ASCII mapping. ‘unicode’ is a slightly slower method
that works on any characters. None (default) does nothing.

analyzer: string, {‘word’, ‘char’} or callable :

Whether the feature should be made of word or character n-grams.

If a callable is passed it is used to extract the sequence of features out of the raw, unpro-
cessed input.

preprocessor: callable or None (default) :

Override the preprocessing (string transformation) stage while preserving the tokenizing
and n-grams generation steps.

tokenizer: callable or None (default) :

368 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Override the string tokenization step while preserving the preprocessing and n-grams
generation steps.

min_n: integer :

The lower boundary of the range of n-values for different n-grams to be extracted.

max_n: integer :

The upper boundary of the range of n-values for different n-grams to be extracted. All
values of n such that min_n <= n <= max_n will be used.

stop_words: string {‘english’}, list, or None (default) :

If a string, it is passed to _check_stop_list and the appropriate stop list is returned is
currently the only supported string value.

If a list, that list is assumed to contain stop words, all of which will be removed from
the resulting tokens.

If None, no stop words will be used. max_df can be set to a value in the range [0.7, 1.0)
to automatically detect and filter stop words based on intra corpus document frequency
of terms.

token_pattern: string :

Regular expression denoting what constitutes a “token”, only used if tokenize ==
‘word’. The default regexp select tokens of 2 or more letters characters (punctuation
is completely ignored and always treated as a token separator).

max_df : float in range [0.0, 1.0], optional, 1.0 by default

When building the vocabulary ignore terms that have a term frequency strictly higher
than the given threshold (corpus specific stop words).

This parameter is ignored if vocabulary is not None.

max_features : optional, None by default

If not None, build a vocabulary that only consider the top max_features ordered by term
frequency across the corpus.

This parameter is ignored if vocabulary is not None.

binary: boolean, False by default. :

If True, all non zero counts are set to 1. This is useful for discrete probabilistic models
that model binary events rather than integer counts.

dtype: type, optional :

Type of the matrix returned by fit_transform() or transform().

Methods

build_analyzer() Return a callable that handles preprocessing and tokenization
build_preprocessor() Return a function to preprocess the text before tokenization
build_tokenizer() Return a function that split a string in sequence of tokens
decode(doc) Decode the input into a string of unicode symbols
fit(raw_documents[, y]) Learn a vocabulary dictionary of all tokens in the raw documents
fit_transform(raw_documents[, y]) Learn the vocabulary dictionary and return the count vectors

Continued on next page

1.8. Reference 369

scikit-learn user guide, Release 0.12-git

Table 1.71 – continued from previous page
get_feature_names() Array mapping from feature integer indicex to feature name
get_params([deep]) Get parameters for the estimator
get_stop_words() Build or fetch the effective stop words list
inverse_transform(X) Return terms per document with nonzero entries in X.
set_params(**params) Set the parameters of the estimator.
transform(raw_documents) Extract token counts out of raw text documents using the vocabulary fitted with fit or the one provided in the constructor.

__init__(input=’content’, charset=’utf-8’, charset_error=’strict’, strip_accents=None,
lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, to-
ken_pattern=u’\b\w\w+\b’, min_n=1, max_n=1, analyzer=’word’, max_df=1.0,
max_features=None, vocabulary=None, binary=False, dtype=<type ‘long’>)

build_analyzer()
Return a callable that handles preprocessing and tokenization

build_preprocessor()
Return a function to preprocess the text before tokenization

build_tokenizer()
Return a function that split a string in sequence of tokens

decode(doc)
Decode the input into a string of unicode symbols

The decoding strategy depends on the vectorizer parameters.

fit(raw_documents, y=None)
Learn a vocabulary dictionary of all tokens in the raw documents

Parameters raw_documents: iterable :

an iterable which yields either str, unicode or file objects

Returns self :

fit_transform(raw_documents, y=None)
Learn the vocabulary dictionary and return the count vectors

This is more efficient than calling fit followed by transform.

Parameters raw_documents: iterable :

an iterable which yields either str, unicode or file objects

Returns vectors: array, [n_samples, n_features] :

get_feature_names()
Array mapping from feature integer indicex to feature name

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

get_stop_words()
Build or fetch the effective stop words list

inverse_transform(X)
Return terms per document with nonzero entries in X.

370 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Parameters X : {array, sparse matrix}, shape = [n_samples, n_features]

Returns X_inv : list of arrays, len = n_samples

List of arrays of terms.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(raw_documents)
Extract token counts out of raw text documents using the vocabulary fitted with fit or the one provided in
the constructor.

Parameters raw_documents: iterable :

an iterable which yields either str, unicode or file objects

Returns vectors: sparse matrix, [n_samples, n_features] :

sklearn.feature_extraction.text.TfidfTransformer

class sklearn.feature_extraction.text.TfidfTransformer(norm=’l2’, use_idf=True,
smooth_idf=True, sublin-
ear_tf=False)

Transform a count matrix to a normalized tf or tf–idf representation

Tf means term-frequency while tf–idf means term-frequency times inverse document-frequency. This is a com-
mon term weighting scheme in information retrieval, that has also found good use in document classification.

The goal of using tf–idf instead of the raw frequencies of occurrence of a token in a given document is to scale
down the impact of tokens that occur very frequently in a given corpus and that are hence empirically less
informative than features that occur in a small fraction of the training corpus.

In the SMART notation used in IR, this class implements several tf–idf variants. Tf is always “n” (natural), idf
is “t” iff use_idf is given, “n” otherwise, and normalization is “c” iff norm=’l2’, “n” iff norm=None.

Parameters norm : ‘l1’, ‘l2’ or None, optional

Norm used to normalize term vectors. None for no normalization.

use_idf : boolean, optional

Enable inverse-document-frequency reweighting.

smooth_idf : boolean, optional

Smooth idf weights by adding one to document frequencies, as if an extra document
was seen containing every term in the collection exactly once. Prevents zero divisions.

sublinear_tf : boolean, optional

Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf).

References

[Yates2011], [MSR2008]

1.8. Reference 371

scikit-learn user guide, Release 0.12-git

Methods

fit(X[, y]) Learn the idf vector (global term weights)
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
set_params(**params) Set the parameters of the estimator.
transform(X[, copy]) Transform a count matrix to a tf or tf–idf representation

__init__(norm=’l2’, use_idf=True, smooth_idf=True, sublinear_tf=False)

fit(X, y=None)
Learn the idf vector (global term weights)

Parameters X: sparse matrix, [n_samples, n_features] :

a matrix of term/token counts

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, copy=True)
Transform a count matrix to a tf or tf–idf representation

Parameters X: sparse matrix, [n_samples, n_features] :

372 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

a matrix of term/token counts

Returns vectors: sparse matrix, [n_samples, n_features] :

sklearn.feature_extraction.text.TfidfVectorizer

class sklearn.feature_extraction.text.TfidfVectorizer(input=’content’, charset=’utf-
8’, charset_error=’strict’,
strip_accents=None, low-
ercase=True, preproces-
sor=None, tokenizer=None, ana-
lyzer=’word’, stop_words=None,
token_pattern=u’\b\w\w+\b’,
min_n=1, max_n=1,
max_df=1.0,
max_features=None, vocab-
ulary=None, binary=False,
dtype=<type ‘long’>, norm=’l2’,
use_idf=True, smooth_idf=True,
sublinear_tf=False)

Convert a collection of raw documents to a matrix of TF-IDF features.

Equivalent to CountVectorizer followed by TfidfTransformer.

See Also:

CountVectorizerTokenize the documents and count the occurrences of token and return them as a sparse
matrix

TfidfTransformerApply Term Frequency Inverse Document Frequency normalization to a sparse matrix
of occurrence counts.

Methods

build_analyzer() Return a callable that handles preprocessing and tokenization
build_preprocessor() Return a function to preprocess the text before tokenization
build_tokenizer() Return a function that split a string in sequence of tokens
decode(doc) Decode the input into a string of unicode symbols
fit(raw_documents) Learn a conversion law from documents to array data
fit_transform(raw_documents[, y]) Learn the representation and return the vectors.
get_feature_names() Array mapping from feature integer indicex to feature name
get_params([deep]) Get parameters for the estimator
get_stop_words() Build or fetch the effective stop words list
inverse_transform(X) Return terms per document with nonzero entries in X.
set_params(**params) Set the parameters of the estimator.
transform(raw_documents[, copy]) Transform raw text documents to tf–idf vectors

__init__(input=’content’, charset=’utf-8’, charset_error=’strict’, strip_accents=None, lower-
case=True, preprocessor=None, tokenizer=None, analyzer=’word’, stop_words=None,
token_pattern=u’\b\w\w+\b’, min_n=1, max_n=1, max_df=1.0, max_features=None,
vocabulary=None, binary=False, dtype=<type ‘long’>, norm=’l2’, use_idf=True,
smooth_idf=True, sublinear_tf=False)

1.8. Reference 373

scikit-learn user guide, Release 0.12-git

build_analyzer()
Return a callable that handles preprocessing and tokenization

build_preprocessor()
Return a function to preprocess the text before tokenization

build_tokenizer()
Return a function that split a string in sequence of tokens

decode(doc)
Decode the input into a string of unicode symbols

The decoding strategy depends on the vectorizer parameters.

fit(raw_documents)
Learn a conversion law from documents to array data

fit_transform(raw_documents, y=None)
Learn the representation and return the vectors.

Parameters raw_documents: iterable :

an iterable which yields either str, unicode or file objects

Returns vectors: array, [n_samples, n_features] :

get_feature_names()
Array mapping from feature integer indicex to feature name

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

get_stop_words()
Build or fetch the effective stop words list

inverse_transform(X)
Return terms per document with nonzero entries in X.

Parameters X : {array, sparse matrix}, shape = [n_samples, n_features]

Returns X_inv : list of arrays, len = n_samples

List of arrays of terms.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(raw_documents, copy=True)
Transform raw text documents to tf–idf vectors

Parameters raw_documents: iterable :

an iterable which yields either str, unicode or file objects

Returns vectors: sparse matrix, [n_samples, n_features] :

374 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

1.8.8 sklearn.feature_selection: Feature Selection

The sklearn.feature_selection module implements feature selection algorithms. It currently includes uni-
variate filter selection methods and the recursive feature elimination algorithm.

User guide: See the Feature selection section for further details.

feature_selection.SelectPercentile(score_func) Filter: Select the best percentile of the p_values
feature_selection.SelectKBest(score_func[, k]) Filter: Select the k lowest p-values.
feature_selection.SelectFpr(score_func[, alpha]) Filter: Select the pvalues below alpha based on a FPR test.
feature_selection.SelectFdr(score_func[, alpha]) Filter: Select the p-values for an estimated false discovery rate
feature_selection.SelectFwe(score_func[, alpha]) Filter: Select the p-values corresponding to Family-wise error rate
feature_selection.RFE(estimator, ...[, step]) Feature ranking with recursive feature elimination.
feature_selection.RFECV(estimator[, step, ...]) Feature ranking with recursive feature elimination and cross-validated selection of the best number of features.

sklearn.feature_selection.SelectPercentile

class sklearn.feature_selection.SelectPercentile(score_func, percentile=10)
Filter: Select the best percentile of the p_values

Parameters score_func: callable :

function taking two arrays X and y, and returning 2 arrays: both scores and pvalues

percentile: int, optional :

percent of features to keep

Methods

fit(X, y) Evaluate the function
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
get_support([indices]) Return a mask, or list, of the features/indices selected.
inverse_transform(X) Transform a new matrix using the selected features
set_params(**params) Set the parameters of the estimator.
transform(X) Transform a new matrix using the selected features

__init__(score_func, percentile=10)

fit(X, y)
Evaluate the function

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

1.8. Reference 375

scikit-learn user guide, Release 0.12-git

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

get_support(indices=False)
Return a mask, or list, of the features/indices selected.

inverse_transform(X)
Transform a new matrix using the selected features

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Transform a new matrix using the selected features

sklearn.feature_selection.SelectKBest

class sklearn.feature_selection.SelectKBest(score_func, k=10)
Filter: Select the k lowest p-values.

Parameters score_func: callable :

Function taking two arrays X and y, and returning a pair of arrays (scores, pvalues).

k: int, optional :

Number of top features to select.

Notes

Ties between features with equal p-values will be broken in an unspecified way.

Methods

fit(X, y) Evaluate the function
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator

Continued on next page

376 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Table 1.76 – continued from previous page
get_support([indices]) Return a mask, or list, of the features/indices selected.
inverse_transform(X) Transform a new matrix using the selected features
set_params(**params) Set the parameters of the estimator.
transform(X) Transform a new matrix using the selected features

__init__(score_func, k=10)

fit(X, y)
Evaluate the function

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

get_support(indices=False)
Return a mask, or list, of the features/indices selected.

inverse_transform(X)
Transform a new matrix using the selected features

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Transform a new matrix using the selected features

1.8. Reference 377

scikit-learn user guide, Release 0.12-git

sklearn.feature_selection.SelectFpr

class sklearn.feature_selection.SelectFpr(score_func, alpha=0.05)
Filter: Select the pvalues below alpha based on a FPR test.

FPR test stands for False Positive Rate test. It controls the total amount of false detections.

Parameters score_func: callable :

function taking two arrays X and y, and returning 2 arrays: both scores and pvalues

alpha: float, optional :

the highest p-value for features to be kept

Methods

fit(X, y) Evaluate the function
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
get_support([indices]) Return a mask, or list, of the features/indices selected.
inverse_transform(X) Transform a new matrix using the selected features
set_params(**params) Set the parameters of the estimator.
transform(X) Transform a new matrix using the selected features

__init__(score_func, alpha=0.05)

fit(X, y)
Evaluate the function

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

378 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

get_support(indices=False)
Return a mask, or list, of the features/indices selected.

inverse_transform(X)
Transform a new matrix using the selected features

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Transform a new matrix using the selected features

sklearn.feature_selection.SelectFdr

class sklearn.feature_selection.SelectFdr(score_func, alpha=0.05)
Filter: Select the p-values for an estimated false discovery rate

This uses the Benjamini-Hochberg procedure. alpha is the target false discovery rate.

Parameters score_func: callable :

function taking two arrays X and y, and returning 2 arrays: both scores and pvalues

alpha: float, optional :

the highest uncorrected p-value for features to keep

Methods

fit(X, y) Evaluate the function
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
get_support([indices]) Return a mask, or list, of the features/indices selected.
inverse_transform(X) Transform a new matrix using the selected features
set_params(**params) Set the parameters of the estimator.
transform(X) Transform a new matrix using the selected features

__init__(score_func, alpha=0.05)

fit(X, y)
Evaluate the function

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

1.8. Reference 379

scikit-learn user guide, Release 0.12-git

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

get_support(indices=False)
Return a mask, or list, of the features/indices selected.

inverse_transform(X)
Transform a new matrix using the selected features

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Transform a new matrix using the selected features

sklearn.feature_selection.SelectFwe

class sklearn.feature_selection.SelectFwe(score_func, alpha=0.05)
Filter: Select the p-values corresponding to Family-wise error rate

Parameters score_func: callable :

function taking two arrays X and y, and returning 2 arrays: both scores and pvalues

alpha: float, optional :

the highest uncorrected p-value for features to keep

Methods

fit(X, y) Evaluate the function
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
get_support([indices]) Return a mask, or list, of the features/indices selected.
inverse_transform(X) Transform a new matrix using the selected features

Continued on next page

380 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Table 1.79 – continued from previous page
set_params(**params) Set the parameters of the estimator.
transform(X) Transform a new matrix using the selected features

__init__(score_func, alpha=0.05)

fit(X, y)
Evaluate the function

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

get_support(indices=False)
Return a mask, or list, of the features/indices selected.

inverse_transform(X)
Transform a new matrix using the selected features

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Transform a new matrix using the selected features

1.8. Reference 381

scikit-learn user guide, Release 0.12-git

sklearn.feature_selection.RFE

class sklearn.feature_selection.RFE(estimator, n_features_to_select, step=1)
Feature ranking with recursive feature elimination.

Given an external estimator that assigns weights to features (e.g., the coefficients of a linear model), the goal of
recursive feature elimination (RFE) is to select features by recursively considering smaller and smaller sets of
features. First, the estimator is trained on the initial set of features and weights are assigned to each one of them.
Then, features whose absolute weights are the smallest are pruned from the current set features. That procedure
is recursively repeated on the pruned set until the desired number of features to select is eventually reached.

Parameters estimator : object

A supervised learning estimator with a fit method that updates a coef_ attribute that
holds the fitted parameters. Important features must correspond to high absolute values
in the coef_ array.

For instance, this is the case for most supervised learning algorithms such as Support
Vector Classifiers and Generalized Linear Models from the svm and linear_model mod-
ules.

n_features_to_select : int

The number of features to select.

step : int or float, optional (default=1)

If greater than or equal to 1, then step corresponds to the (integer) number of features
to remove at each iteration. If within (0.0, 1.0), then step corresponds to the percentage
(rounded down) of features to remove at each iteration.

References

[R61]

Examples

The following example shows how to retrieve the 5 right informative features in the Friedman #1 dataset.

>>> from sklearn.datasets import make_friedman1
>>> from sklearn.feature_selection import RFE
>>> from sklearn.svm import SVR
>>> X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)
>>> estimator = SVR(kernel="linear")
>>> selector = RFE(estimator, 5, step=1)
>>> selector = selector.fit(X, y)
>>> selector.support_
array([True, True, True, True, True,

False, False, False, False, False], dtype=bool)
>>> selector.ranking_
array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5])

382 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Attributes

n_features_int The number of selected features.
sup-
port_

array of shape
[n_features]

The mask of selected features.

rank-
ing_

array of shape
[n_features]

The feature ranking, such that ranking_[i] corresponds to the ranking position of
the i-th feature. Selected (i.e., estimated best) features are assigned rank 1.

Methods

fit(X, y) Fit the RFE model and then the underlying estimator on the selected
get_params([deep]) Get parameters for the estimator
predict(X) Reduce X to the selected features and then predict using the
score(X, y) Reduce X to the selected features and then return the score of the
set_params(**params) Set the parameters of the estimator.
transform(X) Reduce X to the selected features during the elimination.

__init__(estimator, n_features_to_select, step=1)

fit(X, y)
Fit the RFE model and then the underlying estimator on the selected features.

Parameters X : array of shape [n_samples, n_features]

The training input samples.

y : array of shape [n_samples]

The target values.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Reduce X to the selected features and then predict using the underlying estimator.

Parameters X : array of shape [n_samples, n_features]

The input samples.

Returns y : array of shape [n_samples]

The predicted target values.

score(X, y)
Reduce X to the selected features and then return the score of the underlying estimator.

Parameters X : array of shape [n_samples, n_features]

The input samples.

y : array of shape [n_samples]

The target values.

1.8. Reference 383

scikit-learn user guide, Release 0.12-git

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Reduce X to the selected features during the elimination.

Parameters X : array of shape [n_samples, n_features]

The input samples.

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the features selected during the elimination.

sklearn.feature_selection.RFECV

class sklearn.feature_selection.RFECV(estimator, step=1, cv=None, loss_func=None)

Feature ranking with recursive feature elimination and cross-validatedselection of the best number of fea-
tures.

Parameters estimator : object

A supervised learning estimator with a fit method that updates a coef_ attribute that
holds the fitted parameters. Important features must correspond to high absolute values
in the coef_ array.

For instance, this is the case for most supervised learning algorithms such as Support
Vector Classifiers and Generalized Linear Models from the svm and linear_model mod-
ules.

step : int or float, optional (default=1)

If greater than or equal to 1, then step corresponds to the (integer) number of features
to remove at each iteration. If within (0.0, 1.0), then step corresponds to the percentage
(rounded down) of features to remove at each iteration.

cv : int or cross-validation generator, optional (default=None)

If int, it is the number of folds. If None, 3-fold cross-validation is performed by de-
fault. Specific cross-validation objects can also be passed, see sklearn.cross_validation
module for details.

loss_function : function, optional (default=None)

The loss function to minimize by cross-validation. If None, then the score function of
the estimator is maximized.

References

[R62]

384 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Examples

The following example shows how to retrieve the a-priori not known 5 informative features in the Friedman #1
dataset.

>>> from sklearn.datasets import make_friedman1
>>> from sklearn.feature_selection import RFECV
>>> from sklearn.svm import SVR
>>> X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)
>>> estimator = SVR(kernel="linear")
>>> selector = RFECV(estimator, step=1, cv=5)
>>> selector = selector.fit(X, y)
>>> selector.support_
array([True, True, True, True, True,

False, False, False, False, False], dtype=bool)
>>> selector.ranking_
array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5])

Attributes

n_features_int The number of selected features with cross-validation.
sup-
port_

array of shape
[n_features]

The mask of selected features.

rank-
ing_

array of shape
[n_features]

The feature ranking, such that ranking_[i] corresponds to the ranking
position of the i-th feature. Selected (i.e., estimated best) features are
assigned rank 1.

cv_scores_array of shape
[n_subsets_of_features]

The cross-validation scores such that cv_scores_[i] corresponds to the CV
score of the i-th subset of features.

Methods

fit(X, y) Fit the RFE model and automatically tune the number of selected
get_params([deep]) Get parameters for the estimator
predict(X) Reduce X to the selected features and then predict using the
score(X, y) Reduce X to the selected features and then return the score of the
set_params(**params) Set the parameters of the estimator.
transform(X) Reduce X to the selected features during the elimination.

__init__(estimator, step=1, cv=None, loss_func=None)

fit(X, y)
Fit the RFE model and automatically tune the number of selected features.

Parameters X : array of shape [n_samples, n_features]

Training vector, where n_samples is the number of samples and n_features is the total
number of features.

y : array of shape [n_samples]

Target values (integers for classification, real numbers for regression).

get_params(deep=True)
Get parameters for the estimator

1.8. Reference 385

scikit-learn user guide, Release 0.12-git

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Reduce X to the selected features and then predict using the underlying estimator.

Parameters X : array of shape [n_samples, n_features]

The input samples.

Returns y : array of shape [n_samples]

The predicted target values.

score(X, y)
Reduce X to the selected features and then return the score of the underlying estimator.

Parameters X : array of shape [n_samples, n_features]

The input samples.

y : array of shape [n_samples]

The target values.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Reduce X to the selected features during the elimination.

Parameters X : array of shape [n_samples, n_features]

The input samples.

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the features selected during the elimination.

feature_selection.chi2(X, y) Compute χ² (chi-squared) statistic for each class/feature combination.
feature_selection.f_classif(X, y) Compute the Anova F-value for the provided sample
feature_selection.f_regression(X, y[, center]) Univariate linear regression tests

sklearn.feature_selection.chi2

sklearn.feature_selection.chi2(X, y)
Compute χ² (chi-squared) statistic for each class/feature combination.

This transformer can be used to select the n_features features with the highest values for the χ² (chi-square)
statistic from either boolean or multinomially distributed data (e.g., term counts in document classification)
relative to the classes.

Recall that the χ² statistic measures dependence between stochastic variables, so a transformer based on this
function “weeds out” the features that are the most likely to be independent of class and therefore irrelevant for
classification.

386 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features_in]

Sample vectors.

y : array-like, shape = n_samples

Target vector (class labels).

Notes

Complexity of this algorithm is O(n_classes * n_features).

sklearn.feature_selection.f_classif

sklearn.feature_selection.f_classif(X, y)
Compute the Anova F-value for the provided sample

Parameters X : array of shape (n_samples, n_features)

the set of regressors sthat will tested sequentially

y : array of shape(n_samples)

the data matrix

Returns F : array of shape (m),

the set of F values

pval : array of shape(m),

the set of p-values

sklearn.feature_selection.f_regression

sklearn.feature_selection.f_regression(X, y, center=True)
Univariate linear regression tests

Quick linear model for testing the effect of a single regressor, sequentially for many regressors.

This is done in 3 steps: 1. the regressor of interest and the data are orthogonalized wrt constant regressors 2. the
cross correlation between data and regressors is computed 3. it is converted to an F score then to a p-value

Parameters X : array of shape (n_samples, n_features)

the set of regressors sthat will tested sequentially

y : array of shape(n_samples)

the data matrix

center : True, bool,

If true, X and y are centered

Returns F : array of shape (m),

the set of F values

pval : array of shape(m)

the set of p-values

1.8. Reference 387

scikit-learn user guide, Release 0.12-git

1.8.9 sklearn.gaussian_process: Gaussian Processes

The sklearn.gaussian_process module implements scalar Gaussian Process based predictions.

User guide: See the Gaussian Processes section for further details.

gaussian_process.GaussianProcess([regr, ...]) The Gaussian Process model class.

sklearn.gaussian_process.GaussianProcess

class sklearn.gaussian_process.GaussianProcess(regr=’constant’,
corr=’squared_exponential’, beta0=None,
storage_mode=’full’, verbose=False,
theta0=0.1, thetaL=None, thetaU=None,
optimizer=’fmin_cobyla’, ran-
dom_start=1, normalize=True,
nugget=2.2204460492503131e-15, ran-
dom_state=None)

The Gaussian Process model class.

Parameters regr : string or callable, optional

A regression function returning an array of outputs of the linear regression functional
basis. The number of observations n_samples should be greater than the size p of this
basis. Default assumes a simple constant regression trend. Available built-in regression
models are:

’constant’, ’linear’, ’quadratic’

corr : string or callable, optional

A stationary autocorrelation function returning the autocorrelation between two points
x and x’. Default assumes a squared-exponential autocorrelation model. Built-in corre-
lation models are:

’absolute_exponential’, ’squared_exponential’,
’generalized_exponential’, ’cubic’, ’linear’

beta0 : double array_like, optional

The regression weight vector to perform Ordinary Kriging (OK). Default assumes Uni-
versal Kriging (UK) so that the vector beta of regression weights is estimated using the
maximum likelihood principle.

storage_mode : string, optional

A string specifying whether the Cholesky decomposition of the correlation matrix
should be stored in the class (storage_mode = ‘full’) or not (storage_mode = ‘light’).
Default assumes storage_mode = ‘full’, so that the Cholesky decomposition of the cor-
relation matrix is stored. This might be a useful parameter when one is not interested
in the MSE and only plan to estimate the BLUP, for which the correlation matrix is not
required.

verbose : boolean, optional

A boolean specifying the verbose level. Default is verbose = False.

theta0 : double array_like, optional

388 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

An array with shape (n_features,) or (1,). The parameters in the autocorrelation model.
If thetaL and thetaU are also specified, theta0 is considered as the starting point for the
maximum likelihood rstimation of the best set of parameters. Default assumes isotropic
autocorrelation model with theta0 = 1e-1.

thetaL : double array_like, optional

An array with shape matching theta0’s. Lower bound on the autocorrelation parame-
ters for maximum likelihood estimation. Default is None, so that it skips maximum
likelihood estimation and it uses theta0.

thetaU : double array_like, optional

An array with shape matching theta0’s. Upper bound on the autocorrelation parame-
ters for maximum likelihood estimation. Default is None, so that it skips maximum
likelihood estimation and it uses theta0.

normalize : boolean, optional

Input X and observations y are centered and reduced wrt means and standard deviations
estimated from the n_samples observations provided. Default is normalize = True so
that data is normalized to ease maximum likelihood estimation.

nugget : double or ndarray, optional

Introduce a nugget effect to allow smooth predictions from noisy data. If nugget is
an ndarray, it must be the same length as the number of data points used for the fit.
The nugget is added to the diagonal of the assumed training covariance; in this way
it acts as a Tikhonov regularization in the problem. In the special case of the squared
exponential correlation function, the nugget mathematically represents the variance of
the input values. Default assumes a nugget close to machine precision for the sake of
robustness (nugget = 10. * MACHINE_EPSILON).

optimizer : string, optional

A string specifying the optimization algorithm to be used. Default uses ‘fmin_cobyla’
algorithm from scipy.optimize. Available optimizers are:

’fmin_cobyla’, ’Welch’

‘Welch’ optimizer is dued to Welch et al., see reference [WBSWM1992]. It consists
in iterating over several one-dimensional optimizations instead of running one single
multi-dimensional optimization.

random_start : int, optional

The number of times the Maximum Likelihood Estimation should be performed from a
random starting point. The first MLE always uses the specified starting point (theta0),
the next starting points are picked at random according to an exponential distribution
(log-uniform on [thetaL, thetaU]). Default does not use random starting point (ran-
dom_start = 1).

random_state: integer or numpy.RandomState, optional :

The generator used to shuffle the sequence of coordinates of theta in the Welch opti-
mizer. If an integer is given, it fixes the seed. Defaults to the global numpy random
number generator.

1.8. Reference 389

scikit-learn user guide, Release 0.12-git

Notes

The presentation implementation is based on a translation of the DACE Matlab toolbox, see reference
[NLNS2002].

References

[NLNS2002], [WBSWM1992]

Examples

>>> import numpy as np
>>> from sklearn.gaussian_process import GaussianProcess
>>> X = np.array([[1., 3., 5., 6., 7., 8.]]).T
>>> y = (X * np.sin(X)).ravel()
>>> gp = GaussianProcess(theta0=0.1, thetaL=.001, thetaU=1.)
>>> gp.fit(X, y)
GaussianProcess(beta0=None...

...

Attributes

theta_: array Specified theta OR the best set of autocorrelation parameters (the sought
maximizer of the reduced likelihood function).

re-
duced_likelihood_function_value_:
array

The optimal reduced likelihood function value.

Methods

arg_max_reduced_likelihood_function(*args, ...) DEPRECATED: to be removed; access self.theta_ etc. directly after fit
fit(X, y) The Gaussian Process model fitting method.
get_params([deep]) Get parameters for the estimator
predict(X[, eval_MSE, batch_size]) This function evaluates the Gaussian Process model at x.
reduced_likelihood_function([theta]) This function determines the BLUP parameters and evaluates the reduced
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

__init__(regr=’constant’, corr=’squared_exponential’, beta0=None, storage_mode=’full’, ver-
bose=False, theta0=0.1, thetaL=None, thetaU=None, optimizer=’fmin_cobyla’, ran-
dom_start=1, normalize=True, nugget=2.2204460492503131e-15, random_state=None)

arg_max_reduced_likelihood_function(*args, **kwargs)
DEPRECATED: to be removed; access self.theta_ etc. directly after fit

fit(X, y)
The Gaussian Process model fitting method.

Parameters X : double array_like

390 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

An array with shape (n_samples, n_features) with the input at which observations were
made.

y : double array_like

An array with shape (n_features,) with the observations of the scalar output to be pre-
dicted.

Returns gp : self

A fitted Gaussian Process model object awaiting data to perform predictions.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X, eval_MSE=False, batch_size=None)
This function evaluates the Gaussian Process model at x.

Parameters X : array_like

An array with shape (n_eval, n_features) giving the point(s) at which the prediction(s)
should be made.

eval_MSE : boolean, optional

A boolean specifying whether the Mean Squared Error should be evaluated or not. De-
fault assumes evalMSE = False and evaluates only the BLUP (mean prediction).

batch_size : integer, optional

An integer giving the maximum number of points that can be evaluated simulatneously
(depending on the available memory). Default is None so that all given points are eval-
uated at the same time.

Returns y : array_like

An array with shape (n_eval,) with the Best Linear Unbiased Prediction at x.

MSE : array_like, optional (if eval_MSE == True)

An array with shape (n_eval,) with the Mean Squared Error at x.

reduced_likelihood_function(theta=None)
This function determines the BLUP parameters and evaluates the reduced likelihood function for the given
autocorrelation parameters theta.

Maximizing this function wrt the autocorrelation parameters theta is equivalent to maximizing the likeli-
hood of the assumed joint Gaussian distribution of the observations y evaluated onto the design of experi-
ments X.

Parameters theta : array_like, optional

An array containing the autocorrelation parameters at which the Gaussian Process
model parameters should be determined. Default uses the built-in autocorrelation pa-
rameters (ie theta = self.theta_).

Returns reduced_likelihood_function_value : double

The value of the reduced likelihood function associated to the given autocorrelation
parameters theta.

1.8. Reference 391

scikit-learn user guide, Release 0.12-git

par : dict

A dictionary containing the requested Gaussian Process model parameters:

sigma2Gaussian Process variance.

betaGeneralized least-squares regression weights for Universal Kriging or given
beta0 for Ordinary Kriging.

gammaGaussian Process weights.

CCholesky decomposition of the correlation matrix [R].

FtSolution of the linear equation system : [R] x Ft = F

GQR decomposition of the matrix Ft.

reduced_likelihood_function_value
DEPRECATED: reduced_likelihood_function_value is deprecated and willbe removed’
‘please use reduced_likelihood_function_value_ instead.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

theta
DEPRECATED: theta is deprecated and will be removedplease use theta_ instead.

gaussian_process.correlation_models.absolute_exponential(...) Absolute exponential autocorrelation model.
gaussian_process.correlation_models.squared_exponential(...) Squared exponential correlation model (Radial Basis Function).
gaussian_process.correlation_models.generalized_exponential(...) Generalized exponential correlation model.
gaussian_process.correlation_models.pure_nugget(...) Spatial independence correlation model (pure nugget).
gaussian_process.correlation_models.cubic(...) Cubic correlation model:
gaussian_process.correlation_models.linear(...) Linear correlation model:
gaussian_process.regression_models.constant(x) Zero order polynomial (constant, p = 1) regression model.
gaussian_process.regression_models.linear(x) First order polynomial (linear, p = n+1) regression model.
gaussian_process.regression_models.quadratic(x) Second order polynomial (quadratic, p = n*(n-1)/2+n+1) regression model.

sklearn.gaussian_process.correlation_models.absolute_exponential

sklearn.gaussian_process.correlation_models.absolute_exponential(theta, d)
Absolute exponential autocorrelation model. (Ornstein-Uhlenbeck stochastic process):

392 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

n
theta, dx --> r(theta, dx) = exp(sum - theta_i * |dx_i|)

i = 1

Parameters theta : array_like

An array with shape 1 (isotropic) or n (anisotropic) giving the autocorrelation parame-
ter(s).

dx : array_like

An array with shape (n_eval, n_features) giving the componentwise distances between
locations x and x’ at which the correlation model should be evaluated.

Returns r : array_like

An array with shape (n_eval,) containing the values of the autocorrelation model.

sklearn.gaussian_process.correlation_models.squared_exponential

sklearn.gaussian_process.correlation_models.squared_exponential(theta, d)
Squared exponential correlation model (Radial Basis Function). (Infinitely differentiable stochastic process,
very smooth):

n
theta, dx --> r(theta, dx) = exp(sum - theta_i * (dx_i)^2)

i = 1

Parameters theta : array_like

An array with shape 1 (isotropic) or n (anisotropic) giving the autocorrelation parame-
ter(s).

dx : array_like

An array with shape (n_eval, n_features) giving the componentwise distances between
locations x and x’ at which the correlation model should be evaluated.

Returns r : array_like

An array with shape (n_eval,) containing the values of the autocorrelation model.

sklearn.gaussian_process.correlation_models.generalized_exponential

sklearn.gaussian_process.correlation_models.generalized_exponential(theta, d)
Generalized exponential correlation model. (Useful when one does not know the smoothness of the function to
be predicted.):

n
theta, dx --> r(theta, dx) = exp(sum - theta_i * |dx_i|^p)

i = 1

Parameters theta : array_like

An array with shape 1+1 (isotropic) or n+1 (anisotropic) giving the autocorrelation pa-
rameter(s) (theta, p).

dx : array_like

1.8. Reference 393

scikit-learn user guide, Release 0.12-git

An array with shape (n_eval, n_features) giving the componentwise distances between
locations x and x’ at which the correlation model should be evaluated.

Returns r : array_like

An array with shape (n_eval,) with the values of the autocorrelation model.

sklearn.gaussian_process.correlation_models.pure_nugget

sklearn.gaussian_process.correlation_models.pure_nugget(theta, d)
Spatial independence correlation model (pure nugget). (Useful when one wants to solve an ordinary least squares
problem!):

n
theta, dx --> r(theta, dx) = 1 if sum |dx_i| == 0

i = 1
0 otherwise

Parameters theta : array_like

None.

dx : array_like

An array with shape (n_eval, n_features) giving the componentwise distances between
locations x and x’ at which the correlation model should be evaluated.

Returns r : array_like

An array with shape (n_eval,) with the values of the autocorrelation model.

sklearn.gaussian_process.correlation_models.cubic

sklearn.gaussian_process.correlation_models.cubic(theta, d)
Cubic correlation model:

theta, dx --> r(theta, dx) =
n

prod max(0, 1 - 3(theta_j*d_ij)^2 + 2(theta_j*d_ij)^3) , i = 1,...,m
j = 1

Parameters theta : array_like

An array with shape 1 (isotropic) or n (anisotropic) giving the autocorrelation parame-
ter(s).

dx : array_like

An array with shape (n_eval, n_features) giving the componentwise distances between
locations x and x’ at which the correlation model should be evaluated.

Returns r : array_like

An array with shape (n_eval,) with the values of the autocorrelation model.

394 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

sklearn.gaussian_process.correlation_models.linear

sklearn.gaussian_process.correlation_models.linear(theta, d)
Linear correlation model:

theta, dx --> r(theta, dx) =
n

prod max(0, 1 - theta_j*d_ij) , i = 1,...,m
j = 1

Parameters theta : array_like

An array with shape 1 (isotropic) or n (anisotropic) giving the autocorrelation parame-
ter(s).

dx : array_like

An array with shape (n_eval, n_features) giving the componentwise distances between
locations x and x’ at which the correlation model should be evaluated.

Returns r : array_like

An array with shape (n_eval,) with the values of the autocorrelation model.

sklearn.gaussian_process.regression_models.constant

sklearn.gaussian_process.regression_models.constant(x)
Zero order polynomial (constant, p = 1) regression model.

x –> f(x) = 1

Parameters x : array_like

An array with shape (n_eval, n_features) giving the locations x at which the regression
model should be evaluated.

Returns f : array_like

An array with shape (n_eval, p) with the values of the regression model.

sklearn.gaussian_process.regression_models.linear

sklearn.gaussian_process.regression_models.linear(x)
First order polynomial (linear, p = n+1) regression model.

x –> f(x) = [1, x_1, ..., x_n].T

Parameters x : array_like

An array with shape (n_eval, n_features) giving the locations x at which the regression
model should be evaluated.

Returns f : array_like

An array with shape (n_eval, p) with the values of the regression model.

1.8. Reference 395

scikit-learn user guide, Release 0.12-git

sklearn.gaussian_process.regression_models.quadratic

sklearn.gaussian_process.regression_models.quadratic(x)
Second order polynomial (quadratic, p = n*(n-1)/2+n+1) regression model.

x –> f(x) = [1, { x_i, i = 1,...,n }, { x_i * x_j, (i,j) = 1,...,n }].Ti > j

Parameters x : array_like

An array with shape (n_eval, n_features) giving the locations x at which the regression
model should be evaluated.

Returns f : array_like

An array with shape (n_eval, p) with the values of the regression model.

1.8.10 sklearn.grid_search: Grid Search

The sklearn.grid_search includes utilities to fine-tune the parameters of an estimator.

User guide: See the Grid Search: setting estimator parameters section for further details.

grid_search.GridSearchCV(estimator, param_grid) Grid search on the parameters of a classifier
grid_search.IterGrid(param_grid) Generators on the combination of the various parameter lists given

sklearn.grid_search.GridSearchCV

class sklearn.grid_search.GridSearchCV(estimator, param_grid, loss_func=None,
score_func=None, fit_params=None, n_jobs=1,
iid=True, refit=True, cv=None, verbose=0,
pre_dispatch=‘2*n_jobs’)

Grid search on the parameters of a classifier

Important members are fit, predict.

GridSearchCV implements a “fit” method and a “predict” method like any classifier except that the parameters
of the classifier used to predict is optimized by cross-validation.

Parameters estimator: object type that implements the “fit” and “predict” methods :

A object of that type is instantiated for each grid point.

param_grid: dict :

Dictionary with parameters names (string) as keys and lists of parameter settings to try
as values.

loss_func: callable, optional :

function that takes 2 arguments and compares them in order to evaluate the performance
of prediciton (small is good) if None is passed, the score of the estimator is maximized

score_func: callable, optional :

A function that takes 2 arguments and compares them in order to evaluate the perfor-
mance of prediction (high is good). If None is passed, the score of the estimator is
maximized.

fit_params : dict, optional

396 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

parameters to pass to the fit method

n_jobs: int, optional :

number of jobs to run in parallel (default 1)

pre_dispatch: int, or string, optional :

Controls the number of jobs that get dispatched during parallel execution. Reducing
this number can be useful to avoid an explosion of memory consumption when more
jobs get dispatched than CPUs can process. This parameter can be:

•None, in which case all the jobs are immediatly created and spawned. Use this for
lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the
jobs

•An int, giving the exact number of total jobs that are spawned

•A string, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

iid: boolean, optional :

If True, the data is assumed to be identically distributed across the folds, and the loss
minimized is the total loss per sample, and not the mean loss across the folds.

cv : integer or crossvalidation generator, optional

If an integer is passed, it is the number of fold (default 3). Specific crossvalidation ob-
jects can be passed, see sklearn.cross_validation module for the list of possible objects

refit: boolean :

refit the best estimator with the entire dataset. If “False”, it is impossible to make
predictions using this GridSearch instance after fitting.

verbose: integer :

Controls the verbosity: the higher, the more messages.

See Also:

IterGridgenerates all the combinations of a an hyperparameter grid.

sklearn.cross_validation.train_test_splitutility function to split the data into a development
set usable for fitting a GridSearchCV instance and an evaluation set for its final evaluation.

Notes

The parameters selected are those that maximize the score of the left out data, unless an explicit score_func is
passed in which case it is used instead. If a loss function loss_func is passed, it overrides the score functions
and is minimized.

If n_jobs was set to a value higher than one, the data is copied for each point in the grid (and not n_jobs times).
This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is
large and not enough memory is available. A workaround in this case is to set pre_dispatch. Then, the memory
is copied only pre_dispatch many times. A reasonable value for pre_dispatch is 2 * n_jobs.

Examples

1.8. Reference 397

scikit-learn user guide, Release 0.12-git

>>> from sklearn import svm, grid_search, datasets
>>> iris = datasets.load_iris()
>>> parameters = {’kernel’:(’linear’, ’rbf’), ’C’:[1, 10]}
>>> svr = svm.SVC()
>>> clf = grid_search.GridSearchCV(svr, parameters)
>>> clf.fit(iris.data, iris.target)
...
GridSearchCV(cv=None,

estimator=SVC(C=1.0, cache_size=..., coef0=..., degree=...,
gamma=..., kernel=’rbf’, probability=False,
shrinking=True, tol=...),

fit_params={}, iid=True, loss_func=None, n_jobs=1,
param_grid=...,
...)

Attributes

grid_scores_dict of any
to float

Contains scores for all parameter combinations in param_grid.

best_estimator_estimator Estimator that was choosen by grid search, i.e. estimator which gave highest
score (or smallest loss if specified) on the left out data.

best_score_ float score of best_estimator on the left out data.
best_params_dict Parameter setting that gave the best results on the hold out data.

Methods

fit(X[, y]) Run fit with all sets of parameters
get_params([deep]) Get parameters for the estimator
score(X[, y])
set_params(**params) Set the parameters of the estimator.

__init__(estimator, param_grid, loss_func=None, score_func=None, fit_params=None, n_jobs=1,
iid=True, refit=True, cv=None, verbose=0, pre_dispatch=‘2*n_jobs’)

best_estimator
DEPRECATED: GridSearchCV.best_estimator is deprecated and will be removed in version 0.12. Please
use GridSearchCV.best_estimator_ instead.

best_score
DEPRECATED: GridSearchCV.best_score is deprecated and will be removed in version 0.12. Please use
GridSearchCV.best_score_ instead.

fit(X, y=None, **params)
Run fit with all sets of parameters

Returns the best classifier

Parameters X: array, [n_samples, n_features] :

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

y: array-like, shape = [n_samples], optional :

Target vector relative to X for classification; None for unsupervised learning.

398 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.grid_search.IterGrid

class sklearn.grid_search.IterGrid(param_grid)
Generators on the combination of the various parameter lists given

Parameters param_grid: dict of string to sequence :

The parameter grid to explore, as a dictionary mapping estimator parameters to se-
quences of allowed values.

Returns params: dict of string to any :

Yields dictionaries mapping each estimator parameter to one of its allowed values.

See Also:

GridSearchCVuses IterGrid to perform a full parallelized grid search.

Examples

>>> from sklearn.grid_search import IterGrid
>>> param_grid = {’a’:[1, 2], ’b’:[True, False]}
>>> list(IterGrid(param_grid))
[{’a’: 1, ’b’: True}, {’a’: 1, ’b’: False},
{’a’: 2, ’b’: True}, {’a’: 2, ’b’: False}]

__init__(param_grid)

1.8.11 sklearn.hmm: Hidden Markov Models

The sklearn.hmm module implements hidden Markov models.

Warning: sklearn.hmm is orphaned, undocumented and has known numerical stability issues. If nobody volun-
teers to write documentation and make it more stable, this module will be removed in version 0.11.

User guide: See the Hidden Markov Models section for further details.

hmm.GaussianHMM([n_components, ...]) Hidden Markov Model with Gaussian emissions
hmm.MultinomialHMM([n_components, ...]) Hidden Markov Model with multinomial (discrete) emissions
hmm.GMMHMM([n_components, n_mix, startprob, ...]) Hidden Markov Model with Gaussin mixture emissions

1.8. Reference 399

scikit-learn user guide, Release 0.12-git

sklearn.hmm.GaussianHMM

class sklearn.hmm.GaussianHMM(n_components=1, covariance_type=’diag’, start-
prob=None, transmat=None, startprob_prior=None, trans-
mat_prior=None, algorithm=’viterbi’, means_prior=None,
means_weight=0, covars_prior=0.01, covars_weight=1,
random_state=None, n_iter=10, thresh=0.01,
params=’abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ’,
init_params=’abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ’)

Hidden Markov Model with Gaussian emissions

Representation of a hidden Markov model probability distribution. This class allows for easy evaluation of,
sampling from, and maximum-likelihood estimation of the parameters of a HMM.

Parameters n_components : int

Number of states.

‘‘_covariance_type‘‘ : string

String describing the type of covariance parameters to use. Must be one of ‘spherical’,
‘tied’, ‘diag’, ‘full’. Defaults to ‘diag’.

See Also:

GMMGaussian mixture model

Examples

>>> from sklearn.hmm import GaussianHMM
>>> GaussianHMM(n_components=2)
...
GaussianHMM(algorithm=’viterbi’,...

400 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Attributes

_covariance_type string String describing the type of co-
variance parameters used by the
model. Must be one of ‘spherical’,
‘tied’, ‘diag’, ‘full’.

n_features int Dimensionality of the Gaussian
emissions.

n_components int Number of states in the model.
transmat array, shape (n_components,

n_components)
Matrix of transition probabilities
between states.

startprob array, shape (‘n_components‘,) Initial state occupation distribution.
means array, shape (n_components,

n_features)
Mean parameters for each state.

covars array Covariance parameters for each
state. The shape depends on
_covariance_type:

(‘n_components‘,) if ’spherical’,
(‘n_features‘, ‘n_features‘) if ’tied’,
(‘n_components‘, ‘n_features‘) if ’diag’,
(‘n_components‘, ‘n_features‘, ‘n_features‘) if ’full’

random_state: RandomState or an
int seed (0 by default)

A random number generator in-
stance

n_iter int, optional Number of iterations to perform.
thresh float, optional Convergence threshold.
params string, optional Controls which parameters are up-

dated in the training process. Can
contain any combination of ‘s’ for
startprob, ‘t’ for transmat, ‘m’ for
means, and ‘c’ for covars, etc. De-
faults to all parameters.

init_params string, optional Controls which parameters are ini-
tialized prior to training. Can con-
tain any combination of ‘s’ for
startprob, ‘t’ for transmat, ‘m’ for
means, and ‘c’ for covars, etc. De-
faults to all parameters.

Methods

decode(obs[, algorithm]) Find most likely state sequence corresponding to obs.
eval(obs) Compute the log probability under the model and compute posteriors
fit(obs, **kwargs) Estimate model parameters.
get_params([deep]) Get parameters for the estimator
predict(obs[, algorithm]) Find most likely state sequence corresponding to obs.
predict_proba(obs) Compute the posterior probability for each state in the model
rvs(*args, **kwargs) DEPRECATED: rvs is deprecated in 0.11 will be removed in 0.13: use sample instead
sample([n, random_state]) Generate random samples from the model.
score(obs) Compute the log probability under the model.

Continued on next page

1.8. Reference 401

scikit-learn user guide, Release 0.12-git

Table 1.89 – continued from previous page
set_params(**params) Set the parameters of the estimator.

__init__(n_components=1, covariance_type=’diag’, startprob=None, trans-
mat=None, startprob_prior=None, transmat_prior=None, algo-
rithm=’viterbi’, means_prior=None, means_weight=0, covars_prior=0.01,
covars_weight=1, random_state=None, n_iter=10, thresh=0.01,
params=’abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ’,
init_params=’abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ’)

algorithm
decoder algorithm

covariance_type
Covariance type of the model.

Must be one of ‘spherical’, ‘tied’, ‘diag’, ‘full’.

covars_
Return covars as a full matrix.

decode(obs, algorithm=’viterbi’)
Find most likely state sequence corresponding to obs. Uses the selected algorithm for decoding.

Parameters obs : array_like, shape (n, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

algorithm : string, one of the decoder_algorithms

decoder algorithm to be used

Returns logprob : float

Log probability of the maximum likelihood path through the HMM

state_sequence : array_like, shape (n,)

Index of the most likely states for each observation

See Also:

evalCompute the log probability under the model and posteriors

scoreCompute the log probability under the model

eval(obs)
Compute the log probability under the model and compute posteriors

Implements rank and beam pruning in the forward-backward algorithm to speed up inference in large
models.

Parameters obs : array_like, shape (n, n_features)

Sequence of n_features-dimensional data points. Each row corresponds to a single point
in the sequence.

Returns logprob : float

Log likelihood of the sequence obs

posteriors: array_like, shape (n, n_components) :

Posterior probabilities of each state for each observation

402 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

See Also:

scoreCompute the log probability under the model

decodeFind most likely state sequence corresponding to a obs

fit(obs, **kwargs)
Estimate model parameters.

An initialization step is performed before entering the EM algorithm. If you want to avoid this step,
set the keyword argument init_params to the empty string ‘’. Likewise, if you would like just to do an
initialization, call this method with n_iter=0.

Parameters obs : list

List of array-like observation sequences (shape (n_i, n_features)).

Notes

In general, logprob should be non-decreasing unless aggressive pruning is used. Decreasing logprob is
generally a sign of overfitting (e.g. a covariance parameter getting too small). You can fix this by getting
more training data, or decreasing covars_prior.

Please note that setting parameters in the ‘fit‘ method is deprecated and will be removed in the next
release. Set it on initialization instead.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

means_
Mean parameters for each state.

predict(obs, algorithm=’viterbi’)
Find most likely state sequence corresponding to obs.

Parameters obs : array_like, shape (n, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns state_sequence : array_like, shape (n,)

Index of the most likely states for each observation

predict_proba(obs)
Compute the posterior probability for each state in the model

Parameters obs : array_like, shape (n, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns T : array-like, shape (n, n_components)

Returns the probability of the sample for each state in the model.

rvs(*args, **kwargs)
DEPRECATED: rvs is deprecated in 0.11 will be removed in 0.13: use sample instead

1.8. Reference 403

scikit-learn user guide, Release 0.12-git

sample(n=1, random_state=None)
Generate random samples from the model.

Parameters n : int

Number of samples to generate.

random_state: RandomState or an int seed (0 by default) :

A random number generator instance. If None is given, the object’s random_state is
used

Returns (obs, hidden_states) :

obs : array_like, length n List of samples

hidden_states : array_like, length n List of hidden states

score(obs)
Compute the log probability under the model.

Parameters obs : array_like, shape (n, n_features)

Sequence of n_features-dimensional data points. Each row corresponds to a single data
point.

Returns logprob : float

Log likelihood of the obs

See Also:

evalCompute the log probability under the model and posteriors

decodeFind most likely state sequence corresponding to a obs

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

startprob_
Mixing startprob for each state.

transmat_
Matrix of transition probabilities.

sklearn.hmm.MultinomialHMM

class sklearn.hmm.MultinomialHMM(n_components=1, startprob=None, transmat=None,
startprob_prior=None, transmat_prior=None, algo-
rithm=’viterbi’, random_state=None, n_iter=10, thresh=0.01,
params=’abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ’,
init_params=’abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ’)

Hidden Markov Model with multinomial (discrete) emissions

See Also:

GaussianHMMHMM with Gaussian emissions

404 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Examples

>>> from sklearn.hmm import MultinomialHMM
>>> MultinomialHMM(n_components=2)
...
MultinomialHMM(algorithm=’viterbi’,...

Attributes

n_components int Number of states in the model.
n_symbols int Number of possible symbols emitted by the model (in the

observations).
transmat array, shape

(n_components,
n_components)

Matrix of transition probabilities between states.

startprob array, shape
(‘n_components‘,)

Initial state occupation distribution.

emissionprob array, shape
(‘n_components‘,
‘n_symbols‘)

Probability of emitting a given symbol when in each state.

random_state:
RandomState or an
int seed (0 by
default)

A random number generator instance

n_iter int, optional Number of iterations to perform.
thresh float, optional Convergence threshold.
params string, optional Controls which parameters are updated in the training process.

Can contain any combination of ‘s’ for startprob, ‘t’ for
transmat, ‘m’ for means, and ‘c’ for covars, etc. Defaults to all
parameters.

init_params string, optional Controls which parameters are initialized prior to training. Can
contain any combination of ‘s’ for startprob, ‘t’ for transmat,
‘m’ for means, and ‘c’ for covars, etc. Defaults to all
parameters.

Methods

decode(obs[, algorithm]) Find most likely state sequence corresponding to obs.
eval(obs) Compute the log probability under the model and compute posteriors
fit(obs, **kwargs) Estimate model parameters.
get_params([deep]) Get parameters for the estimator
predict(obs[, algorithm]) Find most likely state sequence corresponding to obs.
predict_proba(obs) Compute the posterior probability for each state in the model
rvs(*args, **kwargs) DEPRECATED: rvs is deprecated in 0.11 will be removed in 0.13: use sample instead
sample([n, random_state]) Generate random samples from the model.
score(obs) Compute the log probability under the model.
set_params(**params) Set the parameters of the estimator.

1.8. Reference 405

scikit-learn user guide, Release 0.12-git

__init__(n_components=1, startprob=None, transmat=None, startprob_prior=None, trans-
mat_prior=None, algorithm=’viterbi’, random_state=None, n_iter=10, thresh=0.01,
params=’abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ’,
init_params=’abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ’)

Create a hidden Markov model with multinomial emissions.

Parameters n_components : int

Number of states.

algorithm
decoder algorithm

decode(obs, algorithm=’viterbi’)
Find most likely state sequence corresponding to obs. Uses the selected algorithm for decoding.

Parameters obs : array_like, shape (n, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

algorithm : string, one of the decoder_algorithms

decoder algorithm to be used

Returns logprob : float

Log probability of the maximum likelihood path through the HMM

state_sequence : array_like, shape (n,)

Index of the most likely states for each observation

See Also:

evalCompute the log probability under the model and posteriors

scoreCompute the log probability under the model

emissionprob_
Emission probability distribution for each state.

eval(obs)
Compute the log probability under the model and compute posteriors

Implements rank and beam pruning in the forward-backward algorithm to speed up inference in large
models.

Parameters obs : array_like, shape (n, n_features)

Sequence of n_features-dimensional data points. Each row corresponds to a single point
in the sequence.

Returns logprob : float

Log likelihood of the sequence obs

posteriors: array_like, shape (n, n_components) :

Posterior probabilities of each state for each observation

See Also:

scoreCompute the log probability under the model

decodeFind most likely state sequence corresponding to a obs

406 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

fit(obs, **kwargs)
Estimate model parameters.

An initialization step is performed before entering the EM algorithm. If you want to avoid this step,
set the keyword argument init_params to the empty string ‘’. Likewise, if you would like just to do an
initialization, call this method with n_iter=0.

Parameters obs : list

List of array-like observation sequences (shape (n_i, n_features)).

Notes

In general, logprob should be non-decreasing unless aggressive pruning is used. Decreasing logprob is
generally a sign of overfitting (e.g. a covariance parameter getting too small). You can fix this by getting
more training data, or decreasing covars_prior.

Please note that setting parameters in the ‘fit‘ method is deprecated and will be removed in the next
release. Set it on initialization instead.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(obs, algorithm=’viterbi’)
Find most likely state sequence corresponding to obs.

Parameters obs : array_like, shape (n, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns state_sequence : array_like, shape (n,)

Index of the most likely states for each observation

predict_proba(obs)
Compute the posterior probability for each state in the model

Parameters obs : array_like, shape (n, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns T : array-like, shape (n, n_components)

Returns the probability of the sample for each state in the model.

rvs(*args, **kwargs)
DEPRECATED: rvs is deprecated in 0.11 will be removed in 0.13: use sample instead

sample(n=1, random_state=None)
Generate random samples from the model.

Parameters n : int

Number of samples to generate.

random_state: RandomState or an int seed (0 by default) :

A random number generator instance. If None is given, the object’s random_state is
used

1.8. Reference 407

scikit-learn user guide, Release 0.12-git

Returns (obs, hidden_states) :

obs : array_like, length n List of samples

hidden_states : array_like, length n List of hidden states

score(obs)
Compute the log probability under the model.

Parameters obs : array_like, shape (n, n_features)

Sequence of n_features-dimensional data points. Each row corresponds to a single data
point.

Returns logprob : float

Log likelihood of the obs

See Also:

evalCompute the log probability under the model and posteriors

decodeFind most likely state sequence corresponding to a obs

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

startprob_
Mixing startprob for each state.

transmat_
Matrix of transition probabilities.

sklearn.hmm.GMMHMM

class sklearn.hmm.GMMHMM(n_components=1, n_mix=1, startprob=None, trans-
mat=None, startprob_prior=None, transmat_prior=None, al-
gorithm=’viterbi’, gmms=None, covariance_type=’diag’, co-
vars_prior=0.01, random_state=None, n_iter=10, thresh=0.01,
params=’abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ’,
init_params=’abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ’)

Hidden Markov Model with Gaussin mixture emissions

See Also:

GaussianHMMHMM with Gaussian emissions

Examples

>>> from sklearn.hmm import GMMHMM
>>> GMMHMM(n_components=2, n_mix=10, covariance_type=’diag’)
...
GMMHMM(algorithm=’viterbi’, covariance_type=’diag’,...

408 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Attributes

init_paramsstring, optional Controls which parameters are initialized prior to training. Can contain any
combination of ‘s’ for startprob, ‘t’ for transmat, ‘m’ for means, and ‘c’ for
covars, etc. Defaults to all parameters.

params string, optional Controls which parameters are updated in the training process. Can contain
any combination of ‘s’ for startprob, ‘t’ for transmat,’m’ for means, and ‘c’
for covars, etc. Defaults to all parameters.

n_componentsint Number of states in the model.
trans-
mat

array, shape
(n_components,
n_components)

Matrix of transition probabilities between states.

start-
prob

array, shape
(‘n_components‘,)

Initial state occupation distribution.

gmms array of GMM
objects, length
n_components

GMM emission distributions for each state.

ran-
dom_state

RandomState or an
int seed (0 by
default)

A random number generator instance

n_iter int, optional Number of iterations to perform.
thresh float, optional Convergence threshold.

Methods

decode(obs[, algorithm]) Find most likely state sequence corresponding to obs.
eval(obs) Compute the log probability under the model and compute posteriors
fit(obs, **kwargs) Estimate model parameters.
get_params([deep]) Get parameters for the estimator
predict(obs[, algorithm]) Find most likely state sequence corresponding to obs.
predict_proba(obs) Compute the posterior probability for each state in the model
rvs(*args, **kwargs) DEPRECATED: rvs is deprecated in 0.11 will be removed in 0.13: use sample instead
sample([n, random_state]) Generate random samples from the model.
score(obs) Compute the log probability under the model.
set_params(**params) Set the parameters of the estimator.

__init__(n_components=1, n_mix=1, startprob=None, transmat=None, start-
prob_prior=None, transmat_prior=None, algorithm=’viterbi’, gmms=None, covari-
ance_type=’diag’, covars_prior=0.01, random_state=None, n_iter=10, thresh=0.01,
params=’abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ’,
init_params=’abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ’)

Create a hidden Markov model with GMM emissions.

Parameters n_components : int

Number of states.

algorithm
decoder algorithm

covariance_type
Covariance type of the model.

1.8. Reference 409

scikit-learn user guide, Release 0.12-git

Must be one of ‘spherical’, ‘tied’, ‘diag’, ‘full’.

decode(obs, algorithm=’viterbi’)
Find most likely state sequence corresponding to obs. Uses the selected algorithm for decoding.

Parameters obs : array_like, shape (n, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

algorithm : string, one of the decoder_algorithms

decoder algorithm to be used

Returns logprob : float

Log probability of the maximum likelihood path through the HMM

state_sequence : array_like, shape (n,)

Index of the most likely states for each observation

See Also:

evalCompute the log probability under the model and posteriors

scoreCompute the log probability under the model

eval(obs)
Compute the log probability under the model and compute posteriors

Implements rank and beam pruning in the forward-backward algorithm to speed up inference in large
models.

Parameters obs : array_like, shape (n, n_features)

Sequence of n_features-dimensional data points. Each row corresponds to a single point
in the sequence.

Returns logprob : float

Log likelihood of the sequence obs

posteriors: array_like, shape (n, n_components) :

Posterior probabilities of each state for each observation

See Also:

scoreCompute the log probability under the model

decodeFind most likely state sequence corresponding to a obs

fit(obs, **kwargs)
Estimate model parameters.

An initialization step is performed before entering the EM algorithm. If you want to avoid this step,
set the keyword argument init_params to the empty string ‘’. Likewise, if you would like just to do an
initialization, call this method with n_iter=0.

Parameters obs : list

List of array-like observation sequences (shape (n_i, n_features)).

410 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Notes

In general, logprob should be non-decreasing unless aggressive pruning is used. Decreasing logprob is
generally a sign of overfitting (e.g. a covariance parameter getting too small). You can fix this by getting
more training data, or decreasing covars_prior.

Please note that setting parameters in the ‘fit‘ method is deprecated and will be removed in the next
release. Set it on initialization instead.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(obs, algorithm=’viterbi’)
Find most likely state sequence corresponding to obs.

Parameters obs : array_like, shape (n, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns state_sequence : array_like, shape (n,)

Index of the most likely states for each observation

predict_proba(obs)
Compute the posterior probability for each state in the model

Parameters obs : array_like, shape (n, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns T : array-like, shape (n, n_components)

Returns the probability of the sample for each state in the model.

rvs(*args, **kwargs)
DEPRECATED: rvs is deprecated in 0.11 will be removed in 0.13: use sample instead

sample(n=1, random_state=None)
Generate random samples from the model.

Parameters n : int

Number of samples to generate.

random_state: RandomState or an int seed (0 by default) :

A random number generator instance. If None is given, the object’s random_state is
used

Returns (obs, hidden_states) :

obs : array_like, length n List of samples

hidden_states : array_like, length n List of hidden states

score(obs)
Compute the log probability under the model.

Parameters obs : array_like, shape (n, n_features)

Sequence of n_features-dimensional data points. Each row corresponds to a single data
point.

1.8. Reference 411

scikit-learn user guide, Release 0.12-git

Returns logprob : float

Log likelihood of the obs

See Also:

evalCompute the log probability under the model and posteriors

decodeFind most likely state sequence corresponding to a obs

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

startprob_
Mixing startprob for each state.

transmat_
Matrix of transition probabilities.

1.8.12 sklearn.kernel_approximation Kernel Approximation

The sklearn.kernel_approximation module implements several approximate kernel feature maps base on
Fourier transforms.

User guide: See the Kernel Approximation section for further details.

kernel_approximation.RBFSampler([gamma, ...]) Approximates feature map of an RBF kernel by Monte Carlo approximation
kernel_approximation.AdditiveChi2Sampler([...]) Approximate feature map for additive chi² kernel.
kernel_approximation.SkewedChi2Sampler([...]) Approximates feature map of the “skewed chi-squared” kernel by Monte

sklearn.kernel_approximation.RBFSampler

class sklearn.kernel_approximation.RBFSampler(gamma=1.0, n_components=100.0, ran-
dom_state=None)

Approximates feature map of an RBF kernel by Monte Carlo approximation of its Fourier transform.

Parameters gamma: float :

parameter of RBF kernel: exp(-gamma * x**2)

n_components: int :

number of Monte Carlo samples per original feature. Equals the dimensionality of the
computed feature space.

random_state : {int, RandomState}, optional

If int, random_state is the seed used by the random number generator; if RandomState
instance, random_state is the random number generator.

412 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Notes

See “Random Features for Large-Scale Kernel Machines” by A. Rahimi and Benjamin Recht.

Methods

fit(X[, y]) Fit the model with X.
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
set_params(**params) Set the parameters of the estimator.
transform(X[, y]) Apply the approximate feature map to X.

__init__(gamma=1.0, n_components=100.0, random_state=None)

fit(X, y=None)
Fit the model with X.

Samples random projection according to n_features.

Parameters X: {array-like, sparse matrix}, shape (n_samples, n_features) :

Training data, where n_samples in the number of samples and n_features is the number
of features.

Returns self : object

Returns the transformer.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

1.8. Reference 413

scikit-learn user guide, Release 0.12-git

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, y=None)
Apply the approximate feature map to X.

Parameters X: {array-like, sparse matrix}, shape (n_samples, n_features) :

New data, where n_samples in the number of samples and n_features is the number of
features.

Returns X_new: array-like, shape (n_samples, n_components) :

sklearn.kernel_approximation.AdditiveChi2Sampler

class sklearn.kernel_approximation.AdditiveChi2Sampler(sample_steps=2, sam-
ple_interval=None)

Approximate feature map for additive chi² kernel.

Uses sampling the fourier transform of the kernel characteristic at regular intervals.

Since the kernel that is to be approximated is additive, the components of the input vectors can be treated
separately. Each entry in the original space is transformed into 2×sample_steps+1 features, where sample_steps
is a parameter of the method. Typical values of n include 1, 2 and 3.

Optimal choices for the sampling interval for certain data ranges can be computed (see the reference). The
default values should be reasonable.

Parameters sample_steps: int, optional :

Gives the number of (complex) sampling points.

sample_interval: float, optional :

Sampling interval. Must be specified when sample_steps not in {1,2,3}.

Notes

See “Efficient additive kernels via explicit feature maps” Vedaldi, A. and Zisserman, A. - Computer Vision and
Pattern Recognition 2010

Methods

fit(X[, y]) Set parameters.
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
set_params(**params) Set the parameters of the estimator.
transform(X[, y]) Apply approximate feature map to X.

__init__(sample_steps=2, sample_interval=None)

414 Chapter 1. User Guide

http://eprints.pascal-network.org/archive/00006964/01/vedaldi10.pdf

scikit-learn user guide, Release 0.12-git

fit(X, y=None)
Set parameters.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, y=None)
Apply approximate feature map to X.

Parameters X: array-like, shape (n_samples, n_features) :

Returns X_new: array-like, shape (n_samples, n_features * (2n + 1)) :

sklearn.kernel_approximation.SkewedChi2Sampler

class sklearn.kernel_approximation.SkewedChi2Sampler(skewedness=1.0,
n_components=100, ran-
dom_state=None)

Approximates feature map of the “skewed chi-squared” kernel by Monte Carlo approximation of its Fourier
transform.

Parameters skewedness: float :

“skewedness” parameter of the kernel. Needs to be cross-validated.

n_components: int :

1.8. Reference 415

scikit-learn user guide, Release 0.12-git

number of Monte Carlo samples per original feature. Equals the dimensionality of the
computed feature space.

random_state : {int, RandomState}, optional

If int, random_state is the seed used by the random number generator; if RandomState
instance, random_state is the random number generator.

Notes

See “Random Fourier Approximations for Skewed Multiplicative Histogram Kernels” by Fuxin Li, Catalin
Ionescu and Cristian Sminchisescu.

Methods

fit(X[, y]) Fit the model with X.
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
set_params(**params) Set the parameters of the estimator.
transform(X[, y]) Apply the approximate feature map to X.

__init__(skewedness=1.0, n_components=100, random_state=None)

fit(X, y=None)
Fit the model with X.

Samples random projection according to n_features.

Parameters X: array-like, shape (n_samples, n_features) :

Training data, where n_samples in the number of samples and n_features is the number
of features.

Returns self : object

Returns the transformer.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

416 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, y=None)
Apply the approximate feature map to X.

Parameters X: array-like, shape (n_samples, n_features) :

New data, where n_samples in the number of samples and n_features is the number of
features.

Returns X_new: array-like, shape (n_samples, n_components) :

1.8.13 sklearn.semi_supervised Semi-Supervised Learning

The sklearn.semi_supervised module implements semi-supervised learning algorithms. These algorithms
utilized small amounts of labeled data and large amounts of unlabeled data for classification tasks. This module
includes Label Propagation.

User guide: See the Semi-Supervised section for further details.

semi_supervised.LabelPropagation([kernel, ...]) Label Propagation classifier
semi_supervised.LabelSpreading([kernel, ...]) LabelSpreading model for semi-supervised learning

sklearn.semi_supervised.LabelPropagation

class sklearn.semi_supervised.LabelPropagation(kernel=’rbf’, gamma=20, n_neighbors=7,
alpha=1, max_iters=30, tol=0.001)

Label Propagation classifier

Parameters kernel : {‘knn’, ‘rbf’}

String identifier for kernel function to use. Only ‘rbf’ and ‘knn’ kernels are currently
supported..

gamma : float

parameter for rbf kernel

n_neighbors : integer > 0

parameter for knn kernel

alpha : float

clamping factor

max_iters : float

1.8. Reference 417

scikit-learn user guide, Release 0.12-git

change maximum number of iterations allowed

tol : float

Convergence tolerance: threshold to consider the system at steady state

See Also:

LabelSpreadingAlternate label proagation strategy more robust to noise

References

Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with la-
bel propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002
http://pages.cs.wisc.edu/~jerryzhu/pub/CMU-CALD-02-107.pdf

Examples

>>> from sklearn import datasets
>>> from sklearn.semi_supervised import LabelPropagation
>>> label_prop_model = LabelPropagation()
>>> iris = datasets.load_iris()
>>> random_unlabeled_points = np.where(np.random.random_integers(0, 1,
... size=len(iris.target)))
>>> labels = np.copy(iris.target)
>>> labels[random_unlabeled_points] = -1
>>> label_prop_model.fit(iris.data, labels)
...
LabelPropagation(...)

Methods

fit(X, y) Fit a semi-supervised label propagation model based
get_params([deep]) Get parameters for the estimator
predict(X) Performs inductive inference across the model.
predict_proba(X) Predict probability for each possible outcome.
score(X, y) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of the estimator.

__init__(kernel=’rbf’, gamma=20, n_neighbors=7, alpha=1, max_iters=30, tol=0.001)

fit(X, y)
Fit a semi-supervised label propagation model based

All the input data is provided matrix X (labeled and unlabeled) and corresponding label matrix y with a
dedicated marker value for unlabeled samples.

Parameters X : array-like, shape = [n_samples, n_features]

A {n_samples by n_samples} size matrix will be created from this

y : array_like, shape = [n_samples]

n_labeled_samples (unlabeled points are marked as -1) All unlabeled samples will be
transductively assigned labels

418 Chapter 1. User Guide

http://pages.cs.wisc.edu/~jerryzhu/pub/CMU-CALD-02-107.pdf

scikit-learn user guide, Release 0.12-git

Returns self : returns an instance of self.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Performs inductive inference across the model.

Parameters X : array_like, shape = [n_samples, n_features]

Returns y : array_like, shape = [n_samples]

Predictions for input data

predict_proba(X)
Predict probability for each possible outcome.

Compute the probability estimates for each single sample in X and each possible outcome seen during
training (categorical distribution).

Parameters X : array_like, shape = [n_samples, n_features]

Returns probabilities : array, shape = [n_samples, n_classes]

Normalized probability distributions across class labels

score(X, y)
Returns the mean accuracy on the given test data and labels.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.semi_supervised.LabelSpreading

class sklearn.semi_supervised.LabelSpreading(kernel=’rbf’, gamma=20, n_neighbors=7, al-
pha=0.2, max_iters=30, tol=0.001)

LabelSpreading model for semi-supervised learning

This model is similar to the basic Label Propgation algorithm, but uses affinity matrix based on the normalized
graph Laplacian and soft clamping across the labels.

Parameters kernel : {‘knn’, ‘rbf’}

1.8. Reference 419

scikit-learn user guide, Release 0.12-git

String identifier for kernel function to use. Only ‘rbf’ and ‘knn’ kernels are currently
supported.

gamma : float

parameter for rbf kernel

n_neighbors : integer > 0

parameter for knn kernel

alpha : float

clamping factor

max_iters : float

maximum number of iterations allowed

tol : float

Convergence tolerance: threshold to consider the system at steady state

See Also:

LabelPropagationUnregularized graph based semi-supervised learning

References

Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, Bernhard Schölkopf. Learning with local
and global consistency (2004) http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.3219

Examples

>>> from sklearn import datasets
>>> from sklearn.semi_supervised import LabelSpreading
>>> label_prop_model = LabelSpreading()
>>> iris = datasets.load_iris()
>>> random_unlabeled_points = np.where(np.random.random_integers(0, 1,
... size=len(iris.target)))
>>> labels = np.copy(iris.target)
>>> labels[random_unlabeled_points] = -1
>>> label_prop_model.fit(iris.data, labels)
...
LabelSpreading(...)

Methods

fit(X, y) Fit a semi-supervised label propagation model based
get_params([deep]) Get parameters for the estimator
predict(X) Performs inductive inference across the model.
predict_proba(X) Predict probability for each possible outcome.
score(X, y) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of the estimator.

__init__(kernel=’rbf’, gamma=20, n_neighbors=7, alpha=0.2, max_iters=30, tol=0.001)

420 Chapter 1. User Guide

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.3219

scikit-learn user guide, Release 0.12-git

fit(X, y)
Fit a semi-supervised label propagation model based

All the input data is provided matrix X (labeled and unlabeled) and corresponding label matrix y with a
dedicated marker value for unlabeled samples.

Parameters X : array-like, shape = [n_samples, n_features]

A {n_samples by n_samples} size matrix will be created from this

y : array_like, shape = [n_samples]

n_labeled_samples (unlabeled points are marked as -1) All unlabeled samples will be
transductively assigned labels

Returns self : returns an instance of self.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Performs inductive inference across the model.

Parameters X : array_like, shape = [n_samples, n_features]

Returns y : array_like, shape = [n_samples]

Predictions for input data

predict_proba(X)
Predict probability for each possible outcome.

Compute the probability estimates for each single sample in X and each possible outcome seen during
training (categorical distribution).

Parameters X : array_like, shape = [n_samples, n_features]

Returns probabilities : array, shape = [n_samples, n_classes]

Normalized probability distributions across class labels

score(X, y)
Returns the mean accuracy on the given test data and labels.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

1.8. Reference 421

scikit-learn user guide, Release 0.12-git

1.8.14 sklearn.lda: Linear Discriminant Analysis

The sklearn.lda module implements Linear Discriminant Analysis (LDA).

User guide: See the Linear and Quadratic Discriminant Analysis section for further details.

lda.LDA([n_components, priors]) Linear Discriminant Analysis (LDA)

sklearn.lda.LDA

class sklearn.lda.LDA(n_components=None, priors=None)
Linear Discriminant Analysis (LDA)

A classifier with a linear decision boundary, generated by fitting class conditional densities to the data and using
Bayes’ rule.

The model fits a Gaussian density to each class, assuming that all classes share the same covariance matrix.

The fitted model can also be used to reduce the dimensionality of the input, by projecting it to the most discrim-
inative directions.

Parameters n_components: int :

Number of components (< n_classes - 1) for dimensionality reduction

priors : array, optional, shape = [n_classes]

Priors on classes

See Also:

sklearn.qda.QDAQuadratic discriminant analysis

Examples

>>> import numpy as np
>>> from sklearn.lda import LDA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> clf = LDA()
>>> clf.fit(X, y)
LDA(n_components=None, priors=None)
>>> print(clf.predict([[-0.8, -1]]))
[1]

Attributes

means_ array-like, shape = [n_classes, n_features] Class means
xbar_ float, shape = [n_features] Over all mean
priors_ array-like, shape = [n_classes] Class priors (sum to 1)
covariance_ array-like, shape = [n_features, n_features] Covariance matrix (shared by all classes)

Methods

422 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

decision_function(X) This function return the decision function values related to each
fit(X, y[, store_covariance, tol]) Fit the LDA model according to the given training data and parameters.
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
predict(X) This function does classification on an array of test vectors X.
predict_log_proba(X) This function return posterior log-probabilities of classification
predict_proba(X) This function return posterior probabilities of classification
score(X, y) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of the estimator.
transform(X) Project the data so as to maximize class separation (large separation between projected class means and small variance within each class).

__init__(n_components=None, priors=None)

decision_function(X)
This function return the decision function values related to each class on an array of test vectors X.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array, shape = [n_samples, n_classes]

fit(X, y, store_covariance=False, tol=0.0001)
Fit the LDA model according to the given training data and parameters.

Parameters X : array-like, shape = [n_samples, n_features]

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

y : array, shape = [n_samples]

Target values (integers)

store_covariance : boolean

If True the covariance matrix (shared by all classes) is computed and stored in
self.covariance_ attribute.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

1.8. Reference 423

scikit-learn user guide, Release 0.12-git

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
This function does classification on an array of test vectors X.

The predicted class C for each sample in X is returned.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array, shape = [n_samples]

predict_log_proba(X)
This function return posterior log-probabilities of classification according to each class on an array of test
vectors X.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array, shape = [n_samples, n_classes]

predict_proba(X)
This function return posterior probabilities of classification according to each class on an array of test
vectors X.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array, shape = [n_samples, n_classes]

score(X, y)
Returns the mean accuracy on the given test data and labels.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Project the data so as to maximize class separation (large separation between projected class means and
small variance within each class).

Parameters X : array-like, shape = [n_samples, n_features]

Returns X_new : array, shape = [n_samples, n_components]

1.8.15 sklearn.linear_model: Generalized Linear Models

The sklearn.linear_model module implements genelarized linear models. It includes Ridge regression,
Bayesian Regression, Lasso and Elastic Net estimators computed with Least Angle Regression and coordinate de-
scent. It also implements Stochastic Gradient Descent related algorithms.

424 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

User guide: See the Generalized Linear Models section for further details.

For dense data

linear_model.LinearRegression([...]) Ordinary least squares Linear Regression.
linear_model.Ridge([alpha, fit_intercept, ...]) Linear least squares with l2 regularization.
linear_model.RidgeClassifier([alpha, ...]) Classifier using Ridge regression.
linear_model.RidgeClassifierCV([alphas, ...]) Ridge classifier with built-in cross-validation.
linear_model.RidgeCV([alphas, ...]) Ridge regression with built-in cross-validation.
linear_model.Lasso([alpha, fit_intercept, ...]) Linear Model trained with L1 prior as regularizer (aka the Lasso)
linear_model.LassoCV([eps, n_alphas, ...]) Lasso linear model with iterative fitting along a regularization path
linear_model.ElasticNet([alpha, rho, ...]) Linear Model trained with L1 and L2 prior as regularizer
linear_model.ElasticNetCV([rho, eps, ...]) Elastic Net model with iterative fitting along a regularization path
linear_model.Lars([fit_intercept, verbose, ...]) Least Angle Regression model a.k.a. LAR
linear_model.LassoLars([alpha, ...]) Lasso model fit with Least Angle Regression a.k.a. Lars
linear_model.LarsCV([fit_intercept, ...]) Cross-validated Least Angle Regression model
linear_model.LassoLarsCV([fit_intercept, ...]) Cross-validated Lasso, using the LARS algorithm
linear_model.LassoLarsIC([criterion, ...]) Lasso model fit with Lars using BIC or AIC for model selection
linear_model.LogisticRegression([penalty, ...]) Logistic Regression (aka logit, MaxEnt) classifier.
linear_model.OrthogonalMatchingPursuit([...]) Orthogonal Mathching Pursuit model (OMP)
linear_model.Perceptron([penalty, alpha, ...]) Perceptron
linear_model.SGDClassifier([loss, penalty, ...]) Linear model fitted by minimizing a regularized empirical loss with SGD.
linear_model.SGDRegressor([loss, penalty, ...]) Linear model fitted by minimizing a regularized empirical loss with SGD
linear_model.BayesianRidge([n_iter, tol, ...]) Bayesian ridge regression
linear_model.ARDRegression([n_iter, tol, ...]) Bayesian ARD regression.
linear_model.RandomizedLasso([alpha, ...]) Randomized Lasso
linear_model.RandomizedLogisticRegression([...]) Randomized Logistic Regression

sklearn.linear_model.LinearRegression

class sklearn.linear_model.LinearRegression(fit_intercept=True, normalize=False,
copy_X=True)

Ordinary least squares Linear Regression.

Parameters fit_intercept : boolean, optional

wether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional

If True, the regressors X are normalized

Notes

From the implementation point of view, this is just plain Ordinary Least Squares (numpy.linalg.lstsq) wrapped
as a predictor object.

1.8. Reference 425

scikit-learn user guide, Release 0.12-git

Attributes

coef_ array Estimated coefficients for the linear regression problem.
intercept_ array Independent term in the linear model.

Methods

decision_function(X) Decision function of the linear model
fit(X, y[, n_jobs]) Fit linear model.
get_params([deep]) Get parameters for the estimator
predict(X) Predict using the linear model
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

__init__(fit_intercept=True, normalize=False, copy_X=True)

decision_function(X)
Decision function of the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

fit(X, y, n_jobs=1)
Fit linear model.

Parameters X : numpy array or sparse matrix of shape [n_samples,n_features]

Training data

y : numpy array of shape [n_samples, n_responses]

Target values

n_jobs : The number of jobs to use for the computation.

If -1 all CPUs are used. This will only provide speedup for n_response > 1 and sufficient
large problems

Returns self : returns an instance of self.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict using the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

426 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.linear_model.Ridge

class sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True,
tol=0.001)

Linear least squares with l2 regularization.

This model solves a regression model where the loss function is the linear least squares function and regulariza-
tion is given by the l2-norm. Also known as Ridge Regression or Tikhonov regularization. This estimator has
built-in support for multi-variate regression (i.e., when y is a 2d-array of shape [n_samples, n_responses]).

Parameters alpha : float

Small positive values of alpha improve the conditioning of the problem and reduce the
variance of the estimates. Alpha corresponds to (2*C)^-1 in other linear models such as
LogisticRegression or LinearSVC.

fit_intercept : boolean

Whether to calculate the intercept for this model. If set to false, no intercept will be
used in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional

If True, the regressors X are normalized

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

tol: float :

Precision of the solution.

See Also:

RidgeClassifier, RidgeCV

1.8. Reference 427

scikit-learn user guide, Release 0.12-git

Examples

>>> from sklearn.linear_model import Ridge
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> np.random.seed(0)
>>> y = np.random.randn(n_samples)
>>> X = np.random.randn(n_samples, n_features)
>>> clf = Ridge(alpha=1.0)
>>> clf.fit(X, y)
Ridge(alpha=1.0, copy_X=True, fit_intercept=True, normalize=False,

tol=0.001)

Attributes

coef_ array, shape = [n_features] or [n_responses, n_features] Weight vector(s).

Methods

decision_function(X) Decision function of the linear model
fit(X, y[, sample_weight, solver]) Fit Ridge regression model
get_params([deep]) Get parameters for the estimator
predict(X) Predict using the linear model
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

__init__(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, tol=0.001)

decision_function(X)
Decision function of the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

fit(X, y, sample_weight=1.0, solver=’auto’)
Fit Ridge regression model

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training data

y : array-like, shape = [n_samples] or [n_samples, n_responses]

Target values

sample_weight : float or numpy array of shape [n_samples]

Individual weights for each sample

solver : {‘auto’, ‘dense_cholesky’, ‘sparse_cg’}

Solver to use in the computational routines. ‘delse_cholesky’ will use the standard
scipy.linalg.solve function, ‘sparse_cg’ will use the conjugate gradient solver as found

428 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

in scipy.sparse.linalg.cg while ‘auto’ will chose the most appropriate depending on the
matrix X.

Returns self : returns an instance of self.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict using the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.linear_model.RidgeClassifier

class sklearn.linear_model.RidgeClassifier(alpha=1.0, fit_intercept=True, normalize=False,
copy_X=True, tol=0.001, class_weight=None)

Classifier using Ridge regression.

Parameters alpha : float

Small positive values of alpha improve the conditioning of the problem and reduce the
variance of the estimates. Alpha corresponds to (2*C)^-1 in other linear models such as
LogisticRegression or LinearSVC.

fit_intercept : boolean

Whether to calculate the intercept for this model. If set to false, no intercept will be
used in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional

1.8. Reference 429

scikit-learn user guide, Release 0.12-git

If True, the regressors X are normalized

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

tol: float :

Precision of the solution.

class_weight : dict, optional

Weights associated with classes in the form {class_label : weight}. If not given, all
classes are supposed to have weight one.

See Also:

Ridge, RidgeClassifierCV

Notes

For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is
implemented by taking advantage of the multi-variate response support in Ridge.

Attributes

coef_ array, shape = [n_features] or [n_classes, n_features] Weight vector(s).

Methods

decision_function(X)
fit(X, y[, solver]) Fit Ridge regression model.
get_params([deep]) Get parameters for the estimator
predict(X) Predict target values according to the fitted model.
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

__init__(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, tol=0.001,
class_weight=None)

fit(X, y, solver=’auto’)
Fit Ridge regression model.

Parameters X : {array-like, sparse matrix}, shape = [n_samples,n_features]

Training data

y : array-like, shape = [n_samples]

Target values

solver : {‘auto’, ‘dense_cholesky’, ‘sparse_cg’}

Solver to use in the computational routines. ‘delse_cholesky’ will use the standard
scipy.linalg.solve function, ‘sparse_cg’ will use the conjugate gradient solver as found
in scipy.sparse.linalg.cg while ‘auto’ will chose the most appropriate depending on the
matrix X.

430 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Returns self : returns an instance of self.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict target values according to the fitted model.

Parameters X : array-like, shape = [n_samples, n_features]

Returns y : array, shape = [n_samples]

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.linear_model.RidgeClassifierCV

class sklearn.linear_model.RidgeClassifierCV(alphas=array([0.1, 1., 10.]),
fit_intercept=True, normalize=False,
score_func=None, loss_func=None, cv=None,
class_weight=None)

Ridge classifier with built-in cross-validation.

By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-
validation. Currently, only the n_features > n_samples case is handled efficiently.

Parameters alphas: numpy array of shape [n_alpha] :

Array of alpha values to try. Small positive values of alpha improve the conditioning of
the problem and reduce the variance of the estimates. Alpha corresponds to (2*C)^-1 in
other linear models such as LogisticRegression or LinearSVC.

fit_intercept : boolean

Whether to calculate the intercept for this model. If set to false, no intercept will be
used in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional

1.8. Reference 431

scikit-learn user guide, Release 0.12-git

If True, the regressors X are normalized

score_func: callable, optional :

function that takes 2 arguments and compares them in order to evaluate the performance
of prediction (big is good) if None is passed, the score of the estimator is maximized

loss_func: callable, optional :

function that takes 2 arguments and compares them in order to evaluate the performance
of prediction (small is good) if None is passed, the score of the estimator is maximized

cv : cross-validation generator, optional

If None, Generalized Cross-Validation (efficient Leave-One-Out) will be used.

class_weight : dict, optional

Weights associated with classes in the form {class_label : weight}. If not given, all
classes are supposed to have weight one.

See Also:

RidgeRidge regression

RidgeClassifierRidge classifier

RidgeCVRidge regression with built-in cross validation

Notes

For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is
implemented by taking advantage of the multi-variate response support in Ridge.

Methods

decision_function(X)
fit(X, y[, sample_weight, class_weight]) Fit the ridge classifier.
get_params([deep]) Get parameters for the estimator
predict(X) Predict target values according to the fitted model.
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

__init__(alphas=array([0.1, 1., 10.]), fit_intercept=True, normalize=False, score_func=None,
loss_func=None, cv=None, class_weight=None)

fit(X, y, sample_weight=1.0, class_weight=None)
Fit the ridge classifier.

Parameters X : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target values.

sample_weight : float or numpy array of shape [n_samples]

432 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Sample weight

class_weight : dict, optional

Weights associated with classes in the form {class_label : weight}. If not given, all
classes are supposed to have weight one.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict target values according to the fitted model.

Parameters X : array-like, shape = [n_samples, n_features]

Returns y : array, shape = [n_samples]

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.linear_model.RidgeCV

class sklearn.linear_model.RidgeCV(alphas=array([0.1, 1., 10.]), fit_intercept=True, nor-
malize=False, score_func=None, loss_func=None, cv=None,
gcv_mode=None)

Ridge regression with built-in cross-validation.

By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-
validation.

Parameters alphas: numpy array of shape [n_alpha] :

1.8. Reference 433

scikit-learn user guide, Release 0.12-git

Array of alpha values to try. Small positive values of alpha improve the conditioning of
the problem and reduce the variance of the estimates. Alpha corresponds to (2*C)^-1
in other linear models such as LogisticRegression or LinearSVC.

fit_intercept : boolean

Whether to calculate the intercept for this model. If set to false, no intercept will be
used in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional

If True, the regressors X are normalized

score_func: callable, optional :

function that takes 2 arguments and compares them in order to evaluate the performance
of prediction (big is good) if None is passed, the score of the estimator is maximized

loss_func: callable, optional :

function that takes 2 arguments and compares them in order to evaluate the performance
of prediction (small is good) if None is passed, the score of the estimator is maximized

cv : cross-validation generator, optional

If None, Generalized Cross-Validation (efficient Leave-One-Out) will be used.

See Also:

RidgeRidge regression

RidgeClassifierRidge classifier

RidgeCVRidge regression with built-in cross validation

Attributes

coef_ array, shape = [n_features] or
[n_classes, n_features]

Weight vector(s).

gcv_mode {None, ‘auto’, ‘svd’, eigen’}, op-
tional

Flag indicating which strategy to
use when performing Generalized
Cross-Validation. Options are:

’auto’ : use svd if n_samples > n_features, otherwise use eigen
’svd’ : force computation via singular value decomposition of X
’eigen’ : force computation via eigendecomposition of X^T X

The ‘auto’ mode is the default and
is intended to pick the cheaper op-
tion of the two depending upon the
shape of the training data.

Methods

decision_function(X) Decision function of the linear model
fit(X, y[, sample_weight]) Fit Ridge regression model
get_params([deep]) Get parameters for the estimator

Continued on next page

434 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Table 1.106 – continued from previous page
predict(X) Predict using the linear model
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

__init__(alphas=array([0.1, 1., 10.]), fit_intercept=True, normalize=False, score_func=None,
loss_func=None, cv=None, gcv_mode=None)

decision_function(X)
Decision function of the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

fit(X, y, sample_weight=1.0)
Fit Ridge regression model

Parameters X : array-like, shape = [n_samples, n_features]

Training data

y : array-like, shape = [n_samples] or [n_samples, n_responses]

Target values

sample_weight : float or array-like of shape [n_samples]

Sample weight

Returns self : Returns self.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict using the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

1.8. Reference 435

scikit-learn user guide, Release 0.12-git

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.linear_model.Lasso

class sklearn.linear_model.Lasso(alpha=1.0, fit_intercept=True, normalize=False, precom-
pute=’auto’, copy_X=True, max_iter=1000, tol=0.0001,
warm_start=False, positive=False)

Linear Model trained with L1 prior as regularizer (aka the Lasso)

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

Technically the Lasso model is optimizing the same objective function as the Elastic Net with rho=1.0 (no L2
penalty).

Parameters alpha : float, optional

Constant that multiplies the L1 term. Defaults to 1.0

fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional

If True, the regressors X are normalized

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let
us decide. The Gram matrix can also be passed as argument.

max_iter: int, optional :

The maximum number of iterations

tol: float, optional :

The tolerance for the optimization: if the updates are smaller than ‘tol’, the optimization
code checks the dual gap for optimality and continues until it is smaller than tol.

warm_start : bool, optional

When set to True, reuse the solution of the previous call to fit as initialization, otherwise,
just erase the previous solution.

positive: bool, optional :

When set to True, forces the coefficients to be positive.

436 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

See Also:

lars_path, lasso_path, LassoLars, LassoCV, LassoLarsCV,
sklearn.decomposition.sparse_encode

Notes

The algorithm used to fit the model is coordinate descent.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a fortran
contiguous numpy array.

Examples

>>> from sklearn import linear_model
>>> clf = linear_model.Lasso(alpha=0.1)
>>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000,

normalize=False, positive=False, precompute=’auto’, tol=0.0001,
warm_start=False)

>>> print(clf.coef_)
[0.85 0.]
>>> print(clf.intercept_)
0.15

Attributes

coef_ array, shape = [n_features] parameter vector (w in the fomulation formula)
intercept_ float independent term in decision function.

Methods

decision_function(X) Decision function of the linear model
fit(X, y[, Xy, coef_init]) Fit Elastic Net model with coordinate descent
get_params([deep]) Get parameters for the estimator
predict(X) Predict using the linear model
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

__init__(alpha=1.0, fit_intercept=True, normalize=False, precompute=’auto’, copy_X=True,
max_iter=1000, tol=0.0001, warm_start=False, positive=False)

decision_function(X)
Decision function of the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

fit(X, y, Xy=None, coef_init=None)
Fit Elastic Net model with coordinate descent

1.8. Reference 437

scikit-learn user guide, Release 0.12-git

Parameters X: ndarray, (n_samples, n_features) :

Data

y: ndarray, (n_samples) :

Target

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

coef_init: ndarray of shape n_features :

The initial coeffients to warm-start the optimization

Notes

Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically
convert the X input as a fortran contiguous numpy array if necessary.

To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict using the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

438 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

sklearn.linear_model.LassoCV

class sklearn.linear_model.LassoCV(eps=0.001, n_alphas=100, alphas=None, fit_intercept=True,
normalize=False, precompute=’auto’, max_iter=1000,
tol=0.0001, copy_X=True, cv=None, verbose=False)

Lasso linear model with iterative fitting along a regularization path

The best model is selected by cross-validation.

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

Parameters eps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3.

n_alphas : int, optional

Number of alphas along the regularization path

alphas : numpy array, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let
us decide. The Gram matrix can also be passed as argument.

max_iter: int, optional :

The maximum number of iterations

tol: float, optional :

The tolerance for the optimization: if the updates are smaller than ‘tol’, the optimization
code checks the dual gap for optimality and continues until it is smaller than tol.

cv : integer or crossvalidation generator, optional

If an integer is passed, it is the number of fold (default 3). Specific crossvalidation ob-
jects can be passed, see sklearn.cross_validation module for the list of possible objects

verbose : bool or integer

amount of verbosity

See Also:

lars_path, lasso_path, LassoLars, Lasso, LassoLarsCV

Notes

See examples/linear_model/lasso_path_with_crossvalidation.py for an example.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a fortran
contiguous numpy array.

1.8. Reference 439

scikit-learn user guide, Release 0.12-git

Attributes

alpha_: float The amount of penalization choosen by cross
validation

coef_ array, shape =
[n_features]

parameter vector (w in the fomulation
formula)

intercept_ float independent term in decision function.
mse_path_: array, shape =
[n_alphas, n_folds]

mean square error for the test set on each fold,
varying alpha

Methods

decision_function(X) Decision function of the linear model
fit(X, y) Fit linear model with coordinate descent along decreasing alphas
get_params([deep]) Get parameters for the estimator
path(X, y[, eps, n_alphas, alphas, ...]) Compute Lasso path with coordinate descent
predict(X) Predict using the linear model
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

__init__(eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precom-
pute=’auto’, max_iter=1000, tol=0.0001, copy_X=True, cv=None, verbose=False)

decision_function(X)
Decision function of the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

fit(X, y)
Fit linear model with coordinate descent along decreasing alphas using cross-validation

Parameters X : numpy array of shape [n_samples,n_features]

Training data. Pass directly as fortran contiguous data to avoid unnecessary memory
duplication

y : numpy array of shape [n_samples]

Target values

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

static path(X, y, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’, Xy=None,
fit_intercept=True, normalize=False, copy_X=True, verbose=False, **params)

Compute Lasso path with coordinate descent

The optimization objective for Lasso is:

440 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

Parameters X : numpy array of shape [n_samples,n_features]

Training data. Pass directly as fortran contiguous data to avoid unnecessary memory
duplication

y : numpy array of shape [n_samples]

Target values

eps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3

n_alphas : int, optional

Number of alphas along the regularization path

alphas : numpy array, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let
us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

fit_intercept : bool

Fit or not an intercept

normalize : boolean, optional

If True, the regressors X are normalized

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

verbose : bool or integer

Amount of verbosity

params : kwargs

keyword arguments passed to the Lasso objects

Returns models : a list of models along the regularization path

See Also:

lars_path, Lasso, LassoLars, LassoCV, LassoLarsCV,
sklearn.decomposition.sparse_encode

Notes

See examples/linear_model/plot_lasso_coordinate_descent_path.py for an example.

1.8. Reference 441

scikit-learn user guide, Release 0.12-git

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
fortran contiguous numpy array.

predict(X)
Predict using the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.linear_model.ElasticNet

class sklearn.linear_model.ElasticNet(alpha=1.0, rho=0.5, fit_intercept=True, normal-
ize=False, precompute=’auto’, max_iter=1000,
copy_X=True, tol=0.0001, warm_start=False, posi-
tive=False)

Linear Model trained with L1 and L2 prior as regularizer

Minimizes the objective function:

1 / (2 * n_samples) * ||y - Xw||^2_2 +
+ alpha * rho * ||w||_1 + 0.5 * alpha * (1 - rho) * ||w||^2_2

If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:

a * L1 + b * L2

where:

alpha = a + b and rho = a / (a + b)

The parameter rho corresponds to alpha in the glmnet R package while alpha corresponds to the lambda param-
eter in glmnet. Specifically, rho = 1 is the lasso penalty. Currently, rho <= 0.01 is not reliable, unless you supply
your own sequence of alpha.

Parameters alpha : float

442 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Constant that multiplies the penalty terms. Defaults to 1.0 See the notes for the exact
mathematical meaning of this parameter

rho : float

The ElasticNet mixing parameter, with 0 < rho <= 1. For rho = 0 the penalty is an L1
penalty. For rho = 1 it is an L2 penalty. For 0 < rho < 1, the penalty is a combination of
L1 and L2

fit_intercept: bool :

Whether the intercept should be estimated or not. If False, the data is assumed to be
already centered.

normalize : boolean, optional

If True, the regressors X are normalized

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let
us decide. The Gram matrix can also be passed as argument.

max_iter: int, optional :

The maximum number of iterations

copy_X : boolean, optional, default False

If True, X will be copied; else, it may be overwritten.

tol: float, optional :

The tolerance for the optimization: if the updates are smaller than ‘tol’, the optimization
code checks the dual gap for optimality and continues until it is smaller than tol.

warm_start : bool, optional

When set to True, reuse the solution of the previous call to fit as initialization, otherwise,
just erase the previous solution.

positive: bool, optional :

When set to True, forces the coefficients to be positive.

Notes

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a fortran
contiguous numpy array.

Methods

decision_function(X) Decision function of the linear model
fit(X, y[, Xy, coef_init]) Fit Elastic Net model with coordinate descent
get_params([deep]) Get parameters for the estimator
predict(X) Predict using the linear model
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

1.8. Reference 443

scikit-learn user guide, Release 0.12-git

__init__(alpha=1.0, rho=0.5, fit_intercept=True, normalize=False, precompute=’auto’,
max_iter=1000, copy_X=True, tol=0.0001, warm_start=False, positive=False)

decision_function(X)
Decision function of the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

fit(X, y, Xy=None, coef_init=None)
Fit Elastic Net model with coordinate descent

Parameters X: ndarray, (n_samples, n_features) :

Data

y: ndarray, (n_samples) :

Target

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

coef_init: ndarray of shape n_features :

The initial coeffients to warm-start the optimization

Notes

Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically
convert the X input as a fortran contiguous numpy array if necessary.

To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict using the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

444 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.linear_model.ElasticNetCV

class sklearn.linear_model.ElasticNetCV(rho=0.5, eps=0.001, n_alphas=100, alphas=None,
fit_intercept=True, normalize=False, precom-
pute=’auto’, max_iter=1000, tol=0.0001, cv=None,
copy_X=True, verbose=0, n_jobs=1)

Elastic Net model with iterative fitting along a regularization path

The best model is selected by cross-validation.

Parameters rho : float, optional

float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For
rho = 0 the penalty is an L1 penalty. For rho = 1 it is an L2 penalty. For 0 < rho < 1,
the penalty is a combination of L1 and L2 This parameter can be a list, in which case
the different values are tested by cross-validation and the one giving the best prediction
score is used. Note that a good choice of list of values for rho is often to put more values
close to 1 (i.e. Lasso) and less close to 0 (i.e. Ridge), as in [.1, .5, .7, .9, .95, .99, 1]

eps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3.

n_alphas : int, optional

Number of alphas along the regularization path

alphas : numpy array, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let
us decide. The Gram matrix can also be passed as argument.

max_iter: int, optional :

The maximum number of iterations

tol: float, optional :

The tolerance for the optimization: if the updates are smaller than ‘tol’, the optimization
code checks the dual gap for optimality and continues until it is smaller than tol.

cv : integer or crossvalidation generator, optional

If an integer is passed, it is the number of fold (default 3). Specific crossvalidation ob-
jects can be passed, see sklearn.cross_validation module for the list of possible objects

verbose : bool or integer

1.8. Reference 445

scikit-learn user guide, Release 0.12-git

amount of verbosity

n_jobs : integer, optional

Number of CPUs to use during the cross validation. If ‘-1’, use all the CPUs. Note that
this is used only if multiple values for rho are given.

See Also:

enet_path, ElasticNet

Notes

See examples/linear_model/lasso_path_with_crossvalidation.py for an example.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a fortran
contiguous numpy array.

The parameter rho corresponds to alpha in the glmnet R package while alpha corresponds to the lambda param-
eter in glmnet. More specifically, the optimization objective is:

1 / (2 * n_samples) * ||y - Xw||^2_2 +
+ alpha * rho * ||w||_1 + 0.5 * alpha * (1 - rho) * ||w||^2_2

If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:

a * L1 + b * L2

for:

alpha = a + b and rho = a / (a + b)

Attributes

alpha_: float The amount of penalization choosen by cross
validation

rho_: float The compromise between l1 and l2 penalization
choosen by cross validation

coef_ array, shape =
[n_features]

parameter vector (w in the fomulation formula)

intercept_ float independent term in decision function.
mse_path_: array, shape = [n_rho,
n_alpha, n_folds]

mean square error for the test set on each fold,
varying rho and alpha

Methods

decision_function(X) Decision function of the linear model
fit(X, y) Fit linear model with coordinate descent along decreasing alphas
get_params([deep]) Get parameters for the estimator
path(X, y[, rho, eps, n_alphas, alphas, ...]) Compute Elastic-Net path with coordinate descent
predict(X) Predict using the linear model
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

446 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

__init__(rho=0.5, eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False,
precompute=’auto’, max_iter=1000, tol=0.0001, cv=None, copy_X=True, verbose=0,
n_jobs=1)

decision_function(X)
Decision function of the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

fit(X, y)
Fit linear model with coordinate descent along decreasing alphas using cross-validation

Parameters X : numpy array of shape [n_samples,n_features]

Training data. Pass directly as fortran contiguous data to avoid unnecessary memory
duplication

y : numpy array of shape [n_samples]

Target values

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

static path(X, y, rho=0.5, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’, Xy=None,
fit_intercept=True, normalize=False, copy_X=True, verbose=False, **params)

Compute Elastic-Net path with coordinate descent

The Elastic Net optimization function is:

1 / (2 * n_samples) * ||y - Xw||^2_2 +
+ alpha * rho * ||w||_1 + 0.5 * alpha * (1 - rho) * ||w||^2_2

Parameters X : numpy array of shape [n_samples, n_features]

Training data. Pass directly as fortran contiguous data to avoid unnecessary memory
duplication

y : numpy array of shape [n_samples]

Target values

rho : float, optional

float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). rho=1
corresponds to the Lasso

eps : float

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3

n_alphas : int, optional

Number of alphas along the regularization path

alphas : numpy array, optional

List of alphas where to compute the models. If None alphas are set automatically

1.8. Reference 447

scikit-learn user guide, Release 0.12-git

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let
us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

fit_intercept : bool

Fit or not an intercept

normalize : boolean, optional

If True, the regressors X are normalized

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

verbose : bool or integer

Amount of verbosity

params : kwargs

keyword arguments passed to the Lasso objects

Returns models : a list of models along the regularization path

See Also:

ElasticNet, ElasticNetCV

Notes

See examples/plot_lasso_coordinate_descent_path.py for an example.

predict(X)
Predict using the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

448 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.linear_model.Lars

class sklearn.linear_model.Lars(fit_intercept=True, verbose=False, normalize=True, precom-
pute=’auto’, n_nonzero_coefs=500, eps=2.2204460492503131e-
16, copy_X=True)

Least Angle Regression model a.k.a. LAR

Parameters n_nonzero_coefs : int, optional

Target number of non-zero coefficients. Use np.inf for no limit.

fit_intercept : boolean

Whether to calculate the intercept for this model. If set to false, no intercept will be
used in calculations (e.g. data is expected to be already centered).

verbose : boolean or integer, optional

Sets the verbosity amount

normalize : boolean, optional

If True, the regressors X are normalized

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let
us decide. The Gram matrix can also be passed as argument.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

eps: float, optional :

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems. Unlike the ‘tol’ parameter in some
iterative optimization-based algorithms, this parameter does not control the tolerance of
the optimization.

See Also:

lars_path, LarsCV, sklearn.decomposition.sparse_encode

http//en.wikipedia.org/wiki/Least_angle_regression

Examples

>>> from sklearn import linear_model
>>> clf = linear_model.Lars(n_nonzero_coefs=1)
>>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111])
...
Lars(copy_X=True, eps=..., fit_intercept=True, n_nonzero_coefs=1,

1.8. Reference 449

scikit-learn user guide, Release 0.12-git

normalize=True, precompute=’auto’, verbose=False)
>>> print(clf.coef_)
[0. -1.11...]

Attributes

coef_ array, shape = [n_features] parameter vector (w in the fomulation formula)
intercept_ float independent term in decision function.

Methods

decision_function(X) Decision function of the linear model
fit(X, y) Fit the model using X, y as training data.
get_params([deep]) Get parameters for the estimator
predict(X) Predict using the linear model
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

__init__(fit_intercept=True, verbose=False, normalize=True, precompute=’auto’,
n_nonzero_coefs=500, eps=2.2204460492503131e-16, copy_X=True)

decision_function(X)
Decision function of the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

fit(X, y)
Fit the model using X, y as training data.

Parameters X : array-like, shape = [n_samples, n_features]

training data.

y : array-like, shape = [n_samples]

target values.

Returns self : object

returns an instance of self.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict using the linear model

Parameters X : numpy array of shape [n_samples, n_features]

450 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Returns C : array, shape = [n_samples]

Returns predicted values.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.linear_model.LassoLars

class sklearn.linear_model.LassoLars(alpha=1.0, fit_intercept=True, verbose=False, nor-
malize=True, precompute=’auto’, max_iter=500,
eps=2.2204460492503131e-16, copy_X=True)

Lasso model fit with Least Angle Regression a.k.a. Lars

It is a Linear Model trained with an L1 prior as regularizer.

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

Parameters fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

verbose : boolean or integer, optional

Sets the verbosity amount

normalize : boolean, optional

If True, the regressors X are normalized

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let
us decide. The Gram matrix can also be passed as argument.

max_iter: integer, optional :

1.8. Reference 451

scikit-learn user guide, Release 0.12-git

Maximum number of iterations to perform.

eps: float, optional :

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems. Unlike the ‘tol’ parameter in some
iterative optimization-based algorithms, this parameter does not control the tolerance of
the optimization.

See Also:

lars_path, lasso_path, Lasso, LassoCV, LassoLarsCV, sklearn.decomposition.sparse_encode

http//en.wikipedia.org/wiki/Least_angle_regression

Examples

>>> from sklearn import linear_model
>>> clf = linear_model.LassoLars(alpha=0.01)
>>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1, 0, -1])
...
LassoLars(alpha=0.01, copy_X=True, eps=..., fit_intercept=True,

max_iter=500, normalize=True, precompute=’auto’, verbose=False)
>>> print(clf.coef_)
[0. -0.963257...]

Attributes

coef_ array, shape = [n_features] parameter vector (w in the fomulation formula)
intercept_ float independent term in decision function.

Methods

decision_function(X) Decision function of the linear model
fit(X, y) Fit the model using X, y as training data.
get_params([deep]) Get parameters for the estimator
predict(X) Predict using the linear model
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

__init__(alpha=1.0, fit_intercept=True, verbose=False, normalize=True, precompute=’auto’,
max_iter=500, eps=2.2204460492503131e-16, copy_X=True)

decision_function(X)
Decision function of the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

fit(X, y)
Fit the model using X, y as training data.

452 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Parameters X : array-like, shape = [n_samples, n_features]

training data.

y : array-like, shape = [n_samples]

target values.

Returns self : object

returns an instance of self.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict using the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.linear_model.LarsCV

class sklearn.linear_model.LarsCV(fit_intercept=True, verbose=False, max_iter=500, normal-
ize=True, precompute=’auto’, cv=None, max_n_alphas=1000,
n_jobs=1, eps=2.2204460492503131e-16, copy_X=True)

Cross-validated Least Angle Regression model

Parameters fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

1.8. Reference 453

scikit-learn user guide, Release 0.12-git

verbose : boolean or integer, optional

Sets the verbosity amount

normalize : boolean, optional

If True, the regressors X are normalized

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let
us decide. The Gram matrix can also be passed as argument.

max_iter: integer, optional :

Maximum number of iterations to perform.

cv : crossvalidation generator, optional

see sklearn.cross_validation module. If None is passed, default to a 5-fold strategy

max_n_alphas : integer, optional

The maximum number of points on the path used to compute the residuals in the cross-
validation

n_jobs : integer, optional

Number of CPUs to use during the cross validation. If ‘-1’, use all the CPUs

eps: float, optional :

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems.

See Also:

lars_path, LassoLARS, LassoLarsCV

Attributes

coef_ array, shape =
[n_features]

parameter vector (w in the fomulation
formula)

intercept_ float independent term in decision function.
coef_path: array, shape = [n_features,
n_alpha]

the varying values of the coefficients
along the path

Methods

decision_function(X) Decision function of the linear model
fit(X, y) Fit the model using X, y as training data.
get_params([deep]) Get parameters for the estimator
predict(X) Predict using the linear model
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

454 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

__init__(fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute=’auto’,
cv=None, max_n_alphas=1000, n_jobs=1, eps=2.2204460492503131e-16, copy_X=True)

decision_function(X)
Decision function of the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

fit(X, y)
Fit the model using X, y as training data.

Parameters X : array-like, shape = [n_samples, n_features]

Training data.

y : array-like, shape = [n_samples]

Target values.

Returns self : object

returns an instance of self.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict using the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

1.8. Reference 455

scikit-learn user guide, Release 0.12-git

sklearn.linear_model.LassoLarsCV

class sklearn.linear_model.LassoLarsCV(fit_intercept=True, verbose=False, max_iter=500,
normalize=True, precompute=’auto’,
cv=None, max_n_alphas=1000, n_jobs=1,
eps=2.2204460492503131e-16, copy_X=True)

Cross-validated Lasso, using the LARS algorithm

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

Parameters fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

verbose : boolean or integer, optional

Sets the verbosity amount

normalize : boolean, optional

If True, the regressors X are normalized

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let
us decide. The Gram matrix can also be passed as argument.

max_iter: integer, optional :

Maximum number of iterations to perform.

cv : crossvalidation generator, optional

see sklearn.cross_validation module. If None is passed, default to a 5-fold strategy

max_n_alphas : integer, optional

The maximum number of points on the path used to compute the residuals in the cross-
validation

n_jobs : integer, optional

Number of CPUs to use during the cross validation. If ‘-1’, use all the CPUs

eps: float, optional :

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

See Also:

lars_path, LassoLars, LarsCV, LassoCV

456 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Notes

The object solves the same problem as the LassoCV object. However, unlike the LassoCV, it find the relevent
alphas values by itself. In general, because of this property, it will be more stable. However, it is more fragile to
heavily multicollinear datasets.

It is more efficient than the LassoCV if only a small number of features are selected compared to the total
number, for instance if there are very few samples compared to the number of features.

Attributes

coef_ array, shape =
[n_features]

parameter vector (w in the fomulation formula)

intercept_ float independent term in decision function.
coef_path: array, shape =
[n_features, n_alpha]

the varying values of the coefficients along the path

alphas_: array, shape =
[n_alpha]

the different values of alpha along the path

cv_alphas: array, shape =
[n_cv_alphas]

all the values of alpha along the path for the different
folds

cv_mse_path_: array, shape =
[n_folds, n_cv_alphas]

the mean square error on left-out for each fold along
the path (alpha values given by cv_alphas)

Methods

decision_function(X) Decision function of the linear model
fit(X, y) Fit the model using X, y as training data.
get_params([deep]) Get parameters for the estimator
predict(X) Predict using the linear model
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

__init__(fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute=’auto’,
cv=None, max_n_alphas=1000, n_jobs=1, eps=2.2204460492503131e-16, copy_X=True)

decision_function(X)
Decision function of the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

fit(X, y)
Fit the model using X, y as training data.

Parameters X : array-like, shape = [n_samples, n_features]

Training data.

y : array-like, shape = [n_samples]

Target values.

1.8. Reference 457

scikit-learn user guide, Release 0.12-git

Returns self : object

returns an instance of self.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict using the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.linear_model.LassoLarsIC

class sklearn.linear_model.LassoLarsIC(criterion=’aic’, fit_intercept=True, verbose=False,
normalize=True, precompute=’auto’, max_iter=500,
eps=2.2204460492503131e-16, copy_X=True)

Lasso model fit with Lars using BIC or AIC for model selection

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

AIC is the Akaike information criterion and BIC is the Bayes Information criterion. Such criteria are useful
to select the value of the regularization parameter by making a trade-off between the goodness of fit and the
complexity of the model. A good model should explain well the data while being simple.

Parameters criterion: ‘bic’ | ‘aic’ :

The type of criterion to use.

458 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

verbose : boolean or integer, optional

Sets the verbosity amount

normalize : boolean, optional

If True, the regressors X are normalized

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let
us decide. The Gram matrix can also be passed as argument.

max_iter: integer, optional :

Maximum number of iterations to perform. Can be used for early stopping.

eps: float, optional :

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems. Unlike the ‘tol’ parameter in some
iterative optimization-based algorithms, this parameter does not control the tolerance of
the optimization.

See Also:

lars_path, LassoLars, LassoLarsCV

Notes

The estimation of the number of degrees of freedom is given by:

“On the degrees of freedom of the lasso” Hui Zou, Trevor Hastie, and Robert Tibshirani Ann. Statist. Volume
35, Number 5 (2007), 2173-2192.

http://en.wikipedia.org/wiki/Akaike_information_criterion http://en.wikipedia.org/wiki/Bayesian_information_criterion

Examples

>>> from sklearn import linear_model
>>> clf = linear_model.LassoLarsIC(criterion=’bic’)
>>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111])
...
LassoLarsIC(copy_X=True, criterion=’bic’, eps=..., fit_intercept=True,

max_iter=500, normalize=True, precompute=’auto’,
verbose=False)

>>> print(clf.coef_)
[0. -1.11...]

1.8. Reference 459

http://en.wikipedia.org/wiki/Akaike_information_criterion
http://en.wikipedia.org/wiki/Bayesian_information_criterion

scikit-learn user guide, Release 0.12-git

Attributes

coef_ array, shape = [n_features] parameter vector (w in the fomulation formula)
intercept_ float independent term in decision function.
alpha_ float the alpha parameter chosen by the information criterion

Methods

decision_function(X) Decision function of the linear model
fit(X, y[, copy_X]) Fit the model using X, y as training data.
get_params([deep]) Get parameters for the estimator
predict(X) Predict using the linear model
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

__init__(criterion=’aic’, fit_intercept=True, verbose=False, normalize=True, precompute=’auto’,
max_iter=500, eps=2.2204460492503131e-16, copy_X=True)

decision_function(X)
Decision function of the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

fit(X, y, copy_X=True)
Fit the model using X, y as training data.

Parameters x : array-like, shape = [n_samples, n_features]

training data.

y : array-like, shape = [n_samples]

target values.

Returns self : object

returns an instance of self.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict using the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

460 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.linear_model.LogisticRegression

class sklearn.linear_model.LogisticRegression(penalty=’l2’, dual=False, tol=0.0001,
C=1.0, fit_intercept=True, inter-
cept_scaling=1, class_weight=None)

Logistic Regression (aka logit, MaxEnt) classifier.

In the multiclass case, the training algorithm uses a one-vs.-all (OvA) scheme, rather than the “true” multinomial
LR.

This class implements L1 and L2 regularized logistic regression using the liblinear library. It can handle both
dense and sparse input. Use C-ordered arrays or CSR matrices containing 64-bit floats for optimal performance;
any other input format will be converted (and copied).

Parameters penalty : string, ‘l1’ or ‘l2’

Used to specify the norm used in the penalization

dual : boolean

Dual or primal formulation. Dual formulation is only implemented for l2 penalty. Prefer
dual=False when n_samples > n_features.

C : float or None, optional (default=None)

Specifies the strength of the regularization. The smaller it is the bigger in the regular-
ization. If None then C is set to n_samples.

fit_intercept : bool, default: True

Specifies if a constant (a.k.a. bias or intercept) should be added the decision function

intercept_scaling : float, default: 1

when self.fit_intercept is True, instance vector x becomes [x, self.intercept_scaling],
i.e. a “synthetic” feature with constant value equals to intercept_scaling is appended to
the instance vector. The intercept becomes intercept_scaling * synthetic feature weight
Note! the synthetic feature weight is subject to l1/l2 regularization as all other features.

1.8. Reference 461

scikit-learn user guide, Release 0.12-git

To lessen the effect of regularization on synthetic feature weight (and therefore on the
intercept) intercept_scaling has to be increased

tol: float, optional :

tolerance for stopping criteria

See Also:

LinearSVC

Notes

The underlying C implementation uses a random number generator to select features when fitting the model.
It is thus not uncommon, to have slightly different results for the same input data. If that happens, try with a
smaller tol parameter.

References:

LIBLINEAR – A Library for Large Linear Classificationhttp://www.csie.ntu.edu.tw/~cjlin/liblinear/

Hsiang-Fu Yu, Fang-Lan Huang, Chih-Jen Lin (2011). Dual coordinate descentmethods for lo-
gistic regression and maximum entropy models. Machine Learning 85(1-2):41-75.
http://www.csie.ntu.edu.tw/~cjlin/papers/maxent_dual.pdf

Attributes

coef_ array, shape =
[n_classes-1,
n_features]

Coefficient of the features in the decision function.
coef_ is readonly property derived from raw_coef_ that follows the internal
memory layout of liblinear.

in-
ter-
cept_

array, shape =
[n_classes-1]

intercept (a.k.a. bias) added to the decision function. It is available only
when parameter intercept is set to True

Methods

decision_function(X) Decision function value for X according to the trained model.
fit(X, y[, class_weight]) Fit the model according to the given training data.
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
predict(X) Predict target values of X according to the fitted model.
predict_log_proba(X) Log of Probability estimates.
predict_proba(X) Probability estimates.
score(X, y) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of the estimator.
transform(X[, threshold]) Reduce X to its most important features.

__init__(penalty=’l2’, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1,
class_weight=None)

decision_function(X)
Decision function value for X according to the trained model.

Parameters X : array-like, shape = [n_samples, n_features]

462 Chapter 1. User Guide

http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://www.csie.ntu.edu.tw/~cjlin/papers/maxent_dual.pdf

scikit-learn user guide, Release 0.12-git

Returns T : array-like, shape = [n_samples, n_class]

Returns the decision function of the sample for each class in the model.

fit(X, y, class_weight=None)
Fit the model according to the given training data.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target vector relative to X

class_weight : {dict, ‘auto’}, optional

Weights associated with classes. If not given, all classes are supposed to have weight
one.

Returns self : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict target values of X according to the fitted model.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Returns C : array, shape = [n_samples]

predict_log_proba(X)
Log of Probability estimates.

The returned estimates for all classes are ordered by the label of classes.

1.8. Reference 463

scikit-learn user guide, Release 0.12-git

Parameters X : array-like, shape = [n_samples, n_features]

Returns T : array-like, shape = [n_samples, n_classes]

Returns the log-probabilities of the sample for each class in the model, where classes
are ordered by arithmetical order.

predict_proba(X)
Probability estimates.

The returned estimates for all classes are ordered by the label of classes.

Parameters X : array-like, shape = [n_samples, n_features]

Returns T : array-like, shape = [n_samples, n_classes]

Returns the probability of the sample for each class in the model, where classes are
ordered by arithmetical order.

score(X, y)
Returns the mean accuracy on the given test data and labels.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, threshold=None)
Reduce X to its most important features.

Parameters X : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold : string, float or None, optional (default=None)

The threshold value to use for feature selection. Features whose importance is greater
or equal are kept while the others are discarded. If “median” (resp. “mean”), then the
threshold value is the median (resp. the mean) of the feature importances. A scaling
factor (e.g., “1.25*mean”) may also be used. If None and if available, the object attribute
threshold is used. Otherwise, “mean” is used by default.

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

464 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

sklearn.linear_model.OrthogonalMatchingPursuit

class sklearn.linear_model.OrthogonalMatchingPursuit(copy_X=True, copy_Gram=True,
copy_Xy=True,
n_nonzero_coefs=None,
tol=None, fit_intercept=True,
normalize=True, precom-
pute_gram=False)

Orthogonal Mathching Pursuit model (OMP)

Parameters n_nonzero_coefs : int, optional

Desired number of non-zero entries in the solution. If None (by default) this value is set
to 10% of n_features.

tol : float, optional

Maximum norm of the residual. If not None, overrides n_nonzero_coefs.

fit_intercept : boolean, optional

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional

If False, the regressors X are assumed to be already normalized.

precompute_gram : {True, False, ‘auto’},

Whether to use a precomputed Gram and Xy matrix to speed up calculations. Improves
performance when n_targets or n_samples is very large. Note that if you already have
such matrices, you can pass them directly to the fit method.

copy_X : bool, optional

Whether the design matrix X must be copied by the algorithm. A false value is only
helpful if X is already Fortran-ordered, otherwise a copy is made anyway.

copy_Gram : bool, optional

Whether the gram matrix must be copied by the algorithm. A false value is only helpful
if X is already Fortran-ordered, otherwise a copy is made anyway.

copy_Xy : bool, optional

Whether the covariance vector Xy must be copied by the algorithm. If False, it may be
overwritten.

See Also:

orthogonal_mp, orthogonal_mp_gram, lars_path, Lars, LassoLars,
decomposition.sparse_encode, decomposition.sparse_encode_parallel

Notes

Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang, Matching pursuits with time-frequency
dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415.
(http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)

1.8. Reference 465

http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf

scikit-learn user guide, Release 0.12-git

This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of
the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008.
http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

Attributes

coef_ array, shape = (n_features,) or (n_features, n_targets) parameter vector (w in the fomulation formula)
intercept_ float or array, shape =(n_targets,) independent term in decision function.

Methods

decision_function(X) Decision function of the linear model
fit(X, y[, Gram, Xy]) Fit the model using X, y as training data.
get_params([deep]) Get parameters for the estimator
predict(X) Predict using the linear model
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

__init__(copy_X=True, copy_Gram=True, copy_Xy=True, n_nonzero_coefs=None, tol=None,
fit_intercept=True, normalize=True, precompute_gram=False)

decision_function(X)
Decision function of the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

fit(X, y, Gram=None, Xy=None)
Fit the model using X, y as training data.

Parameters X: array-like, shape = (n_samples, n_features) :

Training data.

y: array-like, shape = (n_samples,) or (n_samples, n_targets) :

Target values.

Gram: array-like, shape = (n_features, n_features) (optional) :

Gram matrix of the input data: X.T * X

Xy: array-like, shape = (n_features,) or (n_features, n_targets) :

(optional) Input targets multiplied by X: X.T * y

Returns self: object :

returns an instance of self.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

466 Chapter 1. User Guide

http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

scikit-learn user guide, Release 0.12-git

predict(X)
Predict using the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.linear_model.Perceptron

class sklearn.linear_model.Perceptron(penalty=None, alpha=0.0001, fit_intercept=True,
n_iter=5, shuffle=False, verbose=0, eta0=1.0, n_jobs=1,
seed=0, class_weight=None, warm_start=False)

Perceptron

Parameters penalty : None, ‘l2’ or ‘l1’ or ‘elasticnet’

The penalty (aka regularization term) to be used. Defaults to None.

alpha : float

Constant that multiplies the regularization term if regularization is used. Defaults to
0.0001

fit_intercept: bool :

Whether the intercept should be estimated or not. If False, the data is assumed to be
already centered. Defaults to True.

n_iter: int, optional :

The number of passes over the training data (aka epochs). Defaults to 5.

shuffle: bool, optional :

Whether or not the training data should be shuffled after each epoch. Defaults to False.

seed: int, optional :

The seed of the pseudo random number generator to use when shuffling the data.

1.8. Reference 467

scikit-learn user guide, Release 0.12-git

verbose: integer, optional :

The verbosity level

n_jobs: integer, optional :

The number of CPUs to use to do the OVA (One Versus All, for multi-class problems)
computation. -1 means ‘all CPUs’. Defaults to 1.

eta0 : double

Constant by which the updates are multiplied. Defaults to 1.

class_weight : dict, {class_label

Preset for the class_weight fit parameter.

Weights associated with classes. If not given, all classes are supposed to have weight
one.

The “auto” mode uses the values of y to automatically adjust weights inversely propor-
tional to class frequencies.

warm_start : bool, optional

When set to True, reuse the solution of the previous call to fit as initialization, otherwise,
just erase the previous solution.

See Also:

SGDClassifier

Notes

Perceptron and SGDClassifier share the same underlying implementation. In fact, Perceptron() is equivalent to
SGDClassifier(loss=”perceptron”, eta0=1, learning_rate=”constant”, penalty=None).

References

http://en.wikipedia.org/wiki/Perceptron and references therein.

Attributes

coef_ array, shape = [1, n_features] if n_classes == 2 else [n_classes,
n_features] Weights assigned to the features.
intercept_ array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function.

Methods

decision_function(X) Predict signed ‘distance’ to the hyperplane (aka confidence score)
fit(X, y[, coef_init, intercept_init, ...]) Fit linear model with Stochastic Gradient Descent.
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
partial_fit(X, y[, classes, class_weight, ...]) Fit linear model with Stochastic Gradient Descent.

Continued on next page

468 Chapter 1. User Guide

http://en.wikipedia.org/wiki/Perceptron

scikit-learn user guide, Release 0.12-git

Table 1.118 – continued from previous page
predict(X) Predict using the linear model
predict_proba(X) Predict class membership probability
score(X, y) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of the estimator.
transform(X[, threshold]) Reduce X to its most important features.

__init__(penalty=None, alpha=0.0001, fit_intercept=True, n_iter=5, shuffle=False, verbose=0,
eta0=1.0, n_jobs=1, seed=0, class_weight=None, warm_start=False)

classes
DEPRECATED: to be removed in v0.12; use classes_ instead.

decision_function(X)
Predict signed ‘distance’ to the hyperplane (aka confidence score)

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Returns array, shape = [n_samples] if n_classes == 2 else [n_samples,n_classes] :

The signed ‘distances’ to the hyperplane(s).

fit(X, y, coef_init=None, intercept_init=None, class_weight=None, sample_weight=None)
Fit linear model with Stochastic Gradient Descent.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training data

y : numpy array of shape [n_samples]

Target values

coef_init : array, shape = [n_classes,n_features]

The initial coeffients to warm-start the optimization.

intercept_init : array, shape = [n_classes]

The initial intercept to warm-start the optimization.

sample_weight : array-like, shape = [n_samples], optional

Weights applied to individual samples. If not provided, uniform weights are assumed.

Returns self : returns an instance of self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

1.8. Reference 469

scikit-learn user guide, Release 0.12-git

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

partial_fit(X, y, classes=None, class_weight=None, sample_weight=None)
Fit linear model with Stochastic Gradient Descent.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Subset of the training data

y : numpy array of shape [n_samples]

Subset of the target values

classes : array, shape = [n_classes]

Classes across all calls to partial_fit. Can be obtained by via np.unique(y_all), where
y_all is the target vector of the entire dataset. This argument is required for the first call
to partial_fit and can be omitted in the subsequent calls. Note that y doesn’t need to
contain all labels in classes.

sample_weight : array-like, shape = [n_samples], optional

Weights applied to individual samples. If not provided, uniform weights are assumed.

Returns self : returns an instance of self.

predict(X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Returns array, shape = [n_samples] :

Array containing the predicted class labels.

predict_proba(X)
Predict class membership probability

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Returns array, shape = [n_samples] if n_classes == 2 else [n_samples, :

n_classes] :

Contains the membership probabilities of the positive class.

References

The justification for the formula in the loss=”modified_huber” case is in the appendix B in:
http://jmlr.csail.mit.edu/papers/volume2/zhang02c/zhang02c.pdf

score(X, y)
Returns the mean accuracy on the given test data and labels.

470 Chapter 1. User Guide

http://jmlr.csail.mit.edu/papers/volume2/zhang02c/zhang02c.pdf

scikit-learn user guide, Release 0.12-git

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, threshold=None)
Reduce X to its most important features.

Parameters X : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold : string, float or None, optional (default=None)

The threshold value to use for feature selection. Features whose importance is greater
or equal are kept while the others are discarded. If “median” (resp. “mean”), then the
threshold value is the median (resp. the mean) of the feature importances. A scaling
factor (e.g., “1.25*mean”) may also be used. If None and if available, the object attribute
threshold is used. Otherwise, “mean” is used by default.

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

sklearn.linear_model.SGDClassifier

class sklearn.linear_model.SGDClassifier(loss=’hinge’, penalty=’l2’, alpha=0.0001,
rho=0.85, fit_intercept=True, n_iter=5,
shuffle=False, verbose=0, epsilon=0.1,
n_jobs=1, seed=0, learning_rate=’optimal’,
eta0=0.0, power_t=0.5, class_weight=None,
warm_start=False)

Linear model fitted by minimizing a regularized empirical loss with SGD.

SGD stands for Stochastic Gradient Descent: the gradient of the loss is estimated each sample at a time and the
model is updated along the way with a decreasing strength schedule (aka learning rate).

The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector
using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If
the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for
learning sparse models and achieve online feature selection.

This implementation works with data represented as dense numpy arrays of floating point values for the features.

Parameters loss : str, ‘hinge’ or ‘log’ or ‘modified_huber’

The loss function to be used. Defaults to ‘hinge’. The hinge loss is a margin loss used
by standard linear SVM models. The ‘log’ loss is the loss of logistic regression models

1.8. Reference 471

scikit-learn user guide, Release 0.12-git

and can be used for probability estimation in binary classifiers. ‘modified_huber’ is
another smooth loss that brings tolerance to outliers.

penalty : str, ‘l2’ or ‘l1’ or ‘elasticnet’

The penalty (aka regularization term) to be used. Defaults to ‘l2’ which is the standard
regularizer for linear SVM models. ‘l1’ and ‘elasticnet’ migh bring sparsity to the model
(feature selection) not achievable with ‘l2’.

alpha : float

Constant that multiplies the regularization term. Defaults to 0.0001

rho : float

The Elastic Net mixing parameter, with 0 < rho <= 1. Defaults to 0.85.

fit_intercept: bool :

Whether the intercept should be estimated or not. If False, the data is assumed to be
already centered. Defaults to True.

n_iter: int, optional :

The number of passes over the training data (aka epochs). Defaults to 5.

shuffle: bool, optional :

Whether or not the training data should be shuffled after each epoch. Defaults to False.

seed: int, optional :

The seed of the pseudo random number generator to use when shuffling the data.

verbose: integer, optional :

The verbosity level

n_jobs: integer, optional :

The number of CPUs to use to do the OVA (One Versus All, for multi-class problems)
computation. -1 means ‘all CPUs’. Defaults to 1.

learning_rate : string, optional

The learning rate: constant: eta = eta0 optimal: eta = 1.0/(t+t0) [default] invscaling: eta
= eta0 / pow(t, power_t)

eta0 : double

The initial learning rate [default 0.01].

power_t : double

The exponent for inverse scaling learning rate [default 0.25].

class_weight : dict, {class_label

Preset for the class_weight fit parameter.

Weights associated with classes. If not given, all classes are supposed to have weight
one.

The “auto” mode uses the values of y to automatically adjust weights inversely propor-
tional to class frequencies.

warm_start : bool, optional

472 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

When set to True, reuse the solution of the previous call to fit as initialization, otherwise,
just erase the previous solution.

See Also:

LinearSVC, LogisticRegression, Perceptron

Examples

>>> import numpy as np
>>> from sklearn import linear_model
>>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
>>> Y = np.array([1, 1, 2, 2])
>>> clf = linear_model.SGDClassifier()
>>> clf.fit(X, Y)
...
SGDClassifier(alpha=0.0001, class_weight=None, epsilon=0.1, eta0=0.0,

fit_intercept=True, learning_rate=’optimal’, loss=’hinge’,
n_iter=5, n_jobs=1, penalty=’l2’, power_t=0.5, rho=0.85, seed=0,
shuffle=False, verbose=0, warm_start=False)

>>> print(clf.predict([[-0.8, -1]]))
[1]

Attributes

coef_ array, shape = [1, n_features] if n_classes == 2 else [n_classes,
n_features] Weights assigned to the features.
intercept_ array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function.

Methods

decision_function(X) Predict signed ‘distance’ to the hyperplane (aka confidence score)
fit(X, y[, coef_init, intercept_init, ...]) Fit linear model with Stochastic Gradient Descent.
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
partial_fit(X, y[, classes, class_weight, ...]) Fit linear model with Stochastic Gradient Descent.
predict(X) Predict using the linear model
predict_proba(X) Predict class membership probability
score(X, y) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of the estimator.
transform(X[, threshold]) Reduce X to its most important features.

__init__(loss=’hinge’, penalty=’l2’, alpha=0.0001, rho=0.85, fit_intercept=True, n_iter=5, shuf-
fle=False, verbose=0, epsilon=0.1, n_jobs=1, seed=0, learning_rate=’optimal’, eta0=0.0,
power_t=0.5, class_weight=None, warm_start=False)

classes
DEPRECATED: to be removed in v0.12; use classes_ instead.

decision_function(X)
Predict signed ‘distance’ to the hyperplane (aka confidence score)

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

1.8. Reference 473

scikit-learn user guide, Release 0.12-git

Returns array, shape = [n_samples] if n_classes == 2 else [n_samples,n_classes] :

The signed ‘distances’ to the hyperplane(s).

fit(X, y, coef_init=None, intercept_init=None, class_weight=None, sample_weight=None)
Fit linear model with Stochastic Gradient Descent.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training data

y : numpy array of shape [n_samples]

Target values

coef_init : array, shape = [n_classes,n_features]

The initial coeffients to warm-start the optimization.

intercept_init : array, shape = [n_classes]

The initial intercept to warm-start the optimization.

sample_weight : array-like, shape = [n_samples], optional

Weights applied to individual samples. If not provided, uniform weights are assumed.

Returns self : returns an instance of self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

partial_fit(X, y, classes=None, class_weight=None, sample_weight=None)
Fit linear model with Stochastic Gradient Descent.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Subset of the training data

y : numpy array of shape [n_samples]

474 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Subset of the target values

classes : array, shape = [n_classes]

Classes across all calls to partial_fit. Can be obtained by via np.unique(y_all), where
y_all is the target vector of the entire dataset. This argument is required for the first call
to partial_fit and can be omitted in the subsequent calls. Note that y doesn’t need to
contain all labels in classes.

sample_weight : array-like, shape = [n_samples], optional

Weights applied to individual samples. If not provided, uniform weights are assumed.

Returns self : returns an instance of self.

predict(X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Returns array, shape = [n_samples] :

Array containing the predicted class labels.

predict_proba(X)
Predict class membership probability

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Returns array, shape = [n_samples] if n_classes == 2 else [n_samples, :

n_classes] :

Contains the membership probabilities of the positive class.

References

The justification for the formula in the loss=”modified_huber” case is in the appendix B in:
http://jmlr.csail.mit.edu/papers/volume2/zhang02c/zhang02c.pdf

score(X, y)
Returns the mean accuracy on the given test data and labels.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, threshold=None)
Reduce X to its most important features.

1.8. Reference 475

http://jmlr.csail.mit.edu/papers/volume2/zhang02c/zhang02c.pdf

scikit-learn user guide, Release 0.12-git

Parameters X : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold : string, float or None, optional (default=None)

The threshold value to use for feature selection. Features whose importance is greater
or equal are kept while the others are discarded. If “median” (resp. “mean”), then the
threshold value is the median (resp. the mean) of the feature importances. A scaling
factor (e.g., “1.25*mean”) may also be used. If None and if available, the object attribute
threshold is used. Otherwise, “mean” is used by default.

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

sklearn.linear_model.SGDRegressor

class sklearn.linear_model.SGDRegressor(loss=’squared_loss’, penalty=’l2’, alpha=0.0001,
rho=0.85, fit_intercept=True, n_iter=5, shuffle=False,
verbose=0, epsilon=0.1, p=None, seed=0, learn-
ing_rate=’invscaling’, eta0=0.01, power_t=0.25,
warm_start=False)

Linear model fitted by minimizing a regularized empirical loss with SGD

SGD stands for Stochastic Gradient Descent: the gradient of the loss is estimated each sample at a time and the
model is updated along the way with a decreasing strength schedule (aka learning rate).

The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector
using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If
the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for
learning sparse models and achieve online feature selection.

This implementation works with data represented as dense numpy arrays of floating point values for the features.

Parameters loss : str, ‘squared_loss’ or ‘huber’

The loss function to be used. Defaults to ‘squared_loss’ which refers to the ordinary
least squares fit. ‘huber’ is an epsilon insensitive loss function for robust regression.

penalty : str, ‘l2’ or ‘l1’ or ‘elasticnet’

The penalty (aka regularization term) to be used. Defaults to ‘l2’ which is the standard
regularizer for linear SVM models. ‘l1’ and ‘elasticnet’ migh bring sparsity to the model
(feature selection) not achievable with ‘l2’.

alpha : float

Constant that multiplies the regularization term. Defaults to 0.0001

rho : float

The Elastic Net mixing parameter, with 0 < rho <= 1. Defaults to 0.85.

fit_intercept: bool :

Whether the intercept should be estimated or not. If False, the data is assumed to be
already centered. Defaults to True.

n_iter: int, optional :

The number of passes over the training data (aka epochs). Defaults to 5.

shuffle: bool, optional :

476 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Whether or not the training data should be shuffled after each epoch. Defaults to False.

seed: int, optional :

The seed of the pseudo random number generator to use when shuffling the data.

verbose: integer, optional :

The verbosity level.

epsilon: float :

Epsilon in the epsilon-insensitive huber loss function; only if loss==’huber’.

learning_rate : string, optional

The learning rate: constant: eta = eta0 optimal: eta = 1.0/(t+t0) invscaling: eta = eta0 /
pow(t, power_t) [default]

eta0 : double, optional

The initial learning rate [default 0.01].

power_t : double, optional

The exponent for inverse scaling learning rate [default 0.25].

warm_start : bool, optional

When set to True, reuse the solution of the previous call to fit as initialization, otherwise,
just erase the previous solution.

See Also:

Ridge, ElasticNet, Lasso, SVR

Examples

>>> import numpy as np
>>> from sklearn import linear_model
>>> n_samples, n_features = 10, 5
>>> np.random.seed(0)
>>> y = np.random.randn(n_samples)
>>> X = np.random.randn(n_samples, n_features)
>>> clf = linear_model.SGDRegressor()
>>> clf.fit(X, y)
SGDRegressor(alpha=0.0001, epsilon=0.1, eta0=0.01, fit_intercept=True,

learning_rate=’invscaling’, loss=’squared_loss’, n_iter=5, p=None,
penalty=’l2’, power_t=0.25, rho=0.85, seed=0, shuffle=False,
verbose=0, warm_start=False)

Attributes

coef_ array, shape = [n_features] Weights asigned to the features.
intercept_ array, shape = [1] The intercept term.

Methods

1.8. Reference 477

scikit-learn user guide, Release 0.12-git

decision_function(X) Predict using the linear model
fit(X, y[, coef_init, intercept_init, ...]) Fit linear model with Stochastic Gradient Descent.
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
partial_fit(X, y[, sample_weight]) Fit linear model with Stochastic Gradient Descent.
predict(X) Predict using the linear model
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.
transform(X[, threshold]) Reduce X to its most important features.

__init__(loss=’squared_loss’, penalty=’l2’, alpha=0.0001, rho=0.85, fit_intercept=True, n_iter=5,
shuffle=False, verbose=0, epsilon=0.1, p=None, seed=0, learning_rate=’invscaling’,
eta0=0.01, power_t=0.25, warm_start=False)

decision_function(X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Returns array, shape = [n_samples] :

Predicted target values per element in X.

fit(X, y, coef_init=None, intercept_init=None, sample_weight=None)
Fit linear model with Stochastic Gradient Descent.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training data

y : numpy array of shape [n_samples]

Target values

coef_init : array, shape = [n_features]

The initial coeffients to warm-start the optimization.

intercept_init : array, shape = [1]

The initial intercept to warm-start the optimization.

sample_weight : array-like, shape = [n_samples], optional

Weights applied to individual samples (1. for unweighted).

Returns self : returns an instance of self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

478 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

partial_fit(X, y, sample_weight=None)
Fit linear model with Stochastic Gradient Descent.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Subset of training data

y : numpy array of shape [n_samples]

Subset of target values

sample_weight : array-like, shape = [n_samples], optional

Weights applied to individual samples. If not provided, uniform weights are assumed.

Returns self : returns an instance of self.

predict(X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Returns array, shape = [n_samples] :

Predicted target values per element in X.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, threshold=None)
Reduce X to its most important features.

Parameters X : array or scipy sparse matrix of shape [n_samples, n_features]

1.8. Reference 479

scikit-learn user guide, Release 0.12-git

The input samples.

threshold : string, float or None, optional (default=None)

The threshold value to use for feature selection. Features whose importance is greater
or equal are kept while the others are discarded. If “median” (resp. “mean”), then the
threshold value is the median (resp. the mean) of the feature importances. A scaling
factor (e.g., “1.25*mean”) may also be used. If None and if available, the object attribute
threshold is used. Otherwise, “mean” is used by default.

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

sklearn.linear_model.BayesianRidge

class sklearn.linear_model.BayesianRidge(n_iter=300, tol=0.001, alpha_1=1e-06,
alpha_2=1e-06, lambda_1=1e-06, lambda_2=1e-
06, compute_score=False, fit_intercept=True,
normalize=False, copy_X=True, verbose=False)

Bayesian ridge regression

Fit a Bayesian ridge model and optimize the regularization parameters lambda (precision of the weights) and
alpha (precision of the noise).

Parameters X : array, shape = (n_samples, n_features)

Training vectors.

y : array, shape = (length)

Target values for training vectors

n_iter : int, optional

Maximum number of iterations. Default is 300.

tol : float, optional

Stop the algorithm if w has converged. Default is 1.e-3.

alpha_1 : float, optional

Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha
parameter. Default is 1.e-6

alpha_2 : float, optional

Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution
prior over the alpha parameter. Default is 1.e-6.

lambda_1 : float, optional

Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda
parameter. Default is 1.e-6.

lambda_2 : float, optional

Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution
prior over the lambda parameter. Default is 1.e-6

compute_score : boolean, optional

If True, compute the objective function at each step of the model. Default is False

480 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

fit_intercept : boolean, optional

wether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered). Default is True.

normalize : boolean, optional, default False

If True, the regressors X are normalized

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

verbose : boolean, optional, default False

Verbose mode when fitting the model.

Notes

See examples/linear_model/plot_bayesian_ridge.py for an example.

Examples

>>> from sklearn import linear_model
>>> clf = linear_model.BayesianRidge()
>>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
...
BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False,

copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06,
n_iter=300, normalize=False, tol=0.001, verbose=False)

>>> clf.predict([[1, 1]])
array([1.])

Attributes

coef_ array, shape = (n_features) Coefficients of the regression model (mean of distribution)
alpha_ float estimated precision of the noise.
lambda_ array, shape = (n_features) estimated precisions of the weights.
scores_ float if computed, value of the objective function (to be maximized)

Methods

decision_function(X) Decision function of the linear model
fit(X, y) Fit the model
get_params([deep]) Get parameters for the estimator
predict(X) Predict using the linear model
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

__init__(n_iter=300, tol=0.001, alpha_1=1e-06, alpha_2=1e-06, lambda_1=1e-06, lambda_2=1e-
06, compute_score=False, fit_intercept=True, normalize=False, copy_X=True, ver-
bose=False)

1.8. Reference 481

scikit-learn user guide, Release 0.12-git

decision_function(X)
Decision function of the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

fit(X, y)
Fit the model

Parameters X : numpy array of shape [n_samples,n_features]

Training data

y : numpy array of shape [n_samples]

Target values

Returns self : returns an instance of self.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict using the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

482 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

sklearn.linear_model.ARDRegression

class sklearn.linear_model.ARDRegression(n_iter=300, tol=0.001, alpha_1=1e-
06, alpha_2=1e-06, lambda_1=1e-06,
lambda_2=1e-06, compute_score=False, thresh-
old_lambda=10000.0, fit_intercept=True, normal-
ize=False, copy_X=True, verbose=False)

Bayesian ARD regression.

Fit the weights of a regression model, using an ARD prior. The weights of the regression model are assumed
to be in Gaussian distributions. Also estimate the parameters lambda (precisions of the distributions of the
weights) and alpha (precision of the distribution of the noise). The estimation is done by an iterative procedures
(Evidence Maximization)

Parameters X : array, shape = (n_samples, n_features)

Training vectors.

y : array, shape = (n_samples)

Target values for training vectors

n_iter : int, optional

Maximum number of iterations. Default is 300

tol : float, optional

Stop the algorithm if w has converged. Default is 1.e-3.

alpha_1 : float, optional

Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha
parameter. Default is 1.e-6.

alpha_2 : float, optional

Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution
prior over the alpha parameter. Default is 1.e-6.

lambda_1 : float, optional

Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda
parameter. Default is 1.e-6.

lambda_2 : float, optional

Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution
prior over the lambda parameter. Default is 1.e-6.

compute_score : boolean, optional

If True, compute the objective function at each step of the model. Default is False.

threshold_lambda : float, optional

threshold for removing (pruning) weights with high precision from the computation.
Default is 1.e+4.

fit_intercept : boolean, optional

wether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered). Default is True.

normalize : boolean, optional

1.8. Reference 483

scikit-learn user guide, Release 0.12-git

If True, the regressors X are normalized

copy_X : boolean, optional, default True.

If True, X will be copied; else, it may be overwritten.

verbose : boolean, optional, default False

Verbose mode when fitting the model.

Notes

See examples/linear_model/plot_ard.py for an example.

Examples

>>> from sklearn import linear_model
>>> clf = linear_model.ARDRegression()
>>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
...
ARDRegression(alpha_1=1e-06, alpha_2=1e-06, compute_score=False,

copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06,
n_iter=300, normalize=False, threshold_lambda=10000.0, tol=0.001,
verbose=False)

>>> clf.predict([[1, 1]])
array([1.])

Attributes

coef_ array, shape = (n_features) Coefficients of the regression model (mean of distribution)
alpha_ float estimated precision of the noise.
lambda_ array, shape = (n_features) estimated precisions of the weights.
sigma_ array, shape = (n_features, n_features) estimated variance-covariance matrix of the weights
scores_ float if computed, value of the objective function (to be maximized)

Methods

decision_function(X) Decision function of the linear model
fit(X, y) Fit the ARDRegression model according to the given training data
get_params([deep]) Get parameters for the estimator
predict(X) Predict using the linear model
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

__init__(n_iter=300, tol=0.001, alpha_1=1e-06, alpha_2=1e-06, lambda_1=1e-06, lambda_2=1e-
06, compute_score=False, threshold_lambda=10000.0, fit_intercept=True, normal-
ize=False, copy_X=True, verbose=False)

decision_function(X)
Decision function of the linear model

Parameters X : numpy array of shape [n_samples, n_features]

484 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Returns C : array, shape = [n_samples]

Returns predicted values.

fit(X, y)
Fit the ARDRegression model according to the given training data and parameters.

Iterative procedure to maximize the evidence

Parameters X : array-like, shape = [n_samples, n_features]

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

y : array, shape = [n_samples]

Target values (integers)

Returns self : returns an instance of self.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict using the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

1.8. Reference 485

scikit-learn user guide, Release 0.12-git

sklearn.linear_model.RandomizedLasso

class sklearn.linear_model.RandomizedLasso(alpha=’aic’, scaling=0.5, sample_fraction=0.75,
n_resampling=200, selection_threshold=0.25,
fit_intercept=True, verbose=False,
normalize=True, precompute=’auto’,
max_iter=500, eps=2.2204460492503131e-
16, random_state=None, n_jobs=1,
pre_dispatch=‘3*n_jobs’, mem-
ory=Memory(cachedir=None))

Randomized Lasso

Randomized Lasso works by resampling the train data and computing a Lasso on each resampling. In short, the
features selected more often are good features. It is also known as stability selection.

Parameters alpha : float, ‘aic’, or ‘bic’

The regularization parameter alpha parameter in the Lasso. Warning: this is not the
alpha parameter in the stability selection article which is scaling.

scaling : float

The alpha parameter in the stability selection article used to randomly scale the features.
Should be between 0 and 1.

sample_fraction : float

The fraction of samples to be used in each randomized design. Should be between 0
and 1. If 1, all samples are used.

fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

verbose : boolean or integer, optional

Sets the verbosity amount

normalize : boolean, optional

If True, the regressors X are normalized

precompute : True | False | ‘auto’

Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let
us decide. The Gram matrix can also be passed as argument.

max_iter : integer, optional

Maximum number of iterations to perform in the Lars algorithm.

eps : float, optional

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems. Unlike the ‘tol’ parameter in some
iterative optimization-based algorithms, this parameter does not control the tolerance of
the optimization.

n_jobs : integer, optional

Number of CPUs to use during the resampling. If ‘-1’, use all the CPUs

random_state : int, RandomState instance or None, optional (default=None)

486 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

pre_dispatch : int, or string, optional

Controls the number of jobs that get dispatched during parallel execution. Reducing
this number can be useful to avoid an explosion of memory consumption when more
jobs get dispatched than CPUs can process. This parameter can be:

•None, in which case all the jobs are immediatly created and spawned. Use this for
lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the
jobs

•An int, giving the exact number of total jobs that are spawned

•A string, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

memory : Instance of joblib.Memory or string

Used for internal caching. By default, no caching is done. If a string is given, it is
thepath to the caching directory.

See Also:

RandomizedLogisticRegression, LogisticRegression

Notes

See examples/linear_model/plot_sparse_recovery.py for an example.

References

Stability selection Nicolai Meinshausen, Peter Buhlmann Journal of the Royal Statistical Society: Series B
Volume 72, Issue 4, pages 417-473, September 2010 DOI: 10.1111/j.1467-9868.2010.00740.x

Examples

>>> from sklearn.linear_model import RandomizedLasso
>>> randomized_lasso = RandomizedLasso()

Attributes

scores_ array, shape =
[n_features]

Feature scores between 0 and 1.

all_scores_array, shape =
[n_features,
n_reg_parameter]

Feature scores between 0 and 1 for all values of the regularization
parameter. The reference article suggests scores_ is the max of
all_scores_.

Methods

fit(X, y) Fit the model using X, y as training data.
Continued on next page

1.8. Reference 487

scikit-learn user guide, Release 0.12-git

Table 1.123 – continued from previous page
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
get_support([indices]) Return a mask, or list, of the features/indices selected.
inverse_transform(X) Transform a new matrix using the selected features
set_params(**params) Set the parameters of the estimator.
transform(X) Transform a new matrix using the selected features

__init__(alpha=’aic’, scaling=0.5, sample_fraction=0.75, n_resampling=200, selec-
tion_threshold=0.25, fit_intercept=True, verbose=False, normalize=True, precom-
pute=’auto’, max_iter=500, eps=2.2204460492503131e-16, random_state=None,
n_jobs=1, pre_dispatch=‘3*n_jobs’, memory=Memory(cachedir=None))

fit(X, y)
Fit the model using X, y as training data.

Parameters X : array-like, shape = [n_samples, n_features]

training data.

y : array-like, shape = [n_samples]

target values.

Returns self : object

returns an instance of self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

get_support(indices=False)
Return a mask, or list, of the features/indices selected.

488 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

inverse_transform(X)
Transform a new matrix using the selected features

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Transform a new matrix using the selected features

sklearn.linear_model.RandomizedLogisticRegression

class sklearn.linear_model.RandomizedLogisticRegression(C=1, scaling=0.5,
sample_fraction=0.75,
n_resampling=200, se-
lection_threshold=0.25,
tol=0.001, fit_intercept=True,
verbose=False, nor-
malize=True, ran-
dom_state=None, n_jobs=1,
pre_dispatch=‘3*n_jobs’,
mem-
ory=Memory(cachedir=None))

Randomized Logistic Regression

Randomized Regression works by resampling the train data and computing a LogisticRegression on each re-
sampling. In short, the features selected more often are good features. It is also known as stability selection.

Parameters C : float

The regularization parameter C in the LogisticRegression.

scaling : float

The alpha parameter in the stability selection article used to randomly scale the features.
Should be between 0 and 1.

sample_fraction : float

The fraction of samples to be used in each randomized design. Should be between 0
and 1. If 1, all samples are used.

fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

verbose : boolean or integer, optional

Sets the verbosity amount

normalize : boolean, optional

If True, the regressors X are normalized

tol : float, optional

tolerance for stopping criteria of LogisticRegression

1.8. Reference 489

scikit-learn user guide, Release 0.12-git

n_jobs : integer, optional

Number of CPUs to use during the resampling. If ‘-1’, use all the CPUs

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

pre_dispatch : int, or string, optional

Controls the number of jobs that get dispatched during parallel execution. Reducing
this number can be useful to avoid an explosion of memory consumption when more
jobs get dispatched than CPUs can process. This parameter can be:

•None, in which case all the jobs are immediatly created and spawned. Use this for
lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the
jobs

•An int, giving the exact number of total jobs that are spawned

•A string, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

memory : Instance of joblib.Memory or string

Used for internal caching. By default, no caching is done. If a string is given, it is
thepath to the caching directory.

See Also:

RandomizedLasso, Lasso, ElasticNet

Notes

See examples/linear_model/plot_randomized_lasso.py for an example.

References

Stability selection Nicolai Meinshausen, Peter Buhlmann Journal of the Royal Statistical Society: Series B
Volume 72, Issue 4, pages 417-473, September 2010 DOI: 10.1111/j.1467-9868.2010.00740.x

Examples

>>> from sklearn.linear_model import RandomizedLogisticRegression
>>> randomized_logistic = RandomizedLogisticRegression()

Attributes

scores_ array, shape =
[n_features]

Feature scores between 0 and 1.

all_scores_array, shape =
[n_features,
n_reg_parameter]

Feature scores between 0 and 1 for all values of the regularization
parameter. The reference article suggests scores_ is the max of
all_scores_.

490 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Methods

fit(X, y) Fit the model using X, y as training data.
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
get_support([indices]) Return a mask, or list, of the features/indices selected.
inverse_transform(X) Transform a new matrix using the selected features
set_params(**params) Set the parameters of the estimator.
transform(X) Transform a new matrix using the selected features

__init__(C=1, scaling=0.5, sample_fraction=0.75, n_resampling=200, selection_threshold=0.25,
tol=0.001, fit_intercept=True, verbose=False, normalize=True, random_state=None,
n_jobs=1, pre_dispatch=‘3*n_jobs’, memory=Memory(cachedir=None))

fit(X, y)
Fit the model using X, y as training data.

Parameters X : array-like, shape = [n_samples, n_features]

training data.

y : array-like, shape = [n_samples]

target values.

Returns self : object

returns an instance of self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

get_support(indices=False)
Return a mask, or list, of the features/indices selected.

1.8. Reference 491

scikit-learn user guide, Release 0.12-git

inverse_transform(X)
Transform a new matrix using the selected features

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Transform a new matrix using the selected features

linear_model.lasso_path(X, y[, eps, ...]) Compute Lasso path with coordinate descent
linear_model.lars_path(X, y[, Xy, Gram, ...]) Compute Least Angle Regression and Lasso path
linear_model.orthogonal_mp(X, y[, ...]) Orthogonal Matching Pursuit (OMP)
linear_model.orthogonal_mp_gram(Gram, Xy[, ...]) Gram Orthogonal Matching Pursuit (OMP)
linear_model.lasso_stability_path(X, y[, ...]) Stabiliy path based on randomized Lasso estimates

sklearn.linear_model.lasso_path

sklearn.linear_model.lasso_path(X, y, eps=0.001, n_alphas=100, alphas=None, precom-
pute=’auto’, Xy=None, fit_intercept=True, normalize=False,
copy_X=True, verbose=False, **params)

Compute Lasso path with coordinate descent

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

Parameters X : numpy array of shape [n_samples,n_features]

Training data. Pass directly as fortran contiguous data to avoid unnecessary memory
duplication

y : numpy array of shape [n_samples]

Target values

eps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3

n_alphas : int, optional

Number of alphas along the regularization path

alphas : numpy array, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let
us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

492 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

fit_intercept : bool

Fit or not an intercept

normalize : boolean, optional

If True, the regressors X are normalized

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

verbose : bool or integer

Amount of verbosity

params : kwargs

keyword arguments passed to the Lasso objects

Returns models : a list of models along the regularization path

See Also:

lars_path, Lasso, LassoLars, LassoCV, LassoLarsCV, sklearn.decomposition.sparse_encode

Notes

See examples/linear_model/plot_lasso_coordinate_descent_path.py for an example.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a fortran
contiguous numpy array.

sklearn.linear_model.lars_path

sklearn.linear_model.lars_path(X, y, Xy=None, Gram=None, max_iter=500, alpha_min=0,
method=’lar’, copy_X=True, eps=2.2204460492503131e-16,
copy_Gram=True, verbose=False)

Compute Least Angle Regression and Lasso path

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

Parameters X: array, shape: (n_samples, n_features) :

Input data

y: array, shape: (n_samples) :

Input targets

max_iter: integer, optional :

Maximum number of iterations to perform, set to infinity for no limit.

Gram: None, ‘auto’, array, shape: (n_features, n_features), optional :

Precomputed Gram matrix (X’ * X), if ‘auto’, the Gram matrix is precomputed from
the given X, if there are more samples than features

alpha_min: float, optional :

1.8. Reference 493

scikit-learn user guide, Release 0.12-git

Minimum correlation along the path. It corresponds to the regularization parameter
alpha parameter in the Lasso.

method: {‘lar’, ‘lasso’} :

Specifies the returned model. Select ‘lar’ for Least Angle Regression, ‘lasso’ for the
Lasso.

eps: float, optional :

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems.

copy_X: bool :

If False, X is overwritten.

copy_Gram: bool :

If False, Gram is overwritten.

Returns alphas: array, shape: (max_features + 1,) :

Maximum of covariances (in absolute value) at each iteration.

active: array, shape (max_features,) :

Indices of active variables at the end of the path.

coefs: array, shape (n_features, max_features + 1) :

Coefficients along the path

See Also:

lasso_path, LassoLars, Lars, LassoLarsCV, LarsCV, sklearn.decomposition.sparse_encode

Notes

•http://en.wikipedia.org/wiki/Least-angle_regression

•http://en.wikipedia.org/wiki/Lasso_(statistics)#LASSO_method

sklearn.linear_model.orthogonal_mp

sklearn.linear_model.orthogonal_mp(X, y, n_nonzero_coefs=None, tol=None, precom-
pute_gram=False, copy_X=True)

Orthogonal Matching Pursuit (OMP)

Solves n_targets Orthogonal Matching Pursuit problems. An instance of the problem has the form:

When parametrized by the number of non-zero coefficients using n_nonzero_coefs: argmin ||y - Xgamma||^2
subject to ||gamma||_0 <= n_{nonzero coefs}

When parametrized by error using the parameter tol: argmin ||gamma||_0 subject to ||y - Xgamma||^2 <= tol

Parameters X: array, shape = (n_samples, n_features) :

Input data. Columns are assumed to have unit norm.

y: array, shape = (n_samples,) or (n_samples, n_targets) :

Input targets

494 Chapter 1. User Guide

http://en.wikipedia.org/wiki/Least-angle_regression
http://en.wikipedia.org/wiki/Lasso_(statistics

scikit-learn user guide, Release 0.12-git

n_nonzero_coefs: int :

Desired number of non-zero entries in the solution. If None (by default) this value is set
to 10% of n_features.

tol: float :

Maximum norm of the residual. If not None, overrides n_nonzero_coefs.

precompute_gram: {True, False, ‘auto’}, :

Whether to perform precomputations. Improves performance when n_targets or
n_samples is very large.

copy_X: bool, optional :

Whether the design matrix X must be copied by the algorithm. A false value is only
helpful if X is already Fortran-ordered, otherwise a copy is made anyway.

Returns coef: array, shape = (n_features,) or (n_features, n_targets) :

Coefficients of the OMP solution

See Also:

OrthogonalMatchingPursuit, orthogonal_mp_gram, lars_path,
decomposition.sparse_encode, decomposition.sparse_encode_parallel

Notes

Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang, Matching pursuits with time-frequency
dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415.
(http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)

This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of
the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008.
http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

sklearn.linear_model.orthogonal_mp_gram

sklearn.linear_model.orthogonal_mp_gram(Gram, Xy, n_nonzero_coefs=None, tol=None,
norms_squared=None, copy_Gram=True,
copy_Xy=True)

Gram Orthogonal Matching Pursuit (OMP)

Solves n_targets Orthogonal Matching Pursuit problems using only the Gram matrix X.T * X and the product
X.T * y.

Parameters Gram: array, shape = (n_features, n_features) :

Gram matrix of the input data: X.T * X

Xy: array, shape = (n_features,) or (n_features, n_targets) :

Input targets multiplied by X: X.T * y

n_nonzero_coefs: int :

Desired number of non-zero entries in the solution. If None (by default) this value is set
to 10% of n_features.

tol: float :

1.8. Reference 495

http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf
http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

scikit-learn user guide, Release 0.12-git

Maximum norm of the residual. If not None, overrides n_nonzero_coefs.

norms_squared: array-like, shape = (n_targets,) :

Squared L2 norms of the lines of y. Required if tol is not None.

copy_Gram: bool, optional :

Whether the gram matrix must be copied by the algorithm. A false value is only helpful
if it is already Fortran-ordered, otherwise a copy is made anyway.

copy_Xy: bool, optional :

Whether the covariance vector Xy must be copied by the algorithm. If False, it may be
overwritten.

Returns coef: array, shape = (n_features,) or (n_features, n_targets) :

Coefficients of the OMP solution

See Also:

OrthogonalMatchingPursuit, orthogonal_mp, lars_path, decomposition.sparse_encode,
decomposition.sparse_encode_parallel

Notes

Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang, Matching pursuits with time-frequency
dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415.
(http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)

This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of
the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008.
http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

sklearn.linear_model.lasso_stability_path

sklearn.linear_model.lasso_stability_path(X, y, scaling=0.5, ran-
dom_state=None, n_resampling=200,
n_grid=100, sample_fraction=0.75,
eps=8.8817841970012523e-16, n_jobs=1,
verbose=False)

Stabiliy path based on randomized Lasso estimates

Parameters X : array-like, shape = [n_samples, n_features]

training data.

y : array-like, shape = [n_samples]

target values.

scaling : float

The alpha parameter in the stability selection article used to randomly scale the features.
Should be between 0 and 1.

random_state : integer or numpy.RandomState, optional

The generator used to randomize the design.

n_resampling : int

496 Chapter 1. User Guide

http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf
http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

scikit-learn user guide, Release 0.12-git

Number of randomized models.

n_grid : int

Number of grid points. The path is linearly reinterpolated on a grid between 0 and 1
before computing the scores.

sample_fraction : float

The fraction of samples to be used in each randomized design. Should be between 0
and 1. If 1, all samples are used.

eps : float

Smallest value of alpha / alpha_max considered

n_jobs : integer, optional

Number of CPUs to use during the resampling. If ‘-1’, use all the CPUs

verbose : boolean or integer, optional

Sets the verbosity amount

Returns alphas_grid : array, shape ~ [n_grid]

The grid points between 0 and 1: alpha/alpha_max

scores_path : array, shape = [n_features, n_grid]

The scores for each feature along the path.

Notes

See examples/linear_model/plot_randomized_lasso.py for an example.

For sparse data

The sklearn.linear_model.sparse submodule is the sparse counterpart of the sklearn.linear_model
module.

User guide: See the Generalized Linear Models section for further details.

linear_model.sparse.Lasso([alpha, ...]) Linear Model trained with L1 prior as regularizer
linear_model.sparse.ElasticNet([alpha, rho, ...]) Linear Model trained with L1 and L2 prior as regularizer
linear_model.sparse.SGDClassifier(*args, ...)
linear_model.sparse.SGDRegressor(*args, **kwargs)
linear_model.LogisticRegression([penalty, ...]) Logistic Regression (aka logit, MaxEnt) classifier.

sklearn.linear_model.sparse.Lasso

class sklearn.linear_model.sparse.Lasso(alpha=1.0, fit_intercept=False, normalize=False,
max_iter=1000, tol=0.0001, positive=False)

Linear Model trained with L1 prior as regularizer

This implementation works on scipy.sparse X and dense coef_. Technically this is the same as Elastic Net with
the L2 penalty set to zero.

Parameters alpha : float

1.8. Reference 497

scikit-learn user guide, Release 0.12-git

Constant that multiplies the L1 term. Defaults to 1.0

‘coef_‘ : ndarray of shape n_features

The initial coeffients to warm-start the optimization

fit_intercept: bool :

Whether the intercept should be estimated or not. If False, the data is assumed to be
already centered.

Methods

decision_function(X) Decision function of the linear model
fit(X, y) Fit current model with coordinate descent
get_params([deep]) Get parameters for the estimator
predict(X) Predict using the linear model
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

__init__(alpha=1.0, fit_intercept=False, normalize=False, max_iter=1000, tol=0.0001, posi-
tive=False)

decision_function(X)
Decision function of the linear model

Parameters X : scipy.sparse matrix of shape [n_samples, n_features]

Returns array, shape = [n_samples] with the predicted real values :

fit(X, y)
Fit current model with coordinate descent

X is expected to be a sparse matrix. For maximum efficiency, use a sparse matrix in CSC format
(scipy.sparse.csc_matrix)

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict using the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

498 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.linear_model.sparse.ElasticNet

class sklearn.linear_model.sparse.ElasticNet(alpha=1.0, rho=0.5, fit_intercept=False, nor-
malize=False, max_iter=1000, tol=0.0001,
positive=False)

Linear Model trained with L1 and L2 prior as regularizer

This implementation works on scipy.sparse X and dense coef_.

rho=1 is the lasso penalty. Currently, rho <= 0.01 is not reliable, unless you supply your own sequence of alpha.

Parameters alpha : float

Constant that multiplies the L1 term. Defaults to 1.0

rho : float

The ElasticNet mixing parameter, with 0 < rho <= 1.

fit_intercept: bool :

Whether the intercept should be estimated or not. If False, the data is assumed to be
already centered.

TODO: fit_intercept=True is not yet implemented

Notes

The parameter rho corresponds to alpha in the glmnet R package while alpha corresponds to the lambda param-
eter in glmnet.

Methods

decision_function(X) Decision function of the linear model
fit(X, y) Fit current model with coordinate descent
get_params([deep]) Get parameters for the estimator
predict(X) Predict using the linear model
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

__init__(alpha=1.0, rho=0.5, fit_intercept=False, normalize=False, max_iter=1000, tol=0.0001,
positive=False)

1.8. Reference 499

scikit-learn user guide, Release 0.12-git

decision_function(X)
Decision function of the linear model

Parameters X : scipy.sparse matrix of shape [n_samples, n_features]

Returns array, shape = [n_samples] with the predicted real values :

fit(X, y)
Fit current model with coordinate descent

X is expected to be a sparse matrix. For maximum efficiency, use a sparse matrix in CSC format
(scipy.sparse.csc_matrix)

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict using the linear model

Parameters X : numpy array of shape [n_samples, n_features]

Returns C : array, shape = [n_samples]

Returns predicted values.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.linear_model.sparse.SGDClassifier

class sklearn.linear_model.sparse.SGDClassifier(*args, **kwargs)

Methods

decision_function(X) Predict signed ‘distance’ to the hyperplane (aka confidence score)
Continued on next page

500 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Table 1.129 – continued from previous page
fit(X, y[, coef_init, intercept_init, ...]) Fit linear model with Stochastic Gradient Descent.
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
partial_fit(X, y[, classes, class_weight, ...]) Fit linear model with Stochastic Gradient Descent.
predict(X) Predict using the linear model
predict_proba(X) Predict class membership probability
score(X, y) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of the estimator.
transform(X[, threshold]) Reduce X to its most important features.

__init__(*args, **kwargs)
DEPRECATED: to be removed in v0.12; use sklearn.linear_model.SGDClassifier directly

classes
DEPRECATED: to be removed in v0.12; use classes_ instead.

decision_function(X)
Predict signed ‘distance’ to the hyperplane (aka confidence score)

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Returns array, shape = [n_samples] if n_classes == 2 else [n_samples,n_classes] :

The signed ‘distances’ to the hyperplane(s).

fit(X, y, coef_init=None, intercept_init=None, class_weight=None, sample_weight=None)
Fit linear model with Stochastic Gradient Descent.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training data

y : numpy array of shape [n_samples]

Target values

coef_init : array, shape = [n_classes,n_features]

The initial coeffients to warm-start the optimization.

intercept_init : array, shape = [n_classes]

The initial intercept to warm-start the optimization.

sample_weight : array-like, shape = [n_samples], optional

Weights applied to individual samples. If not provided, uniform weights are assumed.

Returns self : returns an instance of self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

1.8. Reference 501

scikit-learn user guide, Release 0.12-git

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

partial_fit(X, y, classes=None, class_weight=None, sample_weight=None)
Fit linear model with Stochastic Gradient Descent.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Subset of the training data

y : numpy array of shape [n_samples]

Subset of the target values

classes : array, shape = [n_classes]

Classes across all calls to partial_fit. Can be obtained by via np.unique(y_all), where
y_all is the target vector of the entire dataset. This argument is required for the first call
to partial_fit and can be omitted in the subsequent calls. Note that y doesn’t need to
contain all labels in classes.

sample_weight : array-like, shape = [n_samples], optional

Weights applied to individual samples. If not provided, uniform weights are assumed.

Returns self : returns an instance of self.

predict(X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Returns array, shape = [n_samples] :

Array containing the predicted class labels.

predict_proba(X)
Predict class membership probability

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Returns array, shape = [n_samples] if n_classes == 2 else [n_samples, :

n_classes] :

Contains the membership probabilities of the positive class.

References

The justification for the formula in the loss=”modified_huber” case is in the appendix B in:
http://jmlr.csail.mit.edu/papers/volume2/zhang02c/zhang02c.pdf

502 Chapter 1. User Guide

http://jmlr.csail.mit.edu/papers/volume2/zhang02c/zhang02c.pdf

scikit-learn user guide, Release 0.12-git

score(X, y)
Returns the mean accuracy on the given test data and labels.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, threshold=None)
Reduce X to its most important features.

Parameters X : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold : string, float or None, optional (default=None)

The threshold value to use for feature selection. Features whose importance is greater
or equal are kept while the others are discarded. If “median” (resp. “mean”), then the
threshold value is the median (resp. the mean) of the feature importances. A scaling
factor (e.g., “1.25*mean”) may also be used. If None and if available, the object attribute
threshold is used. Otherwise, “mean” is used by default.

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

sklearn.linear_model.sparse.SGDRegressor

class sklearn.linear_model.sparse.SGDRegressor(*args, **kwargs)

Methods

decision_function(X) Predict using the linear model
fit(X, y[, coef_init, intercept_init, ...]) Fit linear model with Stochastic Gradient Descent.
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
partial_fit(X, y[, sample_weight]) Fit linear model with Stochastic Gradient Descent.
predict(X) Predict using the linear model
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.
transform(X[, threshold]) Reduce X to its most important features.

1.8. Reference 503

scikit-learn user guide, Release 0.12-git

__init__(*args, **kwargs)
DEPRECATED: to be removed in v0.12; use sklearn.linear_model.SGDRegressor directly

decision_function(X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Returns array, shape = [n_samples] :

Predicted target values per element in X.

fit(X, y, coef_init=None, intercept_init=None, sample_weight=None)
Fit linear model with Stochastic Gradient Descent.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training data

y : numpy array of shape [n_samples]

Target values

coef_init : array, shape = [n_features]

The initial coeffients to warm-start the optimization.

intercept_init : array, shape = [1]

The initial intercept to warm-start the optimization.

sample_weight : array-like, shape = [n_samples], optional

Weights applied to individual samples (1. for unweighted).

Returns self : returns an instance of self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

504 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

partial_fit(X, y, sample_weight=None)
Fit linear model with Stochastic Gradient Descent.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Subset of training data

y : numpy array of shape [n_samples]

Subset of target values

sample_weight : array-like, shape = [n_samples], optional

Weights applied to individual samples. If not provided, uniform weights are assumed.

Returns self : returns an instance of self.

predict(X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Returns array, shape = [n_samples] :

Predicted target values per element in X.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, threshold=None)
Reduce X to its most important features.

Parameters X : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold : string, float or None, optional (default=None)

The threshold value to use for feature selection. Features whose importance is greater
or equal are kept while the others are discarded. If “median” (resp. “mean”), then the
threshold value is the median (resp. the mean) of the feature importances. A scaling
factor (e.g., “1.25*mean”) may also be used. If None and if available, the object attribute
threshold is used. Otherwise, “mean” is used by default.

Returns X_r : array of shape [n_samples, n_selected_features]

1.8. Reference 505

scikit-learn user guide, Release 0.12-git

The input samples with only the selected features.

sklearn.linear_model.LogisticRegression

class sklearn.linear_model.LogisticRegression(penalty=’l2’, dual=False, tol=0.0001,
C=1.0, fit_intercept=True, inter-
cept_scaling=1, class_weight=None)

Logistic Regression (aka logit, MaxEnt) classifier.

In the multiclass case, the training algorithm uses a one-vs.-all (OvA) scheme, rather than the “true” multinomial
LR.

This class implements L1 and L2 regularized logistic regression using the liblinear library. It can handle both
dense and sparse input. Use C-ordered arrays or CSR matrices containing 64-bit floats for optimal performance;
any other input format will be converted (and copied).

Parameters penalty : string, ‘l1’ or ‘l2’

Used to specify the norm used in the penalization

dual : boolean

Dual or primal formulation. Dual formulation is only implemented for l2 penalty. Prefer
dual=False when n_samples > n_features.

C : float or None, optional (default=None)

Specifies the strength of the regularization. The smaller it is the bigger in the regular-
ization. If None then C is set to n_samples.

fit_intercept : bool, default: True

Specifies if a constant (a.k.a. bias or intercept) should be added the decision function

intercept_scaling : float, default: 1

when self.fit_intercept is True, instance vector x becomes [x, self.intercept_scaling],
i.e. a “synthetic” feature with constant value equals to intercept_scaling is appended to
the instance vector. The intercept becomes intercept_scaling * synthetic feature weight
Note! the synthetic feature weight is subject to l1/l2 regularization as all other features.
To lessen the effect of regularization on synthetic feature weight (and therefore on the
intercept) intercept_scaling has to be increased

tol: float, optional :

tolerance for stopping criteria

See Also:

LinearSVC

Notes

The underlying C implementation uses a random number generator to select features when fitting the model.
It is thus not uncommon, to have slightly different results for the same input data. If that happens, try with a
smaller tol parameter.

References:

LIBLINEAR – A Library for Large Linear Classificationhttp://www.csie.ntu.edu.tw/~cjlin/liblinear/

506 Chapter 1. User Guide

http://www.csie.ntu.edu.tw/~cjlin/liblinear/

scikit-learn user guide, Release 0.12-git

Hsiang-Fu Yu, Fang-Lan Huang, Chih-Jen Lin (2011). Dual coordinate descentmethods for lo-
gistic regression and maximum entropy models. Machine Learning 85(1-2):41-75.
http://www.csie.ntu.edu.tw/~cjlin/papers/maxent_dual.pdf

Attributes

coef_ array, shape =
[n_classes-1,
n_features]

Coefficient of the features in the decision function.
coef_ is readonly property derived from raw_coef_ that follows the internal
memory layout of liblinear.

in-
ter-
cept_

array, shape =
[n_classes-1]

intercept (a.k.a. bias) added to the decision function. It is available only
when parameter intercept is set to True

Methods

decision_function(X) Decision function value for X according to the trained model.
fit(X, y[, class_weight]) Fit the model according to the given training data.
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
predict(X) Predict target values of X according to the fitted model.
predict_log_proba(X) Log of Probability estimates.
predict_proba(X) Probability estimates.
score(X, y) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of the estimator.
transform(X[, threshold]) Reduce X to its most important features.

__init__(penalty=’l2’, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1,
class_weight=None)

decision_function(X)
Decision function value for X according to the trained model.

Parameters X : array-like, shape = [n_samples, n_features]

Returns T : array-like, shape = [n_samples, n_class]

Returns the decision function of the sample for each class in the model.

fit(X, y, class_weight=None)
Fit the model according to the given training data.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target vector relative to X

class_weight : {dict, ‘auto’}, optional

Weights associated with classes. If not given, all classes are supposed to have weight
one.

Returns self : object

1.8. Reference 507

http://www.csie.ntu.edu.tw/~cjlin/papers/maxent_dual.pdf

scikit-learn user guide, Release 0.12-git

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict target values of X according to the fitted model.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Returns C : array, shape = [n_samples]

predict_log_proba(X)
Log of Probability estimates.

The returned estimates for all classes are ordered by the label of classes.

Parameters X : array-like, shape = [n_samples, n_features]

Returns T : array-like, shape = [n_samples, n_classes]

Returns the log-probabilities of the sample for each class in the model, where classes
are ordered by arithmetical order.

predict_proba(X)
Probability estimates.

The returned estimates for all classes are ordered by the label of classes.

Parameters X : array-like, shape = [n_samples, n_features]

Returns T : array-like, shape = [n_samples, n_classes]

Returns the probability of the sample for each class in the model, where classes are
ordered by arithmetical order.

score(X, y)
Returns the mean accuracy on the given test data and labels.

508 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, threshold=None)
Reduce X to its most important features.

Parameters X : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold : string, float or None, optional (default=None)

The threshold value to use for feature selection. Features whose importance is greater
or equal are kept while the others are discarded. If “median” (resp. “mean”), then the
threshold value is the median (resp. the mean) of the feature importances. A scaling
factor (e.g., “1.25*mean”) may also be used. If None and if available, the object attribute
threshold is used. Otherwise, “mean” is used by default.

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

1.8.16 sklearn.manifold: Manifold Learning

The sklearn.manifold module implements data embedding techniques.

User guide: See the Manifold learning section for further details.

manifold.LocallyLinearEmbedding([...]) Locally Linear Embedding
manifold.Isomap([n_neighbors, n_components, ...]) Isomap Embedding
manifold.MDS([n_components, metric, n_init, ...]) Multidimensional scaling

sklearn.manifold.LocallyLinearEmbedding

class sklearn.manifold.LocallyLinearEmbedding(n_neighbors=5, n_components=2,
reg=0.001, eigen_solver=’auto’, tol=1e-
06, max_iter=100, method=’standard’,
hessian_tol=0.0001, modified_tol=1e-
12, neighbors_algorithm=’auto’, ran-
dom_state=None, out_dim=None)

Locally Linear Embedding

Parameters n_neighbors : integer

number of neighbors to consider for each point.

1.8. Reference 509

scikit-learn user guide, Release 0.12-git

n_components : integer

number of coordinates for the manifold

reg : float

regularization constant, multiplies the trace of the local covariance matrix of the dis-
tances.

eigen_solver : string, {‘auto’, ‘arpack’, ‘dense’}

auto : algorithm will attempt to choose the best method for input data

arpack[use arnoldi iteration in shift-invert mode.] For this method, M may be a dense
matrix, sparse matrix, or general linear operator.

dense[use standard dense matrix operations for the eigenvalue] decomposition. For this
method, M must be an array or matrix type. This method should be avoided for large
problems.

tol : float, optional

Tolerance for ‘arpack’ method Not used if eigen_solver==’dense’.

max_iter : integer

maximum number of iterations for the arpack solver. Not used if
eigen_solver==’dense’.

method : string [’standard’ | ‘hessian’ | ‘modified’]

standard[use the standard locally linear embedding algorithm.] see reference [1]

hessian[use the Hessian eigenmap method. This method requires] n_neighbors >
n_components * (1 + (n_components + 1) / 2. see reference [2]

modified[use the modified locally linear embedding algorithm.] see reference [3]

ltsa[use local tangent space alignment algorithm] see reference [4]

hessian_tol : float, optional

Tolerance for Hessian eigenmapping method. Only used if method == ‘hessian’

modified_tol : float, optional

Tolerance for modified LLE method. Only used if method == ‘modified’

neighbors_algorithm : string [’auto’|’brute’|’kd_tree’|’ball_tree’]

algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors
instance

random_state: numpy.RandomState, optional :

The generator used to initialize the centers. Defaults to numpy.random. Used to deter-
mine the starting vector for arpack iterations

References

[R63], [R64], [R65], [R66]

510 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Attributes

embed-
ding_vectors_

array-like, shape
[n_components, n_samples]

Stores the embedding vectors

reconstruc-
tion_error_

float Reconstruction error associated with
embedding_vectors_

nbrs_ NearestNeighbors object Stores nearest neighbors instance, including BallTree
or KDtree if applicable.

Methods

fit(X[, y]) Compute the embedding vectors for data X
fit_transform(X[, y]) Compute the embedding vectors for data X and transform X.
get_params([deep]) Get parameters for the estimator
set_params(**params) Set the parameters of the estimator.
transform(X) Transform new points into embedding space.

__init__(n_neighbors=5, n_components=2, reg=0.001, eigen_solver=’auto’, tol=1e-06,
max_iter=100, method=’standard’, hessian_tol=0.0001, modified_tol=1e-12, neigh-
bors_algorithm=’auto’, random_state=None, out_dim=None)

fit(X, y=None)
Compute the embedding vectors for data X

Parameters X : array-like of shape [n_samples, n_features]

training set.

Returns self : returns an instance of self.

fit_transform(X, y=None)
Compute the embedding vectors for data X and transform X.

Parameters X : array-like of shape [n_samples, n_features]

training set.

Returns X_new: array-like, shape (n_samples, n_components) :

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Transform new points into embedding space.

1.8. Reference 511

scikit-learn user guide, Release 0.12-git

Parameters X : array-like, shape = [n_samples, n_features]

Returns X_new : array, shape = [n_samples, n_components]

Notes

Because of scaling performed by this method, it is discouraged to use it together with methods that are not
scale-invariant (like SVMs)

sklearn.manifold.Isomap

class sklearn.manifold.Isomap(n_neighbors=5, n_components=2, eigen_solver=’auto’, tol=0,
max_iter=None, path_method=’auto’, neighbors_algorithm=’auto’,
out_dim=None)

Isomap Embedding

Non-linear dimensionality reduction through Isometric Mapping

Parameters n_neighbors : integer

number of neighbors to consider for each point.

n_components : integer

number of coordinates for the manifold

eigen_solver : [’auto’|’arpack’|’dense’]

‘auto’[attempt to choose the most efficient solver] for the given problem.

‘arpack’[use Arnoldi decomposition to find the eigenvalues] and eigenvectors. Note
that arpack can handle both dense and sparse data efficiently

‘dense’[use a direct solver (i.e. LAPACK)] for the eigenvalue decomposition.

tol : float

convergence tolerance passed to arpack or lobpcg. not used if eigen_solver == ‘dense’

max_iter : integer

maximum number of iterations for the arpack solver. not used if eigen_solver == ‘dense’

path_method : string [’auto’|’FW’|’D’]

method to use in finding shortest path. ‘auto’ : attempt to choose the best algorithm
automatically ‘FW’ : Floyd-Warshall algorithm ‘D’ : Dijkstra algorithm with Fibonacci
Heaps

neighbors_algorithm : string [’auto’|’brute’|’kd_tree’|’ball_tree’]

algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors
instance

References

[1] Tenenbaum, J.B.; De Silva, V.; & Langford, J.C. A global geometricframework for nonlinear dimen-
sionality reduction. Science 290 (5500)

512 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Attributes

embed-
ding_

array-like, shape (n_samples,
n_components)

Stores the embedding vectors

ker-
nel_pca_

KernelPCA object used to
implement the embedding

train-
ing_data_

array-like, shape (n_samples,
n_features)

Stores the training data

nbrs_ sklearn.neighbors.NearestNeighbors
instance

Stores nearest neighbors instance, including BallTree
or KDtree if applicable.

dist_matrix_ array-like, shape (n_samples,
n_samples)

Stores the geodesic distance matrix of training data

Methods

fit(X[, y]) Compute the embedding vectors for data X
fit_transform(X[, y]) Fit the model from data in X and transform X.
get_params([deep]) Get parameters for the estimator
reconstruction_error() Compute the reconstruction error for the embedding.
set_params(**params) Set the parameters of the estimator.
transform(X) Transform X.

__init__(n_neighbors=5, n_components=2, eigen_solver=’auto’, tol=0, max_iter=None,
path_method=’auto’, neighbors_algorithm=’auto’, out_dim=None)

fit(X, y=None)
Compute the embedding vectors for data X

Parameters X : {array-like, sparse matrix, BallTree, cKDTree, NearestNeighbors}

Sample data, shape = (n_samples, n_features), in the form of a numpy array, sparse
array, precomputed tree, or NearestNeighbors object.

Returns self : returns an instance of self.

fit_transform(X, y=None)
Fit the model from data in X and transform X.

Parameters X: {array-like, sparse matrix, BallTree, cKDTree} :

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

Returns X_new: array-like, shape (n_samples, n_components) :

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

reconstruction_error()
Compute the reconstruction error for the embedding.

Returns reconstruction_error : float

1.8. Reference 513

scikit-learn user guide, Release 0.12-git

Notes

The cost function of an isomap embedding is

E = frobenius_norm[K(D) - K(D_fit)] / n_samples

Where D is the matrix of distances for the input data X, D_fit is the matrix of distances for the output
embedding X_fit, and K is the isomap kernel:

K(D) = -0.5 * (I - 1/n_samples) * D^2 * (I - 1/n_samples)

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Transform X.

This is implemented by linking the points X into the graph of geodesic distances of the training data. First
the n_neighbors nearest neighbors of X are found in the training data, and from these the shortest geodesic
distances from each point in X to each point in the training data are computed in order to construct the
kernel. The embedding of X is the projection of this kernel onto the embedding vectors of the training set.

Parameters X: array-like, shape (n_samples, n_features) :

Returns X_new: array-like, shape (n_samples, n_components) :

sklearn.manifold.MDS

class sklearn.manifold.MDS(n_components=2, metric=True, n_init=4, max_iter=300, verbose=0,
eps=0.001, n_jobs=1, random_state=None)

Multidimensional scaling

Parameters metric : boolean, optional, default: True

compute metric or nonmetric SMACOF (Scaling by Majorizing a Complicated Func-
tion) algorithm

n_components : int, optional, default: 2

number of dimension in which to immerse the similarities overridden if initial array is
provided.

n_init : int, optional, default: 4

Number of time the smacof algorithm will be run with different initialisation. The final
results will be the best output of the n_init consecutive runs in terms of stress.

max_iter : int, optional, default: 300

Maximum number of iterations of the SMACOF algorithm for a single run

verbose : int, optional, default: 0

level of verbosity

eps : float, optional, default: 1e-6

relative tolerance w.r.t stress to declare converge

514 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

n_jobs : int, optional, default: 1

The number of jobs to use for the computation. This works by breaking down the
pairwise matrix into n_jobs even slices and computing them in parallel.

If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which
is useful for debuging. For n_jobs below -1, (n_cpus + 1 - n_jobs) are used. Thus for
n_jobs = -2, all CPUs but one are used.

random_state : integer or numpy.RandomState, optional

The generator used to initialize the centers. If an integer is given, it fixes the seed.
Defaults to the global numpy random number generator.

Notes

“Modern Multidimensional Scaling - Theory and Applications” Borg, I.; Groenen P. Springer Series in Statistics
(1997)

“Nonmetric multidimensional scaling: a numerical method” Kruskal, J. Psychometrika, 29 (1964)

“Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis” Kruskal, J. Psychometrika,
29, (1964)

Attributes

embedding_array-like, shape
[n_components,
n_samples]

Stores the position of the dataset in the embedding space

stress_ float The final value of the stress (sum of squared distance of the
disparities and the distances for all constrained points)

Methods

fit(X[, init, y]) Computes the position of the points in the embedding space
fit_transform(X[, init, y]) Fit the data from X, and returns the embedded coordinates
get_params([deep]) Get parameters for the estimator
set_params(**params) Set the parameters of the estimator.

__init__(n_components=2, metric=True, n_init=4, max_iter=300, verbose=0, eps=0.001, n_jobs=1,
random_state=None)

fit(X, init=None, y=None)
Computes the position of the points in the embedding space

Parameters X: array, shape=[n_samples, n_samples], symetric :

Proximity matrice

init: {None or ndarray, shape (n_samples,)} :

if None, randomly chooses the initial configuration if ndarray, initialize the SMACOF
algorithm with this array

fit_transform(X, init=None, y=None)
Fit the data from X, and returns the embedded coordinates

1.8. Reference 515

scikit-learn user guide, Release 0.12-git

Parameters X: array, shape=[n_samples, n_samples], symetric :

Proximity matrice

init: {None or ndarray, shape (n_samples,)} :

if None, randomly chooses the initial configuration if ndarray, initialize the SMACOF
algorithm with this array

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

manifold.locally_linear_embedding(X, ...[, ...]) Perform a Locally Linear Embedding analysis on the data.

sklearn.manifold.locally_linear_embedding

sklearn.manifold.locally_linear_embedding(X, n_neighbors, n_components, reg=0.001,
eigen_solver=’auto’, tol=1e-06, max_iter=100,
method=’standard’, hessian_tol=0.0001,
modified_tol=1e-12, random_state=None,
out_dim=None)

Perform a Locally Linear Embedding analysis on the data.

Parameters X : {array-like, sparse matrix, BallTree, cKDTree, NearestNeighbors}

Sample data, shape = (n_samples, n_features), in the form of a numpy array, sparse
array, precomputed tree, or NearestNeighbors object.

n_neighbors : integer

number of neighbors to consider for each point.

n_components : integer

number of coordinates for the manifold.

reg : float

regularization constant, multiplies the trace of the local covariance matrix of the dis-
tances.

eigen_solver : string, {‘auto’, ‘arpack’, ‘dense’}

auto : algorithm will attempt to choose the best method for input data

arpack[use arnoldi iteration in shift-invert mode.] For this method, M may be a dense
matrix, sparse matrix, or general linear operator.

516 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

dense[use standard dense matrix operations for the eigenvalue] decomposition. For this
method, M must be an array or matrix type. This method should be avoided for large
problems.

tol : float, optional

Tolerance for ‘arpack’ method Not used if eigen_solver==’dense’.

max_iter : integer

maximum number of iterations for the arpack solver.

method : {‘standard’, ‘hessian’, ‘modified’, ‘ltsa’}

standard[use the standard locally linear embedding algorithm.] see reference [R67]

hessian[use the Hessian eigenmap method. This method requires] n_neighbors >
n_components * (1 + (n_components + 1) / 2. see reference [R68]

modified[use the modified locally linear embedding algorithm.] see reference [R69]

ltsa[use local tangent space alignment algorithm] see reference [R70]

hessian_tol : float, optional

Tolerance for Hessian eigenmapping method. Only used if method == ‘hessian’

modified_tol : float, optional

Tolerance for modified LLE method. Only used if method == ‘modified’

random_state: numpy.RandomState, optional :

The generator used to initialize the centers. Defaults to numpy.random.

Returns Y : array-like, shape [n_samples, n_components]

Embedding vectors.

squared_error : float

Reconstruction error for the embedding vectors. Equivalent to norm(Y - W Y,
’fro’)**2, where W are the reconstruction weights.

References

[R67], [R68], [R69], [R70]

1.8.17 sklearn.metrics: Metrics

The sklearn.metrics module includes score functions, performance metrics and pairwise metrics and distance
computations.

Classification metrics

metrics.confusion_matrix(y_true, y_pred[, ...]) Compute confusion matrix to evaluate the accuracy of a classification
metrics.roc_curve(y_true, y_score) compute Receiver operating characteristic (ROC)
metrics.auc(x, y) Compute Area Under the Curve (AUC) using the trapezoidal rule
metrics.precision_score(y_true, y_pred[, ...]) Compute the precision

Continued on next page

1.8. Reference 517

scikit-learn user guide, Release 0.12-git

Table 1.137 – continued from previous page
metrics.recall_score(y_true, y_pred[, ...]) Compute the recall
metrics.fbeta_score(y_true, y_pred, beta[, ...]) Compute fbeta score
metrics.f1_score(y_true, y_pred[, labels, ...]) Compute f1 score
metrics.precision_recall_fscore_support(...) Compute precisions, recalls, f-measures and support for each class
metrics.classification_report(y_true, y_pred) Build a text report showing the main classification metrics
metrics.precision_recall_curve(y_true, ...) Compute precision-recall pairs for different probability thresholds
metrics.zero_one_score(y_true, y_pred) Zero-one classification score (accuracy)
metrics.zero_one(y_true, y_pred) Zero-One classification loss
metrics.hinge_loss(y_true, pred_decision[, ...]) Cumulated hinge loss (non-regularized).

sklearn.metrics.confusion_matrix

sklearn.metrics.confusion_matrix(y_true, y_pred, labels=None)
Compute confusion matrix to evaluate the accuracy of a classification

By definition a confusion matrix cm is such that cm[i, j] is equal to the number of observations known to be in
group i but predicted to be in group j.

Parameters y_true : array, shape = [n_samples]

true targets

y_pred : array, shape = [n_samples]

estimated targets

labels : array, shape = [n_classes]

lists all labels occuring in the dataset. If none is given, those that appear at least once in
y_true or y_pred are used.

Returns CM : array, shape = [n_classes, n_classes]

confusion matrix

References

http://en.wikipedia.org/wiki/Confusion_matrix

sklearn.metrics.roc_curve

sklearn.metrics.roc_curve(y_true, y_score)
compute Receiver operating characteristic (ROC)

Note: this implementation is restricted to the binary classification task.

Parameters y_true : array, shape = [n_samples]

true binary labels

y_score : array, shape = [n_samples]

target scores, can either be probability estimates of the positive class, confidence values,
or binary decisions.

Returns fpr : array, shape = [>2]

False Positive Rates

518 Chapter 1. User Guide

http://en.wikipedia.org/wiki/Confusion_matrix

scikit-learn user guide, Release 0.12-git

tpr : array, shape = [>2]

True Positive Rates

thresholds : array, shape = [>2]

Thresholds on y_score used to compute fpr and tpr

References

http://en.wikipedia.org/wiki/Receiver_operating_characteristic

Examples

>>> import numpy as np
>>> from sklearn import metrics
>>> y = np.array([1, 1, 2, 2])
>>> scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = metrics.roc_curve(y, scores)
>>> fpr
array([0. , 0.5, 0.5, 1.])

sklearn.metrics.auc

sklearn.metrics.auc(x, y)
Compute Area Under the Curve (AUC) using the trapezoidal rule

Parameters x : array, shape = [n]

x coordinates

y : array, shape = [n]

y coordinates

Returns auc : float

Examples

>>> import numpy as np
>>> from sklearn import metrics
>>> y = np.array([1, 1, 2, 2])
>>> pred = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = metrics.roc_curve(y, pred)
>>> metrics.auc(fpr, tpr)
0.75

sklearn.metrics.precision_score

sklearn.metrics.precision_score(y_true, y_pred, labels=None, pos_label=1, aver-
age=’weighted’)

Compute the precision

1.8. Reference 519

http://en.wikipedia.org/wiki/Receiver_operating_characteristic

scikit-learn user guide, Release 0.12-git

The precision is the ratio tp/(tp + fp) where tp is the number of true positives and fp the number of false
positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative.

The best value is 1 and the worst value is 0.

Parameters y_true : array, shape = [n_samples]

True targets

y_pred : array, shape = [n_samples]

Predicted targets

labels : array

Integer array of labels

pos_label : int

In the binary classification case, give the label of the positive class (default is 1). Ev-
erything else but ‘pos_label’ is considered to belong to the negative class. Set to None
in the case of multiclass classification.

average : string, [None, ‘micro’, ‘macro’, ‘weighted’(default)]

In the multiclass classification case, this determines the type of averaging performed on
the data.

macro:Average over classes (does not take imbalance into account).

micro:Average over instances (takes imbalance into account). This implies that
precision == recall == f1

weighted:Average weighted by support (takes imbalance into account). Can result in
f1 score that is not between precision and recall.

Returns precision : float

Precision of the positive class in binary classification or weighted average of the preci-
sion of each class for the multiclass task

sklearn.metrics.recall_score

sklearn.metrics.recall_score(y_true, y_pred, labels=None, pos_label=1, average=’weighted’)
Compute the recall

The recall is the ratio tp/(tp+fn) where tp is the number of true positives and fn the number of false negatives.
The recall is intuitively the ability of the classifier to find all the positive samples.

The best value is 1 and the worst value is 0.

Parameters y_true : array, shape = [n_samples]

True targets

y_pred : array, shape = [n_samples]

Predicted targets

labels : array

Integer array of labels

pos_label : int

520 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

In the binary classification case, give the label of the positive class (default is 1). Ev-
erything else but ‘pos_label’ is considered to belong to the negative class. Set to None
in the case of multiclass classification.

average : string, [None, ‘micro’, ‘macro’, ‘weighted’(default)]

In the multiclass classification case, this determines the type of averaging performed on
the data.

macro:Average over classes (does not take imbalance into account).

micro:Average over instances (takes imbalance into account). This implies that
precision == recall == f1

weighted:Average weighted by support (takes imbalance into account). Can result in
f1 score that is not between precision and recall.

Returns recall : float

Recall of the positive class in binary classification or weighted average of the recall of
each class for the multiclass task.

sklearn.metrics.fbeta_score

sklearn.metrics.fbeta_score(y_true, y_pred, beta, labels=None, pos_label=1, aver-
age=’weighted’)

Compute fbeta score

The F_beta score is the weighted harmonic mean of precision and recall, reaching its optimal value at 1 and its
worst value at 0.

The beta parameter determines the weight of precision in the combined score. beta < 1 lends more weight
to precision, while beta > 1 favors precision (beta == 0 considers only precision, beta == inf only
recall).

Parameters y_true : array, shape = [n_samples]

True targets

y_pred : array, shape = [n_samples]

Predicted targets

beta: float :

Weight of precision in harmonic mean.

labels : array

Integer array of labels

pos_label : int

In the binary classification case, give the label of the positive class (default is 1). Ev-
erything else but ‘pos_label’ is considered to belong to the negative class. Set to None
in the case of multiclass classification.

average : string, [None, ‘micro’, ‘macro’, ‘weighted’(default)]

In the multiclass classification case, this determines the type of averaging performed on
the data.

macro:Average over classes (does not take imbalance into account).

1.8. Reference 521

scikit-learn user guide, Release 0.12-git

micro:Average over instances (takes imbalance into account). This implies that
precision == recall == f1

weighted:Average weighted by support (takes imbalance into account). Can result in
f1 score that is not between precision and recall.

Returns fbeta_score : float

fbeta_score of the positive class in binary classification or weighted average of the
fbeta_score of each class for the multiclass task.

References

R. Baeza-Yates and B. Ribeiro-Neto (2011). Modern Information Retrieval. Addison Wesley, pp. 327-328.

http://en.wikipedia.org/wiki/F1_score

sklearn.metrics.f1_score

sklearn.metrics.f1_score(y_true, y_pred, labels=None, pos_label=1, average=’weighted’)
Compute f1 score

The F1 score can be interpreted as a weighted average of the precision and recall, where an F1 score reaches its
best value at 1 and worst score at 0. The relative contribution of precision and recall to the f1 score are equal.
The formular for the F_1 score is:

F_1 = 2 * (precision * recall) / (precision + recall)

See: http://en.wikipedia.org/wiki/F1_score

In the multi-class case, this is the weighted average of the f1-score of each class.

Parameters y_true : array, shape = [n_samples]

True targets

y_pred : array, shape = [n_samples]

Predicted targets

labels : array

Integer array of labels

pos_label : int

In the binary classification case, give the label of the positive class (default is 1). Ev-
erything else but ‘pos_label’ is considered to belong to the negative class. Set to None
in the case of multiclass classification.

average : string, [None, ‘micro’, ‘macro’, ‘weighted’(default)]

In the multiclass classification case, this determines the type of averaging performed on
the data.

macro:Average over classes (does not take imbalance into account).

micro:Average over instances (takes imbalance into account). This implies that
precision == recall == f1

weighted:Average weighted by support (takes imbalance into account). Can result in
f1 score that is not between precision and recall.

522 Chapter 1. User Guide

http://en.wikipedia.org/wiki/F1_score
http://en.wikipedia.org/wiki/F1_score

scikit-learn user guide, Release 0.12-git

Returns f1_score : float

f1_score of the positive class in binary classification or weighted average of the
f1_scores of each class for the multiclass task

References

http://en.wikipedia.org/wiki/F1_score

sklearn.metrics.precision_recall_fscore_support

sklearn.metrics.precision_recall_fscore_support(y_true, y_pred, beta=1.0, la-
bels=None, pos_label=1, aver-
age=None)

Compute precisions, recalls, f-measures and support for each class

The precision is the ratio tp/(tp + fp) where tp is the number of true positives and fp the number of false
positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative.

The recall is the ratio tp/(tp+fn) where tp is the number of true positives and fn the number of false negatives.
The recall is intuitively the ability of the classifier to find all the positive samples.

The F_beta score can be interpreted as a weighted harmonic mean of the precision and recall, where an F_beta
score reaches its best value at 1 and worst score at 0.

The F_beta score weights recall beta as much as precision. beta = 1.0 means recall and precsion are equally
important.

The support is the number of occurrences of each class in y_true.

If pos_label is None, this function returns the average precision, recall and f-measure if average is one of
‘micro’, ‘macro’, ‘weighted’.

Parameters y_true : array, shape = [n_samples]

True targets

y_pred : array, shape = [n_samples]

Predicted targets

beta : float, 1.0 by default

The strength of recall versus precision in the f-score.

labels : array

Integer array of labels

pos_label : int

In the binary classification case, give the label of the positive class (default is 1). Ev-
erything else but ‘pos_label’ is considered to belong to the negative class. Set to None
in the case of multiclass classification.

average : string, [None, ‘micro’, ‘macro’, ‘weighted’(default)]

In the multiclass classification case, this determines the type of averaging performed on
the data.

macro:Average over classes (does not take imbalance into account).

1.8. Reference 523

http://en.wikipedia.org/wiki/F1_score

scikit-learn user guide, Release 0.12-git

micro:Average over instances (takes imbalance into account). This implies that
precision == recall == f1

weighted:Average weighted by support (takes imbalance into account). Can result in
f1 score that is not between precision and recall.

Returns precision: array, shape = [n_unique_labels], dtype = np.double :

recall: array, shape = [n_unique_labels], dtype = np.double :

f1_score: array, shape = [n_unique_labels], dtype = np.double :

support: array, shape = [n_unique_labels], dtype = np.long :

References

http://en.wikipedia.org/wiki/Precision_and_recall

sklearn.metrics.classification_report

sklearn.metrics.classification_report(y_true, y_pred, labels=None, target_names=None)
Build a text report showing the main classification metrics

Parameters y_true : array, shape = [n_samples]

True targets

y_pred : array, shape = [n_samples]

Estimated targets

labels : array, shape = [n_labels]

Optional list of label indices to include in the report

target_names : list of strings

Optional display names matching the labels (same order)

Returns report : string

Text summary of the precision, recall, f1-score for each class

sklearn.metrics.precision_recall_curve

sklearn.metrics.precision_recall_curve(y_true, probas_pred)
Compute precision-recall pairs for different probability thresholds

Note: this implementation is restricted to the binary classification task.

The precision is the ratio tp/(tp + fp) where tp is the number of true positives and fp the number of false
positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative.

The recall is the ratio tp/(tp+fn) where tp is the number of true positives and fn the number of false negatives.
The recall is intuitively the ability of the classifier to find all the positive samples.

The last precision and recall values are 1. and 0. respectively and do not have a corresponding threshold. This
ensures that the graph starts on the x axis.

Parameters y_true : array, shape = [n_samples]

True targets of binary classification in range {-1, 1} or {0, 1}

524 Chapter 1. User Guide

http://en.wikipedia.org/wiki/Precision_and_recall

scikit-learn user guide, Release 0.12-git

probas_pred : array, shape = [n_samples]

Estimated probabilities

Returns precision : array, shape = [n + 1]

Precision values

recall : array, shape = [n + 1]

Recall values

thresholds : array, shape = [n]

Thresholds on y_score used to compute precision and recall

sklearn.metrics.zero_one_score

sklearn.metrics.zero_one_score(y_true, y_pred)
Zero-one classification score (accuracy)

Positive integer (number of good classifications). The best performance is 1.

Return the fraction of correct predictions in y_pred.

Parameters y_true : array-like, shape = n_samples

Gold standard labels.

y_pred : array-like, shape = n_samples

Predicted labels, as returned by a classifier.

Returns score : float

sklearn.metrics.zero_one

sklearn.metrics.zero_one(y_true, y_pred)
Zero-One classification loss

Positive integer (number of misclassifications). The best performance is 0.

Return the number of errors

Parameters y_true : array-like

y_pred : array-like

Returns loss : float

sklearn.metrics.hinge_loss

sklearn.metrics.hinge_loss(y_true, pred_decision, pos_label=1, neg_label=-1)
Cumulated hinge loss (non-regularized).

Assuming labels in y_true are encoded with +1 and -1, when a prediction mistake is made, margin = y_true *
pred_decision is always negative (since the signs disagree), therefore 1 - margin is always greater than 1. The
cumulated hinge loss therefore upperbounds the number of mistakes made by the classifier.

Parameters y_true : array, shape = [n_samples]

True target (integers)

1.8. Reference 525

scikit-learn user guide, Release 0.12-git

pred_decision : array, shape = [n_samples] or [n_samples, n_classes]

Predicted decisions, as output by decision_function (floats)

Regression metrics

metrics.r2_score(y_true, y_pred) R^2 (coefficient of determination) regression score function
metrics.mean_squared_error(y_true, y_pred) Mean squared error regression loss

sklearn.metrics.r2_score

sklearn.metrics.r2_score(y_true, y_pred)
R^2 (coefficient of determination) regression score function

Best possible score is 1.0, lower values are worse.

Parameters y_true : array-like

y_pred : array-like

Returns z : float

The R^2 score

Notes

This is not a symmetric function.

References

http://en.wikipedia.org/wiki/Coefficient_of_determination

sklearn.metrics.mean_squared_error

sklearn.metrics.mean_squared_error(y_true, y_pred)
Mean squared error regression loss

Return a a positive floating point value (the best value is 0.0).

Parameters y_true : array-like

y_pred : array-like

Returns loss : float

Clustering metrics

See the Clustering section of the user guide for further details. The sklearn.metrics.cluster submodule
contains evaluation metrics for cluster analysis results. There are two forms of evaluation:

• supervised, which uses a ground truth class values for each sample.

• unsupervised, which does not and measures the ‘quality’ of the model itself.

526 Chapter 1. User Guide

http://en.wikipedia.org/wiki/Coefficient_of_determination

scikit-learn user guide, Release 0.12-git

metrics.adjusted_mutual_info_score(...) Adjusted Mutual Information between two clusterings
metrics.adjusted_rand_score(labels_true, ...) Rand index adjusted for chance
metrics.completeness_score(labels_true, ...) Completeness metric of a cluster labeling given a ground truth
metrics.homogeneity_completeness_v_measure(...) Compute the homogeneity and completeness and V-measure scores at once
metrics.homogeneity_score(labels_true, ...) Homogeneity metric of a cluster labeling given a ground truth
metrics.mutual_info_score(labels_true, ...) Mutual Information between two clusterings
metrics.normalized_mutual_info_score(...) Normalized Mutual Information between two clusterings
metrics.silhouette_score(X, labels[, ...]) Compute the mean Silhouette Coefficient of all samples.
metrics.v_measure_score(labels_true, labels_pred) V-Measure cluster labeling given a ground truth.

sklearn.metrics.adjusted_mutual_info_score

sklearn.metrics.adjusted_mutual_info_score(labels_true, labels_pred)
Adjusted Mutual Information between two clusterings

Adjusted Mutual Information (AMI) is an adjustement of the Mutual Information (MI) score to account for
chance. It accounts for the fact that the MI is generally higher for two clusterings with a larger number of
clusters, regardless of whether there is actually more information shared. For two clusterings U and V, the AMI
is given as:

AMI(U, V) = [MI(U, V) - E(MI(U, V))] / [max(H(U), H(V)) - E(MI(U, V))]

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values
won’t change the score value in any way.

This metric is furthermore symmetric: switching label_true with label_pred will return the same score value.
This can be useful to measure the agreement of two independent label assignments strategies on the same dataset
when the real ground truth is not known.

Be mindful that this function is an order of magnitude slower than other metrics, such as the Adjusted Rand
Index.

Parameters labels_true : int array, shape = [n_samples]

A clustering of the data into disjoint subsets.

labels_pred : array, shape = [n_samples]

A clustering of the data into disjoint subsets.

Returns ami: float :

score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling

See Also:

adjusted_rand_scoreAdjusted Rand Index

mutual_information_scoreMutual Information (not adjusted for chance)

References

[R41], [R42]

1.8. Reference 527

scikit-learn user guide, Release 0.12-git

Examples

Perfect labelings are both homogeneous and complete, hence have score 1.0:

>>> from sklearn.metrics.cluster import adjusted_mutual_info_score
>>> adjusted_mutual_info_score([0, 0, 1, 1], [0, 0, 1, 1])
1.0
>>> adjusted_mutual_info_score([0, 0, 1, 1], [1, 1, 0, 0])
1.0

If classes members are completly splitted across different clusters, the assignment is totally in-complete, hence
the AMI is null:

>>> adjusted_mutual_info_score([0, 0, 0, 0], [0, 1, 2, 3])
0.0

sklearn.metrics.adjusted_rand_score

sklearn.metrics.adjusted_rand_score(labels_true, labels_pred)
Rand index adjusted for chance

The Rand Index computes a similarity measure between two clusterings by considering all pairs of samples and
counting pairs that are assigned in the same or different clusters in the predicted and true clusterings.

The raw RI score is then “adjusted for chance” into the ARI score using the following scheme:

ARI = (RI - Expected_RI) / (max(RI) - Expected_RI)

The adjusted Rand index is thus ensured to have a value close to 0.0 for random labeling independently of the
number of clusters and samples and exactly 1.0 when the clusterings are identical (up to a permutation).

ARI is a symmetric measure:

adjusted_rand_score(a, b) == adjusted_rand_score(b, a)

Parameters labels_true : int array, shape = [n_samples]

Ground truth class labels to be used as a reference

labels_pred : array, shape = [n_samples]

Cluster labels to evaluate

Returns ari: float :

Similarity score between -1.0 and 1.0. Random labelings have an ARI close to 0.0. 1.0
stands for perfect match.

See Also:

adjusted_mutual_info_scoreAdjusted Mutual Information

References

[Hubert1985], [wk]

528 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Examples

Perfectly maching labelings have a score of 1 even

>>> from sklearn.metrics.cluster import adjusted_rand_score
>>> adjusted_rand_score([0, 0, 1, 1], [0, 0, 1, 1])
1.0
>>> adjusted_rand_score([0, 0, 1, 1], [1, 1, 0, 0])
1.0

Labelings that assign all classes members to the same clusters are complete be not always pure, hence penalized:

>>> adjusted_rand_score([0, 0, 1, 2], [0, 0, 1, 1])
0.57...

ARI is symmetric, so labelings that have pure clusters with members coming from the same classes but unnec-
essary splits are penalized:

>>> adjusted_rand_score([0, 0, 1, 1], [0, 0, 1, 2])
0.57...

If classes members are completely split across different clusters, the assignment is totally incomplete, hence the
ARI is very low:

>>> adjusted_rand_score([0, 0, 0, 0], [0, 1, 2, 3])
0.0

sklearn.metrics.completeness_score

sklearn.metrics.completeness_score(labels_true, labels_pred)
Completeness metric of a cluster labeling given a ground truth

A clustering result satisfies completeness if all the data points that are members of a given class are elements of
the same cluster.

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values
won’t change the score value in any way.

This metric is not symmetric: switching label_true with label_pred will return the homogeneity_score which
will be different in general.

Parameters labels_true : int array, shape = [n_samples]

ground truth class labels to be used as a reference

labels_pred : array, shape = [n_samples]

cluster labels to evaluate

Returns completeness: float :

score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling

See Also:

homogeneity_score, v_measure_score

References

•Andrew Rosenberg and Julia Hirschberg V-Measure: A conditional entropy-based external cluster evalu-
ation measure, 2007 http://acl.ldc.upenn.edu/D/D07/D07-1043.pdf

1.8. Reference 529

http://acl.ldc.upenn.edu/D/D07/D07-1043.pdf

scikit-learn user guide, Release 0.12-git

Examples

Perfect labelings are complete:

>>> from sklearn.metrics.cluster import completeness_score
>>> completeness_score([0, 0, 1, 1], [1, 1, 0, 0])
1.0

Non-pefect labelings that assign all classes members to the same clusters are still complete:

>>> completeness_score([0, 0, 1, 1], [0, 0, 0, 0])
1.0
>>> completeness_score([0, 1, 2, 3], [0, 0, 1, 1])
1.0

If classes members are splitted across different clusters, the assignment cannot be complete:

>>> completeness_score([0, 0, 1, 1], [0, 1, 0, 1])
0.0
>>> completeness_score([0, 0, 0, 0], [0, 1, 2, 3])
0.0

sklearn.metrics.homogeneity_completeness_v_measure

sklearn.metrics.homogeneity_completeness_v_measure(labels_true, labels_pred)
Compute the homogeneity and completeness and V-measure scores at once

Those metrics are based on normalized conditional entropy measures of the clustering labeling to evaluate given
the knowledge of a Ground Truth class labels of the same samples.

A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a
single class.

A clustering result satisfies completeness if all the data points that are members of a given class are elements of
the same cluster.

Both scores have positive values between 0.0 and 1.0, larger values being desirable.

Those 3 metrics are independent of the absolute values of the labels: a permutation of the class or cluster label
values won’t change the score values in any way.

V-Measure is furthermore symmetric: swapping labels_true and label_pred will give the same score. This does
not hold for homogeneity and completeness.

Parameters labels_true : int array, shape = [n_samples]

ground truth class labels to be used as a reference

labels_pred : array, shape = [n_samples]

cluster labels to evaluate

Returns homogeneity: float :

score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling

completeness: float :

score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling

v_measure: float :

harmonic mean of the first two

530 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

See Also:

homogeneity_score, completeness_score, v_measure_score

sklearn.metrics.homogeneity_score

sklearn.metrics.homogeneity_score(labels_true, labels_pred)
Homogeneity metric of a cluster labeling given a ground truth

A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a
single class.

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values
won’t change the score value in any way.

This metric is not symmetric: switching label_true with label_pred will return the completeness_score which
will be different in general.

Parameters labels_true : int array, shape = [n_samples]

ground truth class labels to be used as a reference

labels_pred : array, shape = [n_samples]

cluster labels to evaluate

Returns homogeneity: float :

score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling

See Also:

completeness_score, v_measure_score

References

•Andrew Rosenberg and Julia Hirschberg V-Measure: A conditional entropy-based external cluster evalu-
ation measure, 2007 http://acl.ldc.upenn.edu/D/D07/D07-1043.pdf

Examples

Perfect labelings are homegenous:

>>> from sklearn.metrics.cluster import homogeneity_score
>>> homogeneity_score([0, 0, 1, 1], [1, 1, 0, 0])
1.0

Non-pefect labelings that futher split classes into more clusters can be perfectly homogeneous:

>>> homogeneity_score([0, 0, 1, 1], [0, 0, 1, 2])
1.0
>>> homogeneity_score([0, 0, 1, 1], [0, 1, 2, 3])
1.0

Clusters that include samples from different classes do not make for an homogeneous labeling:

>>> homogeneity_score([0, 0, 1, 1], [0, 1, 0, 1])
0.0
>>> homogeneity_score([0, 0, 1, 1], [0, 0, 0, 0])
0.0

1.8. Reference 531

http://acl.ldc.upenn.edu/D/D07/D07-1043.pdf

scikit-learn user guide, Release 0.12-git

sklearn.metrics.mutual_info_score

sklearn.metrics.mutual_info_score(labels_true, labels_pred, contingency=None)
Mutual Information between two clusterings

The Mutual Information is a measure of the similarity between two labels of the same data. Where P(i) is the
probability of a random sample occuring in cluster U_i and P’(j) is the probability of a random sample occuring
in cluster V_j, the Mutual information between clusterings U and V is given as:

MI(U, V) =

R∑
i=1

C∑
j=1

P (i, j) log
P (i, j)

P (i)P ′(j)

This is equal to the Kullback-Leibler divergence of the joint distribution with the product distribution of the
marginals.

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values
won’t change the score value in any way.

This metric is furthermore symmetric: switching label_true with label_pred will return the same score value.
This can be useful to measure the agreement of two independent label assignments strategies on the same dataset
when the real ground truth is not known.

Parameters labels_true : int array, shape = [n_samples]

A clustering of the data into disjoint subsets.

labels_pred : array, shape = [n_samples]

A clustering of the data into disjoint subsets.

contingency: None or array, shape = [n_classes_true, n_classes_pred] :

A contingency matrix given by the contingency_matrix function. If value is None, it
will be computed, otherwise the given value is used, with labels_true and labels_pred
ignored.

Returns mi: float :

Mutual information, a non-negative value

See Also:

adjusted_mutual_info_scoreAdjusted against chance Mutual Information

normalized_mutual_info_scoreNormalized Mutual Information

sklearn.metrics.normalized_mutual_info_score

sklearn.metrics.normalized_mutual_info_score(labels_true, labels_pred)
Normalized Mutual Information between two clusterings

Normalized Mutual Information (NMI) is an normalization of the Mutual Information (MI) score to scale the
results between 0 (no mutual information) and 1 (perfect correlation).

This measure is not adjusted for chance. Therefore adjusted_mustual_info_score might be preferred.

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values
won’t change the score value in any way.

This metric is furthermore symmetric: switching label_true with label_pred will return the same score value.
This can be useful to measure the agreement of two independent label assignments strategies on the same dataset
when the real ground truth is not known.

532 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Parameters labels_true : int array, shape = [n_samples]

A clustering of the data into disjoint subsets.

labels_pred : array, shape = [n_samples]

A clustering of the data into disjoint subsets.

Returns nmi: float :

score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling

See Also:

adjusted_rand_scoreAdjusted Rand Index

adjusted_mutual_information_scoreAdjusted Mutual Information (adjusted against chance)

Examples

Perfect labelings are both homogeneous and complete, hence have score 1.0:

>>> from sklearn.metrics.cluster import normalized_mutual_info_score
>>> normalized_mutual_info_score([0, 0, 1, 1], [0, 0, 1, 1])
1.0
>>> normalized_mutual_info_score([0, 0, 1, 1], [1, 1, 0, 0])
1.0

If classes members are completly splitted across different clusters, the assignment is totally in-complete, hence
the NMI is null:

>>> normalized_mutual_info_score([0, 0, 0, 0], [0, 1, 2, 3])
0.0

sklearn.metrics.silhouette_score

sklearn.metrics.silhouette_score(X, labels, metric=’euclidean’, sample_size=None, ran-
dom_state=None, **kwds)

Compute the mean Silhouette Coefficient of all samples.

The Silhouette Coefficient is calculated using the mean intra-cluster distance (a) and the mean nearest-cluster
distance (b) for each sample. The Silhouette Coefficient for a sample is (b - a) / max(a, b). To clarrify,
b is the distance between a sample and the nearest cluster that b is not a part of.

This function returns the mean Silhoeutte Coefficient over all samples. To obtain the values for each sample,
use silhouette_samples

The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Negative values
generally indicate that a sample has been assigned to the wrong cluster, as a different cluster is more similar.

Parameters X : array [n_samples_a, n_samples_a] if metric == “precomputed”, or, [n_samples_a,
n_features] otherwise

Array of pairwise distances between samples, or a feature array.

labels : array, shape = [n_samples]

label values for each sample

metric : string, or callable

1.8. Reference 533

scikit-learn user guide, Release 0.12-git

The metric to use when calculating distance between instances in a feature ar-
ray. If metric is a string, it must be one of the options allowed by met-
rics.pairwise.pairwise_distances. If X is the distance array itself, use “precomputed”
as the metric.

sample_size : int or None

The size of the sample to use when computing the Silhouette Coefficient. If sample_size
is None, no sampling is used.

random_state : integer or numpy.RandomState, optional

The generator used to initialize the centers. If an integer is given, it fixes the seed.
Defaults to the global numpy random number generator.

‘**kwds‘ : optional keyword parameters

Any further parameters are passed directly to the distance function. If using a
scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy
docs for usage examples.

Returns silhouette : float

Mean Silhouette Coefficient for all samples.

References

Peter J. Rousseeuw (1987). “Silhouettes: a Graphical Aid to theInterpretation and Validation of Cluster
Analysis”. Computational and Applied Mathematics 20: 53-65. doi:10.1016/0377-0427(87)90125-7.

http://en.wikipedia.org/wiki/Silhouette_(clustering)

sklearn.metrics.v_measure_score

sklearn.metrics.v_measure_score(labels_true, labels_pred)
V-Measure cluster labeling given a ground truth.

This score is identical to normalized_mutual_info_score.

The V-Measure is the hormonic mean between homogeneity and completeness:

v = 2 * (homogeneity * completeness) / (homogeneity + completeness)

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values
won’t change the score value in any way.

This metric is furthermore symmetric: switching label_true with label_pred will return the same score value.
This can be useful to measure the agreement of two independent label assignments strategies on the same dataset
when the real ground truth is not known.

Parameters labels_true : int array, shape = [n_samples]

ground truth class labels to be used as a reference

labels_pred : array, shape = [n_samples]

cluster labels to evaluate

Returns completeness: float :

score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling

534 Chapter 1. User Guide

http://en.wikipedia.org/wiki/Silhouette_(clustering

scikit-learn user guide, Release 0.12-git

See Also:

homogeneity_score, completeness_score

References

[Rosenberg2007]

Examples

Perfect labelings are both homogeneous and complete, hence have score 1.0:

>>> from sklearn.metrics.cluster import v_measure_score
>>> v_measure_score([0, 0, 1, 1], [0, 0, 1, 1])
1.0
>>> v_measure_score([0, 0, 1, 1], [1, 1, 0, 0])
1.0

Labelings that assign all classes members to the same clusters are complete be not homogeneous, hence penal-
ized:

>>> v_measure_score([0, 0, 1, 2], [0, 0, 1, 1])
0.8...
>>> v_measure_score([0, 1, 2, 3], [0, 0, 1, 1])
0.66...

Labelings that have pure clusters with members coming from the same classes are homogeneous but un-
necessary splits harms completeness and thus penalize V-measure as well:

>>> v_measure_score([0, 0, 1, 1], [0, 0, 1, 2])
0.8...
>>> v_measure_score([0, 0, 1, 1], [0, 1, 2, 3])
0.66...

If classes members are completly splitted across different clusters, the assignment is totally in-complete, hence
the v-measure is null:

>>> v_measure_score([0, 0, 0, 0], [0, 1, 2, 3])
0.0

Clusters that include samples from totally different classes totally destroy the homogeneity of the labeling,
hence:

>>> v_measure_score([0, 0, 1, 1], [0, 0, 0, 0])
0.0

Pairwise metrics

The sklearn.metrics.pairwise submodule implements utilities to evaluate pairwise distances or affinity of
sets of samples.

This module contains both distance metrics and kernels. A brief summary is given on the two here.

Distance metrics are a function d(a, b) such that d(a, b) < d(a, c) if objects a and b are considered “more similar”
to objects a and c. Two objects exactly alike would have a distance of zero. One of the most popular examples is
Euclidean distance. To be a ‘true’ metric, it must obey the following four conditions:

1.8. Reference 535

scikit-learn user guide, Release 0.12-git

1. d(a, b) >= 0, for all a and b
2. d(a, b) == 0, if and only if a = b, positive definiteness
3. d(a, b) == d(b, a), symmetry
4. d(a, c) <= d(a, b) + d(b, c), the triangle inequality

Kernels are measures of similarity, i.e. s(a, b) > s(a, c) if objects a and b are considered “more similar” to
objects a and c. A kernel must also be positive semi-definite.

There are a number of ways to convert between a distance metric and a similarity measure, such as a kernel. Let D be
the distance, and S be the kernel:

1. ‘‘S = np.exp(-D * gamma)‘‘, where one heuristic for choosing
‘‘gamma‘‘ is ‘‘1 / num_features‘‘

2. ‘‘S = 1. / (D / np.max(D))‘‘

metrics.pairwise.euclidean_distances(X[, Y, ...]) Considering the rows of X (and Y=X) as vectors, compute the
metrics.pairwise.manhattan_distances(X[, Y, ...]) Compute the L1 distances between the vectors in X and Y.
metrics.pairwise.linear_kernel(X[, Y]) Compute the linear kernel between X and Y.
metrics.pairwise.polynomial_kernel(X[, Y, ...]) Compute the polynomial kernel between X and Y:
metrics.pairwise.rbf_kernel(X[, Y, gamma]) Compute the rbf (gaussian) kernel between X and Y:
metrics.pairwise.distance_metrics() Valid metrics for pairwise_distances
metrics.pairwise.pairwise_distances(X[, Y, ...]) Compute the distance matrix from a vector array X and optional Y.
metrics.pairwise.kernel_metrics() Valid metrics for pairwise_kernels
metrics.pairwise.pairwise_kernels(X[, Y, ...]) Compute the kernel between arrays X and optional array Y.

sklearn.metrics.pairwise.euclidean_distances

sklearn.metrics.pairwise.euclidean_distances(X, Y=None, Y_norm_squared=None,
squared=False)

Considering the rows of X (and Y=X) as vectors, compute the distance matrix between each pair of vectors.

For efficiency reasons, the euclidean distance between a pair of row vector x and y is computed as:

dist(x, y) = sqrt(dot(x, x) - 2 * dot(x, y) + dot(y, y))

This formulation has two main advantages. First, it is computationally efficient when dealing with sparse data.
Second, if x varies but y remains unchanged, then the right-most dot-product dot(y, y) can be pre-computed.

Parameters X : {array-like, sparse matrix}, shape = [n_samples_1, n_features]

Y : {array-like, sparse matrix}, shape = [n_samples_2, n_features]

Y_norm_squared : array-like, shape = [n_samples_2], optional

Pre-computed dot-products of vectors in Y (e.g., (Y**2).sum(axis=1))

squared : boolean, optional

Return squared Euclidean distances.

Returns distances : {array, sparse matrix}, shape = [n_samples_1, n_samples_2]

Examples

>>> from sklearn.metrics.pairwise import euclidean_distances
>>> X = [[0, 1], [1, 1]]
>>> # distance between rows of X

536 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

>>> euclidean_distances(X, X)
array([[0., 1.],

[1., 0.]])
>>> # get distance to origin
>>> euclidean_distances(X, [[0, 0]])
array([[1.],

[1.41421356]])

sklearn.metrics.pairwise.manhattan_distances

sklearn.metrics.pairwise.manhattan_distances(X, Y=None, sum_over_features=True)
Compute the L1 distances between the vectors in X and Y.

With sum_over_features equal to False it returns the componentwise distances.

Parameters X : array_like

An array with shape (n_samples_X, n_features).

Y : array_like, optional

An array with shape (n_samples_Y, n_features).

sum_over_features : bool, default=True

If True the function returns the pairwise distance matrix else it returns the component-
wise L1 pairwise-distances.

Returns D : array

If sum_over_features is False shape is (n_samples_X * n_samples_Y, n_features) and D
contains the componentwise L1 pairwise-distances (ie. absolute difference), else shape
is (n_samples_X, n_samples_Y) and D contains the pairwise l1 distances.

Examples

>>> from sklearn.metrics.pairwise import manhattan_distances
>>> manhattan_distances(3, 3)
array([[0.]])
>>> manhattan_distances(3, 2)
array([[1.]])
>>> manhattan_distances(2, 3)
array([[1.]])
>>> manhattan_distances([[1, 2], [3, 4]], [[1, 2], [0, 3]])
array([[0., 2.],

[4., 4.]])
>>> import numpy as np
>>> X = np.ones((1, 2))
>>> y = 2 * np.ones((2, 2))
>>> manhattan_distances(X, y, sum_over_features=False)
array([[1., 1.],

[1., 1.]]...)

sklearn.metrics.pairwise.linear_kernel

sklearn.metrics.pairwise.linear_kernel(X, Y=None)
Compute the linear kernel between X and Y.

1.8. Reference 537

scikit-learn user guide, Release 0.12-git

Parameters X : array of shape (n_samples_1, n_features)

Y : array of shape (n_samples_2, n_features)

Returns Gram matrix : array of shape (n_samples_1, n_samples_2)

sklearn.metrics.pairwise.polynomial_kernel

sklearn.metrics.pairwise.polynomial_kernel(X, Y=None, degree=3, gamma=0, coef0=1)
Compute the polynomial kernel between X and Y:

K(X, Y) = (gamma <X, Y> + coef0)^degree

Parameters X : array of shape (n_samples_1, n_features)

Y : array of shape (n_samples_2, n_features)

degree : int

Returns Gram matrix : array of shape (n_samples_1, n_samples_2)

sklearn.metrics.pairwise.rbf_kernel

sklearn.metrics.pairwise.rbf_kernel(X, Y=None, gamma=0)
Compute the rbf (gaussian) kernel between X and Y:

K(X, Y) = exp(-gamma ||X-Y||^2)

Parameters X : array of shape (n_samples_1, n_features)

Y : array of shape (n_samples_2, n_features)

gamma : float

Returns Gram matrix : array of shape (n_samples_1, n_samples_2)

sklearn.metrics.pairwise.distance_metrics

sklearn.metrics.pairwise.distance_metrics()
Valid metrics for pairwise_distances

This function simply returns the valid pairwise distance metrics. It exists, however, to allow for a verbose
description of the mapping for each of the valid strings.

The valid distance metrics, and the function they map to, are:

metric Function
‘cityblock’ sklearn.pairwise.manhattan_distances
‘euclidean’ sklearn.pairwise.euclidean_distances
‘l1’ sklearn.pairwise.manhattan_distances
‘l2’ sklearn.pairwise.euclidean_distances
‘manhattan’ sklearn.pairwise.manhattan_distances

538 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

sklearn.metrics.pairwise.pairwise_distances

sklearn.metrics.pairwise.pairwise_distances(X, Y=None, metric=’euclidean’, n_jobs=1,
**kwds)

Compute the distance matrix from a vector array X and optional Y.

This method takes either a vector array or a distance matrix, and returns a distance matrix. If the input is a vector
array, the distances are computed. If the input is a distances matrix, it is returned instead.

This method provides a safe way to take a distance matrix as input, while preserving compatability with many
other algorithms that take a vector array.

If Y is given (default is None), then the returned matrix is the pairwise distance between the arrays from both X
and Y.

Please note that support for sparse matrices is currently limited to those metrics listed in pair-
wise.pairwise_distance_functions.

Valid values for metric are:

•from scikit-learn: [’euclidean’, ‘l2’, ‘l1’, ‘manhattan’, ‘cityblock’]

•from scipy.spatial.distance: [’braycurtis’, ‘canberra’, ‘chebyshev’, ‘correlation’, ‘cosine’, ‘dice’, ‘ham-
ming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘matching’, ‘minkowski’, ‘rogerstanimoto’, ‘russell-
rao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeucludean’, ‘yule’] See the documentation for
scipy.spatial.distance for details on these metrics.

Note in the case of ‘euclidean’ and ‘cityblock’ (which are valid scipy.spatial.distance metrics), the values will use
the scikit-learn implementation, which is faster and has support for sparse matrices. For a verbose description
of the metrics from scikit-learn, see the __doc__ of the sklearn.pairwise.distance_metrics function.

Parameters X : array [n_samples_a, n_samples_a] if metric == “precomputed”, or, [n_samples_a,
n_features] otherwise

Array of pairwise distances between samples, or a feature array.

Y : array [n_samples_b, n_features]

A second feature array only if X has shape [n_samples_a, n_features].

metric : string, or callable

The metric to use when calculating distance between instances in a feature array. If
metric is a string, it must be one of the options allowed by scipy.spatial.distance.pdist
for its metric parameter, or a metric listed in pairwise.pairwise_distance_functions. If
metric is “precomputed”, X is assumed to be a distance matrix. Alternatively, if metric
is a callable function, it is called on each pair of instances (rows) and the resulting
value recorded. The callable should take two arrays from X as input and return a value
indicating the distance between them.

n_jobs : int

The number of jobs to use for the computation. This works by breaking down the
pairwise matrix into n_jobs even slices and computing them in parallel.

If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which
is useful for debuging. For n_jobs below -1, (n_cpus + 1 - n_jobs) are used. Thus for
n_jobs = -2, all CPUs but one are used.

‘**kwds‘ : optional keyword parameters

1.8. Reference 539

scikit-learn user guide, Release 0.12-git

Any further parameters are passed directly to the distance function. If using a
scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy
docs for usage examples.

Returns D : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b]

A distance matrix D such that D_{i, j} is the distance between the ith and jth vectors of
the given matrix X, if Y is None. If Y is not None, then D_{i, j} is the distance between
the ith array from X and the jth array from Y.

sklearn.metrics.pairwise.kernel_metrics

sklearn.metrics.pairwise.kernel_metrics()
Valid metrics for pairwise_kernels

This function simply returns the valid pairwise distance metrics. It exists, however, to allow for a verbose
description of the mapping for each of the valid strings.

The valid distance metrics, and the function they map to, are:

metric Function
‘linear’ sklearn.pairwise.linear_kernel
‘poly’ sklearn.pairwise.polynomial_kernel
‘polynomial’ sklearn.pairwise.polynomial_kernel
‘rbf’ sklearn.pairwise.rbf_kernel
‘sigmoid’ sklearn.pairwise.sigmoid_kernel

sklearn.metrics.pairwise.pairwise_kernels

sklearn.metrics.pairwise.pairwise_kernels(X, Y=None, metric=’linear’, fil-
ter_params=False, n_jobs=1, **kwds)

Compute the kernel between arrays X and optional array Y.

This method takes either a vector array or a kernel matrix, and returns a kernel matrix. If the input is a vector
array, the kernels are computed. If the input is a kernel matrix, it is returned instead.

This method provides a safe way to take a kernel matrix as input, while preserving compatability with many
other algorithms that take a vector array.

If Y is given (default is None), then the returned matrix is the pairwise kernel between the arrays from both X
and Y.

Valid values for metric are::[’rbf’, ‘sigmoid’, ‘polynomial’, ‘poly’, ‘linear’]

Parameters X : array [n_samples_a, n_samples_a] if metric == “precomputed”, or, [n_samples_a,
n_features] otherwise

Array of pairwise kernels between samples, or a feature array.

Y : array [n_samples_b, n_features]

A second feature array only if X has shape [n_samples_a, n_features].

metric : string, or callable

The metric to use when calculating kernel between instances in a feature array. If met-
ric is a string, it must be one of the metrics in pairwise.pairwise_kernel_functions. If
metric is “precomputed”, X is assumed to be a kernel matrix. Alternatively, if met-
ric is a callable function, it is called on each pair of instances (rows) and the resulting
value recorded. The callable should take two arrays from X as input and return a value
indicating the distance between them.

540 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

n_jobs : int

The number of jobs to use for the computation. This works by breaking down the
pairwise matrix into n_jobs even slices and computing them in parallel.

If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which
is useful for debuging. For n_jobs below -1, (n_cpus + 1 - n_jobs) are used. Thus for
n_jobs = -2, all CPUs but one are used.

filter_params: boolean :

Whether to filter invalid parameters or not.

‘**kwds‘ : optional keyword parameters

Any further parameters are passed directly to the kernel function.

Returns K : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b]

A kernel matrix K such that K_{i, j} is the kernel between the ith and jth vectors of the
given matrix X, if Y is None. If Y is not None, then K_{i, j} is the kernel between the
ith array from X and the jth array from Y.

1.8.18 sklearn.mixture: Gaussian Mixture Models

The sklearn.mixture module implements mixture modeling algorithms.

User guide: See the Gaussian mixture models section for further details.

mixture.GMM([n_components, covariance_type, ...]) Gaussian Mixture Model
mixture.DPGMM([n_components, ...]) Variational Inference for the Infinite Gaussian Mixture Model.
mixture.VBGMM([n_components, ...]) Variational Inference for the Gaussian Mixture Model

sklearn.mixture.GMM

class sklearn.mixture.GMM(n_components=1, covariance_type=’diag’, random_state=None,
thresh=0.01, min_covar=0.001, n_iter=100, n_init=1, params=’wmc’,
init_params=’wmc’)

Gaussian Mixture Model

Representation of a Gaussian mixture model probability distribution. This class allows for easy evaluation of,
sampling from, and maximum-likelihood estimation of the parameters of a GMM distribution.

Initializes parameters such that every mixture component has zero mean and identity covariance.

Parameters n_components : int, optional

Number of mixture components. Defaults to 1.

covariance_type : string, optional

String describing the type of covariance parameters to use. Must be one of ‘spherical’,
‘tied’, ‘diag’, ‘full’. Defaults to ‘diag’.

random_state: RandomState or an int seed (0 by default) :

A random number generator instance

min_covar : float, optional

Floor on the diagonal of the covariance matrix to prevent overfitting. Defaults to 1e-3.

1.8. Reference 541

scikit-learn user guide, Release 0.12-git

thresh : float, optional

Convergence threshold.

n_iter : int, optional

Number of EM iterations to perform.

n_init : int, optional

Number of initializations to perform. the best results is kept

params : string, optional

Controls which parameters are updated in the training process. Can contain any combi-
nation of ‘w’ for weights, ‘m’ for means, and ‘c’ for covars. Defaults to ‘wmc’.

init_params : string, optional

Controls which parameters are updated in the initialization process. Can contain any
combination of ‘w’ for weights, ‘m’ for means, and ‘c’ for covars. Defaults to ‘wmc’.

See Also:

DPGMMIninite gaussian mixture model, using the dirichlet process, fit with a variational algorithm

VBGMMFinite gaussian mixture model fit with a variational algorithm, better for situations where there might be
too little data to get a good estimate of the covariance matrix.

Examples

>>> import numpy as np
>>> from sklearn import mixture
>>> np.random.seed(1)
>>> g = mixture.GMM(n_components=2)
>>> # Generate random observations with two modes centered on 0
>>> # and 10 to use for training.
>>> obs = np.concatenate((np.random.randn(100, 1),
... 10 + np.random.randn(300, 1)))
>>> g.fit(obs)
GMM(covariance_type=None, init_params=’wmc’, min_covar=0.001,

n_components=2, n_init=1, n_iter=100, params=’wmc’,
random_state=None, thresh=0.01)

>>> np.round(g.weights_, 2)
array([0.75, 0.25])
>>> np.round(g.means_, 2)
array([[10.05],

[0.06]])
>>> np.round(g.covars_, 2)
array([[[1.02]],

[[0.96]]])
>>> g.predict([[0], [2], [9], [10]])
array([1, 1, 0, 0]...)
>>> np.round(g.score([[0], [2], [9], [10]]), 2)
array([-2.19, -4.58, -1.75, -1.21])
>>> # Refit the model on new data (initial parameters remain the
>>> # same), this time with an even split between the two modes.
>>> g.fit(20 * [[0]] + 20 * [[10]])
GMM(covariance_type=None, init_params=’wmc’, min_covar=0.001,

n_components=2, n_init=1, n_iter=100, params=’wmc’,
random_state=None, thresh=0.01)

542 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

>>> np.round(g.weights_, 2)
array([0.5, 0.5])

Attributes

weights_ array, shape (n_components,) This attribute stores the mixing
weights for each mixture compo-
nent.

means_ array, shape (n_components,
n_features)

Mean parameters for each mixture
component.

covars_ array Covariance parameters for each
mixture component. The shape de-
pends on covariance_type:

(n_components,) if ’spherical’,
(n_features, n_features) if ’tied’,
(n_components, n_features) if ’diag’,
(n_components, n_features, n_features) if ’full’

converged_ bool True when convergence was
reached in fit(), False otherwise.

Methods

aic(X) Akaike information criterion for the current model fit
bic(X) Bayesian information criterion for the current model fit
decode(*args, **kwargs) DEPRECATED: will be removed in v0.12;
eval(X) Evaluate the model on data
fit(X, **kwargs) Estimate model parameters with the expectation-maximization algorithm.
get_params([deep]) Get parameters for the estimator
predict(X) Predict label for data.
predict_proba(X) Predict posterior probability of data under each Gaussian
rvs(*args, **kwargs) DEPRECATED: will be removed in v0.12;
sample([n_samples, random_state]) Generate random samples from the model.
score(X) Compute the log probability under the model.
set_params(**params) Set the parameters of the estimator.

__init__(n_components=1, covariance_type=’diag’, random_state=None, thresh=0.01,
min_covar=0.001, n_iter=100, n_init=1, params=’wmc’, init_params=’wmc’)

aic(X)
Akaike information criterion for the current model fit and the proposed data

Parameters X : array of shape(n_samples, n_dimensions)

Returns aic: float (the lower the better) :

bic(X)
Bayesian information criterion for the current model fit and the proposed data

Parameters X : array of shape(n_samples, n_dimensions)

Returns bic: float (the lower the better) :

1.8. Reference 543

scikit-learn user guide, Release 0.12-git

decode(*args, **kwargs)
DEPRECATED: will be removed in v0.12; use the score or predict method instead, depending on the
question

Find most likely mixture components for each point in X.

DEPRECATED IN VERSION 0.10; WILL BE REMOVED IN VERSION 0.12 use the score or
predict method instead, depending on the question.

Parameters X : array_like, shape (n, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns logprobs : array_like, shape (n_samples,)

Log probability of each point in obs under the model.

components[array_like, shape (n_samples,)] Index of the most likelihod mixture com-
ponents for each observation

eval(X)
Evaluate the model on data

Compute the log probability of X under the model and return the posterior distribution (responsibilities)
of each mixture component for each element of X.

Parameters X: array_like, shape (n_samples, n_features) :

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns logprob: array_like, shape (n_samples,) :

Log probabilities of each data point in X

responsibilities: array_like, shape (n_samples, n_components) :

Posterior probabilities of each mixture component for each observation

fit(X, **kwargs)
Estimate model parameters with the expectation-maximization algorithm.

A initialization step is performed before entering the em algorithm. If you want to avoid this step, set the
keyword argument init_params to the empty string ‘’ when creating the GMM object. Likewise, if you
would like just to do an initialization, set n_iter=0.

Parameters X : array_like, shape (n, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict label for data.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array, shape = (n_samples,)

544 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

predict_proba(X)
Predict posterior probability of data under each Gaussian in the model.

Parameters X : array-like, shape = [n_samples, n_features]

Returns responsibilities : array-like, shape = (n_samples, n_components)

Returns the probability of the sample for each Gaussian (state) in the model.

rvs(*args, **kwargs)
DEPRECATED: will be removed in v0.12; use the score or predict method instead, depending on the
question

Generate random samples from the model.

DEPRECATED IN VERSION 0.11; WILL BE REMOVED IN VERSION 0.12 use sample in-
stead

sample(n_samples=1, random_state=None)
Generate random samples from the model.

Parameters n_samples : int, optional

Number of samples to generate. Defaults to 1.

Returns X : array_like, shape (n_samples, n_features)

List of samples

score(X)
Compute the log probability under the model.

Parameters X : array_like, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns logprob : array_like, shape (n_samples,)

Log probabilities of each data point in X

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.mixture.DPGMM

class sklearn.mixture.DPGMM(n_components=1, covariance_type=’diag’, alpha=1.0, ran-
dom_state=None, thresh=0.01, verbose=False, min_covar=None,
n_iter=10, params=’wmc’, init_params=’wmc’)

Variational Inference for the Infinite Gaussian Mixture Model.

DPGMM stands for Dirichlet Process Gaussian Mixture Model, and it is an infinite mixture model with the
Dirichlet Process as a prior distribution on the number of clusters. In practice the approximate inference algo-
rithm uses a truncated distribution with a fixed maximum number of components, but almost always the number
of components actually used depends on the data.

Stick-breaking Representation of a Gaussian mixture model probability distribution. This class allows for easy
and efficient inference of an approximate posterior distribution over the parameters of a Gaussian mixture model
with a variable number of components (smaller than the truncation parameter n_components).

1.8. Reference 545

scikit-learn user guide, Release 0.12-git

Initialization is with normally-distributed means and identity covariance, for proper convergence.

Parameters n_components: int, optional :

Number of mixture components. Defaults to 1.

covariance_type: string, optional :

String describing the type of covariance parameters to use. Must be one of ‘spherical’,
‘tied’, ‘diag’, ‘full’. Defaults to ‘diag’.

alpha: float, optional :

Real number representing the concentration parameter of the dirichlet process. Intu-
itively, the Dirichlet Process is as likely to start a new cluster for a point as it is to add
that point to a cluster with alpha elements. A higher alpha means more clusters, as the
expected number of clusters is alpha*log(N). Defaults to 1.

thresh : float, optional

Convergence threshold.

n_iter : int, optional

Maximum number of iterations to perform before convergence.

params : string, optional

Controls which parameters are updated in the training process. Can contain any combi-
nation of ‘w’ for weights, ‘m’ for means, and ‘c’ for covars. Defaults to ‘wmc’.

init_params : string, optional

Controls which parameters are updated in the initialization process. Can contain any
combination of ‘w’ for weights, ‘m’ for means, and ‘c’ for covars. Defaults to ‘wmc’.

See Also:

GMMFinite Gaussian mixture model fit with EM

VBGMMFinite Gaussian mixture model fit with a variational algorithm, better for situations where there might be
too little data to get a good estimate of the covariance matrix.

546 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Attributes

covariance_type string String describing the type of co-
variance parameters used by the
DP-GMM. Must be one of ‘spher-
ical’, ‘tied’, ‘diag’, ‘full’.

n_components int Number of mixture components.
weights_ array, shape (n_components,) Mixing weights for each mixture

component.
means_ array, shape (n_components,

n_features)
Mean parameters for each mixture
component.

precisions_ array Precision (inverse covariance) pa-
rameters for each mixture compo-
nent. The shape depends on covari-
ance_type:

(‘n_components‘, ’n_features’) if ’spherical’,
(‘n_features‘, ‘n_features‘) if ’tied’,
(‘n_components‘, ‘n_features‘) if ’diag’,
(‘n_components‘, ‘n_features‘, ‘n_features‘) if ’full’

converged_ bool True when convergence was
reached in fit(), False otherwise.

Methods

aic(X) Akaike information criterion for the current model fit
bic(X) Bayesian information criterion for the current model fit
decode(*args, **kwargs) DEPRECATED: will be removed in v0.12;
eval(X) Evaluate the model on data
fit(X, **kwargs) Estimate model parameters with the variational algorithm.
get_params([deep]) Get parameters for the estimator
lower_bound(X, z) returns a lower bound on model evidence based on X and membership
predict(X) Predict label for data.
predict_proba(X) Predict posterior probability of data under each Gaussian
rvs(*args, **kwargs) DEPRECATED: will be removed in v0.12;
sample([n_samples, random_state]) Generate random samples from the model.
score(X) Compute the log probability under the model.
set_params(**params) Set the parameters of the estimator.

__init__(n_components=1, covariance_type=’diag’, alpha=1.0, random_state=None, thresh=0.01,
verbose=False, min_covar=None, n_iter=10, params=’wmc’, init_params=’wmc’)

aic(X)
Akaike information criterion for the current model fit and the proposed data

Parameters X : array of shape(n_samples, n_dimensions)

Returns aic: float (the lower the better) :

bic(X)
Bayesian information criterion for the current model fit and the proposed data

Parameters X : array of shape(n_samples, n_dimensions)

1.8. Reference 547

scikit-learn user guide, Release 0.12-git

Returns bic: float (the lower the better) :

decode(*args, **kwargs)
DEPRECATED: will be removed in v0.12; use the score or predict method instead, depending on the
question

Find most likely mixture components for each point in X.

DEPRECATED IN VERSION 0.10; WILL BE REMOVED IN VERSION 0.12 use the score or
predict method instead, depending on the question.

Parameters X : array_like, shape (n, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns logprobs : array_like, shape (n_samples,)

Log probability of each point in obs under the model.

components[array_like, shape (n_samples,)] Index of the most likelihod mixture com-
ponents for each observation

eval(X)
Evaluate the model on data

Compute the bound on log probability of X under the model and return the posterior distribution (respon-
sibilities) of each mixture component for each element of X.

This is done by computing the parameters for the mean-field of z for each observation.

Parameters X : array_like, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns logprob : array_like, shape (n_samples,)

Log probabilities of each data point in X

responsibilities: array_like, shape (n_samples, n_components) :

Posterior probabilities of each mixture component for each observation

fit(X, **kwargs)
Estimate model parameters with the variational algorithm.

For a full derivation and description of the algorithm see doc/dp-derivation/dp-derivation.tex

A initialization step is performed before entering the em algorithm. If you want to avoid this step, set the
keyword argument init_params to the empty string ‘’ when when creating the object. Likewise, if you
would like just to do an initialization, set n_iter=0.

Parameters X : array_like, shape (n, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

lower_bound(X, z)
returns a lower bound on model evidence based on X and membership

548 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

predict(X)
Predict label for data.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array, shape = (n_samples,)

predict_proba(X)
Predict posterior probability of data under each Gaussian in the model.

Parameters X : array-like, shape = [n_samples, n_features]

Returns responsibilities : array-like, shape = (n_samples, n_components)

Returns the probability of the sample for each Gaussian (state) in the model.

rvs(*args, **kwargs)
DEPRECATED: will be removed in v0.12; use the score or predict method instead, depending on the
question

Generate random samples from the model.

DEPRECATED IN VERSION 0.11; WILL BE REMOVED IN VERSION 0.12 use sample in-
stead

sample(n_samples=1, random_state=None)
Generate random samples from the model.

Parameters n_samples : int, optional

Number of samples to generate. Defaults to 1.

Returns X : array_like, shape (n_samples, n_features)

List of samples

score(X)
Compute the log probability under the model.

Parameters X : array_like, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns logprob : array_like, shape (n_samples,)

Log probabilities of each data point in X

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.mixture.VBGMM

class sklearn.mixture.VBGMM(n_components=1, covariance_type=’diag’, alpha=1.0, ran-
dom_state=None, thresh=0.01, verbose=False, min_covar=None,
n_iter=10, params=’wmc’, init_params=’wmc’)

Variational Inference for the Gaussian Mixture Model

1.8. Reference 549

scikit-learn user guide, Release 0.12-git

Variational inference for a Gaussian mixture model probability distribution. This class allows for easy and
efficient inference of an approximate posterior distribution over the parameters of a Gaussian mixture model
with a fixed number of components.

Initialization is with normally-distributed means and identity covariance, for proper convergence.

Parameters n_components: int, optional :

Number of mixture components. Defaults to 1.

covariance_type: string, optional :

String describing the type of covariance parameters to use. Must be one of ‘spherical’,
‘tied’, ‘diag’, ‘full’. Defaults to ‘diag’.

alpha: float, optional :

Real number representing the concentration parameter of the dirichlet distribution. Intu-
itively, the higher the value of alpha the more likely the variational mixture of Gaussians
model will use all components it can. Defaults to 1.

See Also:

GMMFinite Gaussian mixture model fit with EM

DPGMMIninite Gaussian mixture model, using the dirichlet process, fit with a variational algorithm

Attributes

covariance_type string String describing the type of co-
variance parameters used by the
DP-GMM. Must be one of ‘spher-
ical’, ‘tied’, ‘diag’, ‘full’.

n_features int Dimensionality of the Gaussians.
n_components int (read-only) Number of mixture components.
weights_ array, shape (n_components,) Mixing weights for each mixture

component.
means_ array, shape (n_components,

n_features)
Mean parameters for each mixture
component.

precisions_ array Precision (inverse covariance) pa-
rameters for each mixture compo-
nent. The shape depends on covari-
ance_type:

(‘n_components‘, ’n_features’) if ’spherical’,
(‘n_features‘, ‘n_features‘) if ’tied’,
(‘n_components‘, ‘n_features‘) if ’diag’,
(‘n_components‘, ‘n_features‘, ‘n_features‘) if ’full’

converged_ bool True when convergence was
reached in fit(), False otherwise.

Methods

aic(X) Akaike information criterion for the current model fit
Continued on next page

550 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Table 1.144 – continued from previous page
bic(X) Bayesian information criterion for the current model fit
decode(*args, **kwargs) DEPRECATED: will be removed in v0.12;
eval(X) Evaluate the model on data
fit(X, **kwargs) Estimate model parameters with the variational algorithm.
get_params([deep]) Get parameters for the estimator
lower_bound(X, z) returns a lower bound on model evidence based on X and membership
predict(X) Predict label for data.
predict_proba(X) Predict posterior probability of data under each Gaussian
rvs(*args, **kwargs) DEPRECATED: will be removed in v0.12;
sample([n_samples, random_state]) Generate random samples from the model.
score(X) Compute the log probability under the model.
set_params(**params) Set the parameters of the estimator.

__init__(n_components=1, covariance_type=’diag’, alpha=1.0, random_state=None, thresh=0.01,
verbose=False, min_covar=None, n_iter=10, params=’wmc’, init_params=’wmc’)

aic(X)
Akaike information criterion for the current model fit and the proposed data

Parameters X : array of shape(n_samples, n_dimensions)

Returns aic: float (the lower the better) :

bic(X)
Bayesian information criterion for the current model fit and the proposed data

Parameters X : array of shape(n_samples, n_dimensions)

Returns bic: float (the lower the better) :

decode(*args, **kwargs)
DEPRECATED: will be removed in v0.12; use the score or predict method instead, depending on the
question

Find most likely mixture components for each point in X.

DEPRECATED IN VERSION 0.10; WILL BE REMOVED IN VERSION 0.12 use the score or
predict method instead, depending on the question.

Parameters X : array_like, shape (n, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns logprobs : array_like, shape (n_samples,)

Log probability of each point in obs under the model.

components[array_like, shape (n_samples,)] Index of the most likelihod mixture com-
ponents for each observation

eval(X)
Evaluate the model on data

Compute the bound on log probability of X under the model and return the posterior distribution (respon-
sibilities) of each mixture component for each element of X.

This is done by computing the parameters for the mean-field of z for each observation.

Parameters X : array_like, shape (n_samples, n_features)

1.8. Reference 551

scikit-learn user guide, Release 0.12-git

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns logprob : array_like, shape (n_samples,)

Log probabilities of each data point in X

responsibilities: array_like, shape (n_samples, n_components) :

Posterior probabilities of each mixture component for each observation

fit(X, **kwargs)
Estimate model parameters with the variational algorithm.

For a full derivation and description of the algorithm see doc/dp-derivation/dp-derivation.tex

A initialization step is performed before entering the em algorithm. If you want to avoid this step, set the
keyword argument init_params to the empty string ‘’ when when creating the object. Likewise, if you
would like just to do an initialization, set n_iter=0.

Parameters X : array_like, shape (n, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

lower_bound(X, z)
returns a lower bound on model evidence based on X and membership

predict(X)
Predict label for data.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array, shape = (n_samples,)

predict_proba(X)
Predict posterior probability of data under each Gaussian in the model.

Parameters X : array-like, shape = [n_samples, n_features]

Returns responsibilities : array-like, shape = (n_samples, n_components)

Returns the probability of the sample for each Gaussian (state) in the model.

rvs(*args, **kwargs)
DEPRECATED: will be removed in v0.12; use the score or predict method instead, depending on the
question

Generate random samples from the model.

DEPRECATED IN VERSION 0.11; WILL BE REMOVED IN VERSION 0.12 use sample in-
stead

sample(n_samples=1, random_state=None)
Generate random samples from the model.

Parameters n_samples : int, optional

Number of samples to generate. Defaults to 1.

Returns X : array_like, shape (n_samples, n_features)

552 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

List of samples

score(X)
Compute the log probability under the model.

Parameters X : array_like, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns logprob : array_like, shape (n_samples,)

Log probabilities of each data point in X

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

1.8.19 sklearn.multiclass: Multiclass and multilabel classification

Multiclass and multilabel classification strategies

This module implements multiclass learning algorithms:

• one-vs-the-rest / one-vs-all

• one-vs-one

• error correcting output codes

The estimators provided in this module are meta-estimators: they require a base estimator to be provided in their
constructor. For example, it is possible to use these estimators to turn a binary classifier or a regressor into a multiclass
classifier. It is also possible to use these estimators with multiclass estimators in the hope that their accuracy or runtime
performance improves.

User guide: See the Multiclass and multilabel algorithms section for further details.

multiclass.OneVsRestClassifier(estimator) One-vs-the-rest (OvR) multiclass/multilabel strategy
multiclass.OneVsOneClassifier(estimator) One-vs-one multiclass strategy
multiclass.OutputCodeClassifier(estimator[, ...]) (Error-Correcting) Output-Code multiclass strategy

sklearn.multiclass.OneVsRestClassifier

class sklearn.multiclass.OneVsRestClassifier(estimator)
One-vs-the-rest (OvR) multiclass/multilabel strategy

Also known as one-vs-all, this strategy consists in fitting one classifier per class. For each classifier, the class
is fitted against all the other classes. In addition to its computational efficiency (only n_classes classifiers are
needed), one advantage of this approach is its interpretability. Since each class is represented by one and one
classifier only, it is possible to gain knowledge about the class by inspecting its corresponding classifier. This is
the most commonly used strategy for multiclass classification and is a fair default choice.

This strategy can also be used for multilabel learning, where a classifier is used to predict multiple labels for
instance, by fitting on a sequence of sequences of labels (e.g., a list of tuples) rather than a single target vector.
For multilabel learning, the number of classes must be at least three, since otherwise OvR reduces to binary

1.8. Reference 553

scikit-learn user guide, Release 0.12-git

classification.

Parameters estimator : estimator object

An estimator object implementing fit and one of decision_function or predict_proba.

Attributes

estimators_ list of n_classes
estimators

Estimators used for predictions.

la-
bel_binarizer_

LabelBinarizer object Object used to transform multiclass labels to binary labels and
vice-versa.

multilabel_ boolean Whether a OneVsRestClassifier is a multilabel classifier.

Methods

fit(X, y) Fit underlying estimators.
get_params([deep]) Get parameters for the estimator
predict(X) Predict multi-class targets using underlying estimators.
score(X, y)
set_params(**params) Set the parameters of the estimator.

__init__(estimator)

fit(X, y)
Fit underlying estimators.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Data.

y : array-like, shape = [n_samples]

or sequence of sequences, len = n_samplesMulti-class targets. A sequence of se-
quences turns on multilabel classification.

Returns self :

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

multilabel_
Whether this is a multilabel classifier

predict(X)
Predict multi-class targets using underlying estimators.

Parameters X: {array-like, sparse matrix}, shape = [n_samples, n_features] :

Data.

Returns y : array-like, shape = [n_samples]

Predicted multi-class targets.

554 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.multiclass.OneVsOneClassifier

class sklearn.multiclass.OneVsOneClassifier(estimator)
One-vs-one multiclass strategy

This strategy consists in fitting one classifier per class pair. At prediction time, the class which received the
most votes is selected. Since it requires to fit n_classes * (n_classes - 1) / 2 classifiers, this method is usually
slower than one-vs-the-rest, due to its O(n_classes^2) complexity. However, this method may be advantageous
for algorithms such as kernel algorithms which don’t scale well with n_samples. This is because each individual
learning problem only involves a small subset of the data whereas, with one-vs-the-rest, the complete dataset is
used n_classes times.

Parameters estimator : estimator object

An estimator object implementing fit and predict.

Attributes

estimators_ list of n_classes * (n_classes - 1) / 2 estimators Estimators used for predictions.
classes_ numpy array of shape [n_classes] Array containing labels.

Methods

fit(X, y) Fit underlying estimators.
get_params([deep]) Get parameters for the estimator
predict(X) Predict multi-class targets using underlying estimators.
score(X, y) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of the estimator.

__init__(estimator)

fit(X, y)
Fit underlying estimators.

Parameters X: {array-like, sparse matrix}, shape = [n_samples, n_features] :

Data.

y : numpy array of shape [n_samples]

Multi-class targets.

Returns self :

get_params(deep=True)
Get parameters for the estimator

1.8. Reference 555

scikit-learn user guide, Release 0.12-git

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict multi-class targets using underlying estimators.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Data.

Returns y : numpy array of shape [n_samples]

Predicted multi-class targets.

score(X, y)
Returns the mean accuracy on the given test data and labels.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.multiclass.OutputCodeClassifier

class sklearn.multiclass.OutputCodeClassifier(estimator, code_size=1.5, ran-
dom_state=None)

(Error-Correcting) Output-Code multiclass strategy

Output-code based strategies consist in representing each class with a binary code (an array of 0s and 1s). At
fitting time, one binary classifier per bit in the code book is fitted. At prediction time, the classifiers are used to
project new points in the class space and the class closest to the points is chosen. The main advantage of these
strategies is that the number of classifiers used can be controlled by the user, either for compressing the model
(0 < code_size < 1) or for making the model more robust to errors (code_size > 1). See the documentation for
more details.

Parameters estimator : estimator object

An estimator object implementing fit and one of decision_function or predict_proba.

code_size : float

Percentage of the number of classes to be used to create the code book. A number
between 0 and 1 will require fewer classifiers than one-vs-the-rest. A number greater
than 1 will require more classifiers than one-vs-the-rest.

random_state : numpy.RandomState, optional

The generator used to initialize the codebook. Defaults to numpy.random.

556 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

References

[R73], [R74], [R75]

Attributes

estimators_ list of int(n_classes * code_size) estimators Estimators used for predictions.
classes_ numpy array of shape [n_classes] Array containing labels.
code_book_ numpy array of shape [n_classes, code_size] Binary array containing the code of each class.

Methods

fit(X, y) Fit underlying estimators.
get_params([deep]) Get parameters for the estimator
predict(X) Predict multi-class targets using underlying estimators.
score(X, y) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of the estimator.

__init__(estimator, code_size=1.5, random_state=None)

fit(X, y)
Fit underlying estimators.

Parameters X: {array-like, sparse matrix}, shape = [n_samples, n_features] :

Data.

y : numpy array of shape [n_samples]

Multi-class targets.

Returns self :

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict multi-class targets using underlying estimators.

Parameters X: {array-like, sparse matrix}, shape = [n_samples, n_features] :

Data.

Returns y : numpy array of shape [n_samples]

Predicted multi-class targets.

score(X, y)
Returns the mean accuracy on the given test data and labels.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

1.8. Reference 557

scikit-learn user guide, Release 0.12-git

y : array-like, shape = [n_samples]

Labels for X.

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

multiclass.fit_ovr(estimator, X, y) Fit a one-vs-the-rest strategy.
multiclass.predict_ovr(estimators, ...) Make predictions using the one-vs-the-rest strategy.
multiclass.fit_ovo(estimator, X, y) Fit a one-vs-one strategy.
multiclass.predict_ovo(estimators, classes, X) Make predictions using the one-vs-one strategy.
multiclass.fit_ecoc(estimator, X, y[, ...]) Fit an error-correcting output-code strategy.
multiclass.predict_ecoc(estimators, classes, ...) Make predictions using the error-correcting output-code strategy.

sklearn.multiclass.fit_ovr

sklearn.multiclass.fit_ovr(estimator, X, y)
Fit a one-vs-the-rest strategy.

sklearn.multiclass.predict_ovr

sklearn.multiclass.predict_ovr(estimators, label_binarizer, X)
Make predictions using the one-vs-the-rest strategy.

sklearn.multiclass.fit_ovo

sklearn.multiclass.fit_ovo(estimator, X, y)
Fit a one-vs-one strategy.

sklearn.multiclass.predict_ovo

sklearn.multiclass.predict_ovo(estimators, classes, X)
Make predictions using the one-vs-one strategy.

sklearn.multiclass.fit_ecoc

sklearn.multiclass.fit_ecoc(estimator, X, y, code_size=1.5, random_state=None)
Fit an error-correcting output-code strategy.

Parameters estimator : estimator object

An estimator object implementing fit and one of decision_function or predict_proba.

code_size: float, optional :

Percentage of the number of classes to be used to create the code book.

558 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

random_state: numpy.RandomState, optional :

The generator used to initialize the codebook. Defaults to numpy.random.

Returns estimators : list of int(n_classes * code_size) estimators

Estimators used for predictions.

classes : numpy array of shape [n_classes]

Array containing labels.

‘code_book_‘: numpy array of shape [n_classes, code_size] :

Binary array containing the code of each class.

sklearn.multiclass.predict_ecoc

sklearn.multiclass.predict_ecoc(estimators, classes, code_book, X)
Make predictions using the error-correcting output-code strategy.

1.8.20 sklearn.naive_bayes: Naive Bayes

The sklearn.naive_bayes module implements Naive Bayes algorithms. These are supervised learning methods
based on applying Bayes’ theorem with strong (naive) feature independence assumptions.

User guide: See the Naive Bayes section for further details.

naive_bayes.GaussianNB Gaussian Naive Bayes (GaussianNB)
naive_bayes.MultinomialNB([alpha, fit_prior]) Naive Bayes classifier for multinomial models
naive_bayes.BernoulliNB([alpha, binarize, ...]) Naive Bayes classifier for multivariate Bernoulli models.

sklearn.naive_bayes.GaussianNB

class sklearn.naive_bayes.GaussianNB
Gaussian Naive Bayes (GaussianNB)

Parameters X : array-like, shape = [n_samples, n_features]

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

y : array, shape = [n_samples]

Target vector relative to X

Examples

>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> Y = np.array([1, 1, 1, 2, 2, 2])
>>> from sklearn.naive_bayes import GaussianNB
>>> clf = GaussianNB()
>>> clf.fit(X, Y)
GaussianNB()
>>> print(clf.predict([[-0.8, -1]]))
[1]

1.8. Reference 559

scikit-learn user guide, Release 0.12-git

Attributes

class_prior_ array, shape = [n_classes] probability of each class.
theta_ array, shape = [n_classes, n_features] mean of each feature per class
sigma_ array, shape = [n_classes, n_features] variance of each feature per class

Methods

fit(X, y) Fit Gaussian Naive Bayes according to X, y
get_params([deep]) Get parameters for the estimator
predict(X) Perform classification on an array of test vectors X.
predict_log_proba(X) Return log-probability estimates for the test vector X.
predict_proba(X) Return probability estimates for the test vector X.
score(X, y) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of the estimator.

__init__()
x.__init__(...) initializes x; see help(type(x)) for signature

class_prior
DEPRECATED: GaussianNB.class_prior is deprecated and will be removed in version 0.12. Please use
GaussianNB.class_prior_ instead.

fit(X, y)
Fit Gaussian Naive Bayes according to X, y

Parameters X : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target values.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Perform classification on an array of test vectors X.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array, shape = [n_samples]

Predicted target values for X

predict_log_proba(X)
Return log-probability estimates for the test vector X.

560 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array-like, shape = [n_samples, n_classes]

Returns the log-probability of the sample for each class in the model, where classes are
ordered arithmetically.

predict_proba(X)
Return probability estimates for the test vector X.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array-like, shape = [n_samples, n_classes]

Returns the probability of the sample for each class in the model, where classes are
ordered arithmetically.

score(X, y)
Returns the mean accuracy on the given test data and labels.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sigma
DEPRECATED: GaussianNB.sigma is deprecated and will be removed in version 0.12. Please use
GaussianNB.sigma_ instead.

theta
DEPRECATED: GaussianNB.theta is deprecated and will be removed in version 0.12. Please use
GaussianNB.theta_ instead.

sklearn.naive_bayes.MultinomialNB

class sklearn.naive_bayes.MultinomialNB(alpha=1.0, fit_prior=True)
Naive Bayes classifier for multinomial models

The multinomial Naive Bayes classifier is suitable for classification with discrete features (e.g., word counts for
text classification). The multinomial distribution normally requires integer feature counts. However, in practice,
fractional counts such as tf-idf may also work.

Parameters alpha: float, optional (default=1.0) :

Additive (Laplace/Lidstone) smoothing parameter (0 for no smoothing).

fit_prior: boolean :

Whether to learn class prior probabilities or not. If false, a uniform prior will be used.

1.8. Reference 561

scikit-learn user guide, Release 0.12-git

Notes

For the rationale behind the names coef_ and intercept_, i.e. naive Bayes as a linear classifier, see J. Rennie et
al. (2003), Tackling the poor assumptions of naive Bayes text classifiers, ICML.

Examples

>>> import numpy as np
>>> X = np.random.randint(5, size=(6, 100))
>>> Y = np.array([1, 2, 3, 4, 5, 6])
>>> from sklearn.naive_bayes import MultinomialNB
>>> clf = MultinomialNB()
>>> clf.fit(X, Y)
MultinomialNB(alpha=1.0, fit_prior=True)
>>> print(clf.predict(X[2]))
[3]

Attributes

intercept_,
class_log_prior_

array, shape =
[n_classes]

Smoothed empirical log probability for each class.

fea-
ture_log_prob_,
coef_

array, shape =
[n_classes,
n_features]

Empirical log probability of features given a class, P(x_i|y).
(intercept_ and coef_ are properties referring to class_log_prior_ and
feature_log_prob_, respectively.)

Methods

fit(X, y[, sample_weight, class_prior]) Fit Naive Bayes classifier according to X, y
get_params([deep]) Get parameters for the estimator
predict(X) Perform classification on an array of test vectors X.
predict_log_proba(X) Return log-probability estimates for the test vector X.
predict_proba(X) Return probability estimates for the test vector X.
score(X, y) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of the estimator.

__init__(alpha=1.0, fit_prior=True)

fit(X, y, sample_weight=None, class_prior=None)
Fit Naive Bayes classifier according to X, y

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target values.

sample_weight : array-like, shape = [n_samples], optional

Weights applied to individual samples (1. for unweighted).

562 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

class_prior : array, shape [n_classes]

Custom prior probability per class. Overrides the fit_prior parameter.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Perform classification on an array of test vectors X.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array, shape = [n_samples]

Predicted target values for X

predict_log_proba(X)
Return log-probability estimates for the test vector X.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array-like, shape = [n_samples, n_classes]

Returns the log-probability of the sample for each class in the model, where classes are
ordered arithmetically.

predict_proba(X)
Return probability estimates for the test vector X.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array-like, shape = [n_samples, n_classes]

Returns the probability of the sample for each class in the model, where classes are
ordered arithmetically.

score(X, y)
Returns the mean accuracy on the given test data and labels.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

1.8. Reference 563

scikit-learn user guide, Release 0.12-git

sklearn.naive_bayes.BernoulliNB

class sklearn.naive_bayes.BernoulliNB(alpha=1.0, binarize=0.0, fit_prior=True)
Naive Bayes classifier for multivariate Bernoulli models.

Like MultinomialNB, this classifier is suitable for discrete data. The difference is that while MultinomialNB
works with occurrence counts, BernoulliNB is designed for binary/boolean features.

Parameters alpha: float, optional (default=1.0) :

Additive (Laplace/Lidstone) smoothing parameter (0 for no smoothing).

binarize: float or None, optional :

Threshold for binarizing (mapping to booleans) of sample features. If None, input is
presumed to already consist of binary vectors.

fit_prior: boolean :

Whether to learn class prior probabilities or not. If false, a uniform prior will be used.

References

C.D. Manning, P. Raghavan and H. Schütze (2008). Introduction to Information Retrieval. Cambridge Univer-
sity Press, pp. 234–265.

A. McCallum and K. Nigam (1998). A comparison of event models for naive Bayes text classification. Proc.
AAAI/ICML-98 Workshop on Learning for Text Categorization, pp. 41–48.

V. Metsis, I. Androutsopoulos and G. Paliouras (2006). Spam filtering with naive Bayes – Which naive Bayes?
3rd Conf. on Email and Anti-Spam (CEAS).

Examples

>>> import numpy as np
>>> X = np.random.randint(2, size=(6, 100))
>>> Y = np.array([1, 2, 3, 4, 4, 5])
>>> from sklearn.naive_bayes import BernoulliNB
>>> clf = BernoulliNB()
>>> clf.fit(X, Y)
BernoulliNB(alpha=1.0, binarize=0.0, fit_prior=True)
>>> print(clf.predict(X[2]))
[3]

Attributes

class_log_prior_ array, shape = [n_classes] Log probability of each class (smoothed).
fea-
ture_log_prob_

array, shape = [n_classes,
n_features]

Empirical log probability of features given a class,
P(x_i|y).

Methods

fit(X, y[, sample_weight, class_prior]) Fit Naive Bayes classifier according to X, y
Continued on next page

564 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Table 1.153 – continued from previous page
get_params([deep]) Get parameters for the estimator
predict(X) Perform classification on an array of test vectors X.
predict_log_proba(X) Return log-probability estimates for the test vector X.
predict_proba(X) Return probability estimates for the test vector X.
score(X, y) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of the estimator.

__init__(alpha=1.0, binarize=0.0, fit_prior=True)

fit(X, y, sample_weight=None, class_prior=None)
Fit Naive Bayes classifier according to X, y

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target values.

sample_weight : array-like, shape = [n_samples], optional

Weights applied to individual samples (1. for unweighted).

class_prior : array, shape [n_classes]

Custom prior probability per class. Overrides the fit_prior parameter.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Perform classification on an array of test vectors X.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array, shape = [n_samples]

Predicted target values for X

predict_log_proba(X)
Return log-probability estimates for the test vector X.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array-like, shape = [n_samples, n_classes]

Returns the log-probability of the sample for each class in the model, where classes are
ordered arithmetically.

predict_proba(X)
Return probability estimates for the test vector X.

Parameters X : array-like, shape = [n_samples, n_features]

1.8. Reference 565

scikit-learn user guide, Release 0.12-git

Returns C : array-like, shape = [n_samples, n_classes]

Returns the probability of the sample for each class in the model, where classes are
ordered arithmetically.

score(X, y)
Returns the mean accuracy on the given test data and labels.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

1.8.21 sklearn.neighbors: Nearest Neighbors

The sklearn.neighbors module implements the k-nearest neighbors algorithm.

User guide: See the Nearest Neighbors section for further details.

neighbors.NearestNeighbors([n_neighbors, ...]) Unsupervised learner for implementing neighbor searches.
neighbors.KNeighborsClassifier([...]) Classifier implementing the k-nearest neighbors vote.
neighbors.RadiusNeighborsClassifier([...]) Classifier implementing a vote among neighbors within a given radius
neighbors.KNeighborsRegressor([n_neighbors, ...]) Regression based on k-nearest neighbors.
neighbors.RadiusNeighborsRegressor([radius, ...]) Regression based on neighbors within a fixed radius.
neighbors.BallTree Ball Tree for fast nearest-neighbor searches :
neighbors.NearestCentroid([metric, ...]) Nearest centroid classifier.

sklearn.neighbors.NearestNeighbors

class sklearn.neighbors.NearestNeighbors(n_neighbors=5, radius=1.0, algorithm=’auto’,
leaf_size=30, warn_on_equidistant=True, p=2)

Unsupervised learner for implementing neighbor searches.

Parameters n_neighbors : int, optional (default = 5)

Number of neighbors to use by default for k_neighbors queries.

radius : float, optional (default = 1.0)

Range of parameter space to use by default for :meth‘radius_neighbors‘ queries.

algorithm : {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional

Algorithm used to compute the nearest neighbors:

•‘ball_tree’ will use BallTree

566 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

•‘kd_tree’ will use scipy.spatial.cKDtree

•‘brute’ will use a brute-force search.

•‘auto’ will attempt to decide the most appropriate algorithm based on the values
passed to fit method.

Note: fitting on sparse input will override the setting of this parameter, using brute force.

leaf_size : int, optional (default = 30)

Leaf size passed to BallTree or cKDTree. This can affect the speed of the construction
and query, as well as the memory required to store the tree. The optimal value depends
on the nature of the problem.

warn_on_equidistant : boolean, optional. Defaults to True.

Generate a warning if equidistant neighbors are discarded. For classification or regres-
sion based on k-neighbors, if neighbor k and neighbor k+1 have identical distances but
different labels, then the result will be dependent on the ordering of the training data. If
the fit method is ’kd_tree’, no warnings will be generated.

p: integer, optional (default = 2) :

Parameter for the Minkowski metric from sklearn.metrics.pairwise.pairwise_distances.
When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

See Also:

KNeighborsClassifier, RadiusNeighborsClassifier, KNeighborsRegressor,
RadiusNeighborsRegressor, BallTree

Notes

See Nearest Neighbors in the online documentation for a discussion of the choice of algorithm and
leaf_size.

http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

Examples

>>> from sklearn.neighbors import NearestNeighbors
>>> samples = [[0, 0, 2], [1, 0, 0], [0, 0, 1]]

>>> neigh = NearestNeighbors(2, 0.4)
>>> neigh.fit(samples)
NearestNeighbors(...)

>>> neigh.kneighbors([[0, 0, 1.3]], 2, return_distance=False)
array([[2, 0]]...)

>>> neigh.radius_neighbors([0, 0, 1.3], 0.4, return_distance=False)
array([[2]])

Methods

1.8. Reference 567

http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

scikit-learn user guide, Release 0.12-git

fit(X[, y]) Fit the model using X as training data
get_params([deep]) Get parameters for the estimator
kneighbors(X[, n_neighbors, return_distance]) Finds the K-neighbors of a point.
kneighbors_graph(X[, n_neighbors, mode]) Computes the (weighted) graph of k-Neighbors for points in X
radius_neighbors(X[, radius, return_distance]) Finds the neighbors of a point within a given radius.
radius_neighbors_graph(X[, radius, mode]) Computes the (weighted) graph of Neighbors for points in X
set_params(**params) Set the parameters of the estimator.

__init__(n_neighbors=5, radius=1.0, algorithm=’auto’, leaf_size=30, warn_on_equidistant=True,
p=2)

fit(X, y=None)
Fit the model using X as training data

Parameters X : {array-like, sparse matrix, BallTree, cKDTree}

Training data. If array or matrix, shape = [n_samples, n_features]

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

kneighbors(X, n_neighbors=None, return_distance=True)
Finds the K-neighbors of a point.

Returns distance

Parameters X : array-like, last dimension same as that of fit data

The new point.

n_neighbors : int

Number of neighbors to get (default is the value passed to the constructor).

return_distance : boolean, optional. Defaults to True.

If False, distances will not be returned

Returns dist : array

Array representing the lengths to point, only present if return_distance=True

ind : array

Indices of the nearest points in the population matrix.

Examples

In the following example, we construct a NeighborsClassifier class from an array representing our data set
and ask who’s the closest point to [1,1,1]

>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=1)
>>> neigh.fit(samples)
NearestNeighbors(algorithm=’auto’, leaf_size=30, ...)

568 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

>>> print(neigh.kneighbors([1., 1., 1.]))
(array([[0.5]]), array([[2]]...))

As you can see, it returns [[0.5]], and [[2]], which means that the element is at distance 0.5 and is the third
element of samples (indexes start at 0). You can also query for multiple points:

>>> X = [[0., 1., 0.], [1., 0., 1.]]
>>> neigh.kneighbors(X, return_distance=False)
array([[1],

[2]]...)

kneighbors_graph(X, n_neighbors=None, mode=’connectivity’)
Computes the (weighted) graph of k-Neighbors for points in X

Parameters X : array-like, shape = [n_samples, n_features]

Sample data

n_neighbors : int

Number of neighbors for each sample. (default is value passed to the constructor).

mode : {‘connectivity’, ‘distance’}, optional

Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones
and zeros, in ‘distance’ the edges are Euclidean distance between points.

Returns A : sparse matrix in CSR format, shape = [n_samples, n_samples_fit]

n_samples_fit is the number of samples in the fitted data A[i, j] is assigned the weight
of edge that connects i to j.

See Also:

NearestNeighbors.radius_neighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=2)
>>> neigh.fit(X)
NearestNeighbors(algorithm=’auto’, leaf_size=30, ...)
>>> A = neigh.kneighbors_graph(X)
>>> A.todense()
matrix([[1., 0., 1.],

[0., 1., 1.],
[1., 0., 1.]])

radius_neighbors(X, radius=None, return_distance=True)
Finds the neighbors of a point within a given radius.

Returns distance

Parameters X : array-like, last dimension same as that of fit data

The new point.

radius : float

Limiting distance of neighbors to return. (default is the value passed to the constructor).

return_distance : boolean, optional. Defaults to True.

1.8. Reference 569

scikit-learn user guide, Release 0.12-git

If False, distances will not be returned

Returns dist : array

Array representing the lengths to point, only present if return_distance=True

ind : array

Indices of the nearest points in the population matrix.

Examples

In the following example, we construnct a NeighborsClassifier class from an array representing our data
set and ask who’s the closest point to [1,1,1]

>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.6)
>>> neigh.fit(samples)
NearestNeighbors(algorithm=’auto’, leaf_size=30, ...)
>>> print(neigh.radius_neighbors([1., 1., 1.]))
(array([[1.5, 0.5]]...), array([[1, 2]]...)

The first array returned contains the distances to all points which are closer than 1.6, while the second array
returned contains their indices. In general, multiple points can be queried at the same time. Because the
number of neighbors of each point is not necessarily equal, radius_neighbors returns an array of objects,
where each object is a 1D array of indices.

radius_neighbors_graph(X, radius=None, mode=’connectivity’)
Computes the (weighted) graph of Neighbors for points in X

Neighborhoods are restricted the points at a distance lower than radius.

Parameters X : array-like, shape = [n_samples, n_features]

Sample data

radius : float

Radius of neighborhoods. (default is the value passed to the constructor).

mode : {‘connectivity’, ‘distance’}, optional

Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones
and zeros, in ‘distance’ the edges are Euclidean distance between points.

Returns A : sparse matrix in CSR format, shape = [n_samples, n_samples]

A[i, j] is assigned the weight of edge that connects i to j.

See Also:

kneighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.5)
>>> neigh.fit(X)
NearestNeighbors(algorithm=’auto’, leaf_size=30, ...)

570 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

>>> A = neigh.radius_neighbors_graph(X)
>>> A.todense()
matrix([[1., 0., 1.],

[0., 1., 0.],
[1., 0., 1.]])

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.neighbors.KNeighborsClassifier

class sklearn.neighbors.KNeighborsClassifier(n_neighbors=5, weights=’uniform’,
algorithm=’auto’, leaf_size=30,
warn_on_equidistant=True, p=2)

Classifier implementing the k-nearest neighbors vote.

Parameters n_neighbors : int, optional (default = 5)

Number of neighbors to use by default for k_neighbors queries.

weights : str or callable

weight function used in prediction. Possible values:

•‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

•‘distance’ : weight points by the inverse of their distance. in this case, closer neigh-
bors of a query point will have a greater influence than neighbors which are further
away.

•[callable] : a user-defined function which accepts an array of distances, and returns
an array of the same shape containing the weights.

Uniform weights are used by default.

algorithm : {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional

Algorithm used to compute the nearest neighbors:

•‘ball_tree’ will use BallTree

•‘kd_tree’ will use scipy.spatial.cKDtree

•‘brute’ will use a brute-force search.

•‘auto’ will attempt to decide the most appropriate algorithm based on the values
passed to fit method.

Note: fitting on sparse input will override the setting of this parameter, using brute force.

leaf_size : int, optional (default = 30)

Leaf size passed to BallTree or cKDTree. This can affect the speed of the construction
and query, as well as the memory required to store the tree. The optimal value depends
on the nature of the problem.

warn_on_equidistant : boolean, optional. Defaults to True.

1.8. Reference 571

scikit-learn user guide, Release 0.12-git

Generate a warning if equidistant neighbors are discarded. For classification or regres-
sion based on k-neighbors, if neighbor k and neighbor k+1 have identical distances but
different labels, then the result will be dependent on the ordering of the training data. If
the fit method is ’kd_tree’, no warnings will be generated.

p: integer, optional (default = 2) :

Parameter for the Minkowski metric from sklearn.metrics.pairwise.pairwise_distances.
When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

See Also:

RadiusNeighborsClassifier, KNeighborsRegressor, RadiusNeighborsRegressor,
NearestNeighbors

Notes

See Nearest Neighbors in the online documentation for a discussion of the choice of algorithm and
leaf_size.

http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

Examples

>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from sklearn.neighbors import KNeighborsClassifier
>>> neigh = KNeighborsClassifier(n_neighbors=2)
>>> neigh.fit(X, y)
KNeighborsClassifier(...)
>>> print(neigh.predict([[1.5]]))
[0]

Methods

fit(X, y) Fit the model using X as training data and y as target values
get_params([deep]) Get parameters for the estimator
kneighbors(X[, n_neighbors, return_distance]) Finds the K-neighbors of a point.
kneighbors_graph(X[, n_neighbors, mode]) Computes the (weighted) graph of k-Neighbors for points in X
predict(X) Predict the class labels for the provided data
score(X, y) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of the estimator.

__init__(n_neighbors=5, weights=’uniform’, algorithm=’auto’, leaf_size=30,
warn_on_equidistant=True, p=2)

fit(X, y)
Fit the model using X as training data and y as target values

Parameters X : {array-like, sparse matrix, BallTree, cKDTree}

Training data. If array or matrix, then the shape is [n_samples, n_features]

y : {array-like, sparse matrix}, shape = [n_samples]

572 Chapter 1. User Guide

http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

scikit-learn user guide, Release 0.12-git

Target values, array of integer values.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

kneighbors(X, n_neighbors=None, return_distance=True)
Finds the K-neighbors of a point.

Returns distance

Parameters X : array-like, last dimension same as that of fit data

The new point.

n_neighbors : int

Number of neighbors to get (default is the value passed to the constructor).

return_distance : boolean, optional. Defaults to True.

If False, distances will not be returned

Returns dist : array

Array representing the lengths to point, only present if return_distance=True

ind : array

Indices of the nearest points in the population matrix.

Examples

In the following example, we construct a NeighborsClassifier class from an array representing our data set
and ask who’s the closest point to [1,1,1]

>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=1)
>>> neigh.fit(samples)
NearestNeighbors(algorithm=’auto’, leaf_size=30, ...)
>>> print(neigh.kneighbors([1., 1., 1.]))
(array([[0.5]]), array([[2]]...))

As you can see, it returns [[0.5]], and [[2]], which means that the element is at distance 0.5 and is the third
element of samples (indexes start at 0). You can also query for multiple points:

>>> X = [[0., 1., 0.], [1., 0., 1.]]
>>> neigh.kneighbors(X, return_distance=False)
array([[1],

[2]]...)

kneighbors_graph(X, n_neighbors=None, mode=’connectivity’)
Computes the (weighted) graph of k-Neighbors for points in X

Parameters X : array-like, shape = [n_samples, n_features]

Sample data

n_neighbors : int

1.8. Reference 573

scikit-learn user guide, Release 0.12-git

Number of neighbors for each sample. (default is value passed to the constructor).

mode : {‘connectivity’, ‘distance’}, optional

Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones
and zeros, in ‘distance’ the edges are Euclidean distance between points.

Returns A : sparse matrix in CSR format, shape = [n_samples, n_samples_fit]

n_samples_fit is the number of samples in the fitted data A[i, j] is assigned the weight
of edge that connects i to j.

See Also:

NearestNeighbors.radius_neighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=2)
>>> neigh.fit(X)
NearestNeighbors(algorithm=’auto’, leaf_size=30, ...)
>>> A = neigh.kneighbors_graph(X)
>>> A.todense()
matrix([[1., 0., 1.],

[0., 1., 1.],
[1., 0., 1.]])

predict(X)
Predict the class labels for the provided data

Parameters X: array :

A 2-D array representing the test points.

Returns labels: array :

List of class labels (one for each data sample).

score(X, y)
Returns the mean accuracy on the given test data and labels.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

574 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

sklearn.neighbors.RadiusNeighborsClassifier

class sklearn.neighbors.RadiusNeighborsClassifier(radius=1.0, weights=’uniform’, algo-
rithm=’auto’, leaf_size=30, p=2, out-
lier_label=None)

Classifier implementing a vote among neighbors within a given radius

Parameters radius : float, optional (default = 1.0)

Range of parameter space to use by default for :meth‘radius_neighbors‘ queries.

weights : str or callable

weight function used in prediction. Possible values:

•‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

•‘distance’ : weight points by the inverse of their distance. in this case, closer neigh-
bors of a query point will have a greater influence than neighbors which are further
away.

•[callable] : a user-defined function which accepts an array of distances, and returns
an array of the same shape containing the weights.

Uniform weights are used by default.

algorithm : {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional

Algorithm used to compute the nearest neighbors:

•‘ball_tree’ will use BallTree

•‘kd_tree’ will use scipy.spatial.cKDtree

•‘brute’ will use a brute-force search.

•‘auto’ will attempt to decide the most appropriate algorithm based on the values
passed to fit method.

Note: fitting on sparse input will override the setting of this parameter, using brute force.

leaf_size : int, optional (default = 30)

Leaf size passed to BallTree or cKDTree. This can affect the speed of the construction
and query, as well as the memory required to store the tree. The optimal value depends
on the nature of the problem.

p: integer, optional (default = 2) :

Parameter for the Minkowski metric from sklearn.metrics.pairwise.pairwise_distances.
When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

outlier_label: int, optional (default = None) :

Label, which is given for outlier samples (samples with no neighbors on given radius).
If set to None, ValueError is raised, when outlier is detected.

See Also:

KNeighborsClassifier, RadiusNeighborsRegressor, KNeighborsRegressor,
NearestNeighbors

1.8. Reference 575

scikit-learn user guide, Release 0.12-git

Notes

See Nearest Neighbors in the online documentation for a discussion of the choice of algorithm and
leaf_size.

http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

Examples

>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from sklearn.neighbors import RadiusNeighborsClassifier
>>> neigh = RadiusNeighborsClassifier(radius=1.0)
>>> neigh.fit(X, y)
RadiusNeighborsClassifier(...)
>>> print(neigh.predict([[1.5]]))
[0]

Methods

fit(X, y) Fit the model using X as training data and y as target values
get_params([deep]) Get parameters for the estimator
predict(X) Predict the class labels for the provided data
radius_neighbors(X[, radius, return_distance]) Finds the neighbors of a point within a given radius.
radius_neighbors_graph(X[, radius, mode]) Computes the (weighted) graph of Neighbors for points in X
score(X, y) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of the estimator.

__init__(radius=1.0, weights=’uniform’, algorithm=’auto’, leaf_size=30, p=2, outlier_label=None)

fit(X, y)
Fit the model using X as training data and y as target values

Parameters X : {array-like, sparse matrix, BallTree, cKDTree}

Training data. If array or matrix, then the shape is [n_samples, n_features]

y : {array-like, sparse matrix}, shape = [n_samples]

Target values, array of integer values.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict the class labels for the provided data

Parameters X: array :

A 2-D array representing the test points.

Returns labels: array :

576 Chapter 1. User Guide

http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

scikit-learn user guide, Release 0.12-git

List of class labels (one for each data sample).

radius_neighbors(X, radius=None, return_distance=True)
Finds the neighbors of a point within a given radius.

Returns distance

Parameters X : array-like, last dimension same as that of fit data

The new point.

radius : float

Limiting distance of neighbors to return. (default is the value passed to the constructor).

return_distance : boolean, optional. Defaults to True.

If False, distances will not be returned

Returns dist : array

Array representing the lengths to point, only present if return_distance=True

ind : array

Indices of the nearest points in the population matrix.

Examples

In the following example, we construnct a NeighborsClassifier class from an array representing our data
set and ask who’s the closest point to [1,1,1]

>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.6)
>>> neigh.fit(samples)
NearestNeighbors(algorithm=’auto’, leaf_size=30, ...)
>>> print(neigh.radius_neighbors([1., 1., 1.]))
(array([[1.5, 0.5]]...), array([[1, 2]]...)

The first array returned contains the distances to all points which are closer than 1.6, while the second array
returned contains their indices. In general, multiple points can be queried at the same time. Because the
number of neighbors of each point is not necessarily equal, radius_neighbors returns an array of objects,
where each object is a 1D array of indices.

radius_neighbors_graph(X, radius=None, mode=’connectivity’)
Computes the (weighted) graph of Neighbors for points in X

Neighborhoods are restricted the points at a distance lower than radius.

Parameters X : array-like, shape = [n_samples, n_features]

Sample data

radius : float

Radius of neighborhoods. (default is the value passed to the constructor).

mode : {‘connectivity’, ‘distance’}, optional

Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones
and zeros, in ‘distance’ the edges are Euclidean distance between points.

Returns A : sparse matrix in CSR format, shape = [n_samples, n_samples]

1.8. Reference 577

scikit-learn user guide, Release 0.12-git

A[i, j] is assigned the weight of edge that connects i to j.

See Also:

kneighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.5)
>>> neigh.fit(X)
NearestNeighbors(algorithm=’auto’, leaf_size=30, ...)
>>> A = neigh.radius_neighbors_graph(X)
>>> A.todense()
matrix([[1., 0., 1.],

[0., 1., 0.],
[1., 0., 1.]])

score(X, y)
Returns the mean accuracy on the given test data and labels.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.neighbors.KNeighborsRegressor

class sklearn.neighbors.KNeighborsRegressor(n_neighbors=5, weights=’uniform’,
algorithm=’auto’, leaf_size=30,
warn_on_equidistant=True, p=2)

Regression based on k-nearest neighbors.

The target is predicted by local interpolation of the targets associated of the nearest neighbors in the training set.

Parameters n_neighbors : int, optional (default = 5)

Number of neighbors to use by default for k_neighbors queries.

weights : str or callable

weight function used in prediction. Possible values:

•‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

578 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

•‘distance’ : weight points by the inverse of their distance. in this case, closer neigh-
bors of a query point will have a greater influence than neighbors which are further
away.

•[callable] : a user-defined function which accepts an array of distances, and returns
an array of the same shape containing the weights.

Uniform weights are used by default.

algorithm : {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional

Algorithm used to compute the nearest neighbors:

•‘ball_tree’ will use BallTree

•‘kd_tree’ will use scipy.spatial.cKDtree

•‘brute’ will use a brute-force search.

•‘auto’ will attempt to decide the most appropriate algorithm based on the values
passed to fit method.

Note: fitting on sparse input will override the setting of this parameter, using brute force.

leaf_size : int, optional (default = 30)

Leaf size passed to BallTree or cKDTree. This can affect the speed of the construction
and query, as well as the memory required to store the tree. The optimal value depends
on the nature of the problem.

warn_on_equidistant : boolean, optional. Defaults to True.

Generate a warning if equidistant neighbors are discarded. For classification or regres-
sion based on k-neighbors, if neighbor k and neighbor k+1 have identical distances but
different labels, then the result will be dependent on the ordering of the training data. If
the fit method is ’kd_tree’, no warnings will be generated.

p: integer, optional (default = 2) :

Parameter for the Minkowski metric from sklearn.metrics.pairwise.pairwise_distances.
When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

See Also:

NearestNeighbors, RadiusNeighborsRegressor, KNeighborsClassifier,
RadiusNeighborsClassifier

Notes

See Nearest Neighbors in the online documentation for a discussion of the choice of algorithm and
leaf_size.

http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

Examples

>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from sklearn.neighbors import KNeighborsRegressor
>>> neigh = KNeighborsRegressor(n_neighbors=2)

1.8. Reference 579

http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

scikit-learn user guide, Release 0.12-git

>>> neigh.fit(X, y)
KNeighborsRegressor(...)
>>> print(neigh.predict([[1.5]]))
[0.5]

Methods

fit(X, y) Fit the model using X as training data and y as target values
get_params([deep]) Get parameters for the estimator
kneighbors(X[, n_neighbors, return_distance]) Finds the K-neighbors of a point.
kneighbors_graph(X[, n_neighbors, mode]) Computes the (weighted) graph of k-Neighbors for points in X
predict(X) Predict the target for the provided data
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

__init__(n_neighbors=5, weights=’uniform’, algorithm=’auto’, leaf_size=30,
warn_on_equidistant=True, p=2)

fit(X, y)
Fit the model using X as training data and y as target values

Parameters X : {array-like, sparse matrix, BallTree, cKDTree}

Training data. If array or matrix, then the shape is [n_samples, n_features]

y : {array-like, sparse matrix}, shape = [n_samples]

Target values, array of float values.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

kneighbors(X, n_neighbors=None, return_distance=True)
Finds the K-neighbors of a point.

Returns distance

Parameters X : array-like, last dimension same as that of fit data

The new point.

n_neighbors : int

Number of neighbors to get (default is the value passed to the constructor).

return_distance : boolean, optional. Defaults to True.

If False, distances will not be returned

Returns dist : array

Array representing the lengths to point, only present if return_distance=True

ind : array

Indices of the nearest points in the population matrix.

580 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Examples

In the following example, we construct a NeighborsClassifier class from an array representing our data set
and ask who’s the closest point to [1,1,1]

>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=1)
>>> neigh.fit(samples)
NearestNeighbors(algorithm=’auto’, leaf_size=30, ...)
>>> print(neigh.kneighbors([1., 1., 1.]))
(array([[0.5]]), array([[2]]...))

As you can see, it returns [[0.5]], and [[2]], which means that the element is at distance 0.5 and is the third
element of samples (indexes start at 0). You can also query for multiple points:

>>> X = [[0., 1., 0.], [1., 0., 1.]]
>>> neigh.kneighbors(X, return_distance=False)
array([[1],

[2]]...)

kneighbors_graph(X, n_neighbors=None, mode=’connectivity’)
Computes the (weighted) graph of k-Neighbors for points in X

Parameters X : array-like, shape = [n_samples, n_features]

Sample data

n_neighbors : int

Number of neighbors for each sample. (default is value passed to the constructor).

mode : {‘connectivity’, ‘distance’}, optional

Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones
and zeros, in ‘distance’ the edges are Euclidean distance between points.

Returns A : sparse matrix in CSR format, shape = [n_samples, n_samples_fit]

n_samples_fit is the number of samples in the fitted data A[i, j] is assigned the weight
of edge that connects i to j.

See Also:

NearestNeighbors.radius_neighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=2)
>>> neigh.fit(X)
NearestNeighbors(algorithm=’auto’, leaf_size=30, ...)
>>> A = neigh.kneighbors_graph(X)
>>> A.todense()
matrix([[1., 0., 1.],

[0., 1., 1.],
[1., 0., 1.]])

predict(X)
Predict the target for the provided data

1.8. Reference 581

scikit-learn user guide, Release 0.12-git

Parameters X : array

A 2-D array representing the test data.

Returns y: array :

List of target values (one for each data sample).

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.neighbors.RadiusNeighborsRegressor

class sklearn.neighbors.RadiusNeighborsRegressor(radius=1.0, weights=’uniform’, algo-
rithm=’auto’, leaf_size=30, p=2)

Regression based on neighbors within a fixed radius.

The target is predicted by local interpolation of the targets associated of the nearest neighbors in the training set.

Parameters radius : float, optional (default = 1.0)

Range of parameter space to use by default for :meth‘radius_neighbors‘ queries.

weights : str or callable

weight function used in prediction. Possible values:

•‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

•‘distance’ : weight points by the inverse of their distance. in this case, closer neigh-
bors of a query point will have a greater influence than neighbors which are further
away.

•[callable] : a user-defined function which accepts an array of distances, and returns
an array of the same shape containing the weights.

Uniform weights are used by default.

algorithm : {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional

Algorithm used to compute the nearest neighbors:

•‘ball_tree’ will use BallTree

•‘kd_tree’ will use scipy.spatial.cKDtree

582 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

•‘brute’ will use a brute-force search.

•‘auto’ will attempt to decide the most appropriate algorithm based on the values
passed to fit method.

Note: fitting on sparse input will override the setting of this parameter, using brute force.

leaf_size : int, optional (default = 30)

Leaf size passed to BallTree or cKDTree. This can affect the speed of the construction
and query, as well as the memory required to store the tree. The optimal value depends
on the nature of the problem.

p: integer, optional (default = 2) :

Parameter for the Minkowski metric from sklearn.metrics.pairwise.pairwise_distances.
When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

See Also:

NearestNeighbors, KNeighborsRegressor, KNeighborsClassifier,
RadiusNeighborsClassifier

Notes

See Nearest Neighbors in the online documentation for a discussion of the choice of algorithm and
leaf_size.

http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

Examples

>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from sklearn.neighbors import RadiusNeighborsRegressor
>>> neigh = RadiusNeighborsRegressor(radius=1.0)
>>> neigh.fit(X, y)
RadiusNeighborsRegressor(...)
>>> print(neigh.predict([[1.5]]))
[0.5]

Methods

fit(X, y) Fit the model using X as training data and y as target values
get_params([deep]) Get parameters for the estimator
predict(X) Predict the target for the provided data
radius_neighbors(X[, radius, return_distance]) Finds the neighbors of a point within a given radius.
radius_neighbors_graph(X[, radius, mode]) Computes the (weighted) graph of Neighbors for points in X
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

__init__(radius=1.0, weights=’uniform’, algorithm=’auto’, leaf_size=30, p=2)

fit(X, y)

1.8. Reference 583

http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

scikit-learn user guide, Release 0.12-git

Fit the model using X as training data and y as target values

Parameters X : {array-like, sparse matrix, BallTree, cKDTree}

Training data. If array or matrix, then the shape is [n_samples, n_features]

y : {array-like, sparse matrix}, shape = [n_samples]

Target values, array of float values.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict the target for the provided data

Parameters X : array

A 2-D array representing the test data.

Returns y: array :

List of target values (one for each data sample).

radius_neighbors(X, radius=None, return_distance=True)
Finds the neighbors of a point within a given radius.

Returns distance

Parameters X : array-like, last dimension same as that of fit data

The new point.

radius : float

Limiting distance of neighbors to return. (default is the value passed to the constructor).

return_distance : boolean, optional. Defaults to True.

If False, distances will not be returned

Returns dist : array

Array representing the lengths to point, only present if return_distance=True

ind : array

Indices of the nearest points in the population matrix.

Examples

In the following example, we construnct a NeighborsClassifier class from an array representing our data
set and ask who’s the closest point to [1,1,1]

>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.6)
>>> neigh.fit(samples)
NearestNeighbors(algorithm=’auto’, leaf_size=30, ...)
>>> print(neigh.radius_neighbors([1., 1., 1.]))
(array([[1.5, 0.5]]...), array([[1, 2]]...)

584 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

The first array returned contains the distances to all points which are closer than 1.6, while the second array
returned contains their indices. In general, multiple points can be queried at the same time. Because the
number of neighbors of each point is not necessarily equal, radius_neighbors returns an array of objects,
where each object is a 1D array of indices.

radius_neighbors_graph(X, radius=None, mode=’connectivity’)
Computes the (weighted) graph of Neighbors for points in X

Neighborhoods are restricted the points at a distance lower than radius.

Parameters X : array-like, shape = [n_samples, n_features]

Sample data

radius : float

Radius of neighborhoods. (default is the value passed to the constructor).

mode : {‘connectivity’, ‘distance’}, optional

Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones
and zeros, in ‘distance’ the edges are Euclidean distance between points.

Returns A : sparse matrix in CSR format, shape = [n_samples, n_samples]

A[i, j] is assigned the weight of edge that connects i to j.

See Also:

kneighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.5)
>>> neigh.fit(X)
NearestNeighbors(algorithm=’auto’, leaf_size=30, ...)
>>> A = neigh.radius_neighbors_graph(X)
>>> A.todense()
matrix([[1., 0., 1.],

[0., 1., 0.],
[1., 0., 1.]])

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

1.8. Reference 585

scikit-learn user guide, Release 0.12-git

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.neighbors.BallTree

class sklearn.neighbors.BallTree
Ball Tree for fast nearest-neighbor searches :

BallTree(X, leaf_size=20, p=2.0)

Parameters X : array-like, shape = [n_samples, n_features]

n_samples is the number of points in the data set, and n_features is the dimension of
the parameter space. Note: if X is a C-contiguous array of doubles then data will not be
copied. Otherwise, an internal copy will be made.

leaf_size : positive integer (default = 20)

Number of points at which to switch to brute-force. Changing leaf_size will not af-
fect the results of a query, but can significantly impact the speed of a query and the
memory required to store the built ball tree. The amount of memory needed to store
the tree scales as 2 ** (1 + floor(log2((n_samples - 1) / leaf_size))) - 1 For a specified
leaf_size, a leaf node is guaranteed to satisfy leaf_size <= n_points <=
2 * leaf_size, except in the case that n_samples < leaf_size.

p : distance metric for the BallTree. p encodes the Minkowski

p-distance:

D = sum((X[i] - X[j]) ** p) ** (1. / p)

p must be greater than or equal to 1, so that the triangle inequality will hold. If p ==
np.inf, then the distance is equivalent to:

D = max(X[i] - X[j])

Examples

Query for k-nearest neighbors

>>> import numpy as np
>>> np.random.seed(0)
>>> X = np.random.random((10,3)) # 10 points in 3 dimensions
>>> ball_tree = BallTree(X, leaf_size=2)
>>> dist, ind = ball_tree.query(X[0], n_neighbors=3)
>>> print ind # indices of 3 closest neighbors
[0 3 1]
>>> print dist # distances to 3 closest neighbors
[0. 0.19662693 0.29473397]

Pickle and Unpickle a ball tree (using protocol = 2). Note that the state of the tree is saved in the pickle operation:
the tree is not rebuilt on un-pickling

586 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

>>> import numpy as np
>>> import pickle
>>> np.random.seed(0)
>>> X = np.random.random((10,3)) # 10 points in 3 dimensions
>>> ball_tree = BallTree(X, leaf_size=2)
>>> s = pickle.dumps(ball_tree, protocol=2)
>>> ball_tree_copy = pickle.loads(s)
>>> dist, ind = ball_tree_copy.query(X[0], k=3)
>>> print ind # indices of 3 closest neighbors
[0 3 1]
>>> print dist # distances to 3 closest neighbors
[0. 0.19662693 0.29473397]

Attributes

data
warning_flag

Methods

query(X[, k, return_distance]) query the Ball Tree for the k nearest neighbors
query_radius query_radius(self, X, r, count_only = False):

__init__()
x.__init__(...) initializes x; see help(type(x)) for signature

query(X, k=1, return_distance=True)
query the Ball Tree for the k nearest neighbors

Parameters X : array-like, last dimension self.dim

An array of points to query

k : integer (default = 1)

The number of nearest neighbors to return

return_distance : boolean (default = True)

if True, return a tuple (d,i) if False, return array i

Returns i : if return_distance == False

(d,i) : if return_distance == True

d : array of doubles - shape: x.shape[:-1] + (k,)

each entry gives the list of distances to the neighbors of the corresponding point (note
that distances are not sorted)

i : array of integers - shape: x.shape[:-1] + (k,)

each entry gives the list of indices of neighbors of the corresponding point (note that
neighbors are not sorted)

1.8. Reference 587

scikit-learn user guide, Release 0.12-git

Examples

Query for k-nearest neighbors

>>> import numpy as np
>>> np.random.seed(0)
>>> X = np.random.random((10,3)) # 10 points in 3 dimensions
>>> ball_tree = BallTree(X, leaf_size=2)
>>> dist, ind = ball_tree.query(X[0], k=3)
>>> print ind # indices of 3 closest neighbors
[0 3 1]
>>> print dist # distances to 3 closest neighbors
[0. 0.19662693 0.29473397]

query_radius()
query_radius(self, X, r, count_only = False):

query the Ball Tree for neighbors within a ball of size r

Parameters X : array-like, last dimension self.dim

An array of points to query

r : distance within which neighbors are returned

r can be a single value, or an array of values of shape x.shape[:-1] if different radii are
desired for each point.

return_distance : boolean (default = False)

if True, return distances to neighbors of each point if False, return only neighbors Note
that unlike BallTree.query(), setting return_distance=True adds to the computation time.
Not all distances need to be calculated explicitly for return_distance=False. Results are
not sorted by default: see sort_results keyword.

count_only : boolean (default = False)

if True, return only the count of points within distance r if False, return the indices of all
points within distance r If return_distance==True, setting count_only=True will result
in an error.

sort_results : boolean (default = False)

if True, the distances and indices will be sorted before being returned. If False, the
results will not be sorted. If return_distance == False, setting sort_results = True will
result in an error.

Returns count : if count_only == True

ind : if count_only == False and return_distance == False

(ind, dist) : if count_only == False and return_distance == True

count : array of integers, shape = X.shape[:-1]

each entry gives the number of neighbors within a distance r of the corresponding point.

ind : array of objects, shape = X.shape[:-1]

each element is a numpy integer array listing the indices of neighbors of the correspond-
ing point. Note that unlike the results of BallTree.query(), the returned neighbors are
not sorted by distance

dist : array of objects, shape = X.shape[:-1]

588 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

each element is a numpy double array listing the distances corresponding to indices in
i.

Examples

Query for neighbors in a given radius

>>> import numpy as np
>>> np.random.seed(0)
>>> X = np.random.random((10,3)) # 10 points in 3 dimensions
>>> ball_tree = BallTree(X, leaf_size=2)
>>> print ball_tree.query_radius(X[0], r=0.3, count_only=True)
3
>>> ind = ball_tree.query_radius(X[0], r=0.3)
>>> print ind # indices of neighbors within distance 0.3
[3 0 1]

sklearn.neighbors.NearestCentroid

class sklearn.neighbors.NearestCentroid(metric=’euclidean’, shrink_threshold=None)
Nearest centroid classifier.

Each class is represented by its centroid, with test samples classified to the class with the nearest centroid.

Parameters metric: string, or callable :

The metric to use when calculating distance between instances in a feature array.
If metric is a string or callable, it must be one of the options allowed by met-
rics.pairwise.pairwise_distances for its metric parameter.

shrink_threshold : float, optional

Threshold for shrinking centroids to remove features.

See Also:

sklearn.neighbors.KNeighborsClassifiernearest neighbors classifier

Notes

When used for text classification with tf–idf vectors, this classifier is also known as the Rocchio classifier.

References

Tibshirani, R., Hastie, T., Narasimhan, B., & Chu, G. (2002). Diagnosis of multiple cancer types by shrunken
centroids of gene expression. Proceedings of the National Academy of Sciences of the United States of America,
99(10), 6567-6572. The National Academy of Sciences.

Examples

1.8. Reference 589

scikit-learn user guide, Release 0.12-git

>>> from sklearn.neighbors.nearest_centroid import NearestCentroid
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> clf = NearestCentroid()
>>> clf.fit(X, y)
NearestCentroid(metric=’euclidean’, shrink_threshold=None)
>>> print clf.predict([[-0.8, -1]])
[1]

Attributes

centroids_ array-like, shape = [n_classes, n_features] Centroid of each class

Methods

fit(X, y) Fit the NearestCentroid model according to the given training data.
get_params([deep]) Get parameters for the estimator
predict(X) Perform classification on an array of test vectors X.
score(X, y) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of the estimator.

__init__(metric=’euclidean’, shrink_threshold=None)

fit(X, y)
Fit the NearestCentroid model according to the given training data.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features. Note that centroid shrinking cannot be used with sparse matrices.

y : array, shape = [n_samples]

Target values (integers)

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Perform classification on an array of test vectors X.

The predicted class C for each sample in X is returned.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array, shape = [n_samples]

590 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Notes

If the metric constructor parameter is “precomputed”, X is assumed to be the distance matrix between the
data to be predicted and self.centroids_.

score(X, y)
Returns the mean accuracy on the given test data and labels.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

neighbors.kneighbors_graph(X, n_neighbors[, ...]) Computes the (weighted) graph of k-Neighbors for points in X
neighbors.radius_neighbors_graph(X, radius) Computes the (weighted) graph of Neighbors for points in X

sklearn.neighbors.kneighbors_graph

sklearn.neighbors.kneighbors_graph(X, n_neighbors, mode=’connectivity’)
Computes the (weighted) graph of k-Neighbors for points in X

Parameters X : array-like or BallTree, shape = [n_samples, n_features]

Sample data, in the form of a numpy array or a precomputed BallTree.

n_neighbors : int

Number of neighbors for each sample.

mode : {‘connectivity’, ‘distance’}, optional

Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones
and zeros, in ‘distance’ the edges are Euclidean distance between points.

Returns A : sparse matrix in CSR format, shape = [n_samples, n_samples]

A[i, j] is assigned the weight of edge that connects i to j.

See Also:

radius_neighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import kneighbors_graph
>>> A = kneighbors_graph(X, 2)

1.8. Reference 591

scikit-learn user guide, Release 0.12-git

>>> A.todense()
matrix([[1., 0., 1.],

[0., 1., 1.],
[1., 0., 1.]])

sklearn.neighbors.radius_neighbors_graph

sklearn.neighbors.radius_neighbors_graph(X, radius, mode=’connectivity’)
Computes the (weighted) graph of Neighbors for points in X

Neighborhoods are restricted the points at a distance lower than radius.

Parameters X : array-like or BallTree, shape = [n_samples, n_features]

Sample data, in the form of a numpy array or a precomputed BallTree.

radius : float

Radius of neighborhoods.

mode : {‘connectivity’, ‘distance’}, optional

Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones
and zeros, in ‘distance’ the edges are Euclidean distance between points.

Returns A : sparse matrix in CSR format, shape = [n_samples, n_samples]

A[i, j] is assigned the weight of edge that connects i to j.

See Also:

kneighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import radius_neighbors_graph
>>> A = radius_neighbors_graph(X, 1.5)
>>> A.todense()
matrix([[1., 0., 1.],

[0., 1., 0.],
[1., 0., 1.]])

1.8.22 sklearn.pls: Partial Least Squares

The sklearn.pls module implements Partial Least Squares (PLS).

User guide: See the Partial Least Squares section for further details.

pls.PLSRegression([n_components, scale, ...]) PLS regression
pls.PLSCanonical([n_components, scale, ...]) PLSCanonical implements the 2 blocks canonical PLS of the original Wold
pls.CCA([n_components, scale, max_iter, ...]) CCA Canonical Correlation Analysis. CCA inherits from PLS with
pls.PLSSVD([n_components, scale, copy]) Partial Least Square SVD

592 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

sklearn.pls.PLSRegression

class sklearn.pls.PLSRegression(n_components=2, scale=True, max_iter=500, tol=1e-06,
copy=True)

PLS regression

PLSRegression implements the PLS 2 blocks regression known as PLS2 or PLS1 in case of one dimensional
response. This class inherits from _PLS with mode=”A”, deflation_mode=”regression”, norm_y_weights=False
and algorithm=”nipals”.

Parameters X : array-like of predictors, shape = [n_samples, p]

Training vectors, where n_samples in the number of samples and p is the number of
predictors.

Y : array-like of response, shape = [n_samples, q]

Training vectors, where n_samples in the number of samples and q is the number of
response variables.

n_components : int, (default 2)

Number of components to keep.

scale : boolean, (default True)

whether to scale the data

max_iter : an integer, (default 500)

the maximum number of iterations of the NIPALS inner loop (used only if algo-
rithm=”nipals”)

tol : non-negative real

Tolerance used in the iterative algorithm default 1e-06.

copy : boolean, default True

Whether the deflation should be done on a copy. Let the default value to True unless
you don’t care about side effect

Notes

For each component k, find weights u, v that optimizes: max corr(Xk u, Yk v) * var(Xk u)
var(Yk u), such that |u| = 1

Note that it maximizes both the correlations between the scores and the intra-block variances.

The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score.

The residual matrix of Y (Yk+1) block is obtained by deflation on the current X score. This performs the PLS
regression known as PLS2. This mode is prediction oriented.

This implementation provides the same results that 3 PLS packages provided in the R language (R-project):

•“mixOmics” with function pls(X, Y, mode = “regression”)

•“plspm ” with function plsreg2(X, Y)

•“pls” with function oscorespls.fit(X, Y)

1.8. Reference 593

scikit-learn user guide, Release 0.12-git

References

Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case.
Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000.

In french but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions
Technic.

Examples

>>> from sklearn.pls import PLSCanonical, PLSRegression, CCA
>>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]]
>>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]]
>>> pls2 = PLSRegression(n_components=2)
>>> pls2.fit(X, Y)
...
PLSRegression(copy=True, max_iter=500, n_components=2, scale=True,

tol=1e-06)
>>> Y_pred = pls2.predict(X)

Attributes

x_weights_ array, [p, n_components] X block weights vectors.
y_weights_ array, [q, n_components] Y block weights vectors.
x_loadings_ array, [p, n_components] X block loadings vectors.
y_loadings_ array, [q, n_components] Y block loadings vectors.
x_scores_ array, [n_samples, n_components] X scores.
y_scores_ array, [n_samples, n_components] Y scores.
x_rotations_ array, [p, n_components] X block to latents rotations.
y_rotations_ array, [q, n_components] Y block to latents rotations.
coefs: array, [p, q] The coeficients of the linear model: Y = X coefs + Err

Methods

fit(X, Y)
get_params([deep]) Get parameters for the estimator
predict(X[, copy]) Apply the dimension reduction learned on the train data.
set_params(**params) Set the parameters of the estimator.
transform(X[, Y, copy]) Apply the dimension reduction learned on the train data.

__init__(n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True)

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X, copy=True)
Apply the dimension reduction learned on the train data.

594 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Parameters X : array-like of predictors, shape = [n_samples, p]

Training vectors, where n_samples in the number of samples and p is the number of
predictors.

copy : boolean

Whether to copy X and Y, or perform in-place normalization.

Notes

This call require the estimation of a p x q matrix, which may be an issue in high dimensional space.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, Y=None, copy=True)
Apply the dimension reduction learned on the train data.

Parameters X : array-like of predictors, shape = [n_samples, p]

Training vectors, where n_samples in the number of samples and p is the number of
predictors.

Y : array-like of response, shape = [n_samples, q], optional

Training vectors, where n_samples in the number of samples and q is the number of
response variables.

copy : boolean

Whether to copy X and Y, or perform in-place normalization.

Returns x_scores if Y is not given, (x_scores, y_scores) otherwise. :

sklearn.pls.PLSCanonical

class sklearn.pls.PLSCanonical(n_components=2, scale=True, algorithm=’nipals’, max_iter=500,
tol=1e-06, copy=True)

PLSCanonical implements the 2 blocks canonical PLS of the original Wold algorithm [Tenenhaus 1998] p.204,
refered as PLS-C2A in [Wegelin 2000].

This class inherits from PLS with mode=”A” and deflation_mode=”canonical”, norm_y_weights=True and al-
gorithm=”nipals”, but svd should provide similar results up to numerical errors.

Parameters X : array-like of predictors, shape = [n_samples, p]

Training vectors, where n_samples in the number of samples and p is the number of
predictors.

Y : array-like of response, shape = [n_samples, q]

Training vectors, where n_samples in the number of samples and q is the number of
response variables.

1.8. Reference 595

scikit-learn user guide, Release 0.12-git

n_components : int, number of components to keep. (default 2).

scale : boolean, scale data? (default True)

algorithm : string, “nipals” or “svd”

The algorithm used to estimate the weights. It will be called n_components times, i.e.
once for each iteration of the outer loop.

max_iter : an integer, (default 500)

the maximum number of iterations of the NIPALS inner loop (used only if algo-
rithm=”nipals”)

tol : non-negative real, default 1e-06

the tolerance used in the iterative algorithm

copy : boolean, default True

Whether the deflation should be done on a copy. Let the default value to True unless
you don’t care about side effect

See Also:

CCA, PLSSVD

Notes

For each component k, find weights u, v that optimize:: max corr(Xk u, Yk v) * var(Xk u) var(Yk u), such that
|u| = |v| = 1

Note that it maximizes both the correlations between the scores and the intra-block variances.

The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score.

The residual matrix of Y (Yk+1) block is obtained by deflation on the current Y score. This performs a canonical
symetric version of the PLS regression. But slightly different than the CCA. This is mode mostly used for
modeling.

This implementation provides the same results that the “plspm” package provided in the R language (R-
project), using the function plsca(X, Y). Results are equal or colinear with the function pls(..., mode =
"canonical") of the “mixOmics” package. The difference relies in the fact that mixOmics implmentation
does not exactly implement the Wold algorithm since it does not normalize y_weights to one.

References

Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case.
Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000.

Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic.

Examples

>>> from sklearn.pls import PLSCanonical, PLSRegression, CCA
>>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]]
>>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]]
>>> plsca = PLSCanonical(n_components=2)
>>> plsca.fit(X, Y)

596 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

...
PLSCanonical(algorithm=’nipals’, copy=True, max_iter=500, n_components=2,

scale=True, tol=1e-06)
>>> X_c, Y_c = plsca.transform(X, Y)

Attributes

x_weights_ array, shape = [p, n_components] X block weights vectors.
y_weights_ array, shape = [q, n_components] Y block weights vectors.
x_loadings_ array, shape = [p, n_components] X block loadings vectors.
y_loadings_ array, shape = [q, n_components] Y block loadings vectors.
x_scores_ array, shape = [n_samples, n_components] X scores.
y_scores_ array, shape = [n_samples, n_components] Y scores.
x_rotations_ array, shape = [p, n_components] X block to latents rotations.
y_rotations_ array, shape = [q, n_components] Y block to latents rotations.

Methods

fit(X, Y)
get_params([deep]) Get parameters for the estimator
predict(X[, copy]) Apply the dimension reduction learned on the train data.
set_params(**params) Set the parameters of the estimator.
transform(X[, Y, copy]) Apply the dimension reduction learned on the train data.

__init__(n_components=2, scale=True, algorithm=’nipals’, max_iter=500, tol=1e-06, copy=True)

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X, copy=True)
Apply the dimension reduction learned on the train data.

Parameters X : array-like of predictors, shape = [n_samples, p]

Training vectors, where n_samples in the number of samples and p is the number of
predictors.

copy : boolean

Whether to copy X and Y, or perform in-place normalization.

Notes

This call require the estimation of a p x q matrix, which may be an issue in high dimensional space.

set_params(**params)
Set the parameters of the estimator.

1.8. Reference 597

scikit-learn user guide, Release 0.12-git

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, Y=None, copy=True)
Apply the dimension reduction learned on the train data.

Parameters X : array-like of predictors, shape = [n_samples, p]

Training vectors, where n_samples in the number of samples and p is the number of
predictors.

Y : array-like of response, shape = [n_samples, q], optional

Training vectors, where n_samples in the number of samples and q is the number of
response variables.

copy : boolean

Whether to copy X and Y, or perform in-place normalization.

Returns x_scores if Y is not given, (x_scores, y_scores) otherwise. :

sklearn.pls.CCA

class sklearn.pls.CCA(n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True)
CCA Canonical Correlation Analysis. CCA inherits from PLS with mode=”B” and defla-
tion_mode=”canonical”.

Parameters X : array-like of predictors, shape = [n_samples, p]

Training vectors, where n_samples in the number of samples and p is the number of
predictors.

Y : array-like of response, shape = [n_samples, q]

Training vectors, where n_samples in the number of samples and q is the number of
response variables.

n_components : int, (default 2).

number of components to keep.

scale : boolean, (default True)

whether to scale the data?

max_iter : an integer, (default 500)

the maximum number of iterations of the NIPALS inner loop (used only if algo-
rithm=”nipals”)

tol : non-negative real, default 1e-06.

the tolerance used in the iterative algorithm

copy : boolean

Whether the deflation be done on a copy. Let the default value to True unless you don’t
care about side effects

See Also:

PLSCanonical, PLSSVD

598 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Notes

For each component k, find the weights u, v that maximizes max corr(Xk u, Yk v), such that |u| = |v| =
1

Note that it maximizes only the correlations between the scores.

The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score.

The residual matrix of Y (Yk+1) block is obtained by deflation on the current Y score.

References

Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case.
Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000.

In french but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions
Technic.

Examples

>>> from sklearn.pls import PLSCanonical, PLSRegression, CCA
>>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [3.,5.,4.]]
>>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]]
>>> cca = CCA(n_components=1)
>>> cca.fit(X, Y)
...
CCA(copy=True, max_iter=500, n_components=1, scale=True, tol=1e-06)
>>> X_c, Y_c = cca.transform(X, Y)

Attributes

x_weights_ array, [p, n_components] X block weights vectors.
y_weights_ array, [q, n_components] Y block weights vectors.
x_loadings_ array, [p, n_components] X block loadings vectors.
y_loadings_ array, [q, n_components] Y block loadings vectors.
x_scores_ array, [n_samples, n_components] X scores.
y_scores_ array, [n_samples, n_components] Y scores.
x_rotations_ array, [p, n_components] X block to latents rotations.
y_rotations_ array, [q, n_components] Y block to latents rotations.

Methods

fit(X, Y)
get_params([deep]) Get parameters for the estimator
predict(X[, copy]) Apply the dimension reduction learned on the train data.
set_params(**params) Set the parameters of the estimator.
transform(X[, Y, copy]) Apply the dimension reduction learned on the train data.

__init__(n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True)

1.8. Reference 599

scikit-learn user guide, Release 0.12-git

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X, copy=True)
Apply the dimension reduction learned on the train data.

Parameters X : array-like of predictors, shape = [n_samples, p]

Training vectors, where n_samples in the number of samples and p is the number of
predictors.

copy : boolean

Whether to copy X and Y, or perform in-place normalization.

Notes

This call require the estimation of a p x q matrix, which may be an issue in high dimensional space.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, Y=None, copy=True)
Apply the dimension reduction learned on the train data.

Parameters X : array-like of predictors, shape = [n_samples, p]

Training vectors, where n_samples in the number of samples and p is the number of
predictors.

Y : array-like of response, shape = [n_samples, q], optional

Training vectors, where n_samples in the number of samples and q is the number of
response variables.

copy : boolean

Whether to copy X and Y, or perform in-place normalization.

Returns x_scores if Y is not given, (x_scores, y_scores) otherwise. :

sklearn.pls.PLSSVD

class sklearn.pls.PLSSVD(n_components=2, scale=True, copy=True)
Partial Least Square SVD

Simply perform a svd on the crosscovariance matrix: X’Y The are no iterative deflation here.

Parameters X : array-like of predictors, shape = [n_samples, p]

Training vector, where n_samples in the number of samples and p is the number of
predictors. X will be centered before any analysis.

600 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Y : array-like of response, shape = [n_samples, q]

Training vector, where n_samples in the number of samples and q is the number of
response variables. X will be centered before any analysis.

n_components : int, (default 2).

number of components to keep.

scale : boolean, (default True)

scale X and Y

See Also:

PLSCanonical, CCA

Attributes

x_weights_ array, [p, n_components] X block weights vectors.
y_weights_ array, [q, n_components] Y block weights vectors.
x_scores_ array, [n_samples, n_components] X scores.
y_scores_ array, [n_samples, n_components] Y scores.

Methods

fit(X, Y)
get_params([deep]) Get parameters for the estimator
set_params(**params) Set the parameters of the estimator.
transform(X[, Y]) Apply the dimension reduction learned on the train data.

__init__(n_components=2, scale=True, copy=True)

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, Y=None)
Apply the dimension reduction learned on the train data.

1.8.23 sklearn.pipeline: Pipeline

The sklearn.pipeline module implements utilites to build a composite estimator, as a chain of transforms and
estimators.

1.8. Reference 601

scikit-learn user guide, Release 0.12-git

pipeline.Pipeline(steps) Pipeline of transforms with a final estimator.

sklearn.pipeline.Pipeline

class sklearn.pipeline.Pipeline(steps)
Pipeline of transforms with a final estimator.

Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be ‘trans-
forms’, that is, they must implements fit and transform methods. The final estimator needs only implements
fit.

The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting differ-
ent parameters. For this, it enables setting parameters of the various steps using their names and the parameter
name separated by a ‘__’, as in the example below.

Parameters steps: list :

List of (name, transform) tuples (implementing fit/transform) that are chained, in the
order in which they are chained, with the last object an estimator.

Examples

>>> from sklearn import svm
>>> from sklearn.datasets import samples_generator
>>> from sklearn.feature_selection import SelectKBest
>>> from sklearn.feature_selection import f_regression
>>> from sklearn.pipeline import Pipeline

>>> # generate some data to play with
>>> X, y = samples_generator.make_classification(
... n_informative=5, n_redundant=0, random_state=42)

>>> # ANOVA SVM-C
>>> anova_filter = SelectKBest(f_regression, k=5)
>>> clf = svm.SVC(kernel=’linear’)
>>> anova_svm = Pipeline([(’anova’, anova_filter), (’svc’, clf)])

>>> # You can set the parameters using the names issued
>>> # For instance, fit using a k of 10 in the SelectKBest
>>> # and a parameter ’C’ of the svn
>>> anova_svm.set_params(anova__k=10, svc__C=.1).fit(X, y)
...
Pipeline(steps=[...])

>>> prediction = anova_svm.predict(X)
>>> anova_svm.score(X, y)
0.75

Attributes

steps list of (name,
object)

List of the named object that compose the pipeline, in the order that they are
applied on the data.

602 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Methods

decision_function(X) Applies transforms to the data, and the decision_function method of the final estimator.
fit(X[, y]) Fit all the transforms one after the other and transform the
fit_transform(X[, y]) Fit all the transforms one after the other and transform the data, then use fit_transform on transformed data using the final estimator.
get_params([deep])
inverse_transform(X)
predict(X) Applies transforms to the data, and the predict method of the final estimator.
predict_log_proba(X)
predict_proba(X) Applies transforms to the data, and the predict_proba method of the final estimator.
score(X[, y]) Applies transforms to the data, and the score method of the final estimator.
set_params(**params) Set the parameters of the estimator.
transform(X) Applies transforms to the data, and the transform method of the final estimator.

__init__(steps)

decision_function(X)
Applies transforms to the data, and the decision_function method of the final estimator. Valid only if the
final estimator implements decision_function.

fit(X, y=None, **fit_params)
Fit all the transforms one after the other and transform the data, then fit the transformed data using the final
estimator.

fit_transform(X, y=None, **fit_params)
Fit all the transforms one after the other and transform the data, then use fit_transform on transformed data
using the final estimator. Valid only if the final estimator implements fit_transform.

predict(X)
Applies transforms to the data, and the predict method of the final estimator. Valid only if the final estimator
implements predict.

predict_proba(X)
Applies transforms to the data, and the predict_proba method of the final estimator. Valid only if the final
estimator implements predict_proba.

score(X, y=None)
Applies transforms to the data, and the score method of the final estimator. Valid only if the final estimator
implements score.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Applies transforms to the data, and the transform method of the final estimator. Valid only if the final
estimator implements transform.

1.8.24 sklearn.preprocessing: Preprocessing and Normalization

User guide: See the Preprocessing data section for further details.

1.8. Reference 603

scikit-learn user guide, Release 0.12-git

preprocessing.Scaler([copy, with_mean, with_std]) Standardize features by removing the mean and scaling to unit variance
preprocessing.Normalizer([norm, copy]) Normalize samples individually to unit norm
preprocessing.Binarizer([threshold, copy]) Binarize data (set feature values to 0 or 1) according to a threshold
preprocessing.LabelBinarizer([neg_label, ...]) Binarize labels in a one-vs-all fashion
preprocessing.KernelCenterer Center a kernel matrix

sklearn.preprocessing.Scaler

class sklearn.preprocessing.Scaler(copy=True, with_mean=True, with_std=True)
Standardize features by removing the mean and scaling to unit variance

Centering and scaling happen indepently on each feature by computing the relevant statistics on the samples
in the training set. Mean and standard deviation are then stored to be used on later data using the transform
method.

Standardization of a dataset is a common requirement for many machine learning estimators: they might behave
badly if the individual feature do not more or less look like standard normally distributed data (e.g. Gaussian
with 0 mean and unit variance).

For instance many elements used in the objective function of a learning algorithm (such as the RBF kernel of
Support Vector Machines or the L1 and L2 regularizers of linear models) assume that all features are centered
around 0 and have variance in the same order. If a feature has a variance that is orders of magnitude larger
that others, it might dominate the objective function and make the estimator unable to learn from other features
correctly as expected.

Parameters with_mean : boolean, True by default

If True, center the data before scaling.

with_std : boolean, True by default

If True, scale the data to unit variance (or equivalently, unit standard deviation).

copy : boolean, optional, default is True

set to False to perform inplace row normalization and avoid a copy (if the input is
already a numpy array or a scipy.sparse CSR matrix and if axis is 1).

See Also:

sklearn.preprocessing.scale, scaling, sklearn.decomposition.RandomizedPCA, to

Attributes

mean_ array of floats with shape [n_features] The mean value for each feature in the training set.
std_ array of floats with shape [n_features] The standard deviation for each feature in the training set.

Methods

fit(X[, y]) Compute the mean and std to be used for later scaling
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
inverse_transform(X[, copy]) Scale back the data to the original representation

Continued on next page

604 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Table 1.172 – continued from previous page
set_params(**params) Set the parameters of the estimator.
transform(X[, y, copy]) Perform standardization by centering and scaling

__init__(copy=True, with_mean=True, with_std=True)

fit(X, y=None)
Compute the mean and std to be used for later scaling

Parameters X : array-like or CSR matrix with shape [n_samples, n_features]

The data used to compute the mean and standard deviation used for later scaling along
the features axis.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

inverse_transform(X, copy=None)
Scale back the data to the original representation

Parameters X : array-like with shape [n_samples, n_features]

The data used to scale along the features axis.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, y=None, copy=None)
Perform standardization by centering and scaling

1.8. Reference 605

scikit-learn user guide, Release 0.12-git

Parameters X : array-like with shape [n_samples, n_features]

The data used to scale along the features axis.

sklearn.preprocessing.Normalizer

class sklearn.preprocessing.Normalizer(norm=’l2’, copy=True)
Normalize samples individually to unit norm

Each sample (i.e. each row of the data matrix) with at least one non zero component is rescaled independently
of other samples so that its norm (l1 or l2) equals one.

This transformer is able to work both with dense numpy arrays and scipy.sparse matrix (use CSR format if you
want to avoid the burden of a copy / conversion).

Scaling inputs to unit norms is a common operation for text classification or clustering for instance. For instance
the dot product of two l2-normalized TF-IDF vectors is the cosine similarity of the vectors and is the base
similarity metric for the Vector Space Model commonly used by the Information Retrieval community.

Parameters norm : ‘l1’ or ‘l2’, optional (‘l2’ by default)

The norm to use to normalize each non zero sample.

copy : boolean, optional, default is True

set to False to perform inplace row normalization and avoid a copy (if the input is
already a numpy array or a scipy.sparse CSR matrix).

See Also:

sklearn.preprocessing.normalize, without

Notes

This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used
in a pipeline.

Methods

fit(X[, y]) Do nothing and return the estimator unchanged
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
set_params(**params) Set the parameters of the estimator.
transform(X[, y, copy]) Scale each non zero row of X to unit norm

__init__(norm=’l2’, copy=True)

fit(X, y=None)
Do nothing and return the estimator unchanged

This method is just there to implement the usual API and hence work in pipelines.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

606 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, y=None, copy=None)
Scale each non zero row of X to unit norm

Parameters X : array or scipy.sparse matrix with shape [n_samples, n_features]

The data to normalize, row by row. scipy.sparse matrices should be in CSR format to
avoid an un-necessary copy.

sklearn.preprocessing.Binarizer

class sklearn.preprocessing.Binarizer(threshold=0.0, copy=True)
Binarize data (set feature values to 0 or 1) according to a threshold

The default threshold is 0.0 so that any non-zero values are set to 1.0 and zeros are left untouched.

Binarization is a common operation on text count data where the analyst can decide to only consider the presence
or absence of a feature rather than a quantified number of occurences for instance.

It can also be used as a pre-processing step for estimators that consider boolean random variables (e.g. modeled
using the Bernoulli distribution in a Bayesian setting).

Parameters threshold : float, optional (0.0 by default)

The lower bound that triggers feature values to be replaced by 1.0.

copy : boolean, optional, default is True

set to False to perform inplace binarization and avoid a copy (if the input is already a
numpy array or a scipy.sparse CSR matrix).

1.8. Reference 607

scikit-learn user guide, Release 0.12-git

Notes

If the input is a sparse matrix, only the non-zero values are subject to update by the Binarizer class.

This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used
in a pipeline.

Methods

fit(X[, y]) Do nothing and return the estimator unchanged
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
set_params(**params) Set the parameters of the estimator.
transform(X[, y, copy]) Binarize each element of X

__init__(threshold=0.0, copy=True)

fit(X, y=None)
Do nothing and return the estimator unchanged

This method is just there to implement the usual API and hence work in pipelines.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

608 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Returns self :

transform(X, y=None, copy=None)
Binarize each element of X

Parameters X : array or scipy.sparse matrix with shape [n_samples, n_features]

The data to binarize, element by element. scipy.sparse matrices should be in CSR format
to avoid an un-necessary copy.

sklearn.preprocessing.LabelBinarizer

class sklearn.preprocessing.LabelBinarizer(neg_label=0, pos_label=1)
Binarize labels in a one-vs-all fashion

Several regression and binary classification algorithms are available in the scikit. A simple way to extend these
algorithms to the multi-class classification case is to use the so-called one-vs-all scheme.

At learning time, this simply consists in learning one regressor or binary classifier per class. In doing so, one
needs to convert multi-class labels to binary labels (belong or does not belong to the class). LabelBinarizer
makes this process easy with the transform method.

At prediction time, one assigns the class for which the corresponding model gave the greatest confidence. La-
belBinarizer makes this easy with the inverse_transform method.

Parameters neg_label: int (default: 0) :

Value with which negative labels must be encoded.

pos_label: int (default: 1) :

Value with which positive labels must be encoded.

Examples

>>> from sklearn import preprocessing
>>> lb = preprocessing.LabelBinarizer()
>>> lb.fit([1, 2, 6, 4, 2])
LabelBinarizer(neg_label=0, pos_label=1)
>>> lb.classes_
array([1, 2, 4, 6])
>>> lb.transform([1, 6])
array([[1., 0., 0., 0.],

[0., 0., 0., 1.]])

>>> lb.fit_transform([(1, 2), (3,)])
array([[1., 1., 0.],

[0., 0., 1.]])
>>> lb.classes_
array([1, 2, 3])

Attributes

classes_: array of shape [n_class] Holds the label for each class.

1.8. Reference 609

scikit-learn user guide, Release 0.12-git

Methods

610 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

fit(y) Fit label binarizer
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
inverse_transform(Y[, threshold]) Transform binary labels back to multi-class labels
set_params(**params) Set the parameters of the estimator.
transform(y) Transform multi-class labels to binary labels

__init__(neg_label=0, pos_label=1)

fit(y)
Fit label binarizer

Parameters y : numpy array of shape [n_samples] or sequence of sequences

Target values. In the multilabel case the nested sequences can have variable lengths.

Returns self : returns an instance of self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

inverse_transform(Y, threshold=None)
Transform binary labels back to multi-class labels

Parameters Y : numpy array of shape [n_samples, n_classes]

Target values.

threshold : float or None

Threshold used in the binary and multi-label cases.

Use 0 when:

•Y contains the output of decision_function (classifier)

1.8. Reference 611

scikit-learn user guide, Release 0.12-git

Use 0.5 when:

•Y contains the output of predict_proba

If None, the threshold is assumed to be half way between neg_label and pos_label.

Returns y : numpy array of shape [n_samples] or sequence of sequences

Target values. In the multilabel case the nested sequences can have variable lengths.

Notes

In the case when the binary labels are fractional (probabilistic), inverse_transform chooses the class with
the greatest value. Typically, this allows to use the output of a linear model’s decision_function method
directly as the input of inverse_transform.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(y)
Transform multi-class labels to binary labels

The output of transform is sometimes referred to by some authors as the 1-of-K coding scheme.

Parameters y : numpy array of shape [n_samples] or sequence of sequences

Target values. In the multilabel case the nested sequences can have variable lengths.

Returns Y : numpy array of shape [n_samples, n_classes]

sklearn.preprocessing.KernelCenterer

class sklearn.preprocessing.KernelCenterer
Center a kernel matrix

This is equivalent to centering phi(X) with sklearn.preprocessing.Scaler(with_std=False).

Methods

fit(K) Fit KernelCenterer
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
set_params(**params) Set the parameters of the estimator.
transform(K[, copy]) Center kernel

__init__()
x.__init__(...) initializes x; see help(type(x)) for signature

fit(K)
Fit KernelCenterer

612 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Parameters K : numpy array of shape [n_samples, n_samples]

Kernel matrix.

Returns self : returns an instance of self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(K, copy=True)
Center kernel

Parameters K : numpy array of shape [n_samples1, n_samples2]

Kernel matrix.

Returns K_new : numpy array of shape [n_samples1, n_samples2]

preprocessing.scale(X[, axis, with_mean, ...]) Standardize a dataset along any axis
preprocessing.normalize(X[, norm, axis, copy]) Normalize a dataset along any axis
preprocessing.binarize(X[, threshold, copy]) Boolean thresholding of array-like or scipy.sparse matrix

sklearn.preprocessing.scale

sklearn.preprocessing.scale(X, axis=0, with_mean=True, with_std=True, copy=True)
Standardize a dataset along any axis

1.8. Reference 613

scikit-learn user guide, Release 0.12-git

Center to the mean and component wise scale to unit variance.

Parameters X : array-like or CSR matrix.

The data to center and scale.

axis : int (0 by default)

axis used to compute the means and standard deviations along. If 0, independently
standardize each feature, otherwise (if 1) standardize each sample.

with_mean : boolean, True by default

If True, center the data before scaling.

with_std : boolean, True by default

If True, scale the data to unit variance (or equivalently, unit standard deviation).

copy : boolean, optional, default is True

set to False to perform inplace row normalization and avoid a copy (if the input is
already a numpy array or a scipy.sparse CSR matrix and if axis is 1).

See Also:

sklearn.preprocessing.Scaler, scaling, sklearn.pipeline.Pipeline

Notes

This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would
potentially crash the program with memory exhaustion problems.

Instead the caller is expected to either set explicitly with_mean=False (in that case, only variance scaling will
be performed on the features of the CSR matrix) or to call X.toarray() if he/she expects the materialized dense
array to fit in memory.

To avoid memory copy the caller should pass a CSR matrix.

sklearn.preprocessing.normalize

sklearn.preprocessing.normalize(X, norm=’l2’, axis=1, copy=True)
Normalize a dataset along any axis

Parameters X : array or scipy.sparse matrix with shape [n_samples, n_features]

The data to normalize, element by element. scipy.sparse matrices should be in CSR
format to avoid an un-necessary copy.

norm : ‘l1’ or ‘l2’, optional (‘l2’ by default)

The norm to use to normalize each non zero sample (or each non-zero feature if axis is
0).

axis : 0 or 1, optional (1 by default)

axis used to normalize the data along. If 1, independently normalize each sample, oth-
erwise (if 0) normalize each feature.

copy : boolean, optional, default is True

set to False to perform inplace row normalization and avoid a copy (if the input is
already a numpy array or a scipy.sparse CSR matrix and if axis is 1).

614 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

See Also:

sklearn.preprocessing.Normalizer, using, sklearn.pipeline.Pipeline

sklearn.preprocessing.binarize

sklearn.preprocessing.binarize(X, threshold=0.0, copy=True)
Boolean thresholding of array-like or scipy.sparse matrix

Parameters X : array or scipy.sparse matrix with shape [n_samples, n_features]

The data to binarize, element by element. scipy.sparse matrices should be in CSR format
to avoid an un-necessary copy.

threshold : float, optional (0.0 by default)

The lower bound that triggers feature values to be replaced by 1.0.

copy : boolean, optional, default is True

set to False to perform inplace binarization and avoid a copy (if the input is already a
numpy array or a scipy.sparse CSR matrix and if axis is 1).

See Also:

sklearn.preprocessing.Binarizer, using, sklearn.pipeline.Pipeline

1.8.25 sklearn.qda: Quadratic Discriminant Analysis

Quadratic Discriminant Analysis

User guide: See the Linear and Quadratic Discriminant Analysis section for further details.

qda.QDA([priors]) Quadratic Discriminant Analysis (QDA)

sklearn.qda.QDA

class sklearn.qda.QDA(priors=None)
Quadratic Discriminant Analysis (QDA)

A classifier with a quadratic decision boundary, generated by fitting class conditional densities to the data and
using Bayes’ rule.

The model fits a Gaussian density to each class.

Parameters priors : array, optional, shape = [n_classes]

Priors on classes

See Also:

sklearn.lda.LDALinear discriminant analysis

Examples

>>> from sklearn.qda import QDA
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])

1.8. Reference 615

scikit-learn user guide, Release 0.12-git

>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> clf = QDA()
>>> clf.fit(X, y)
QDA(priors=None)
>>> print(clf.predict([[-0.8, -1]]))
[1]

Attributes

means_ array-like, shape = [n_classes, n_features] Class means
priors_ array-like, shape = [n_classes] Class priors (sum to 1)
covariances_ list of array-like, shape = [n_features, n_features] Covariance matrices of each class

Methods

decision_function(X) Apply decision function to an array of samples.
fit(X, y[, store_covariances, tol]) Fit the QDA model according to the given training data and parameters.
get_params([deep]) Get parameters for the estimator
predict(X) Perform classification on an array of test vectors X.
predict_log_proba(X) Return posterior probabilities of classification.
predict_proba(X) Return posterior probabilities of classification.
score(X, y) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of the estimator.

__init__(priors=None)

decision_function(X)
Apply decision function to an array of samples.

Parameters X : array-like, shape = [n_samples, n_features]

Array of samples (test vectors).

Returns C : array, shape = [n_samples, n_classes]

Decision function values related to each class, per sample.

fit(X, y, store_covariances=False, tol=0.0001)
Fit the QDA model according to the given training data and parameters.

Parameters X : array-like, shape = [n_samples, n_features]

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

y : array, shape = [n_samples]

Target values (integers)

store_covariances : boolean

If True the covariance matrices are computed and stored in the self.covariances_ at-
tribute.

get_params(deep=True)
Get parameters for the estimator

616 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Perform classification on an array of test vectors X.

The predicted class C for each sample in X is returned.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array, shape = [n_samples]

predict_log_proba(X)
Return posterior probabilities of classification.

Parameters X : array-like, shape = [n_samples, n_features]

Array of samples/test vectors.

Returns C : array, shape = [n_samples, n_classes]

Posterior log-probabilities of classification per class.

predict_proba(X)
Return posterior probabilities of classification.

Parameters X : array-like, shape = [n_samples, n_features]

Array of samples/test vectors.

Returns C : array, shape = [n_samples, n_classes]

Posterior probabilities of classification per class.

score(X, y)
Returns the mean accuracy on the given test data and labels.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

1.8.26 sklearn.svm: Support Vector Machines

The sklearn.svm module includes Support Vector Machine algorithms.

User guide: See the Support Vector Machines section for further details.

1.8. Reference 617

scikit-learn user guide, Release 0.12-git

Estimators

svm.SVC([C, kernel, degree, gamma, coef0, ...]) C-Support Vector Classification.
svm.LinearSVC([penalty, loss, dual, tol, C, ...]) Linear Support Vector Classification.
svm.NuSVC([nu, kernel, degree, gamma, ...]) Nu-Support Vector Classification.
svm.SVR([kernel, degree, gamma, coef0, tol, ...]) epsilon-Support Vector Regression.
svm.NuSVR([nu, C, kernel, degree, gamma, ...]) Nu Support Vector Regression.
svm.OneClassSVM([kernel, degree, gamma, ...]) Unsupervised Outliers Detection.

sklearn.svm.SVC

class sklearn.svm.SVC(C=1.0, kernel=’rbf’, degree=3, gamma=0.0, coef0=0.0, shrinking=True, proba-
bility=False, tol=0.001, cache_size=200, class_weight=None, verbose=False)

C-Support Vector Classification.

The implementations is a based on libsvm. The fit time complexity is more than quadratic with the number of
samples which makes it hard to scale to dataset with more than a couple of 10000 samples.

The multiclass support is handled according to a one-vs-one scheme.

For details on the precise mathematical formulation of the provided kernel functions and how gamma, coef0 and
degree affect each, see the corresponding section in the narrative documentation: Kernel functions.

Parameters C : float or None, optional (default=None)

Penalty parameter C of the error term. If None then C is set to n_samples.

kernel : string, optional (default=’rbf’)

Specifies the kernel type to be used in the algorithm. It must be one of ‘linear’, ‘poly’,
‘rbf’, ‘sigmoid’, ‘precomputed’. If none is given, ‘rbf’ will be used.

degree : int, optional (default=3)

Degree of kernel function. It is significant only in ‘poly’ and ‘sigmoid’.

gamma : float, optional (default=0.0)

Kernel coefficient for ‘rbf’ and ‘poly’. If gamma is 0.0 then 1/n_features will be used
instead.

coef0 : float, optional (default=0.0)

Independent term in kernel function. It is only significant in ‘poly’ and ‘sigmoid’.

probability: boolean, optional (default=False) :

Whether to enable probability estimates. This must be enabled prior to calling pre-
dict_proba.

shrinking: boolean, optional (default=True) :

Whether to use the shrinking heuristic.

tol: float, optional (default=1e-3) :

Tolerance for stopping criterion.

cache_size: float, optional :

Specify the size of the kernel cache (in MB)

class_weight : {dict, ‘auto’}, optional

618 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are
supposed to have weight one. The ‘auto’ mode uses the values of y to automatically
adjust weights inversely proportional to class frequencies.

verbose : bool, default: False

Enable verbose output. Note that this setting takes advantage of a per-process runtime
setting in libsvm that, if enabled, may not work properly in a multithreaded context.

See Also:

SVRSupport Vector Machine for Regression implemented using libsvm.

LinearSVCScalable Linear Support Vector Machine for classififcation implemented using liblinear. Check
the See also section of LinearSVC for more comparison element.

Examples

>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
>>> y = np.array([1, 1, 2, 2])
>>> from sklearn.svm import SVC
>>> clf = SVC()
>>> clf.fit(X, y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3,

gamma=0.5, kernel=’rbf’, probability=False, shrinking=True,
tol=0.001, verbose=False)

>>> print(clf.predict([[-0.8, -1]]))
[1.]

Attributes

sup-
port_

array-like, shape
= [n_SV]

Index of support vectors.

sup-
port_vectors_

array-like, shape
= [n_SV,
n_features]

Support vectors.

n_support_array-like,
dtype=int32,
shape = [n_class]

number of support vector for each class.

dual_coef_array, shape =
[n_class-1, n_SV]

Coefficients of the support vector in the decision function. For multiclass,
coefficient for all 1-vs-1 classifiers. The layout of the coefficients in the
multiclass case is somewhat non-trivial. See the section about multi-class
classification in the SVM section of the User Guide for details.

coef_ array, shape =
[n_class-1,
n_features]

Weights asigned to the features (coefficients in the primal problem). This is
only available in the case of linear kernel.
coef_ is readonly property derived from dual_coef_ and support_vectors_

inter-
cept_

array, shape =
[n_class *
(n_class-1) / 2]

Constants in decision function.

Methods

1.8. Reference 619

scikit-learn user guide, Release 0.12-git

decision_function(X) Distance of the samples X to the separating hyperplane.
fit(X, y[, class_weight, sample_weight]) Fit the SVM model according to the given training data.
get_params([deep]) Get parameters for the estimator
predict(X) Perform classification or regression samples in X.
predict_log_proba(X) Compute the log likehoods each possible outcomes of samples in X.
predict_proba(X) Compute the likehoods each possible outcomes of samples in T.
score(X, y) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of the estimator.

__init__(C=1.0, kernel=’rbf’, degree=3, gamma=0.0, coef0=0.0, shrinking=True, probabil-
ity=False, tol=0.001, cache_size=200, class_weight=None, verbose=False)

decision_function(X)
Distance of the samples X to the separating hyperplane.

Parameters X : array-like, shape = [n_samples, n_features]

Returns X : array-like, shape = [n_samples, n_class * (n_class-1) / 2]

Returns the decision function of the sample for each class in the model.

fit(X, y, class_weight=None, sample_weight=None)
Fit the SVM model according to the given training data.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target values (integers in classification, real numbers in regression)

sample_weight : array-like, shape = [n_samples], optional

Weights applied to individual samples (1. for unweighted).

Returns self : object

Returns self.

Notes

If X and y are not C-ordered and contiguous arrays of np.float64 and X is not a scipy.sparse.csr_matrix, X
and/or y may be copied.

If X is a dense array, then the other methods will not support sparse matrices as input.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Perform classification or regression samples in X.

For a classification model, the predicted class for each sample in X is returned. For a regression model,
the function value of X calculated is returned.

620 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

For an one-class model, +1 or -1 is returned.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Returns C : array, shape = [n_samples]

predict_log_proba(X)
Compute the log likehoods each possible outcomes of samples in X.

The model need to have probability information computed at training time: fit with attribute probability
set to True.

Parameters X : array-like, shape = [n_samples, n_features]

Returns X : array-like, shape = [n_samples, n_classes]

Returns the log-probabilities of the sample for each class in the model, where classes
are ordered by arithmetical order.

Notes

The probability model is created using cross validation, so the results can be slightly different than those
obtained by predict. Also, it will meaningless results on very small datasets.

predict_proba(X)
Compute the likehoods each possible outcomes of samples in T.

The model need to have probability information computed at training time: fit with attribute probability
set to True.

Parameters X : array-like, shape = [n_samples, n_features]

Returns X : array-like, shape = [n_samples, n_classes]

Returns the probability of the sample for each class in the model, where classes are
ordered by arithmetical order.

Notes

The probability model is created using cross validation, so the results can be slightly different than those
obtained by predict. Also, it will produce meaningless results on very small datasets.

score(X, y)
Returns the mean accuracy on the given test data and labels.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

1.8. Reference 621

scikit-learn user guide, Release 0.12-git

sklearn.svm.LinearSVC

class sklearn.svm.LinearSVC(penalty=’l2’, loss=’l2’, dual=True, tol=0.0001, C=1.0,
multi_class=’ovr’, fit_intercept=True, intercept_scaling=1,
class_weight=None, verbose=0)

Linear Support Vector Classification.

Similar to SVC with parameter kernel=’linear’, but implemented in terms of liblinear rather than libsvm, so it
has more flexibility in the choice of penalties and loss functions and should scale better (to large numbers of
samples).

This class supports both dense and sparse input and the multiclass support is handled according to a one-vs-the-
rest scheme.

Parameters C : float or None, optional (default=None)

Penalty parameter C of the error term. If None then C is set to n_samples.

loss : string, ‘l1’ or ‘l2’ (default=’l2’)

Specifies the loss function. ‘l1’ is the hinge loss (standard SVM) while ‘l2’ is the
squared hinge loss.

penalty : string, ‘l1’ or ‘l2’ (default=’l2’)

Specifies the norm used in the penalization. The ‘l2’ penalty is the standard used in
SVC. The ‘l1’ leads to coef_ vectors that are sparse.

dual : bool, (default=True)

Select the algorithm to either solve the dual or primal optimization problem. Prefer
dual=False when n_samples > n_features.

tol: float, optional (default=1e-4) :

Tolerance for stopping criteria

multi_class: string, ‘ovr’ or ‘crammer_singer’ (default=’ovr’) :

Determines the multi-class strategy if y contains more than two classes. ovr trains
n_classes one-vs-rest classifiers, while crammer_singer optimizes a joint objective over
all classes. While crammer_singer is interesting from an theoretical perspective as it is
consistent it is seldom used in practice and rarely leads to better accuracy and is more
expensive to compute. If crammer_singer is choosen, the options loss, penalty and dual
will be ignored.

fit_intercept : boolean, optional (default=True)

Whether to calculate the intercept for this model. If set to false, no intercept will be
used in calculations (e.g. data is expected to be already centered).

intercept_scaling : float, optional (default=1)

when self.fit_intercept is True, instance vector x becomes [x, self.intercept_scaling],
i.e. a “synthetic” feature with constant value equals to intercept_scaling is appended to
the instance vector. The intercept becomes intercept_scaling * synthetic feature weight
Note! the synthetic feature weight is subject to l1/l2 regularization as all other features.
To lessen the effect of regularization on synthetic feature weight (and therefore on the
intercept) intercept_scaling has to be increased

class_weight : {dict, ‘auto’}, optional

622 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are
supposed to have weight one. The ‘auto’ mode uses the values of y to automatically
adjust weights inversely proportional to class frequencies.

verbose : int, default: 0

Enable verbose output. Note that this setting takes advantage of a per-process runtime
setting in liblinear that, if enabled, may not work properly in a multithreaded context.

See Also:

SVCImplementation of Support Vector Machine classifier using libsvm: the kernel can be non-linear but its
SMO algorithm does not scale to large number of samples as LinearSVC does. Furthermore SVC multi-
class mode is implemented using one vs one scheme while LinearSVC uses one vs the rest. It is possible to
implement one vs the rest with SVC by using the sklearn.multiclass.OneVsRestClassifier
wrapper. Finally SVC can fit dense data without memory copy if the input is C-contiguous. Sparse data
will still incur memory copy though.

sklearn.linear_model.SGDClassifierSGDClassifier can optimize the same cost function as Lin-
earSVC by adjusting the penalty and loss parameters. Furthermore SGDClassifier is scalable to large
number of samples as it uses a Stochastic Gradient Descent optimizer. Finally SGDClassifier can fit both
dense and sparse data without memory copy if the input is C-contiguous or CSR.

Notes

The underlying C implementation uses a random number generator to select features when fitting the model.
It is thus not uncommon, to have slightly different results for the same input data. If that happens, try with a
smaller tol parameter.

The underlying implementation (liblinear) uses a sparse internal representation for the data that will incur a
memory copy.

References: LIBLINEAR: A Library for Large Linear Classification

Attributes

coef_ array, shape = [n_features] if
n_classes == 2 else
[n_classes, n_features]

Weights asigned to the features (coefficients in the primal problem).
This is only available in the case of linear kernel.
coef_ is readonly property derived from raw_coef_ that follows the
internal memory layout of liblinear.

in-
ter-
cept_

array, shape = [1] if
n_classes == 2 else
[n_classes]

Constants in decision function.

Methods

decision_function(X) Decision function value for X according to the trained model.
fit(X, y[, class_weight]) Fit the model according to the given training data.
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
predict(X) Predict target values of X according to the fitted model.
score(X, y) Returns the mean accuracy on the given test data and labels.

Continued on next page

1.8. Reference 623

http://www.csie.ntu.edu.tw/~cjlin/liblinear/

scikit-learn user guide, Release 0.12-git

Table 1.182 – continued from previous page
set_params(**params) Set the parameters of the estimator.
transform(X[, threshold]) Reduce X to its most important features.

__init__(penalty=’l2’, loss=’l2’, dual=True, tol=0.0001, C=1.0, multi_class=’ovr’,
fit_intercept=True, intercept_scaling=1, class_weight=None, verbose=0)

decision_function(X)
Decision function value for X according to the trained model.

Parameters X : array-like, shape = [n_samples, n_features]

Returns T : array-like, shape = [n_samples, n_class]

Returns the decision function of the sample for each class in the model.

fit(X, y, class_weight=None)
Fit the model according to the given training data.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target vector relative to X

class_weight : {dict, ‘auto’}, optional

Weights associated with classes. If not given, all classes are supposed to have weight
one.

Returns self : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

624 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict target values of X according to the fitted model.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Returns C : array, shape = [n_samples]

score(X, y)
Returns the mean accuracy on the given test data and labels.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, threshold=None)
Reduce X to its most important features.

Parameters X : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold : string, float or None, optional (default=None)

The threshold value to use for feature selection. Features whose importance is greater
or equal are kept while the others are discarded. If “median” (resp. “mean”), then the
threshold value is the median (resp. the mean) of the feature importances. A scaling
factor (e.g., “1.25*mean”) may also be used. If None and if available, the object attribute
threshold is used. Otherwise, “mean” is used by default.

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

sklearn.svm.NuSVC

class sklearn.svm.NuSVC(nu=0.5, kernel=’rbf’, degree=3, gamma=0.0, coef0=0.0, shrinking=True,
probability=False, tol=0.001, cache_size=200, verbose=False)

Nu-Support Vector Classification.

Similar to SVC but uses a parameter to control the number of support vectors.

The implementation is based on libsvm.

Parameters nu : float, optional (default=0.5)

An upper bound on the fraction of training errors and a lower bound of the fraction of
support vectors. Should be in the interval (0, 1].

1.8. Reference 625

scikit-learn user guide, Release 0.12-git

kernel : string, optional (default=’rbf’)

Specifies the kernel type to be used in the algorithm. one of ‘linear’, ‘poly’, ‘rbf’,
‘sigmoid’, ‘precomputed’. If none is given ‘rbf’ will be used.

degree : int, optional (default=3)

degree of kernel function is significant only in poly, rbf, sigmoid

gamma : float, optional (default=0.0)

kernel coefficient for rbf and poly, if gamma is 0.0 then 1/n_features will be taken.

coef0 : float, optional (default=0.0)

independent term in kernel function. It is only significant in poly/sigmoid.

probability: boolean, optional (default=False) :

Whether to enable probability estimates. This must be enabled prior to calling pre-
dict_proba.

shrinking: boolean, optional (default=True) :

Whether to use the shrinking heuristic.

tol: float, optional (default=1e-3) :

Tolerance for stopping criterion.

cache_size: float, optional :

Specify the size of the kernel cache (in MB)

class_weight : {dict, ‘auto’}, optional

Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are
supposed to have weight one. The ‘auto’ mode uses the values of y to automatically
adjust weights inversely proportional to class frequencies.

verbose : bool, default: False

Enable verbose output. Note that this setting takes advantage of a per-process runtime
setting in libsvm that, if enabled, may not work properly in a multithreaded context.

See Also:

SVCSupport Vector Machine for classification using libsvm.

LinearSVCScalable linear Support Vector Machine for classification using liblinear.

Examples

>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
>>> y = np.array([1, 1, 2, 2])
>>> from sklearn.svm import NuSVC
>>> clf = NuSVC()
>>> clf.fit(X, y)
NuSVC(cache_size=200, coef0=0.0, degree=3, gamma=0.5, kernel=’rbf’, nu=0.5,

probability=False, shrinking=True, tol=0.001, verbose=False)
>>> print(clf.predict([[-0.8, -1]]))
[1.]

626 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Attributes

sup-
port_

array-like, shape
= [n_SV]

Index of support vectors.

sup-
port_vectors_

array-like, shape
= [n_SV,
n_features]

Support vectors.

n_support_array-like,
dtype=int32,
shape = [n_class]

number of support vector for each class.

dual_coef_array, shape =
[n_class-1, n_SV]

Coefficients of the support vector in the decision function. For multiclass,
coefficient for all 1-vs-1 classifiers. The layout of the coefficients in the
multiclass case is somewhat non-trivial. See the section about multi-class
classification in the SVM section of the User Guide for details.

coef_ array, shape =
[n_class-1,
n_features]

Weights asigned to the features (coefficients in the primal problem). This is
only available in the case of linear kernel.
coef_ is readonly property derived from dual_coef_ and support_vectors_

inter-
cept_

array, shape =
[n_class *
(n_class-1) / 2]

Constants in decision function.

Methods

decision_function(X) Distance of the samples X to the separating hyperplane.
fit(X, y[, class_weight, sample_weight]) Fit the SVM model according to the given training data.
get_params([deep]) Get parameters for the estimator
predict(X) Perform classification or regression samples in X.
predict_log_proba(X) Compute the log likehoods each possible outcomes of samples in X.
predict_proba(X) Compute the likehoods each possible outcomes of samples in T.
score(X, y) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of the estimator.

__init__(nu=0.5, kernel=’rbf’, degree=3, gamma=0.0, coef0=0.0, shrinking=True, probabil-
ity=False, tol=0.001, cache_size=200, verbose=False)

decision_function(X)
Distance of the samples X to the separating hyperplane.

Parameters X : array-like, shape = [n_samples, n_features]

Returns X : array-like, shape = [n_samples, n_class * (n_class-1) / 2]

Returns the decision function of the sample for each class in the model.

fit(X, y, class_weight=None, sample_weight=None)
Fit the SVM model according to the given training data.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target values (integers in classification, real numbers in regression)

1.8. Reference 627

scikit-learn user guide, Release 0.12-git

sample_weight : array-like, shape = [n_samples], optional

Weights applied to individual samples (1. for unweighted).

Returns self : object

Returns self.

Notes

If X and y are not C-ordered and contiguous arrays of np.float64 and X is not a scipy.sparse.csr_matrix, X
and/or y may be copied.

If X is a dense array, then the other methods will not support sparse matrices as input.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Perform classification or regression samples in X.

For a classification model, the predicted class for each sample in X is returned. For a regression model,
the function value of X calculated is returned.

For an one-class model, +1 or -1 is returned.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Returns C : array, shape = [n_samples]

predict_log_proba(X)
Compute the log likehoods each possible outcomes of samples in X.

The model need to have probability information computed at training time: fit with attribute probability
set to True.

Parameters X : array-like, shape = [n_samples, n_features]

Returns X : array-like, shape = [n_samples, n_classes]

Returns the log-probabilities of the sample for each class in the model, where classes
are ordered by arithmetical order.

Notes

The probability model is created using cross validation, so the results can be slightly different than those
obtained by predict. Also, it will meaningless results on very small datasets.

predict_proba(X)
Compute the likehoods each possible outcomes of samples in T.

The model need to have probability information computed at training time: fit with attribute probability
set to True.

Parameters X : array-like, shape = [n_samples, n_features]

Returns X : array-like, shape = [n_samples, n_classes]

628 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Returns the probability of the sample for each class in the model, where classes are
ordered by arithmetical order.

Notes

The probability model is created using cross validation, so the results can be slightly different than those
obtained by predict. Also, it will produce meaningless results on very small datasets.

score(X, y)
Returns the mean accuracy on the given test data and labels.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.svm.SVR

class sklearn.svm.SVR(kernel=’rbf’, degree=3, gamma=0.0, coef0=0.0, tol=0.001, C=1.0, epsilon=0.1,
shrinking=True, probability=False, cache_size=200, verbose=False)

epsilon-Support Vector Regression.

The free parameters in the model are C and epsilon.

The implementations is a based on libsvm.

Parameters C : float or None, optional (default=None)

penalty parameter C of the error term. If None then C is set to n_samples.

epsilon : float, optional (default=0.1)

epsilon in the epsilon-SVR model. It specifies the epsilon-tube within which no penalty
is associated in the training loss function with points predicted within a distance epsilon
from the actual value.

kernel : string, optional (default=’rbf’)

Specifies the kernel type to be used in the algorithm. one of ‘linear’, ‘poly’, ‘rbf’,
‘sigmoid’, ‘precomputed’. If none is given ‘rbf’ will be used.

degree : int, optional (default=3)

degree of kernel function is significant only in poly, rbf, sigmoid

gamma : float, optional (default=0.0)

kernel coefficient for rbf and poly, if gamma is 0.0 then 1/n_features will be taken.

1.8. Reference 629

scikit-learn user guide, Release 0.12-git

coef0 : float, optional (default=0.0)

independent term in kernel function. It is only significant in poly/sigmoid.

probability: boolean, optional (default=False) :

Whether to enable probability estimates. This must be enabled prior to calling pre-
dict_proba.

shrinking: boolean, optional (default=True) :

Whether to use the shrinking heuristic.

tol: float, optional (default=1e-3) :

Tolerance for stopping criterion.

cache_size: float, optional :

Specify the size of the kernel cache (in MB)

verbose : bool, default: False

Enable verbose output. Note that this setting takes advantage of a per-process runtime
setting in libsvm that, if enabled, may not work properly in a multithreaded context.

See Also:

NuSVRSupport Vector Machine for regression implemented using libsvm using a parameter to control the num-
ber of support vectors.

Examples

>>> from sklearn.svm import SVR
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> np.random.seed(0)
>>> y = np.random.randn(n_samples)
>>> X = np.random.randn(n_samples, n_features)
>>> clf = SVR(C=1.0, epsilon=0.2)
>>> clf.fit(X, y)
SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.2, gamma=0.2,
kernel=’rbf’, probability=False, shrinking=True, tol=0.001,
verbose=False)

630 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Attributes

sup-
port_

array-like, shape
= [n_SV]

Index of support vectors.

sup-
port_vectors_

array-like, shape
= [nSV,
n_features]

Support vectors.

dual_coef_array, shape =
[n_classes-1,
n_SV]

Coefficients of the support vector in the decision function.

coef_ array, shape =
[n_classes-1,
n_features]

Weights asigned to the features (coefficients in the primal problem). This is
only available in the case of linear kernel.
coef_ is readonly property derived from dual_coef_ and support_vectors_

inter-
cept_

array, shape =
[n_class *
(n_class-1) / 2]

Constants in decision function.

Methods

decision_function(X) Distance of the samples X to the separating hyperplane.
fit(X, y[, class_weight, sample_weight]) Fit the SVM model according to the given training data.
get_params([deep]) Get parameters for the estimator
predict(X) Perform classification or regression samples in X.
predict_log_proba(X) Compute the log likehoods each possible outcomes of samples in X.
predict_proba(X) Compute the likehoods each possible outcomes of samples in T.
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

__init__(kernel=’rbf’, degree=3, gamma=0.0, coef0=0.0, tol=0.001, C=1.0, epsilon=0.1, shrink-
ing=True, probability=False, cache_size=200, verbose=False)

decision_function(X)
Distance of the samples X to the separating hyperplane.

Parameters X : array-like, shape = [n_samples, n_features]

Returns X : array-like, shape = [n_samples, n_class * (n_class-1) / 2]

Returns the decision function of the sample for each class in the model.

fit(X, y, class_weight=None, sample_weight=None)
Fit the SVM model according to the given training data.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target values (integers in classification, real numbers in regression)

sample_weight : array-like, shape = [n_samples], optional

Weights applied to individual samples (1. for unweighted).

Returns self : object

1.8. Reference 631

scikit-learn user guide, Release 0.12-git

Returns self.

Notes

If X and y are not C-ordered and contiguous arrays of np.float64 and X is not a scipy.sparse.csr_matrix, X
and/or y may be copied.

If X is a dense array, then the other methods will not support sparse matrices as input.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Perform classification or regression samples in X.

For a classification model, the predicted class for each sample in X is returned. For a regression model,
the function value of X calculated is returned.

For an one-class model, +1 or -1 is returned.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Returns C : array, shape = [n_samples]

predict_log_proba(X)
Compute the log likehoods each possible outcomes of samples in X.

The model need to have probability information computed at training time: fit with attribute probability
set to True.

Parameters X : array-like, shape = [n_samples, n_features]

Returns X : array-like, shape = [n_samples, n_classes]

Returns the log-probabilities of the sample for each class in the model, where classes
are ordered by arithmetical order.

Notes

The probability model is created using cross validation, so the results can be slightly different than those
obtained by predict. Also, it will meaningless results on very small datasets.

predict_proba(X)
Compute the likehoods each possible outcomes of samples in T.

The model need to have probability information computed at training time: fit with attribute probability
set to True.

Parameters X : array-like, shape = [n_samples, n_features]

Returns X : array-like, shape = [n_samples, n_classes]

Returns the probability of the sample for each class in the model, where classes are
ordered by arithmetical order.

632 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Notes

The probability model is created using cross validation, so the results can be slightly different than those
obtained by predict. Also, it will produce meaningless results on very small datasets.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.svm.NuSVR

class sklearn.svm.NuSVR(nu=0.5, C=1.0, kernel=’rbf’, degree=3, gamma=0.0, coef0=0.0, shrink-
ing=True, probability=False, tol=0.001, cache_size=200, verbose=False)

Nu Support Vector Regression.

Similar to NuSVC, for regression, uses a parameter nu to control the number of support vectors. However,
unlike NuSVC, where nu replaces C, here nu replaces with the parameter epsilon of SVR.

The implementations is a based on libsvm.

Parameters C : float or None, optional (default=None)

penalty parameter C of the error term. If None then C is set to n_samples.

nu : float, optional

An upper bound on the fraction of training errors and a lower bound of the fraction of
support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken. Only
available if impl=’nu_svc’.

kernel : string, optional (default=’rbf’)

Specifies the kernel type to be used in the algorithm. one of ‘linear’, ‘poly’, ‘rbf’,
‘sigmoid’, ‘precomputed’. If none is given ‘rbf’ will be used.

degree : int, optional (default=3)

degree of kernel function is significant only in poly, rbf, sigmoid

gamma : float, optional (default=0.0)

kernel coefficient for rbf and poly, if gamma is 0.0 then 1/n_features will be taken.

coef0 : float, optional (default=0.0)

1.8. Reference 633

scikit-learn user guide, Release 0.12-git

independent term in kernel function. It is only significant in poly/sigmoid.

probability: boolean, optional (default=False) :

Whether to enable probability estimates. This must be enabled prior to calling pre-
dict_proba.

shrinking: boolean, optional (default=True) :

Whether to use the shrinking heuristic.

tol: float, optional (default=1e-3) :

Tolerance for stopping criterion.

cache_size: float, optional :

Specify the size of the kernel cache (in MB)

verbose : bool, default: False

Enable verbose output. Note that this setting takes advantage of a per-process runtime
setting in libsvm that, if enabled, may not work properly in a multithreaded context.

See Also:

NuSVCSupport Vector Machine for classification implemented with libsvm with a parameter to control the
number of support vectors.

SVRepsilon Support Vector Machine for regression implemented with libsvm.

Examples

>>> from sklearn.svm import NuSVR
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> np.random.seed(0)
>>> y = np.random.randn(n_samples)
>>> X = np.random.randn(n_samples, n_features)
>>> clf = NuSVR(C=1.0, nu=0.1)
>>> clf.fit(X, y)
NuSVR(C=1.0, cache_size=200, coef0=0.0, degree=3, gamma=0.2, kernel=’rbf’,

nu=0.1, probability=False, shrinking=True, tol=0.001, verbose=False)

634 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Attributes

sup-
port_

array-like, shape
= [n_SV]

Index of support vectors.

sup-
port_vectors_

array-like, shape
= [nSV,
n_features]

Support vectors.

dual_coef_array, shape =
[n_classes-1,
n_SV]

Coefficients of the support vector in the decision function.

coef_ array, shape =
[n_classes-1,
n_features]

Weights asigned to the features (coefficients in the primal problem). This is
only available in the case of linear kernel.
coef_ is readonly property derived from dual_coef_ and support_vectors_

inter-
cept_

array, shape =
[n_class *
(n_class-1) / 2]

Constants in decision function.

Methods

decision_function(X) Distance of the samples X to the separating hyperplane.
fit(X, y[, class_weight, sample_weight]) Fit the SVM model according to the given training data.
get_params([deep]) Get parameters for the estimator
predict(X) Perform classification or regression samples in X.
predict_log_proba(X) Compute the log likehoods each possible outcomes of samples in X.
predict_proba(X) Compute the likehoods each possible outcomes of samples in T.
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.

__init__(nu=0.5, C=1.0, kernel=’rbf’, degree=3, gamma=0.0, coef0=0.0, shrinking=True, probabil-
ity=False, tol=0.001, cache_size=200, verbose=False)

decision_function(X)
Distance of the samples X to the separating hyperplane.

Parameters X : array-like, shape = [n_samples, n_features]

Returns X : array-like, shape = [n_samples, n_class * (n_class-1) / 2]

Returns the decision function of the sample for each class in the model.

fit(X, y, class_weight=None, sample_weight=None)
Fit the SVM model according to the given training data.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target values (integers in classification, real numbers in regression)

sample_weight : array-like, shape = [n_samples], optional

Weights applied to individual samples (1. for unweighted).

Returns self : object

1.8. Reference 635

scikit-learn user guide, Release 0.12-git

Returns self.

Notes

If X and y are not C-ordered and contiguous arrays of np.float64 and X is not a scipy.sparse.csr_matrix, X
and/or y may be copied.

If X is a dense array, then the other methods will not support sparse matrices as input.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Perform classification or regression samples in X.

For a classification model, the predicted class for each sample in X is returned. For a regression model,
the function value of X calculated is returned.

For an one-class model, +1 or -1 is returned.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Returns C : array, shape = [n_samples]

predict_log_proba(X)
Compute the log likehoods each possible outcomes of samples in X.

The model need to have probability information computed at training time: fit with attribute probability
set to True.

Parameters X : array-like, shape = [n_samples, n_features]

Returns X : array-like, shape = [n_samples, n_classes]

Returns the log-probabilities of the sample for each class in the model, where classes
are ordered by arithmetical order.

Notes

The probability model is created using cross validation, so the results can be slightly different than those
obtained by predict. Also, it will meaningless results on very small datasets.

predict_proba(X)
Compute the likehoods each possible outcomes of samples in T.

The model need to have probability information computed at training time: fit with attribute probability
set to True.

Parameters X : array-like, shape = [n_samples, n_features]

Returns X : array-like, shape = [n_samples, n_classes]

Returns the probability of the sample for each class in the model, where classes are
ordered by arithmetical order.

636 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Notes

The probability model is created using cross validation, so the results can be slightly different than those
obtained by predict. Also, it will produce meaningless results on very small datasets.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.svm.OneClassSVM

class sklearn.svm.OneClassSVM(kernel=’rbf’, degree=3, gamma=0.0, coef0=0.0, tol=0.001, nu=0.5,
shrinking=True, cache_size=200, verbose=False)

Unsupervised Outliers Detection.

Estimate the support of a high-dimensional distribution.

The implementation is based on libsvm.

Parameters kernel : string, optional

Specifies the kernel type to be used in the algorithm. Can be one of ‘linear’, ‘poly’,
‘rbf’, ‘sigmoid’, ‘precomputed’. If none is given ‘rbf’ will be used.

nu : float, optional

An upper bound on the fraction of training errors and a lower bound of the fraction of
support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken.

degree : int, optional

Degree of kernel function. Significant only in poly, rbf, sigmoid.

gamma : float, optional (default=0.0)

kernel coefficient for rbf and poly, if gamma is 0.0 then 1/n_features will be taken.

coef0 : float, optional

Independent term in kernel function. It is only significant in poly/sigmoid.

tol: float, optional :

Tolerance for stopping criterion.

1.8. Reference 637

scikit-learn user guide, Release 0.12-git

shrinking: boolean, optional :

Whether to use the shrinking heuristic.

cache_size: float, optional :

Specify the size of the kernel cache (in MB)

verbose : bool, default: False

Enable verbose output. Note that this setting takes advantage of a per-process runtime
setting in libsvm that, if enabled, may not work properly in a multithreaded context.

Attributes

sup-
port_

array-like, shape
= [n_SV]

Index of support vectors.

sup-
port_vectors_

array-like, shape
= [nSV,
n_features]

Support vectors.

dual_coef_array, shape =
[n_classes-1,
n_SV]

Coefficient of the support vector in the decision function.

coef_ array, shape =
[n_classes-1,
n_features]

Weights asigned to the features (coefficients in the primal problem). This is
only available in the case of linear kernel.
coef_ is readonly property derived from dual_coef_ and support_vectors_

inter-
cept_

array, shape =
[n_classes-1]

Constants in decision function.

Methods

decision_function(X) Distance of the samples X to the separating hyperplane.
fit(X[, sample_weight]) Detects the soft boundary of the set of samples X.
get_params([deep]) Get parameters for the estimator
predict(X) Perform classification or regression samples in X.
predict_log_proba(X) Compute the log likehoods each possible outcomes of samples in X.
predict_proba(X) Compute the likehoods each possible outcomes of samples in T.
set_params(**params) Set the parameters of the estimator.

__init__(kernel=’rbf’, degree=3, gamma=0.0, coef0=0.0, tol=0.001, nu=0.5, shrinking=True,
cache_size=200, verbose=False)

decision_function(X)
Distance of the samples X to the separating hyperplane.

Parameters X : array-like, shape = [n_samples, n_features]

Returns X : array-like, shape = [n_samples, n_class * (n_class-1) / 2]

Returns the decision function of the sample for each class in the model.

fit(X, sample_weight=None, **params)
Detects the soft boundary of the set of samples X.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

638 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Set of samples, where n_samples is the number of samples and n_features is the number
of features.

Returns self : object

Returns self.

Notes

If X is not a C-ordered contiguous array it is copied.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Perform classification or regression samples in X.

For a classification model, the predicted class for each sample in X is returned. For a regression model,
the function value of X calculated is returned.

For an one-class model, +1 or -1 is returned.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Returns C : array, shape = [n_samples]

predict_log_proba(X)
Compute the log likehoods each possible outcomes of samples in X.

The model need to have probability information computed at training time: fit with attribute probability
set to True.

Parameters X : array-like, shape = [n_samples, n_features]

Returns X : array-like, shape = [n_samples, n_classes]

Returns the log-probabilities of the sample for each class in the model, where classes
are ordered by arithmetical order.

Notes

The probability model is created using cross validation, so the results can be slightly different than those
obtained by predict. Also, it will meaningless results on very small datasets.

predict_proba(X)
Compute the likehoods each possible outcomes of samples in T.

The model need to have probability information computed at training time: fit with attribute probability
set to True.

Parameters X : array-like, shape = [n_samples, n_features]

Returns X : array-like, shape = [n_samples, n_classes]

Returns the probability of the sample for each class in the model, where classes are
ordered by arithmetical order.

1.8. Reference 639

scikit-learn user guide, Release 0.12-git

Notes

The probability model is created using cross validation, so the results can be slightly different than those
obtained by predict. Also, it will produce meaningless results on very small datasets.

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

svm.l1_min_c(X, y[, loss, fit_intercept, ...]) Return the lowest bound for C such that for C in (l1_min_C, infinity)

sklearn.svm.l1_min_c

sklearn.svm.l1_min_c(X, y, loss=’l2’, fit_intercept=True, intercept_scaling=1.0)
Return the lowest bound for C such that for C in (l1_min_C, infinity) the model is guaranteed not
to be empty. This applies to l1 penalized classifiers, such as LinearSVC with penalty=’l1’ and lin-
ear_model.LogisticRegression with penalty=’l1’.

This value is valid if class_weight parameter in fit() is not set.

Parameters X : array-like or sparse matrix, shape = [n_samples, n_features]

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

y : array, shape = [n_samples]

Target vector relative to X

loss : {‘l2’, ‘log’}, default to ‘l2’

Specifies the loss function. With ‘l2’ it is the l2 loss (a.k.a. squared hinge loss). With
‘log’ it is the loss of logistic regression models.

fit_intercept : bool, default: True

Specifies if the intercept should be fitted by the model. It must match the fit() method
paramenter.

intercept_scaling : float, default: 1

when fit_intercept is True, instance vector x becomes [x, intercept_scaling], i.e. a “syn-
thetic” feature with constant value equals to intercept_scaling is appended to the in-
stance vector. It must match the fit() method parameter.

Returns l1_min_c: float :

minimum value for C

Low-level methods

svm.libsvm.fit Train the model using libsvm (low-level method)
svm.libsvm.decision_function Predict margin (libsvm name for this is predict_values)

Continued on next page

640 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Table 1.188 – continued from previous page
svm.libsvm.predict Predict target values of X given a model (low-level method)
svm.libsvm.predict_proba Predict probabilities svm_model stores all parameters needed to predict a given value.
svm.libsvm.cross_validation Binding of the cross-validation routine (low-level routine)

sklearn.svm.libsvm.fit

sklearn.svm.libsvm.fit()
Train the model using libsvm (low-level method)

Parameters X: array-like, dtype=float64, size=[n_samples, n_features] :

Y: array, dtype=float64, size=[n_samples] :

target vector

svm_type : {0, 1, 2, 3, 4}

Type of SVM: C_SVC, NuSVC, OneClassSVM, EpsilonSVR or NuSVR respectevely.

kernel : {‘linear’, ‘rbf’, ‘poly’, ‘sigmoid’, ‘precomputed’}

Kernel to use in the model: linear, polynomial, RBF, sigmoid or precomputed.

degree : int32

Degree of the polynomial kernel (only relevant if kernel is set to polynomial)

gamma : float64

Gamma parameter in RBF kernel (only relevant if kernel is set to RBF)

coef0 : float64

Independent parameter in poly/sigmoid kernel.

tol : float64

Stopping criteria.

C : float64

C parameter in C-Support Vector Classification

nu : float64

cache_size : float64

Returns support : array, shape=[n_support]

index of support vectors

support_vectors : array, shape=[n_support, n_features]

support vectors (equivalent to X[support]). Will return an empty array in the case of
precomputed kernel.

n_class_SV : array

number of support vectors in each class.

sv_coef : array

coefficients of support vectors in decision function.

intercept : array

1.8. Reference 641

scikit-learn user guide, Release 0.12-git

intercept in decision function

label : labels for different classes (only relevant in classification).

probA, probB : array

probability estimates, empty array for probability=False

sklearn.svm.libsvm.decision_function

sklearn.svm.libsvm.decision_function()
Predict margin (libsvm name for this is predict_values)

We have to reconstruct model and parameters to make sure we stay in sync with the python object.

sklearn.svm.libsvm.predict

sklearn.svm.libsvm.predict()
Predict target values of X given a model (low-level method)

Parameters X: array-like, dtype=float, size=[n_samples, n_features] :

svm_type : {0, 1, 2, 3, 4}

Type of SVM: C SVC, nu SVC, one class, epsilon SVR, nu SVR

kernel : {‘linear’, ‘rbf’, ‘poly’, ‘sigmoid’, ‘precomputed’}

Kernel to use in the model: linear, polynomial, RBF, sigmoid or precomputed.

degree : int

Degree of the polynomial kernel (only relevant if kernel is set to polynomial)

gamma : float

Gamma parameter in RBF kernel (only relevant if kernel is set to RBF)

coef0 : float

Independent parameter in poly/sigmoid kernel.

eps : float

Stopping criteria.

C : float

C parameter in C-Support Vector Classification

Returns dec_values : array

predicted values.

TODO: probably there’s no point in setting some parameters, like :

cache_size or weights. :

642 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

sklearn.svm.libsvm.predict_proba

sklearn.svm.libsvm.predict_proba()
Predict probabilities

svm_model stores all parameters needed to predict a given value.

For speed, all real work is done at the C level in function copy_predict (libsvm_helper.c).

We have to reconstruct model and parameters to make sure we stay in sync with the python object.

See sklearn.svm.predict for a complete list of parameters.

Parameters X: array-like, dtype=float :

Y: array :

target vector

kernel : {‘linear’, ‘rbf’, ‘poly’, ‘sigmoid’, ‘precomputed’}

Returns dec_values : array

predicted values.

sklearn.svm.libsvm.cross_validation

sklearn.svm.libsvm.cross_validation()
Binding of the cross-validation routine (low-level routine)

Parameters X: array-like, dtype=float, size=[n_samples, n_features] :

Y: array, dtype=float, size=[n_samples] :

target vector

svm_type : {0, 1, 2, 3, 4}

Type of SVM: C SVC, nu SVC, one class, epsilon SVR, nu SVR

kernel : {‘linear’, ‘rbf’, ‘poly’, ‘sigmoid’, ‘precomputed’}

Kernel to use in the model: linear, polynomial, RBF, sigmoid or precomputed.

degree : int

Degree of the polynomial kernel (only relevant if kernel is set to polynomial)

gamma : float

Gamma parameter in RBF kernel (only relevant if kernel is set to RBF)

coef0 : float

Independent parameter in poly/sigmoid kernel.

tol : float

Stopping criteria.

C : float

C parameter in C-Support Vector Classification

nu : float

cache_size : float

1.8. Reference 643

scikit-learn user guide, Release 0.12-git

Returns target : array, float

1.8.27 sklearn.tree: Decision Trees

The sklearn.tree module includes decision tree-based models for classification and regression.

User guide: See the Decision Trees section for further details.

tree.DecisionTreeClassifier([criterion, ...]) A decision tree classifier.
tree.DecisionTreeRegressor([criterion, ...]) A tree regressor.
tree.ExtraTreeClassifier([criterion, ...]) An extremely randomized tree classifier.
tree.ExtraTreeRegressor([criterion, ...]) An extremely randomized tree regressor.

sklearn.tree.DecisionTreeClassifier

class sklearn.tree.DecisionTreeClassifier(criterion=’gini’, max_depth=None,
min_samples_split=1, min_samples_leaf=1,
min_density=0.1, max_features=None, com-
pute_importances=False, random_state=None)

A decision tree classifier.

Parameters criterion : string, optional (default=”gini”)

The function to measure the quality of a split. Supported criteria are “gini” for the Gini
impurity and “entropy” for the information gain.

max_depth : integer or None, optional (default=None)

The maximum depth of the tree. If None, then nodes are expanded until all leaves are
pure or until all leaves contain less than min_samples_split samples.

min_samples_split : integer, optional (default=1)

The minimum number of samples required to split an internal node.

min_samples_leaf : integer, optional (default=1)

The minimum number of samples required to be at a leaf node.

min_density : float, optional (default=0.1)

This parameter controls a trade-off in an optimization heuristic. It controls the minimum
density of the sample_mask (i.e. the fraction of samples in the mask). If the density falls
below this threshold the mask is recomputed and the input data is packed which results
in data copying. If min_density equals to one, the partitions are always represented
as copies of the original data. Otherwise, partitions are represented as bit masks (aka
sample masks).

max_features : int, string or None, optional (default=None)

The number of features to consider when looking for the best split. If “auto”, then
max_features=sqrt(n_features) on classification tasks and max_features=n_features on
regression problems. If “sqrt”, then max_features=sqrt(n_features). If “log2”, then
max_features=log2(n_features). If None, then max_features=n_features.

compute_importances : boolean, optional (default=True)

Whether feature importances are computed and stored into the
feature_importances_ attribute when calling fit.

644 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

See Also:

DecisionTreeRegressor

References

[R76], [R77], [R78], [R79]

Examples

>>> from sklearn.datasets import load_iris
>>> from sklearn.cross_validation import cross_val_score
>>> from sklearn.tree import DecisionTreeClassifier

>>> clf = DecisionTreeClassifier(random_state=0)
>>> iris = load_iris()

>>> cross_val_score(clf, iris.data, iris.target, cv=10)
...
...
array([1. , 0.93..., 0.86..., 0.93..., 0.93...,

0.93..., 0.93..., 1. , 0.93..., 1.])

Attributes

tree_ Tree object The underlying Tree object.
fea-
ture_importances_

array of
shape =
[n_features]

The feature mportances (the higher, the more important the feature). The
importance I(f) of a feature f is computed as the (normalized) total reduction
of error brought by that feature. It is also known as the Gini importance [R79].

Methods

fit(X, y[, sample_mask, X_argsorted]) Build a decision tree from the training set (X, y).
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
predict(X) Predict class or regression target for X.
predict_log_proba(X) Predict class log-probabilities of the input samples X.
predict_proba(X) Predict class probabilities of the input samples X.
score(X, y) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of the estimator.
transform(X[, threshold]) Reduce X to its most important features.

__init__(criterion=’gini’, max_depth=None, min_samples_split=1, min_samples_leaf=1,
min_density=0.1, max_features=None, compute_importances=False, random_state=None)

1.8. Reference 645

scikit-learn user guide, Release 0.12-git

fit(X, y, sample_mask=None, X_argsorted=None)
Build a decision tree from the training set (X, y).

Parameters X : array-like of shape = [n_samples, n_features]

The training input samples.

y : array-like, shape = [n_samples]

The target values (integers that correspond to classes in classification, real numbers in
regression).

Returns self : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict class or regression target for X.

For a classification model, the predicted class for each sample in X is returned. For a regression model,
the predicted value based on X is returned.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns y : array of shape = [n_samples]

The predicted classes, or the predict values.

predict_log_proba(X)
Predict class log-probabilities of the input samples X.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

646 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Returns p : array of shape = [n_samples, n_classes]

The class log-probabilities of the input samples. Classes are ordered by arithmetical
order.

predict_proba(X)
Predict class probabilities of the input samples X.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns p : array of shape = [n_samples, n_classes]

The class probabilities of the input samples. Classes are ordered by arithmetical order.

score(X, y)
Returns the mean accuracy on the given test data and labels.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, threshold=None)
Reduce X to its most important features.

Parameters X : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold : string, float or None, optional (default=None)

The threshold value to use for feature selection. Features whose importance is greater
or equal are kept while the others are discarded. If “median” (resp. “mean”), then the
threshold value is the median (resp. the mean) of the feature importances. A scaling
factor (e.g., “1.25*mean”) may also be used. If None and if available, the object attribute
threshold is used. Otherwise, “mean” is used by default.

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

sklearn.tree.DecisionTreeRegressor

class sklearn.tree.DecisionTreeRegressor(criterion=’mse’, max_depth=None,
min_samples_split=1, min_samples_leaf=1,
min_density=0.1, max_features=None, com-
pute_importances=False, random_state=None)

A tree regressor.

1.8. Reference 647

scikit-learn user guide, Release 0.12-git

Parameters criterion : string, optional (default=”mse”)

The function to measure the quality of a split. The only supported criterion is “mse” for
the mean squared error.

max_depth : integer or None, optional (default=None)

The maximum depth of the tree. If None, then nodes are expanded until all leaves are
pure or until all leaves contain less than min_samples_split samples.

min_samples_split : integer, optional (default=1)

The minimum number of samples required to split an internal node.

min_samples_leaf : integer, optional (default=1)

The minimum number of samples required to be at a leaf node.

min_density : float, optional (default=0.1)

This parameter controls a trade-off in an optimization heuristic. It controls the minimum
density of the sample_mask (i.e. the fraction of samples in the mask). If the density falls
below this threshold the mask is recomputed and the input data is packed which results
in data copying. If min_density equals to one, the partitions are always represented
as copies of the original data. Otherwise, partitions are represented as bit masks (aka
sample masks).

max_features : int, string or None, optional (default=None)

The number of features to consider when looking for the best split. If “auto”, then
max_features=sqrt(n_features) on classification tasks and max_features=n_features on
regression problems. If “sqrt”, then max_features=sqrt(n_features). If “log2”, then
max_features=log2(n_features). If None, then max_features=n_features.

compute_importances : boolean, optional (default=True)

Whether feature importances are computed and stored into the
feature_importances_ attribute when calling fit.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

See Also:

DecisionTreeClassifier

References

[R80], [R81], [R82], [R83]

Examples

>>> from sklearn.datasets import load_boston
>>> from sklearn.cross_validation import cross_val_score
>>> from sklearn.tree import DecisionTreeRegressor

>>> boston = load_boston()
>>> regressor = DecisionTreeRegressor(random_state=0)

648 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

R2 scores (a.k.a. coefficient of determination) over 10-folds CV:

>>> cross_val_score(regressor, boston.data, boston.target, cv=10)
...
...
array([0.61..., 0.57..., -0.34..., 0.41..., 0.75...,

0.07..., 0.29..., 0.33..., -1.42..., -1.77...])

Attributes

tree_ Tree object The underlying Tree object.
fea-
ture_importances_

array of
shape =
[n_features]

The feature mportances (the higher, the more important the feature). The
importance I(f) of a feature f is computed as the (normalized) total reduction
of error brought by that feature. It is also known as the Gini importance [R83].

Methods

fit(X, y[, sample_mask, X_argsorted]) Build a decision tree from the training set (X, y).
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
predict(X) Predict class or regression target for X.
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.
transform(X[, threshold]) Reduce X to its most important features.

__init__(criterion=’mse’, max_depth=None, min_samples_split=1, min_samples_leaf=1,
min_density=0.1, max_features=None, compute_importances=False, random_state=None)

fit(X, y, sample_mask=None, X_argsorted=None)
Build a decision tree from the training set (X, y).

Parameters X : array-like of shape = [n_samples, n_features]

The training input samples.

y : array-like, shape = [n_samples]

The target values (integers that correspond to classes in classification, real numbers in
regression).

Returns self : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

1.8. Reference 649

scikit-learn user guide, Release 0.12-git

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict class or regression target for X.

For a classification model, the predicted class for each sample in X is returned. For a regression model,
the predicted value based on X is returned.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns y : array of shape = [n_samples]

The predicted classes, or the predict values.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, threshold=None)
Reduce X to its most important features.

Parameters X : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold : string, float or None, optional (default=None)

650 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

The threshold value to use for feature selection. Features whose importance is greater
or equal are kept while the others are discarded. If “median” (resp. “mean”), then the
threshold value is the median (resp. the mean) of the feature importances. A scaling
factor (e.g., “1.25*mean”) may also be used. If None and if available, the object attribute
threshold is used. Otherwise, “mean” is used by default.

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

sklearn.tree.ExtraTreeClassifier

class sklearn.tree.ExtraTreeClassifier(criterion=’gini’, max_depth=None,
min_samples_split=1, min_samples_leaf=1,
min_density=0.1, max_features=’auto’, com-
pute_importances=False, random_state=None)

An extremely randomized tree classifier.

Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate
the samples of a node into two groups, random splits are drawn for each of the max_features randomly selected
features and the best split among those is chosen. When max_features is set 1, this amounts to building a totally
random decision tree.

Warning: Extra-trees should only be used within ensemble methods.

See Also:

ExtraTreeRegressor, ExtraTreesClassifier, ExtraTreesRegressor

References

[R84]

Methods

fit(X, y[, sample_mask, X_argsorted]) Build a decision tree from the training set (X, y).
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
predict(X) Predict class or regression target for X.
predict_log_proba(X) Predict class log-probabilities of the input samples X.
predict_proba(X) Predict class probabilities of the input samples X.
score(X, y) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of the estimator.
transform(X[, threshold]) Reduce X to its most important features.

__init__(criterion=’gini’, max_depth=None, min_samples_split=1, min_samples_leaf=1,
min_density=0.1, max_features=’auto’, compute_importances=False, ran-
dom_state=None)

fit(X, y, sample_mask=None, X_argsorted=None)
Build a decision tree from the training set (X, y).

Parameters X : array-like of shape = [n_samples, n_features]

The training input samples.

1.8. Reference 651

scikit-learn user guide, Release 0.12-git

y : array-like, shape = [n_samples]

The target values (integers that correspond to classes in classification, real numbers in
regression).

Returns self : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict class or regression target for X.

For a classification model, the predicted class for each sample in X is returned. For a regression model,
the predicted value based on X is returned.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns y : array of shape = [n_samples]

The predicted classes, or the predict values.

predict_log_proba(X)
Predict class log-probabilities of the input samples X.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns p : array of shape = [n_samples, n_classes]

The class log-probabilities of the input samples. Classes are ordered by arithmetical
order.

652 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

predict_proba(X)
Predict class probabilities of the input samples X.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns p : array of shape = [n_samples, n_classes]

The class probabilities of the input samples. Classes are ordered by arithmetical order.

score(X, y)
Returns the mean accuracy on the given test data and labels.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, threshold=None)
Reduce X to its most important features.

Parameters X : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold : string, float or None, optional (default=None)

The threshold value to use for feature selection. Features whose importance is greater
or equal are kept while the others are discarded. If “median” (resp. “mean”), then the
threshold value is the median (resp. the mean) of the feature importances. A scaling
factor (e.g., “1.25*mean”) may also be used. If None and if available, the object attribute
threshold is used. Otherwise, “mean” is used by default.

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

sklearn.tree.ExtraTreeRegressor

class sklearn.tree.ExtraTreeRegressor(criterion=’mse’, max_depth=None,
min_samples_split=1, min_samples_leaf=1,
min_density=0.1, max_features=’auto’, com-
pute_importances=False, random_state=None)

An extremely randomized tree regressor.

Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate
the samples of a node into two groups, random splits are drawn for each of the max_features randomly selected
features and the best split among those is chosen. When max_features is set 1, this amounts to building a totally
random decision tree.

1.8. Reference 653

scikit-learn user guide, Release 0.12-git

Warning: Extra-trees should only be used within ensemble methods.

See Also:

ExtraTreeClassifierA classifier base on extremely randomized trees

sklearn.ensemble.ExtraTreesClassifierAn ensemble of extra-trees for classification

sklearn.ensemble.ExtraTreesRegressorAn ensemble of extra-trees for regression

References

[R85]

Methods

fit(X, y[, sample_mask, X_argsorted]) Build a decision tree from the training set (X, y).
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
predict(X) Predict class or regression target for X.
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.
transform(X[, threshold]) Reduce X to its most important features.

__init__(criterion=’mse’, max_depth=None, min_samples_split=1, min_samples_leaf=1,
min_density=0.1, max_features=’auto’, compute_importances=False, ran-
dom_state=None)

fit(X, y, sample_mask=None, X_argsorted=None)
Build a decision tree from the training set (X, y).

Parameters X : array-like of shape = [n_samples, n_features]

The training input samples.

y : array-like, shape = [n_samples]

The target values (integers that correspond to classes in classification, real numbers in
regression).

Returns self : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

654 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of
fit_transform, unlike other transformers such as PCA.

get_params(deep=True)
Get parameters for the estimator

Parameters deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

predict(X)
Predict class or regression target for X.

For a classification model, the predicted class for each sample in X is returned. For a regression model,
the predicted value based on X is returned.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns y : array of shape = [n_samples]

The predicted classes, or the predict values.

score(X, y)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is
1.0, lower values are worse.

Parameters X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns z : float

set_params(**params)
Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, threshold=None)
Reduce X to its most important features.

Parameters X : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold : string, float or None, optional (default=None)

The threshold value to use for feature selection. Features whose importance is greater
or equal are kept while the others are discarded. If “median” (resp. “mean”), then the
threshold value is the median (resp. the mean) of the feature importances. A scaling
factor (e.g., “1.25*mean”) may also be used. If None and if available, the object attribute
threshold is used. Otherwise, “mean” is used by default.

1.8. Reference 655

scikit-learn user guide, Release 0.12-git

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

tree.export_graphviz(decision_tree[, ...]) Export a decision tree in DOT format.

sklearn.tree.export_graphviz

sklearn.tree.export_graphviz(decision_tree, out_file=None, feature_names=None)
Export a decision tree in DOT format.

This function generates a GraphViz representation of the decision tree, which is then written into out_file. Once
exported, graphical renderings can be generated using, for example:

$ dot -Tps tree.dot -o tree.ps (PostScript format)
$ dot -Tpng tree.dot -o tree.png (PNG format)

Parameters decision_tree : decision tree classifier

The decision tree to be exported to graphviz.

out : file object or string, optional (default=None)

Handle or name of the output file.

feature_names : list of strings, optional (default=None)

Names of each of the features.

Returns out_file : file object

The file object to which the tree was exported. The user is expected to close() this object
when done with it.

Examples

>>> from sklearn.datasets import load_iris
>>> from sklearn import tree

>>> clf = tree.DecisionTreeClassifier()
>>> iris = load_iris()

>>> clf = clf.fit(iris.data, iris.target)
>>> import tempfile
>>> out_file = tree.export_graphviz(clf, out_file=tempfile.TemporaryFile())
>>> out_file.close()

1.8.28 sklearn.utils: Utilities

The sklearn.utils module includes various utilites.

Developer guide: See the Utilities for Developers page for further details.

utils.check_random_state(seed) Turn seed into a np.random.RandomState instance
utils.resample(*arrays, **options) Resample arrays or sparse matrices in a consistent way
utils.shuffle(*arrays, **options) Shuffle arrays or sparse matrices in a consistent way

656 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

sklearn.utils.check_random_state

sklearn.utils.check_random_state(seed)
Turn seed into a np.random.RandomState instance

If seed is None, return the RandomState singleton used by np.random. If seed is an int, return a new Ran-
domState instance seeded with seed. If seed is already a RandomState instance, return it. Otherwise raise
ValueError.

sklearn.utils.resample

sklearn.utils.resample(*arrays, **options)
Resample arrays or sparse matrices in a consistent way

The default strategy implements one step of the bootstrapping procedure.

Parameters ‘*arrays‘ : sequence of arrays or scipy.sparse matrices with same shape[0]

replace : boolean, True by default

Implements resampling with replacement. If False, this will implement (sliced) random
permutations.

n_samples : int, None by default

Number of samples to generate. If left to None this is automatically set to the first
dimension of the arrays.

random_state : int or RandomState instance

Control the shuffling for reproducible behavior.

Returns Sequence of resampled views of the collections. The original arrays are :

not impacted. :

See Also:

sklearn.cross_validation.Bootstrap, sklearn.utils.shuffle

Examples

It is possible to mix sparse and dense arrays in the same run:

>>> X = [[1., 0.], [2., 1.], [0., 0.]]
>>> y = np.array([0, 1, 2])

>>> from scipy.sparse import coo_matrix
>>> X_sparse = coo_matrix(X)

>>> from sklearn.utils import resample
>>> X, X_sparse, y = resample(X, X_sparse, y, random_state=0)
>>> X
array([[1., 0.],

[2., 1.],
[1., 0.]])

>>> X_sparse
<3x2 sparse matrix of type ’<... ’numpy.float64’>’

with 4 stored elements in Compressed Sparse Row format>

1.8. Reference 657

scikit-learn user guide, Release 0.12-git

>>> X_sparse.toarray()
array([[1., 0.],

[2., 1.],
[1., 0.]])

>>> y
array([0, 1, 0])

>>> resample(y, n_samples=2, random_state=0)
array([0, 1])

sklearn.utils.shuffle

sklearn.utils.shuffle(*arrays, **options)
Shuffle arrays or sparse matrices in a consistent way

This is a convenience alias to resample(*arrays, replace=False) to do random permutations of the
collections.

Parameters ‘*arrays‘ : sequence of arrays or scipy.sparse matrices with same shape[0]

random_state : int or RandomState instance

Control the shuffling for reproducible behavior.

n_samples : int, None by default

Number of samples to generate. If left to None this is automatically set to the first
dimension of the arrays.

Returns Sequence of shuffled views of the collections. The original arrays are :

not impacted. :

See Also:

sklearn.utils.resample

Examples

It is possible to mix sparse and dense arrays in the same run:

>>> X = [[1., 0.], [2., 1.], [0., 0.]]
>>> y = np.array([0, 1, 2])

>>> from scipy.sparse import coo_matrix
>>> X_sparse = coo_matrix(X)

>>> from sklearn.utils import shuffle
>>> X, X_sparse, y = shuffle(X, X_sparse, y, random_state=0)
>>> X
array([[0., 0.],

[2., 1.],
[1., 0.]])

>>> X_sparse
<3x2 sparse matrix of type ’<... ’numpy.float64’>’

with 3 stored elements in Compressed Sparse Row format>

658 Chapter 1. User Guide

scikit-learn user guide, Release 0.12-git

>>> X_sparse.toarray()
array([[0., 0.],

[2., 1.],
[1., 0.]])

>>> y
array([2, 1, 0])

>>> shuffle(y, n_samples=2, random_state=0)
array([0, 1])

1.8. Reference 659

scikit-learn user guide, Release 0.12-git

660 Chapter 1. User Guide

CHAPTER

TWO

EXAMPLE GALLERY

2.1 Examples

2.1.1 General examples

General-purpose and introductory examples for the scikit.

Figure 2.1: Plot classification probability

Plot classification probability

Plot the classification probability for different classifiers. We use a 3 class dataset, and we classify it with a Support
Vector classifier, as well as L1 and L2 penalized logistic regression.

The logistic regression is not a multiclass classifier out of the box. As a result it can identify only the first class.

661

scikit-learn user guide, Release 0.12-git

Script output:

classif_rate for Linear SVC : 82.000000
classif_rate for L1 logistic : 79.333333
classif_rate for L2 logistic : 76.666667

Python source code: plot_classification_probability.py

print __doc__

Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
License: BSD Style.

import pylab as pl
import numpy as np

from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn import datasets

662 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

iris = datasets.load_iris()
X = iris.data[:, 0:2] # we only take the first two features for visualization
y = iris.target

n_features = X.shape[1]

C = 1.0

Create different classifiers. The logistic regression cannot do
multiclass out of the box.
classifiers = {

’L1 logistic’: LogisticRegression(C=C, penalty=’l1’),
’L2 logistic’: LogisticRegression(C=C, penalty=’l2’),
’Linear SVC’: SVC(kernel=’linear’, C=C, probability=True),

}

n_classifiers = len(classifiers)

pl.figure(figsize=(3 * 2, n_classifiers * 2))
pl.subplots_adjust(bottom=.2, top=.95)

for index, (name, classifier) in enumerate(classifiers.iteritems()):
classifier.fit(X, y)

y_pred = classifier.predict(X)
classif_rate = np.mean(y_pred.ravel() == y.ravel()) * 100
print "classif_rate for %s : %f " % (name, classif_rate)

View probabilities=
xx = np.linspace(3, 9, 100)
yy = np.linspace(1, 5, 100).T
xx, yy = np.meshgrid(xx, yy)
Xfull = np.c_[xx.ravel(), yy.ravel()]
probas = classifier.predict_proba(Xfull)
n_classes = np.unique(y_pred).size
for k in range(n_classes):

pl.subplot(n_classifiers, n_classes, index * n_classes + k + 1)
pl.title("Class %d" % k)
if k == 0:

pl.ylabel(name)
imshow_handle = pl.imshow(probas[:, k].reshape((100, 100)),

extent=(3, 9, 1, 5), origin=’lower’)
pl.xticks(())
pl.yticks(())
idx = (y_pred == k)
if idx.any():

pl.scatter(X[idx, 0], X[idx, 1], marker=’o’, c=’k’)

ax = pl.axes([0.15, 0.04, 0.7, 0.05])
pl.title("Probability")
pl.colorbar(imshow_handle, cax=ax, orientation=’horizontal’)

pl.show()

2.1. Examples 663

scikit-learn user guide, Release 0.12-git

Figure 2.2: Confusion matrix

Confusion matrix

Example of confusion matrix usage to evaluate the quality of the output of a classifier.

Script output:

664 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

[[25 0 0]
[0 28 2]
[0 1 19]]

Python source code: plot_confusion_matrix.py

print __doc__

import random
import pylab as pl
from sklearn import svm, datasets
from sklearn.metrics import confusion_matrix

import some data to play with
iris = datasets.load_iris()
X = iris.data
y = iris.target
n_samples, n_features = X.shape
p = range(n_samples)
random.seed(0)
random.shuffle(p)
X, y = X[p], y[p]
half = int(n_samples / 2)

Run classifier
classifier = svm.SVC(kernel=’linear’)
y_ = classifier.fit(X[:half], y[:half]).predict(X[half:])

Compute confusion matrix
cm = confusion_matrix(y[half:], y_)

print cm

Show confusion matrix
pl.matshow(cm)
pl.title(’Confusion matrix’)
pl.colorbar()
pl.show()

Figure 2.3: Recognizing hand-written digits

Recognizing hand-written digits

An example showing how the scikit-learn can be used to recognize images of hand-written digits.

This example is commented in the tutorial section of the user manual.

2.1. Examples 665

scikit-learn user guide, Release 0.12-git

Script output:

Classification report for classifier SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3,
gamma=0.001, kernel=rbf, probability=False, shrinking=True, tol=0.001,
verbose=False):

precision recall f1-score support

0 1.00 0.99 0.99 88
1 0.99 0.97 0.98 91
2 0.99 0.99 0.99 86
3 0.98 0.87 0.92 91
4 0.99 0.96 0.97 92
5 0.95 0.97 0.96 91
6 0.99 0.99 0.99 91
7 0.96 0.99 0.97 89
8 0.94 1.00 0.97 88
9 0.93 0.98 0.95 92

avg / total 0.97 0.97 0.97 899

Confusion matrix:
[[87 0 0 0 1 0 0 0 0 0]
[0 88 1 0 0 0 0 0 1 1]
[0 0 85 1 0 0 0 0 0 0]
[0 0 0 79 0 3 0 4 5 0]

666 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

[0 0 0 0 88 0 0 0 0 4]
[0 0 0 0 0 88 1 0 0 2]
[0 1 0 0 0 0 90 0 0 0]
[0 0 0 0 0 1 0 88 0 0]
[0 0 0 0 0 0 0 0 88 0]
[0 0 0 1 0 1 0 0 0 90]]

Python source code: plot_digits_classification.py

print __doc__

Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
License: Simplified BSD

Standard scientific Python imports
import pylab as pl

Import datasets, classifiers and performance metrics
from sklearn import datasets, svm, metrics

The digits dataset
digits = datasets.load_digits()

The data that we are interested in is made of 8x8 images of digits,
let’s have a look at the first 3 images, stored in the ‘images‘
attribute of the dataset. If we were working from image files, we
could load them using pylab.imread. For these images know which
digit they represent: it is given in the ’target’ of the dataset.
for index, (image, label) in enumerate(zip(digits.images, digits.target)[:4]):

pl.subplot(2, 4, index + 1)
pl.axis(’off’)
pl.imshow(image, cmap=pl.cm.gray_r, interpolation=’nearest’)
pl.title(’Training: %i’ % label)

To apply an classifier on this data, we need to flatten the image, to
turn the data in a (samples, feature) matrix:
n_samples = len(digits.images)
data = digits.images.reshape((n_samples, -1))

Create a classifier: a support vector classifier
classifier = svm.SVC(gamma=0.001)

We learn the digits on the first half of the digits
classifier.fit(data[:n_samples / 2], digits.target[:n_samples / 2])

Now predict the value of the digit on the second half:
expected = digits.target[n_samples / 2:]
predicted = classifier.predict(data[n_samples / 2:])

print "Classification report for classifier %s:\n%s\n" % (
classifier, metrics.classification_report(expected, predicted))

print "Confusion matrix:\n%s" % metrics.confusion_matrix(expected, predicted)

for index, (image, prediction) in enumerate(
zip(digits.images[n_samples / 2:], predicted)[:4]):
pl.subplot(2, 4, index + 5)
pl.axis(’off’)
pl.imshow(image, cmap=pl.cm.gray_r, interpolation=’nearest’)

2.1. Examples 667

scikit-learn user guide, Release 0.12-git

pl.title(’Prediction: %i’ % prediction)

pl.show()

Figure 2.4: Pipelining: chaining a PCA and a logistic regression

Pipelining: chaining a PCA and a logistic regression

The PCA does an unsupervised dimensionality reduction, while the logistic regression does the prediction.

We use a GridSearchCV to set the dimensionality of the PCA

Python source code: plot_digits_pipe.py

print __doc__

Code source: Gael Varoqueux
Modified for Documentation merge by Jaques Grobler
License: BSD

import numpy as np
import pylab as pl

from sklearn import linear_model, decomposition, datasets

logistic = linear_model.LogisticRegression()

pca = decomposition.PCA()
from sklearn.pipeline import Pipeline
pipe = Pipeline(steps=[(’pca’, pca), (’logistic’, logistic)])

668 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

digits = datasets.load_digits()
X_digits = digits.data
y_digits = digits.target

###
Plot the PCA spectrum
pca.fit(X_digits)

pl.figure(1, figsize=(4, 3))
pl.clf()
pl.axes([.2, .2, .7, .7])
pl.plot(pca.explained_variance_, linewidth=2)
pl.axis(’tight’)
pl.xlabel(’n_components’)
pl.ylabel(’explained_variance_’)

###
Prediction

from sklearn.grid_search import GridSearchCV

n_components = [20, 40, 64]
Cs = np.logspace(-4, 4, 3)

#Parameters of pipelines can be set using ‘__’ separated parameter names:

estimator = GridSearchCV(pipe,
dict(pca__n_components=n_components,

logistic__C=Cs))
estimator.fit(X_digits, y_digits)

pl.axvline(estimator.best_estimator_.named_steps[’pca’].n_components,
linestyle=’:’, label=’n_components chosen’)

pl.legend(prop=dict(size=12))
pl.show()

Figure 2.5: Univariate Feature Selection

Univariate Feature Selection

An example showing univariate feature selection.

Noisy (non informative) features are added to the iris data and univariate feature selection is applied. For each feature,
we plot the p-values for the univariate feature selection and the corresponding weights of an SVM. We can see that
univariate feature selection selects the informative features and that these have larger SVM weights.

In the total set of features, only the 4 first ones are significant. We can see that they have the highest score with
univariate feature selection. The SVM attributes small weights to these features, but these weight are non zero.

2.1. Examples 669

scikit-learn user guide, Release 0.12-git

Applying univariate feature selection before the SVM increases the SVM weight attributed to the significant features,
and will thus improve classification.

Python source code: plot_feature_selection.py

print __doc__

import numpy as np
import pylab as pl

from sklearn import datasets, svm
from sklearn.feature_selection import SelectPercentile, f_classif

###
import some data to play with

The IRIS dataset
iris = datasets.load_iris()

Some noisy data not correlated
E = np.random.normal(size=(len(iris.data), 35))

Add the noisy data to the informative features
x = np.hstack((iris.data, E))
y = iris.target

670 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

###
pl.figure(1)
pl.clf()

x_indices = np.arange(x.shape[-1])

###
Univariate feature selection with F-test for feature scoring
We use the default selection function: the 10% most significant features
selector = SelectPercentile(f_classif, percentile=10)
selector.fit(x, y)
scores = -np.log10(selector.scores_)
scores /= scores.max()
pl.bar(x_indices - .45, scores, width=.3,

label=r’Univariate score ($-Log(p_{value})$)’,
color=’g’)

###
Compare to the weights of an SVM
clf = svm.SVC(kernel=’linear’)
clf.fit(x, y)

svm_weights = (clf.coef_ ** 2).sum(axis=0)
svm_weights /= svm_weights.max()
pl.bar(x_indices - .15, svm_weights, width=.3, label=’SVM weight’,

color=’r’)

pl.title("Comparing feature selection")
pl.xlabel(’Feature number’)
pl.yticks(())
pl.axis(’tight’)
pl.legend(loc=’upper right’)
pl.show()

Figure 2.6: Demonstration of sampling from HMM

Demonstration of sampling from HMM

This script shows how to sample points from a Hiden Markov Model (HMM): we use a 4-components with specified
mean and covariance.

The plot show the sequence of observations generated with the transitions between them. We can see that, as specified
by our transition matrix, there are no transition between component 1 and 3.

2.1. Examples 671

scikit-learn user guide, Release 0.12-git

Python source code: plot_hmm_sampling.py

import numpy as np
import matplotlib.pyplot as plt

from sklearn import hmm

##
Prepare parameters for a 3-components HMM
Initial population probability
start_prob = np.array([0.6, 0.3, 0.1, 0.0])
The transition matrix, note that there are no transitions possible
between component 1 and 4
trans_mat = np.array([[0.7, 0.2, 0.0, 0.1],

[0.3, 0.5, 0.2, 0.0],
[0.0, 0.3, 0.5, 0.2],
[0.2, 0.0, 0.2, 0.6]])

The means of each component
means = np.array([[0.0, 0.0],

[0.0, 11.0],
[9.0, 10.0],
[11.0, -1.0],
])

The covariance of each component
covars = .5 * np.tile(np.identity(2), (4, 1, 1))

672 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Build an HMM instance and set parameters
model = hmm.GaussianHMM(4, "full", start_prob, trans_mat,

random_state=42)

Instead of fitting it from the data, we directly set the estimated
parameters, the means and covariance of the components
model.means_ = means
model.covars_ = covars
###

Generate samples
X, Z = model.sample(500)

Plot the sampled data
plt.plot(X[:, 0], X[:, 1], "-o", label="observations", ms=6,

mfc="orange", alpha=0.7)

Indicate the component numbers
for i, m in enumerate(means):

plt.text(m[0], m[1], ’Component %i’ % (i + 1),
size=17, horizontalalignment=’center’,
bbox=dict(alpha=.7, facecolor=’w’))

plt.legend(loc=’best’)
plt.show()

Figure 2.7: Gaussian HMM of stock data

Gaussian HMM of stock data

This script shows how to use Gaussian HMM. It uses stock price data, which can be obtained from yahoo finance. For
more information on how to get stock prices with matplotlib, please refer to date_demo1.py of matplotlib.

2.1. Examples 673

scikit-learn user guide, Release 0.12-git

Script output:

fitting to HMM and decoding ... done

Transition matrix
[[9.76719299e-01 1.35417228e-16 2.38997332e-03 2.08907155e-02

1.18773340e-08]
[2.56709643e-15 6.27458268e-01 3.26816051e-02 2.40445128e-02

3.15815615e-01]
[8.32867819e-04 2.92086856e-02 8.20163873e-01 1.35374694e-05

1.49781036e-01]
[2.62989391e-01 3.24149388e-01 3.61148574e-18 4.12861221e-01

1.07421560e-16]
[3.94120552e-03 1.18350712e-01 1.54841511e-01 3.55404724e-03

7.19312524e-01]]

means and vars of each hidden state
0th hidden state
mean = [2.86671252e-02 4.96912888e+07]
var = [9.36505203e-01 2.50416506e+14]

1th hidden state
mean = [3.82710228e-02 1.10461347e+08]
var = [2.07797740e-01 8.81745732e+14]

2th hidden state

674 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

mean = [6.45173011e-03 4.91151802e+07]
var = [5.33155033e-02 1.09532022e+14]

3th hidden state
mean = [-7.94680418e-01 1.49185466e+08]
var = [6.50069278e+00 1.02490114e+16]

4th hidden state
mean = [1.20905487e-02 6.99175140e+07]
var = [1.31030113e-01 1.52865824e+14]

Python source code: plot_hmm_stock_analysis.py

print __doc__

import datetime
import numpy as np
import pylab as pl
from matplotlib.finance import quotes_historical_yahoo
from matplotlib.dates import YearLocator, MonthLocator, DateFormatter
from sklearn.hmm import GaussianHMM

###
Downloading the data
date1 = datetime.date(1995, 1, 1) # start date
date2 = datetime.date(2012, 1, 6) # end date
get quotes from yahoo finance
quotes = quotes_historical_yahoo("INTC", date1, date2)
if len(quotes) == 0:

raise SystemExit

unpack quotes
dates = np.array([q[0] for q in quotes], dtype=int)
close_v = np.array([q[2] for q in quotes])
volume = np.array([q[5] for q in quotes])[1:]

take diff of close value
this makes len(diff) = len(close_t) - 1
therefore, others quantity also need to be shifted
diff = close_v[1:] - close_v[:-1]
dates = dates[1:]
close_v = close_v[1:]

pack diff and volume for training
X = np.column_stack([diff, volume])

###
Run Gaussian HMM
print "fitting to HMM and decoding ...",
n_components = 5

make an HMM instance and execute fit
model = GaussianHMM(n_components, covariance_type="diag", n_iter=1000)

model.fit([X])

predict the optimal sequence of internal hidden state
hidden_states = model.predict(X)

2.1. Examples 675

scikit-learn user guide, Release 0.12-git

print "done\n"

###
print trained parameters and plot
print "Transition matrix"
print model.transmat_
print ""

print "means and vars of each hidden state"
for i in xrange(n_components):

print "%dth hidden state" % i
print "mean = ", model.means_[i]
print "var = ", np.diag(model.covars_[i])
print ""

years = YearLocator() # every year
months = MonthLocator() # every month
yearsFmt = DateFormatter(’%Y’)
fig = pl.figure()
ax = fig.add_subplot(111)

for i in xrange(n_components):
use fancy indexing to plot data in each state
idx = (hidden_states == i)
ax.plot_date(dates[idx], close_v[idx], ’o’, label="%dth hidden state" % i)

ax.legend()

format the ticks
ax.xaxis.set_major_locator(years)
ax.xaxis.set_major_formatter(yearsFmt)
ax.xaxis.set_minor_locator(months)
ax.autoscale_view()

format the coords message box
ax.fmt_xdata = DateFormatter(’%Y-%m-%d’)
ax.fmt_ydata = lambda x: ’$%1.2f’ % x
ax.grid(True)

fig.autofmt_xdate()
pl.show()

Figure 2.8: Classifiers Comparison

Classifiers Comparison

A Comparison of a K-nearest-neighbours, Logistic Regression and a Linear SVC classifying the iris dataset.

676 Chapter 2. Example Gallery

http://en.wikipedia.org/wiki/Iris_flower_data_set

scikit-learn user guide, Release 0.12-git

•

•

•

Python source code: plot_iris_classifiers.py

print __doc__

Code source: Gael Varoqueux
Modified for Documentation merge by Jaques Grobler
License: BSD

import numpy as np
import pylab as pl
from sklearn import neighbors, datasets, linear_model, svm

import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features.
Y = iris.target

h = .02 # step size in the mesh

classifiers = dict(
knn=neighbors.KNeighborsClassifier(),
logistic=linear_model.LogisticRegression(C=1e5),
svm=svm.LinearSVC(C=1e5, loss=’l1’),
)

fignum = 1
we create an instance of Neighbours Classifier and fit the data.

2.1. Examples 677

scikit-learn user guide, Release 0.12-git

for name, clf in classifiers.iteritems():
clf.fit(X, Y)

Plot the decision boundary. For that, we will asign a color to each
point in the mesh [x_min, m_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

Put the result into a color plot
Z = Z.reshape(xx.shape)
pl.figure(fignum, figsize=(4, 3))
pl.pcolormesh(xx, yy, Z, cmap=pl.cm.Paired)

Plot also the training points
pl.scatter(X[:, 0], X[:, 1], c=Y, cmap=pl.cm.Paired)
pl.xlabel(’Sepal length’)
pl.ylabel(’Sepal width’)

pl.xlim(xx.min(), xx.max())
pl.ylim(yy.min(), yy.max())
pl.xticks(())
pl.yticks(())
fignum += 1

pl.show()

Figure 2.9: Explicit feature map approximation for RBF kernels

Explicit feature map approximation for RBF kernels

An example shows how to use RBFSampler to appoximate the feature map of an RBF kernel for classification with
an SVM on the digits dataset. Results using a linear SVM in the original space, a linear SVM using the approximate
mapping and using a kernelized SVM are compared. Timings and accuracy for varying amounts of Monte Carlo
samplings for the approximate mapping are shown.

Sampling more dimensions clearly leads to better classification results, but comes at a greater cost. This means there
is a tradeoff between runtime and accuracy, given by the parameter n_components. Note that solving the Linear
SVM and also the approximate kernel SVM could be greatly accelerated by using stochastic gradient descent via
sklearn.linear_model.SGDClassifier. This is not easily possible for the case of the kernelized SVM.

The second plot visualized the decision surfaces of the RBF kernel SVM and the linear SVM with approximate kernel
map. The plot shows decision surfaces of the classifiers projected onto the first two principal components of the data.
This visualization should be taken with a grain of salt since it is just an interesting slice through the decision surface
in 64 dimensions. In particular note that a datapoint (represented as a dot) does not necessarily be classified into the

678 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

region it is lying in, since it will not lie on the plane that the first two principal components span.

The usage of RBFSampler is described in detail in Kernel Approximation.

•

•

Python source code: plot_kernel_approximation.py

print __doc__

Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
modified Andreas Mueller
License: Simplified BSD

Standard scientific Python imports
import pylab as pl
import numpy as np
from time import time

Import datasets, classifiers and performance metrics
from sklearn import datasets, svm, pipeline
from sklearn.kernel_approximation import RBFSampler
from sklearn.decomposition import PCA

The digits dataset
digits = datasets.load_digits(n_class=9)

To apply an classifier on this data, we need to flatten the image, to
turn the data in a (samples, feature) matrix:
n_samples = len(digits.data)
data = digits.data / 16.
data -= data.mean(axis=0)

We learn the digits on the first half of the digits
data_train, targets_train = data[:n_samples / 2], digits.target[:n_samples / 2]

Now predict the value of the digit on the second half:

2.1. Examples 679

scikit-learn user guide, Release 0.12-git

data_test, targets_test = data[n_samples / 2:], digits.target[n_samples / 2:]
#data_test = scaler.transform(data_test)

Create a classifier: a support vector classifier
kernel_svm = svm.SVC(gamma=.2)
linear_svm = svm.LinearSVC()

create pipeline from kernel approximation
and linear svm
feature_map = RBFSampler(gamma=.2, random_state=1)
approx_kernel_svm = pipeline.Pipeline([("feature_map", feature_map),

("svm", svm.LinearSVC())])

fit and predict using linear and kernel svm:

kernel_svm_time = time()
kernel_svm.fit(data_train, targets_train)
kernel_svm_score = kernel_svm.score(data_test, targets_test)
kernel_svm_time = time() - kernel_svm_time

linear_svm_time = time()
linear_svm.fit(data_train, targets_train)
linear_svm_score = linear_svm.score(data_test, targets_test)
linear_svm_time = time() - linear_svm_time

sample_sizes = 50 * np.arange(1, 10)
approx_kernel_scores = []
approx_kernel_times = []

for D in sample_sizes:
approx_kernel_svm.set_params(feature_map__n_components=D)
approx_kernel_timing = time()
approx_kernel_svm.fit(data_train, targets_train)
approx_kernel_times.append(time() - approx_kernel_timing)
score = approx_kernel_svm.score(data_test, targets_test)
approx_kernel_scores.append(score)

plot the results:
accuracy = pl.subplot(211)
second y axis for timeings
timescale = pl.subplot(212)

accuracy.plot(sample_sizes, approx_kernel_scores, label="approx. kernel")
timescale.plot(sample_sizes, approx_kernel_times, ’--’,

label=’approx. kernel’)

horizontal lines for exact rbf and linear kernels:
accuracy.plot([sample_sizes[0], sample_sizes[-1]], [linear_svm_score,

linear_svm_score], label="linear svm")
timescale.plot([sample_sizes[0], sample_sizes[-1]], [linear_svm_time,

linear_svm_time], ’--’, label=’linear svm’)

accuracy.plot([sample_sizes[0], sample_sizes[-1]], [kernel_svm_score,
kernel_svm_score], label="rbf svm")

timescale.plot([sample_sizes[0], sample_sizes[-1]], [kernel_svm_time,
kernel_svm_time], ’--’, label=’rbf svm’)

vertical line for dataset dimensionality = 64

680 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

accuracy.plot([64, 64], [0.7, 1], label="n_features")

legends and labels
accuracy.set_title("Classification accuracy")
timescale.set_title("Training times")
accuracy.set_xlim(sample_sizes[0], sample_sizes[-1])
accuracy.set_xticks(())
accuracy.set_ylim(np.min(approx_kernel_scores), 1)
timescale.set_xlabel("Sampling steps = transformed feature dimension")
accuracy.set_ylabel("Classification accuracy")
timescale.set_ylabel("Training time in seconds")
accuracy.legend(loc=’best’)
timescale.legend(loc=’best’)

visualize the decision surface, projected down to the first
two principal components of the dataset
pca = PCA(n_components=8).fit(data_train)

X = pca.transform(data_train)

Gemerate grid along first two principal components
multiples = np.arange(-2, 2, 0.1)
steps along first component
first = multiples[:, np.newaxis] * pca.components_[0, :]
steps along second component
second = multiples[:, np.newaxis] * pca.components_[1, :]
combine
grid = first[np.newaxis, :, :] + second[:, np.newaxis, :]
flat_grid = grid.reshape(-1, data.shape[1])

title for the plots
titles = [’SVC with rbf kernel’,

’SVC (linear kernel) with rbf feature map\n n_components=100’]

pl.figure(figsize=(12, 5))

predict and plot
for i, clf in enumerate((kernel_svm, approx_kernel_svm)):

Plot the decision boundary. For that, we will asign a color to each
point in the mesh [x_min, m_max]x[y_min, y_max].
pl.subplot(1, 2, i + 1)
Z = clf.predict(flat_grid)

Put the result into a color plot
Z = Z.reshape(grid.shape[:-1])
pl.contourf(multiples, multiples, Z, cmap=pl.cm.Paired)
pl.axis(’off’)

Plot also the training points
pl.scatter(X[:, 0], X[:, 1], c=targets_train, cmap=pl.cm.Paired)

pl.title(titles[i])
pl.show()

Linear and Quadratic Discriminant Analysis with confidence ellipsoid

Plot the confidence ellipsoids of each class and decision boundary

2.1. Examples 681

scikit-learn user guide, Release 0.12-git

Figure 2.10: Linear and Quadratic Discriminant Analysis with confidence ellipsoid

Python source code: plot_lda_qda.py

print __doc__

from scipy import linalg
import numpy as np
import pylab as pl
import matplotlib as mpl
from matplotlib import colors

from sklearn.lda import LDA
from sklearn.qda import QDA

###

682 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

colormap
cmap = colors.LinearSegmentedColormap(’red_blue_classes’,

{’red’: [(0, 1, 1), (1, 0.7, 0.7)],
’green’: [(0, 0.7, 0.7), (1, 0.7, 0.7)],
’blue’: [(0, 0.7, 0.7), (1, 1, 1)]})

pl.cm.register_cmap(cmap=cmap)

###
generate datasets
def dataset_fixed_cov():

’’’Generate 2 Gaussians samples with the same covariance matrix’’’
n, dim = 300, 2
np.random.seed(0)
C = np.array([[0., -0.23], [0.83, .23]])
X = np.r_[np.dot(np.random.randn(n, dim), C),

np.dot(np.random.randn(n, dim), C) + np.array([1, 1])]
y = np.hstack((np.zeros(n), np.ones(n)))
return X, y

def dataset_cov():
’’’Generate 2 Gaussians samples with different covariance matrices’’’
n, dim = 300, 2
np.random.seed(0)
C = np.array([[0., -1.], [2.5, .7]]) * 2.
X = np.r_[np.dot(np.random.randn(n, dim), C),

np.dot(np.random.randn(n, dim), C.T) + np.array([1, 4])]
y = np.hstack((np.zeros(n), np.ones(n)))
return X, y

###
plot functions
def plot_data(lda, X, y, y_pred, fig_index):

splot = pl.subplot(2, 2, fig_index)
if fig_index == 1:

pl.title(’Linear Discriminant Analysis’)
pl.ylabel(’Data with fixed covariance’)

elif fig_index == 2:
pl.title(’Quadratic Discriminant Analysis’)

elif fig_index == 3:
pl.ylabel(’Data with varying covariances’)

tp = (y == y_pred) # True Positive
tp0, tp1 = tp[y == 0], tp[y == 1]
X0, X1 = X[y == 0], X[y == 1]
X0_tp, X0_fp = X0[tp0], X0[tp0 != True]
X1_tp, X1_fp = X1[tp1], X1[tp1 != True]
xmin, xmax = X[:, 0].min(), X[:, 0].max()
ymin, ymax = X[:, 1].min(), X[:, 1].max()

class 0: dots
pl.plot(X0_tp[:, 0], X0_tp[:, 1], ’o’, color=’red’)
pl.plot(X0_fp[:, 0], X0_fp[:, 1], ’.’, color=’#990000’) # dark red

class 1: dots
pl.plot(X1_tp[:, 0], X1_tp[:, 1], ’o’, color=’blue’)

2.1. Examples 683

scikit-learn user guide, Release 0.12-git

pl.plot(X1_fp[:, 0], X1_fp[:, 1], ’.’, color=’#000099’) # dark blue

class 0 and 1 : areas
nx, ny = 200, 100
x_min, x_max = pl.xlim()
y_min, y_max = pl.ylim()
xx, yy = np.meshgrid(np.linspace(x_min, x_max, nx),

np.linspace(y_min, y_max, ny))
Z = lda.predict_proba(np.c_[xx.ravel(), yy.ravel()])
Z = Z[:, 1].reshape(xx.shape)
pl.pcolormesh(xx, yy, Z, cmap=’red_blue_classes’,

norm=colors.Normalize(0., 1.))
pl.contour(xx, yy, Z, [0.5], linewidths=2., colors=’k’)

means
pl.plot(lda.means_[0][0], lda.means_[0][1],

’o’, color=’black’, markersize=10)
pl.plot(lda.means_[1][0], lda.means_[1][1],

’o’, color=’black’, markersize=10)

return splot

def plot_ellipse(splot, mean, cov, color):
v, w = linalg.eigh(cov)
u = w[0] / linalg.norm(w[0])
angle = np.arctan(u[1] / u[0])
angle = 180 * angle / np.pi # convert to degrees
filled gaussian at 2 standard deviation
ell = mpl.patches.Ellipse(mean, 2 * v[0] ** 0.5, 2 * v[1] ** 0.5,

180 + angle, color=color)
ell.set_clip_box(splot.bbox)
ell.set_alpha(0.5)
splot.add_artist(ell)
splot.set_xticks(())
splot.set_yticks(())

def plot_lda_cov(lda, splot):
plot_ellipse(splot, lda.means_[0], lda.covariance_, ’red’)
plot_ellipse(splot, lda.means_[1], lda.covariance_, ’blue’)

def plot_qda_cov(qda, splot):
plot_ellipse(splot, qda.means_[0], qda.covariances_[0], ’red’)
plot_ellipse(splot, qda.means_[1], qda.covariances_[1], ’blue’)

###
for i, (X, y) in enumerate([dataset_fixed_cov(), dataset_cov()]):

LDA
lda = LDA()
y_pred = lda.fit(X, y, store_covariance=True).predict(X)
splot = plot_data(lda, X, y, y_pred, fig_index=2 * i + 1)
plot_lda_cov(lda, splot)
pl.axis(’tight’)

QDA
qda = QDA()

684 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

y_pred = qda.fit(X, y, store_covariances=True).predict(X)
splot = plot_data(qda, X, y, y_pred, fig_index=2 * i + 2)
plot_qda_cov(qda, splot)
pl.axis(’tight’)

pl.suptitle(’LDA vs QDA’)
pl.show()

Figure 2.11: Multilabel classification

Multilabel classification

This example simulates a multi-label document classification problem. The dataset is generated randomly based on
the following process:

• pick the number of labels: n ~ Poisson(n_labels)

• n times, choose a class c: c ~ Multinomial(theta)

• pick the document length: k ~ Poisson(length)

• k times, choose a word: w ~ Multinomial(theta_c)

In the above process, rejection sampling is used to make sure that n is more than 2, and that the document length is
never zero. Likewise, we reject classes which have already been chosen. The documents that are assigned to both
classes are plotted surrounded by two colored circles.

The classification is performed by projecting to the first two principal components found by PCA and CCA for visual-
isation purposes, followed by using the sklearn.multiclass.OneVsRestClassifier metaclassifier using
two SVCs with linear kernels to learn a discriminative model for each class. Note that PCA is used to perform an
unsupervised dimensionality reduction, while CCA is used to perform a supervised one.

Note: in the plot, “unlabeled samples” does not mean that we don’t know the labels (as in semi-supervised learning)
but that the samples simply do not have a label.

2.1. Examples 685

scikit-learn user guide, Release 0.12-git

Python source code: plot_multilabel.py

print __doc__

import numpy as np
import matplotlib.pylab as pl

from sklearn.datasets import make_multilabel_classification
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import SVC
from sklearn.preprocessing import LabelBinarizer
from sklearn.decomposition import PCA
from sklearn.pls import CCA

def plot_hyperplane(clf, min_x, max_x, linestyle, label):
get the separating hyperplane
w = clf.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(min_x - 5, max_x + 5) # make sure the line is long enough
yy = a * xx - (clf.intercept_[0]) / w[1]
pl.plot(xx, yy, linestyle, label=label)

def plot_subfigure(X, Y, subplot, title, transform):
if transform == "pca":

686 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

X = PCA(n_components=2).fit_transform(X)
elif transform == "cca":

Convert list of tuples to a class indicator matrix first
Y_indicator = LabelBinarizer().fit(Y).transform(Y)
X = CCA(n_components=2).fit(X, Y_indicator).transform(X)

else:
raise ValueError

min_x = np.min(X[:, 0])
max_x = np.max(X[:, 0])

classif = OneVsRestClassifier(SVC(kernel=’linear’))
classif.fit(X, Y)

pl.subplot(2, 2, subplot)
pl.title(title)

zero_class = np.where([0 in y for y in Y])
one_class = np.where([1 in y for y in Y])
pl.scatter(X[:, 0], X[:, 1], s=40, c=’gray’)
pl.scatter(X[zero_class, 0], X[zero_class, 1], s=160, edgecolors=’b’,

facecolors=’none’, linewidths=2, label=’Class 1’)
pl.scatter(X[one_class, 0], X[one_class, 1], s=80, edgecolors=’orange’,

facecolors=’none’, linewidths=2, label=’Class 2’)
pl.axis(’tight’)

plot_hyperplane(classif.estimators_[0], min_x, max_x, ’k--’,
’Boundary\nfor class 1’)

plot_hyperplane(classif.estimators_[1], min_x, max_x, ’k-.’,
’Boundary\nfor class 2’)

pl.xticks(())
pl.yticks(())

if subplot == 2:
pl.xlim(min_x - 5, max_x)
pl.xlabel(’First principal component’)
pl.ylabel(’Second principal component’)
pl.legend(loc="upper left")

pl.figure(figsize=(8, 6))

X, Y = make_multilabel_classification(n_classes=2, n_labels=1,
allow_unlabeled=True,
random_state=1)

plot_subfigure(X, Y, 1, "With unlabeled samples + CCA", "cca")
plot_subfigure(X, Y, 2, "With unlabeled samples + PCA", "pca")

X, Y = make_multilabel_classification(n_classes=2, n_labels=1,
allow_unlabeled=False,
random_state=1)

plot_subfigure(X, Y, 3, "Without unlabeled samples + CCA", "cca")
plot_subfigure(X, Y, 4, "Without unlabeled samples + PCA", "pca")

pl.subplots_adjust(.04, .02, .97, .94, .09, .2)
pl.show()

2.1. Examples 687

scikit-learn user guide, Release 0.12-git

Figure 2.12: Test with permutations the significance of a classification score

Test with permutations the significance of a classification score

In order to test if a classification score is significative a technique in repeating the classification procedure after ran-
domizing, permuting, the labels. The p-value is then given by the percentage of runs for which the score obtained is
greater than the classification score obtained in the first place.

Script output:

Classification score 0.393333333333 (pvalue : 0.0792079207921)

Python source code: plot_permutation_test_for_classification.py

Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
License: BSD

688 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

print __doc__

import numpy as np
import pylab as pl

from sklearn.svm import SVC
from sklearn.cross_validation import StratifiedKFold, permutation_test_score
from sklearn import datasets
from sklearn.metrics import zero_one_score

##
Loading a dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target
n_classes = np.unique(y).size

Some noisy data not correlated
random = np.random.RandomState(seed=0)
E = random.normal(size=(len(X), 2200))

Add noisy data to the informative features for make the task harder
X = np.c_[X, E]

svm = SVC(kernel=’linear’)
cv = StratifiedKFold(y, 2)

score, permutation_scores, pvalue = permutation_test_score(svm, X, y,
zero_one_score, cv=cv,
n_permutations=100, n_jobs=1)

print "Classification score %s (pvalue : %s)" % (score, pvalue)

###
View histogram of permutation scores
pl.hist(permutation_scores, 20, label=’Permutation scores’)
ylim = pl.ylim()
BUG: vlines(..., linestyle=’--’) fails on older versions of matplotlib
#pl.vlines(score, ylim[0], ylim[1], linestyle=’--’,
color=’g’, linewidth=3, label=’Classification Score’
’ (pvalue %s)’ % pvalue)
#pl.vlines(1.0 / n_classes, ylim[0], ylim[1], linestyle=’--’,
color=’k’, linewidth=3, label=’Luck’)
pl.plot(2 * [score], ylim, ’--g’, linewidth=3,

label=’Classification Score’
’ (pvalue %s)’ % pvalue)

pl.plot(2 * [1. / n_classes], ylim, ’--k’, linewidth=3, label=’Luck’)

pl.ylim(ylim)
pl.legend()
pl.xlabel(’Score’)
pl.show()

2.1. Examples 689

scikit-learn user guide, Release 0.12-git

Figure 2.13: PLS Partial Least Squares

PLS Partial Least Squares

Simple usage of various PLS flavor: - PLSCanonical - PLSRegression, with multivariate response, a.k.a. PLS2 -
PLSRegression, with univariate response, a.k.a. PLS1 - CCA

Given 2 multivariate covarying two-dimensional datasets, X, and Y, PLS extracts the ‘directions of covariance’, i.e.
the components of each datasets that explain the most shared variance between both datasets. This is apparent on the
scatterplot matrix display: components 1 in dataset X and dataset Y are maximaly correlated (points lie around the
first diagonal). This is also true for components 2 in both dataset, however, the correlation across datasets for different
components is weak: the point cloud is very spherical.

Script output:

690 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Corr(X)
[[1. 0.5 -0.07 0.04]
[0.5 1. 0.07 0.06]
[-0.07 0.07 1. 0.5]
[0.04 0.06 0.5 1.]]

Corr(Y)
[[1. 0.46 -0.04 0.01]
[0.46 1. -0.04 -0.02]
[-0.04 -0.04 1. 0.54]
[0.01 -0.02 0.54 1.]]

True B (such that: Y = XB + Err)
[[1 1 1]
[2 2 2]
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]]

Estimated B
[[1. 1. 1.]
[2. 2.1 2.]
[0. -0. 0.]
[-0. 0. -0.]
[-0.1 0. -0.]
[0. -0. 0.]
[0. 0. -0.]
[0. 0. 0.]
[-0. 0. 0.]
[-0. -0. -0.]]

Estimated betas
[[1.]
[2.]
[0.]
[-0.]
[-0.]
[-0.]
[-0.]
[0.]
[0.]
[0.]]

Python source code: plot_pls.py

print __doc__

import numpy as np
import pylab as pl
from sklearn.pls import PLSCanonical, PLSRegression, CCA

###
Dataset based latent variables model

n = 500
2 latents vars:
l1 = np.random.normal(size=n)

2.1. Examples 691

scikit-learn user guide, Release 0.12-git

l2 = np.random.normal(size=n)

latents = np.array([l1, l1, l2, l2]).T
X = latents + np.random.normal(size=4 * n).reshape((n, 4))
Y = latents + np.random.normal(size=4 * n).reshape((n, 4))

X_train = X[:n / 2]
Y_train = Y[:n / 2]
X_test = X[n / 2:]
Y_test = Y[n / 2:]

print "Corr(X)"
print np.round(np.corrcoef(X.T), 2)
print "Corr(Y)"
print np.round(np.corrcoef(Y.T), 2)

###
Canonical (symetric) PLS

Transform data
~~~~~~~~~~~~~~
plsca = PLSCanonical(n_components=2)
plsca.fit(X_train, Y_train)
X_train_r, Y_train_r = plsca.transform(X_train, Y_train)
X_test_r, Y_test_r = plsca.transform(X_test, Y_test)

Scatter plot of scores
~~~~~~~~~~~~~~~~~~~~~~
1) On diagonal plot X vs Y scores on each components
pl.subplot(221)
pl.plot(X_train_r[:, 0], Y_train_r[:, 0], "ob", label="train")
pl.plot(X_test_r[:, 0], Y_test_r[:, 0], "or", label="test")
pl.xlabel("x scores")
pl.ylabel("y scores")
pl.title(’Comp. 1: X vs Y (test corr = %.2f)’ %

np.corrcoef(X_test_r[:, 0], Y_test_r[:, 0])[0, 1])
pl.legend()

pl.subplot(224)
pl.plot(X_train_r[:, 1], Y_train_r[:, 1], "ob", label="train")
pl.plot(X_test_r[:, 1], Y_test_r[:, 1], "or", label="test")
pl.xlabel("x scores")
pl.ylabel("y scores")
pl.title(’Comp. 2: X vs Y (test corr = %.2f)’ %

np.corrcoef(X_test_r[:, 1], Y_test_r[:, 1])[0, 1])
pl.legend()

2) Off diagonal plot components 1 vs 2 for X and Y
pl.subplot(222)
pl.plot(X_train_r[:, 0], X_train_r[:, 1], "*b", label="train")
pl.plot(X_test_r[:, 0], X_test_r[:, 1], "*r", label="test")
pl.xlabel("X comp. 1")
pl.ylabel("X comp. 2")
pl.title(’X comp. 1 vs X comp. 2 (test corr = %.2f)’ % \

np.corrcoef(X_test_r[:, 0], X_test_r[:, 1])[0, 1])
pl.legend()

pl.subplot(223)

692 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

pl.plot(Y_train_r[:, 0], Y_train_r[:, 1], "*b", label="train")
pl.plot(Y_test_r[:, 0], Y_test_r[:, 1], "*r", label="test")
pl.xlabel("Y comp. 1")
pl.ylabel("Y comp. 2")
pl.title(’Y comp. 1 vs Y comp. 2 , (test corr = %.2f)’ % \

np.corrcoef(Y_test_r[:, 0], Y_test_r[:, 1])[0, 1])
pl.legend()
pl.show()

###
PLS regression, with multivariate response, a.k.a. PLS2

n = 1000
q = 3
p = 10
X = np.random.normal(size=n * p).reshape((n, p))
B = np.array([[1, 2] + [0] * (p - 2)] * q).T
each Yj = 1*X1 + 2*X2 + noize
Y = np.dot(X, B) + np.random.normal(size=n * q).reshape((n, q)) + 5

pls2 = PLSRegression(n_components=3)
pls2.fit(X, Y)
print "True B (such that: Y = XB + Err)"
print B
compare pls2.coefs with B
print "Estimated B"
print np.round(pls2.coefs, 1)
pls2.predict(X)

###
PLS regression, with univariate response, a.k.a. PLS1

n = 1000
p = 10
X = np.random.normal(size=n * p).reshape((n, p))
y = X[:, 0] + 2 * X[:, 1] + np.random.normal(size=n * 1) + 5
pls1 = PLSRegression(n_components=3)
pls1.fit(X, y)
note that the number of compements exceeds 1 (the dimension of y)
print "Estimated betas"
print np.round(pls1.coefs, 1)

###
CCA (PLS mode B with symetric deflation)

cca = CCA(n_components=2)
cca.fit(X_train, Y_train)
X_train_r, Y_train_r = plsca.transform(X_train, Y_train)
X_test_r, Y_test_r = plsca.transform(X_test, Y_test)

Precision-Recall

Example of Precision-Recall metric to evaluate the quality of the output of a classifier.

2.1. Examples 693

scikit-learn user guide, Release 0.12-git

Figure 2.14: Precision-Recall

Script output:

Area Under Curve: 0.82

Python source code: plot_precision_recall.py

print __doc__

import random
import pylab as pl
import numpy as np
from sklearn import svm, datasets
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import auc

694 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

import some data to play with
iris = datasets.load_iris()
X = iris.data
y = iris.target
X, y = X[y != 2], y[y != 2] # Keep also 2 classes (0 and 1)
n_samples, n_features = X.shape
p = range(n_samples) # Shuffle samples
random.seed(0)
random.shuffle(p)
X, y = X[p], y[p]
half = int(n_samples / 2)

Add noisy features
np.random.seed(0)
X = np.c_[X, np.random.randn(n_samples, 200 * n_features)]

Run classifier
classifier = svm.SVC(kernel=’linear’, probability=True)
probas_ = classifier.fit(X[:half], y[:half]).predict_proba(X[half:])

Compute Precision-Recall and plot curve
precision, recall, thresholds = precision_recall_curve(y[half:], probas_[:, 1])
area = auc(recall, precision)
print "Area Under Curve: %0.2f" % area

pl.clf()
pl.plot(recall, precision, label=’Precision-Recall curve’)
pl.xlabel(’Recall’)
pl.ylabel(’Precision’)
pl.ylim([0.0, 1.05])
pl.xlim([0.0, 1.0])
pl.title(’Precision-Recall example: AUC=%0.2f’ % area)
pl.legend(loc="lower left")
pl.show()

Figure 2.15: Recursive feature elimination

Recursive feature elimination

A recursive feature elimination example showing the relevance of pixels in a digit classification task.

2.1. Examples 695

scikit-learn user guide, Release 0.12-git

Python source code: plot_rfe_digits.py

print __doc__

from sklearn.svm import SVC
from sklearn.datasets import load_digits
from sklearn.feature_selection import RFE

Load the digits dataset
digits = load_digits()
X = digits.images.reshape((len(digits.images), -1))
y = digits.target

Create the RFE object and rank each pixel
svc = SVC(kernel="linear", C=1)
rfe = RFE(estimator=svc, n_features_to_select=1, step=1)
rfe.fit(X, y)
ranking = rfe.ranking_.reshape(digits.images[0].shape)

696 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Plot pixel ranking
import pylab as pl
pl.matshow(ranking)
pl.colorbar()
pl.title("Ranking of pixels with RFE")
pl.show()

Figure 2.16: Recursive feature elimination with cross-validation

Recursive feature elimination with cross-validation

A recursive feature elimination example with automatic tuning of the number of features selected with cross-validation.

Script output:

2.1. Examples 697

scikit-learn user guide, Release 0.12-git

Optimal number of features : 5

Python source code: plot_rfe_with_cross_validation.py

print __doc__

from sklearn.svm import SVC
from sklearn.cross_validation import StratifiedKFold
from sklearn.feature_selection import RFECV
from sklearn.datasets import make_classification
from sklearn.metrics import zero_one

Build a classification task using 3 informative features
X, y = make_classification(n_samples=1000, n_features=25, n_informative=3,

n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1,
random_state=0)

Create the RFE object and compute a cross-validated score.
svc = SVC(kernel="linear")
rfecv = RFECV(estimator=svc, step=1, cv=StratifiedKFold(y, 2),

loss_func=zero_one)
rfecv.fit(X, y)

print "Optimal number of features : %d" % rfecv.n_features_

Plot number of features VS. cross-validation scores
import pylab as pl
pl.figure()
pl.xlabel("Number of features selected")
pl.ylabel("Cross validation score (nb of misclassifications)")
pl.plot(xrange(1, len(rfecv.cv_scores_) + 1), rfecv.cv_scores_)
pl.show()

Figure 2.17: Receiver operating characteristic (ROC)

Receiver operating characteristic (ROC)

Example of Receiver operating characteristic (ROC) metric to evaluate the quality of the output of a classifier.

698 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Script output:

Area under the ROC curve : 0.794686

Python source code: plot_roc.py

print __doc__

import numpy as np
import pylab as pl
from sklearn import svm, datasets
from sklearn.utils import shuffle
from sklearn.metrics import roc_curve, auc

random_state = np.random.RandomState(0)

Import some data to play with
iris = datasets.load_iris()
X = iris.data
y = iris.target

Make it a binary classification problem by removing the third class
X, y = X[y != 2], y[y != 2]
n_samples, n_features = X.shape

Add noisy features to make the problem harder
X = np.c_[X, random_state.randn(n_samples, 200 * n_features)]

2.1. Examples 699

scikit-learn user guide, Release 0.12-git

shuffle and split training and test sets
X, y = shuffle(X, y, random_state=random_state)
half = int(n_samples / 2)
X_train, X_test = X[:half], X[half:]
y_train, y_test = y[:half], y[half:]

Run classifier
classifier = svm.SVC(kernel=’linear’, probability=True)
probas_ = classifier.fit(X_train, y_train).predict_proba(X_test)

Compute ROC curve and area the curve
fpr, tpr, thresholds = roc_curve(y_test, probas_[:, 1])
roc_auc = auc(fpr, tpr)
print "Area under the ROC curve : %f" % roc_auc

Plot ROC curve
pl.clf()
pl.plot(fpr, tpr, label=’ROC curve (area = %0.2f)’ % roc_auc)
pl.plot([0, 1], [0, 1], ’k--’)
pl.xlim([0.0, 1.0])
pl.ylim([0.0, 1.0])
pl.xlabel(’False Positive Rate’)
pl.ylabel(’True Positive Rate’)
pl.title(’Receiver operating characteristic example’)
pl.legend(loc="lower right")
pl.show()

Figure 2.18: Receiver operating characteristic (ROC) with cross validation

Receiver operating characteristic (ROC) with cross validation

Example of Receiver operating characteristic (ROC) metric to evaluate the quality of the output of a classifier using
cross-validation.

700 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Python source code: plot_roc_crossval.py

print __doc__

import numpy as np
from scipy import interp
import pylab as pl

from sklearn import svm, datasets
from sklearn.metrics import roc_curve, auc
from sklearn.cross_validation import StratifiedKFold

###
Data IO and generation

import some data to play with
iris = datasets.load_iris()
X = iris.data
y = iris.target
X, y = X[y != 2], y[y != 2]
n_samples, n_features = X.shape

Add noisy features
X = np.c_[X, np.random.randn(n_samples, 200 * n_features)]

###

2.1. Examples 701

scikit-learn user guide, Release 0.12-git

Classification and ROC analysis

Run classifier with crossvalidation and plot ROC curves
cv = StratifiedKFold(y, k=6)
classifier = svm.SVC(kernel=’linear’, probability=True)

mean_tpr = 0.0
mean_fpr = np.linspace(0, 1, 100)
all_tpr = []

for i, (train, test) in enumerate(cv):
probas_ = classifier.fit(X[train], y[train]).predict_proba(X[test])
Compute ROC curve and area the curve
fpr, tpr, thresholds = roc_curve(y[test], probas_[:, 1])
mean_tpr += interp(mean_fpr, fpr, tpr)
mean_tpr[0] = 0.0
roc_auc = auc(fpr, tpr)
pl.plot(fpr, tpr, lw=1, label=’ROC fold %d (area = %0.2f)’ % (i, roc_auc))

pl.plot([0, 1], [0, 1], ’--’, color=(0.6, 0.6, 0.6), label=’Luck’)

mean_tpr /= len(cv)
mean_tpr[-1] = 1.0
mean_auc = auc(mean_fpr, mean_tpr)
pl.plot(mean_fpr, mean_tpr, ’k--’,

label=’Mean ROC (area = %0.2f)’ % mean_auc, lw=2)

pl.xlim([-0.05, 1.05])
pl.ylim([-0.05, 1.05])
pl.xlabel(’False Positive Rate’)
pl.ylabel(’True Positive Rate’)
pl.title(’Receiver operating characteristic example’)
pl.legend(loc="lower right")
pl.show()

Figure 2.19: Train error vs Test error

Train error vs Test error

Illustration of how the performance of an estimator on unseen data (test data) is not the same as the performance on
training data. As the regularization increases the performance on train decreases while the performance on test is
optimal within a range of values of the regularization parameter. The example with an Elastic-Net regression model
and the performance is measured using the explained variance a.k.a. R^2.

702 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Script output:

Optimal regularization parameter : 0.000335292414925

Python source code: plot_train_error_vs_test_error.py

print __doc__

Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
License: BSD Style.

import numpy as np
from sklearn import linear_model

###
Generate sample data
n_samples_train, n_samples_test, n_features = 75, 150, 500
np.random.seed(0)
coef = np.random.randn(n_features)
coef[50:] = 0.0 # only the top 10 features are impacting the model
X = np.random.randn(n_samples_train + n_samples_test, n_features)
y = np.dot(X, coef)

Split train and test data
X_train, X_test = X[:n_samples_train], X[n_samples_train:]
y_train, y_test = y[:n_samples_train], y[n_samples_train:]

2.1. Examples 703

scikit-learn user guide, Release 0.12-git

###
Compute train and test errors
alphas = np.logspace(-5, 1, 60)
enet = linear_model.ElasticNet(rho=0.7)
train_errors = list()
test_errors = list()
for alpha in alphas:

enet.set_params(alpha=alpha)
enet.fit(X_train, y_train)
train_errors.append(enet.score(X_train, y_train))
test_errors.append(enet.score(X_test, y_test))

i_alpha_optim = np.argmax(test_errors)
alpha_optim = alphas[i_alpha_optim]
print "Optimal regularization parameter : %s" % alpha_optim

Estimate the coef_ on full data with optimal regularization parameter
enet.set_params(alpha=alpha_optim)
coef_ = enet.fit(X, y).coef_

###
Plot results functions

import pylab as pl
pl.subplot(2, 1, 1)
pl.semilogx(alphas, train_errors, label=’Train’)
pl.semilogx(alphas, test_errors, label=’Test’)
pl.vlines(alpha_optim, pl.ylim()[0], np.max(test_errors),

color=’k’, linewidth=3, label=’Optimum on test’)
pl.legend(loc=’lower left’)
pl.ylim([0, 1.2])
pl.xlabel(’Regularization parameter’)
pl.ylabel(’Performance’)

Show estimated coef_ vs true coef
pl.subplot(2, 1, 2)
pl.plot(coef, label=’True coef’)
pl.plot(coef_, label=’Estimated coef’)
pl.legend()
pl.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.26)
pl.show()

Figure 2.20: Classification of text documents using sparse features

704 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Classification of text documents using sparse features

This is an example showing how the scikit-learn can be used to classify documents by topics using a bag-of-words
approach. This example uses a scipy.sparse matrix to store the features instead of standard numpy arrays and demos
various classifiers that can efficiently handle sparse matrices.

The dataset used in this example is the 20 newsgroups dataset which will be automatically downloaded and then
cached.

You can adjust the number of categories by giving their names to the dataset loader or setting them to None to get the
20 of them.

Python source code: document_classification_20newsgroups.py

Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
Olivier Grisel <olivier.grisel@ensta.org>
Mathieu Blondel <mathieu@mblondel.org>
Lars Buitinck <L.J.Buitinck@uva.nl>
License: Simplified BSD

import logging
import numpy as np
from optparse import OptionParser
import sys
from time import time
import pylab as pl

from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_selection import SelectKBest, chi2
from sklearn.linear_model import RidgeClassifier
from sklearn.svm import LinearSVC
from sklearn.linear_model import SGDClassifier
from sklearn.linear_model import Perceptron
from sklearn.naive_bayes import BernoulliNB, MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neighbors import NearestCentroid
from sklearn.utils.extmath import density
from sklearn import metrics

Display progress logs on stdout
logging.basicConfig(level=logging.INFO,

format=’%(asctime)s %(levelname)s %(message)s’)

parse commandline arguments
op = OptionParser()
op.add_option("--report",

action="store_true", dest="print_report",
help="Print a detailed classification report.")

op.add_option("--chi2_select",
action="store", type="int", dest="select_chi2",
help="Select some number of features using a chi-squared test")

op.add_option("--confusion_matrix",
action="store_true", dest="print_cm",
help="Print the confusion matrix.")

op.add_option("--top10",
action="store_true", dest="print_top10",

2.1. Examples 705

scikit-learn user guide, Release 0.12-git

help="Print ten most discriminative terms per class"
" for every classifier.")

(opts, args) = op.parse_args()
if len(args) > 0:

op.error("this script takes no arguments.")
sys.exit(1)

print __doc__
op.print_help()
print

###
Load some categories from the training set
categories = [

’alt.atheism’,
’talk.religion.misc’,
’comp.graphics’,
’sci.space’,

]
Uncomment the following to do the analysis on all the categories
#categories = None

print "Loading 20 newsgroups dataset for categories:"
print categories if categories else "all"

data_train = fetch_20newsgroups(subset=’train’, categories=categories,
shuffle=True, random_state=42)

data_test = fetch_20newsgroups(subset=’test’, categories=categories,
shuffle=True, random_state=42)

print ’data loaded’

categories = data_train.target_names # for case categories == None

print "%d documents (training set)" % len(data_train.data)
print "%d documents (testing set)" % len(data_test.data)
print "%d categories" % len(categories)
print

split a training set and a test set
y_train, y_test = data_train.target, data_test.target

print "Extracting features from the training dataset using a sparse vectorizer"
t0 = time()
vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5,

stop_words=’english’)
X_train = vectorizer.fit_transform(data_train.data)
print "done in %fs" % (time() - t0)
print "n_samples: %d, n_features: %d" % X_train.shape
print

print "Extracting features from the test dataset using the same vectorizer"
t0 = time()
X_test = vectorizer.transform(data_test.data)
print "done in %fs" % (time() - t0)
print "n_samples: %d, n_features: %d" % X_test.shape

706 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

print

if opts.select_chi2:
print ("Extracting %d best features by a chi-squared test" %

opts.select_chi2)
t0 = time()
ch2 = SelectKBest(chi2, k=opts.select_chi2)
X_train = ch2.fit_transform(X_train, y_train)
X_test = ch2.transform(X_test)
print "done in %fs" % (time() - t0)
print

def trim(s):
"""Trim string to fit on terminal (assuming 80-column display)"""
return s if len(s) <= 80 else s[:77] + "..."

mapping from integer feature name to original token string
feature_names = vectorizer.get_feature_names()

###
Benchmark classifiers
def benchmark(clf):

print 80 * ’_’
print "Training: "
print clf
t0 = time()
clf.fit(X_train, y_train)
train_time = time() - t0
print "train time: %0.3fs" % train_time

t0 = time()
pred = clf.predict(X_test)
test_time = time() - t0
print "test time: %0.3fs" % test_time

score = metrics.f1_score(y_test, pred)
print "f1-score: %0.3f" % score

if hasattr(clf, ’coef_’):
print "dimensionality: %d" % clf.coef_.shape[1]
print "density: %f" % density(clf.coef_)

if opts.print_top10:
print "top 10 keywords per class:"
for i, category in enumerate(categories):

top10 = np.argsort(clf.coef_[i])[-10:]
print trim("%s: %s" % (

category, " ".join(feature_names[top10])))
print

if opts.print_report:
print "classification report:"
print metrics.classification_report(y_test, pred,

target_names=categories)

2.1. Examples 707

scikit-learn user guide, Release 0.12-git

if opts.print_cm:
print "confusion matrix:"
print metrics.confusion_matrix(y_test, pred)

print
clf_descr = str(clf).split(’(’)[0]
return clf_descr, score, train_time, test_time

results = []
for clf, name in ((RidgeClassifier(tol=1e-1), "Ridge Classifier"),

(Perceptron(n_iter=50), "Perceptron"),
(KNeighborsClassifier(n_neighbors=10), "kNN")):

print 80 * ’=’
print name
results.append(benchmark(clf))

for penalty in ["l2", "l1"]:
print 80 * ’=’
print "%s penalty" % penalty.upper()
Train Liblinear model
results.append(benchmark(LinearSVC(loss=’l2’, penalty=penalty,

dual=False, tol=1e-3)))

Train SGD model
results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50,

penalty=penalty)))

Train SGD with Elastic Net penalty
print 80 * ’=’
print "Elastic-Net penalty"
results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50,

penalty="elasticnet")))

Train NearestCentroid without threshold
print 80 * ’=’
print "NearestCentroid (aka Rocchio classifier)"
results.append(benchmark(NearestCentroid()))

Train sparse Naive Bayes classifiers
print 80 * ’=’
print "Naive Bayes"
results.append(benchmark(MultinomialNB(alpha=.01)))
results.append(benchmark(BernoulliNB(alpha=.01)))

class L1LinearSVC(LinearSVC):

def fit(self, X, y):
The smaller C, the stronger the regularization.
The more regularization, the more sparsity.
self.transformer_ = LinearSVC(penalty="l1",

dual=False, tol=1e-3)
X = self.transformer_.fit_transform(X, y)
return LinearSVC.fit(self, X, y)

def predict(self, X):
X = self.transformer_.transform(X)

708 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

return LinearSVC.predict(self, X)

print 80 * ’=’
print "LinearSVC with L1-based feature selection"
results.append(benchmark(L1LinearSVC()))

make some plots

indices = np.arange(len(results))

results = [[x[i] for x in results] for i in xrange(4)]

clf_names, score, training_time, test_time = results

pl.title("Score")
pl.barh(indices, score, .2, label="score", color=’r’)
pl.barh(indices + .3, training_time, .2, label="training time", color=’g’)
pl.barh(indices + .6, test_time, .2, label="test time", color=’b’)
pl.yticks(())
pl.legend(loc=’best’)
pl.subplots_adjust(left=.25)

for i, c in zip(indices, clf_names):
pl.text(-.3, i, c)

pl.show()

Figure 2.21: Clustering text documents using k-means

Clustering text documents using k-means

This is an example showing how the scikit-learn can be used to cluster documents by topics using a bag-of-words
approach. This example uses a scipy.sparse matrix to store the features instead of standard numpy arrays.

Two algorithms are demoed: ordinary k-means and its faster cousin minibatch k-means.

Python source code: document_clustering.py

Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
Lars Buitinck <L.J.Buitinck@uva.nl>
License: Simplified BSD

from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn import metrics

2.1. Examples 709

scikit-learn user guide, Release 0.12-git

from sklearn.cluster import KMeans, MiniBatchKMeans

import logging
from optparse import OptionParser
import sys
from time import time

import numpy as np

Display progress logs on stdout
logging.basicConfig(level=logging.INFO,

format=’%(asctime)s %(levelname)s %(message)s’)

parse commandline arguments
op = OptionParser()
op.add_option("--no-minibatch",

action="store_false", dest="minibatch", default=True,
help="Use ordinary k-means algorithm.")

print __doc__
op.print_help()

(opts, args) = op.parse_args()
if len(args) > 0:

op.error("this script takes no arguments.")
sys.exit(1)

###
Load some categories from the training set
categories = [

’alt.atheism’,
’talk.religion.misc’,
’comp.graphics’,
’sci.space’,

]
Uncomment the following to do the analysis on all the categories
#categories = None

print "Loading 20 newsgroups dataset for categories:"
print categories

dataset = fetch_20newsgroups(subset=’all’, categories=categories,
shuffle=True, random_state=42)

print "%d documents" % len(dataset.data)
print "%d categories" % len(dataset.target_names)
print

labels = dataset.target
true_k = np.unique(labels).shape[0]

print "Extracting features from the training dataset using a sparse vectorizer"
t0 = time()
vectorizer = TfidfVectorizer(max_df=0.5, max_features=10000,

stop_words=’english’)
X = vectorizer.fit_transform(dataset.data)

710 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

print "done in %fs" % (time() - t0)
print "n_samples: %d, n_features: %d" % X.shape
print

###
Do the actual clustering

if opts.minibatch:
km = MiniBatchKMeans(n_clusters=true_k, init=’k-means++’, n_init=1,

init_size=1000,
batch_size=1000, verbose=1)

else:
km = KMeans(n_clusters=true_k, init=’random’, max_iter=100, n_init=1,

verbose=1)

print "Clustering sparse data with %s" % km
t0 = time()
km.fit(X)
print "done in %0.3fs" % (time() - t0)
print

print "Homogeneity: %0.3f" % metrics.homogeneity_score(labels, km.labels_)
print "Completeness: %0.3f" % metrics.completeness_score(labels, km.labels_)
print "V-measure: %0.3f" % metrics.v_measure_score(labels, km.labels_)
print "Adjusted Rand-Index: %.3f" % \

metrics.adjusted_rand_score(labels, km.labels_)
print "Silhouette Coefficient: %0.3f" % metrics.silhouette_score(

X, labels, sample_size=1000)

print

Figure 2.22: Pipeline Anova SVM

Pipeline Anova SVM

Simple usage of Pipeline that runs successively a univariate feature selection with anova and then a C-SVM of the
selected features.

Python source code: feature_selection_pipeline.py

print __doc__

from sklearn import svm
from sklearn.datasets import samples_generator
from sklearn.feature_selection import SelectKBest, f_regression

2.1. Examples 711

scikit-learn user guide, Release 0.12-git

from sklearn.pipeline import Pipeline

import some data to play with
X, y = samples_generator.make_classification(

n_features=20, n_informative=3, n_redundant=0,
n_classes=4, n_clusters_per_class=2)

ANOVA SVM-C
1) anova filter, take 3 best ranked features
anova_filter = SelectKBest(f_regression, k=3)
2) svm
clf = svm.SVC(kernel=’linear’)

anova_svm = Pipeline([(’anova’, anova_filter), (’svm’, clf)])
anova_svm.fit(X, y)
anova_svm.predict(X)

Figure 2.23: Parameter estimation using grid search with a nested cross-validation

Parameter estimation using grid search with a nested cross-validation

The classifier is optimized by “nested” cross-validation using the sklearn.grid_search.GridSearchCV ob-
ject on a development set that comprises only half of the available labeled data.

The performance of the selected hyper-parameters and trained model is then measured on a dedicated evaluation set
that was not used during the model selection step.

More details on tools available for model selection can be found in the sections on Cross-Validation: evaluating
estimator performance and Grid Search: setting estimator parameters.

Python source code: grid_search_digits.py

print __doc__

from sklearn import datasets
from sklearn.cross_validation import train_test_split
from sklearn.grid_search import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.svm import SVC

Loading the Digits dataset
digits = datasets.load_digits()

To apply an classifier on this data, we need to flatten the image, to
turn the data in a (samples, feature) matrix:

712 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

n_samples = len(digits.images)
X = digits.images.reshape((n_samples, -1))
y = digits.target

Split the dataset in two equal parts
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_fraction=0.5, random_state=0)

Set the parameters by cross-validation
tuned_parameters = [{’kernel’: [’rbf’], ’gamma’: [1e-3, 1e-4],

’C’: [1, 10, 100, 1000]},
{’kernel’: [’linear’], ’C’: [1, 10, 100, 1000]}]

scores = [
(’precision’, precision_score),
(’recall’, recall_score),

]

for score_name, score_func in scores:
print "# Tuning hyper-parameters for %s" % score_name
print

clf = GridSearchCV(SVC(C=1), tuned_parameters, score_func=score_func)
clf.fit(X_train, y_train, cv=5)

print "Best parameters set found on development set:"
print
print clf.best_estimator_
print
print "Grid scores on development set:"
print
for params, mean_score, scores in clf.grid_scores_:

print "%0.3f (+/-%0.03f) for %r" % (
mean_score, scores.std() / 2, params)

print

print "Detailed classification report:"
print
print "The model is trained on the full development set."
print "The scores are computed on the full evaluation set."
print
y_true, y_pred = y_test, clf.predict(X_test)
print classification_report(y_true, y_pred)
print

Note the problem is too easy: the hyperparameter plateau is too flat and the
output model is the same for precision and recall with ties in quality.

Sample pipeline for text feature extraction and evaluation

The dataset used in this example is the 20 newsgroups dataset which will be automatically downloaded and then cached
and reused for the document classification example.

You can adjust the number of categories by giving there name to the dataset loader or setting them to None to get the
20 of them.

Here is a sample output of a run on a quad-core machine:

2.1. Examples 713

scikit-learn user guide, Release 0.12-git

Figure 2.24: Sample pipeline for text feature extraction and evaluation

Loading 20 newsgroups dataset for categories:
[’alt.atheism’, ’talk.religion.misc’]
1427 documents
2 categories

Performing grid search...
pipeline: [’vect’, ’tfidf’, ’clf’]
parameters:
{’clf__alpha’: (1.0000000000000001e-05, 9.9999999999999995e-07),
’clf__n_iter’: (10, 50, 80),
’clf__penalty’: (’l2’, ’elasticnet’),
’tfidf__use_idf’: (True, False),
’vect__max_n’: (1, 2),
’vect__max_df’: (0.5, 0.75, 1.0),
’vect__max_features’: (None, 5000, 10000, 50000)}

done in 1737.030s

Best score: 0.940
Best parameters set:

clf__alpha: 9.9999999999999995e-07
clf__n_iter: 50
clf__penalty: ’elasticnet’
tfidf__use_idf: True
vect__max_n: 2
vect__max_df: 0.75
vect__max_features: 50000

Python source code: grid_search_text_feature_extraction.py

print __doc__

Author: Olivier Grisel <olivier.grisel@ensta.org>
Peter Prettenhofer <peter.prettenhofer@gmail.com>
Mathieu Blondel <mathieu@mblondel.org>
License: Simplified BSD

from pprint import pprint
from time import time
import logging

from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.linear_model import SGDClassifier
from sklearn.grid_search import GridSearchCV
from sklearn.pipeline import Pipeline

714 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Display progress logs on stdout
logging.basicConfig(level=logging.INFO,

format=’%(asctime)s %(levelname)s %(message)s’)

###
Load some categories from the training set
categories = [

’alt.atheism’,
’talk.religion.misc’,

]
Uncomment the following to do the analysis on all the categories
#categories = None

print "Loading 20 newsgroups dataset for categories:"
print categories

data = fetch_20newsgroups(subset=’train’, categories=categories)
print "%d documents" % len(data.filenames)
print "%d categories" % len(data.target_names)
print

###
define a pipeline combining a text feature extractor with a simple
classifier
pipeline = Pipeline([

(’vect’, CountVectorizer()),
(’tfidf’, TfidfTransformer()),
(’clf’, SGDClassifier()),

])

parameters = {
uncommenting more parameters will give better exploring power but will
increase processing time in a combinatorial way

’vect__max_df’: (0.5, 0.75, 1.0),
’vect__max_features’: (None, 5000, 10000, 50000),

’vect__max_n’: (1, 2), # words or bigrams
’tfidf__use_idf’: (True, False),
’tfidf__norm’: (’l1’, ’l2’),

’clf__alpha’: (0.00001, 0.000001),
’clf__penalty’: (’l2’, ’elasticnet’),

’clf__n_iter’: (10, 50, 80),
}

if __name__ == "__main__":
multiprocessing requires the fork to happen in a __main__ protected
block

find the best parameters for both the feature extraction and the
classifier
grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1, verbose=1)

print "Performing grid search..."
print "pipeline:", [name for name, _ in pipeline.steps]
print "parameters:"
pprint(parameters)
t0 = time()
grid_search.fit(data.data, data.target)

2.1. Examples 715

scikit-learn user guide, Release 0.12-git

print "done in %0.3fs" % (time() - t0)
print

print "Best score: %0.3f" % grid_search.best_score
print "Best parameters set:"
best_parameters = grid_search.best_estimator.get_params()
for param_name in sorted(parameters.keys()):

print "\t%s: %r" % (param_name, best_parameters[param_name])

Figure 2.25: Classification of text documents: using a MLComp dataset

Classification of text documents: using a MLComp dataset

This is an example showing how the scikit-learn can be used to classify documents by topics using a bag-of-words
approach. This example uses a scipy.sparse matrix to store the features instead of standard numpy arrays.

The dataset used in this example is the 20 newsgroups dataset and should be downloaded from the http://mlcomp.org
(free registration required):

http://mlcomp.org/datasets/379

Once downloaded unzip the archive somewhere on your filesystem. For instance in:

% mkdir -p ~/data/mlcomp
% cd ~/data/mlcomp
% unzip /path/to/dataset-379-20news-18828_XXXXX.zip

You should get a folder ~/data/mlcomp/379 with a file named metadata and subfolders raw, train and
test holding the text documents organized by newsgroups.

Then set the MLCOMP_DATASETS_HOME environment variable pointing to the root folder holding the uncompressed
archive:

% export MLCOMP_DATASETS_HOME="~/data/mlcomp"

Then you are ready to run this example using your favorite python shell:

% ipython examples/mlcomp_sparse_document_classification.py

Python source code: mlcomp_sparse_document_classification.py

print __doc__

Author: Olivier Grisel <olivier.grisel@ensta.org>
License: Simplified BSD

from time import time
import sys

716 Chapter 2. Example Gallery

http://mlcomp.org
http://mlcomp.org/datasets/379

scikit-learn user guide, Release 0.12-git

import os
import numpy as np
import scipy.sparse as sp
import pylab as pl

from sklearn.datasets import load_mlcomp
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import SGDClassifier
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn.naive_bayes import MultinomialNB

if ’MLCOMP_DATASETS_HOME’ not in os.environ:
print "MLCOMP_DATASETS_HOME not set; please follow the above instructions"
sys.exit(0)

Load the training set
print "Loading 20 newsgroups training set... "
news_train = load_mlcomp(’20news-18828’, ’train’)
print news_train.DESCR
print "%d documents" % len(news_train.filenames)
print "%d categories" % len(news_train.target_names)

print "Extracting features from the dataset using a sparse vectorizer"
t0 = time()
vectorizer = TfidfVectorizer(charset=’latin1’)
X_train = vectorizer.fit_transform((open(f).read()

for f in news_train.filenames))
print "done in %fs" % (time() - t0)
print "n_samples: %d, n_features: %d" % X_train.shape
assert sp.issparse(X_train)
y_train = news_train.target

print "Loading 20 newsgroups test set... "
news_test = load_mlcomp(’20news-18828’, ’test’)
t0 = time()
print "done in %fs" % (time() - t0)

print "Predicting the labels of the test set..."
print "%d documents" % len(news_test.filenames)
print "%d categories" % len(news_test.target_names)

print "Extracting features from the dataset using the same vectorizer"
t0 = time()
X_test = vectorizer.transform((open(f).read() for f in news_test.filenames))
y_test = news_test.target
print "done in %fs" % (time() - t0)
print "n_samples: %d, n_features: %d" % X_test.shape

###
Benchmark classifiers
def benchmark(clf_class, params, name):

print "parameters:", params
t0 = time()
clf = clf_class(**params).fit(X_train, y_train)
print "done in %fs" % (time() - t0)

2.1. Examples 717

scikit-learn user guide, Release 0.12-git

if hasattr(clf, ’coef_’):
print "Percentage of non zeros coef: %f" % (
np.mean(clf.coef_ != 0) * 100)

print "Predicting the outcomes of the testing set"
t0 = time()
pred = clf.predict(X_test)
print "done in %fs" % (time() - t0)

print "Classification report on test set for classifier:"
print clf
print
print classification_report(y_test, pred,

target_names=news_test.target_names)

cm = confusion_matrix(y_test, pred)
print "Confusion matrix:"
print cm

Show confusion matrix
pl.matshow(cm)
pl.title(’Confusion matrix of the %s classifier’ % name)
pl.colorbar()

print "Testbenching a linear classifier..."
parameters = {

’loss’: ’hinge’,
’penalty’: ’l2’,
’n_iter’: 50,
’alpha’: 0.00001,
’fit_intercept’: True,

}

benchmark(SGDClassifier, parameters, ’SGD’)

print "Testbenching a MultinomialNB classifier..."
parameters = {’alpha’: 0.01}

benchmark(MultinomialNB, parameters, ’MultinomialNB’)

pl.show()

2.1.2 Examples based on real world datasets

Applications to real world problems with some medium sized datasets or interactive user interface.

Outlier detection on a real data set

This example illustrates the need for robust covariance estimation on a real data set. It is useful both for outlier
detection and for a better understanding of the data structure.

We selected two sets of two variables from the boston housing data set as an illustration of what kind of analysis can
be done with several outlier detection tools. For the purpose of vizualisation, we are working with two-dimensional
examples, but one should be aware that things are not so trivial in high-dimension, as it will be pointed out.

718 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Figure 2.26: Outlier detection on a real data set

In both examples below, the main result is that the empirical covariance estimate, as a non-robust one, is highly
influenced by the heterogeneous structure of the observations. Although the robust covariance estimate is able to
focus on the main mode of the data distribution, it sticks to the assumption that the data should be Gaussian distributed,
yielding some biased estimation of the data structure, but yet accurate to some extent. The One-Class SVM algorithm

First example

The first example illustrates how robust covariance estimation can help concentrating on a relevant cluster when an-
other one exists. Here, many observations are confounded into one and break down the empirical covariance estima-
tion. Of course, some screening tools would have pointed out the presence of two clusters (Support Vector Machines,
Gaussian Mixture Models, univariate outlier detection, ...). But had it been a high-dimensional example, none of these
could be applied that easily.

Second example

The second example shows the ability of the Minimum Covariance Determinant robust estimator of covariance to
concentrate on the main mode of the data distribution: the location seems to be well estimated, although the covariance
is hard to estimate due to the banana-shaped distribution. Anyway, we can get rid of some outlying observations. The
One-Class SVM is able to capture the real data structure, but the difficulty is to adjust its kernel bandwith parameter
so as to obtain a good compromise between the shape of the data scatter matrix and the risk of over-fitting the data.

•

2.1. Examples 719

scikit-learn user guide, Release 0.12-git

•

Python source code: plot_outlier_detection_housing.py

print __doc__

Author: Virgile Fritsch <virgile.fritsch@inria.fr>
License: BSD

import numpy as np
from sklearn.covariance import EllipticEnvelope
from sklearn.svm import OneClassSVM
import matplotlib.pyplot as plt
import matplotlib.font_manager
from sklearn.datasets import load_boston

Get data
X1 = load_boston()[’data’][:, [8, 10]] # two clusters
X2 = load_boston()[’data’][:, [5, 12]] # "banana"-shaped

Define "classifiers" to be used
classifiers = {

"Empirical Covariance": EllipticEnvelope(support_fraction=1.,
contamination=0.261),

"Robust Covariance (Minimum Covariance Determinant)":
EllipticEnvelope(contamination=0.261),

"OCSVM": OneClassSVM(nu=0.261, gamma=0.05)}
colors = [’m’, ’g’, ’b’]
legend1 = {}
legend2 = {}

Learn a frontier for outlier detection with several classifiers
xx1, yy1 = np.meshgrid(np.linspace(-8, 28, 500), np.linspace(3, 40, 500))
xx2, yy2 = np.meshgrid(np.linspace(3, 10, 500), np.linspace(-5, 45, 500))
for i, (clf_name, clf) in enumerate(classifiers.iteritems()):

plt.figure(1)
clf.fit(X1)
Z1 = clf.decision_function(np.c_[xx1.ravel(), yy1.ravel()])
Z1 = Z1.reshape(xx1.shape)
legend1[clf_name] = plt.contour(

xx1, yy1, Z1, levels=[0], linewidths=2, colors=colors[i])
plt.figure(2)
clf.fit(X2)
Z2 = clf.decision_function(np.c_[xx2.ravel(), yy2.ravel()])
Z2 = Z2.reshape(xx2.shape)
legend2[clf_name] = plt.contour(

720 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

xx2, yy2, Z2, levels=[0], linewidths=2, colors=colors[i])

Plot the results (= shape of the data points cloud)
plt.figure(1) # two clusters
plt.title("Outlier detection on a real data set (boston housing)")
plt.scatter(X1[:, 0], X1[:, 1], color=’black’)
bbox_args = dict(boxstyle="round", fc="0.8")
arrow_args = dict(arrowstyle="->")
plt.annotate("several confounded points", xy=(24, 19),

xycoords="data", textcoords="data",
xytext=(13, 10), bbox=bbox_args, arrowprops=arrow_args)

plt.xlim((xx1.min(), xx1.max()))
plt.ylim((yy1.min(), yy1.max()))
plt.legend((legend1.values()[0].collections[0],

legend1.values()[1].collections[0],
legend1.values()[2].collections[0]),

(legend1.keys()[0], legend1.keys()[1], legend1.keys()[2]),
loc="upper center",
prop=matplotlib.font_manager.FontProperties(size=12))

plt.ylabel("accessibility to radial highways")
plt.xlabel("pupil-teatcher ratio by town")

plt.figure(2) # "banana" shape
plt.title("Outlier detection on a real data set (boston housing)")
plt.scatter(X2[:, 0], X2[:, 1], color=’black’)
plt.xlim((xx2.min(), xx2.max()))
plt.ylim((yy2.min(), yy2.max()))
plt.legend((legend2.values()[0].collections[0],

legend2.values()[1].collections[0],
legend2.values()[2].collections[0]),

(legend2.keys()[0], legend2.keys()[1], legend2.keys()[2]),
loc="upper center",
prop=matplotlib.font_manager.FontProperties(size=12))

plt.ylabel("% lower status of the population")
plt.xlabel("average number of rooms per dwelling")

plt.show()

Figure 2.27: Species distribution modeling

Species distribution modeling

Modeling species’ geographic distributions is an important problem in conservation biology. In this example we model
the geographic distribution of two south american mammals given past observations and 14 environmental variables.
Since we have only positive examples (there are no unsuccessful observations), we cast this problem as a density
estimation problem and use the OneClassSVM provided by the package sklearn.svm as our modeling tool. The dataset
is provided by Phillips et. al. (2006). If available, the example uses basemap to plot the coast lines and national

2.1. Examples 721

http://matplotlib.sourceforge.net/basemap/doc/html/

scikit-learn user guide, Release 0.12-git

boundaries of South America.

The two species are:

• “Bradypus variegatus” , the Brown-throated Sloth.

• “Microryzomys minutus” , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia,
Ecuador, Peru, and Venezuela.

References

• “Maximum entropy modeling of species geographic distributions” S. J. Phillips, R. P. Anderson, R. E. Schapire
- Ecological Modelling, 190:231-259, 2006.

Script output:
__
Modeling distribution of species ’bradypus variegatus’
- fit OneClassSVM ... done.
- plot coastlines from coverage
- predict species distribution

Area under the ROC curve : 0.865318
__
Modeling distribution of species ’microryzomys minutus’
- fit OneClassSVM ... done.

722 Chapter 2. Example Gallery

http://www.iucnredlist.org/apps/redlist/details/3038/0
http://www.iucnredlist.org/apps/redlist/details/13408/0
http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf

scikit-learn user guide, Release 0.12-git

- plot coastlines from coverage
- predict species distribution

Area under the ROC curve : 0.993919

time elapsed: 15.32s

Python source code: plot_species_distribution_modeling.py

Authors: Peter Prettenhoer <peter.prettenhofer@gmail.com>
Jake Vanderplas <vanderplas@astro.washington.edu>
#
License: BSD Style.

from time import time

import numpy as np
import pylab as pl

from sklearn.datasets.base import Bunch
from sklearn.datasets import fetch_species_distributions
from sklearn.datasets.species_distributions import construct_grids
from sklearn import svm, metrics

if basemap is available, we’ll use it.
otherwise, we’ll improvise later...
try:

from mpl_toolkits.basemap import Basemap
basemap = True

except ImportError:
basemap = False

print __doc__

def create_species_bunch(species_name,
train, test,
coverages, xgrid, ygrid):

"""
create a bunch with information about a particular organism

This will use the test/train record arrays to extract the
data specific to the given species name.
"""
bunch = Bunch(name=’ ’.join(species_name.split("_")[:2]))

points = dict(test=test, train=train)

for label, pts in points.iteritems():
choose points associated with the desired species
pts = pts[pts[’species’] == species_name]
bunch[’pts_%s’ % label] = pts

determine coverage values for each of the training & testing points
ix = np.searchsorted(xgrid, pts[’dd long’])
iy = np.searchsorted(ygrid, pts[’dd lat’])
bunch[’cov_%s’ % label] = coverages[:, -iy, ix].T

2.1. Examples 723

scikit-learn user guide, Release 0.12-git

return bunch

def plot_species_distribution(species=["bradypus_variegatus_0",
"microryzomys_minutus_0"]):

"""
Plot the species distribution.
"""
if len(species) > 2:

print ("Note: when more than two species are provided, only "
"the first two will be used")

t0 = time()

Load the compressed data
data = fetch_species_distributions()

Set up the data grid
xgrid, ygrid = construct_grids(data)

The grid in x,y coordinates
X, Y = np.meshgrid(xgrid, ygrid[::-1])

create a bunch for each species
BV_bunch = create_species_bunch(species[0],

data.train, data.test,
data.coverages, xgrid, ygrid)

MM_bunch = create_species_bunch(species[1],
data.train, data.test,
data.coverages, xgrid, ygrid)

background points (grid coordinates) for evaluation
np.random.seed(13)
background_points = np.c_[np.random.randint(low=0, high=data.Ny,

size=10000),
np.random.randint(low=0, high=data.Nx,

size=10000)].T

We’ll make use of the fact that coverages[6] has measurements at all
land points. This will help us decide between land and water.
land_reference = data.coverages[6]

Fit, predict, and plot for each species.
for i, species in enumerate([BV_bunch, MM_bunch]):

print "_" * 80
print "Modeling distribution of species ’%s’" % species.name

Standardize features
mean = species.cov_train.mean(axis=0)
std = species.cov_train.std(axis=0)
train_cover_std = (species.cov_train - mean) / std

Fit OneClassSVM
print " - fit OneClassSVM ... ",
clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.5)
clf.fit(train_cover_std)
print "done. "

724 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Plot map of South America
pl.subplot(1, 2, i + 1)
if basemap:

print " - plot coastlines using basemap"
m = Basemap(projection=’cyl’, llcrnrlat=Y.min(),

urcrnrlat=Y.max(), llcrnrlon=X.min(),
urcrnrlon=X.max(), resolution=’c’)

m.drawcoastlines()
m.drawcountries()

else:
print " - plot coastlines from coverage"
pl.contour(X, Y, land_reference,

levels=[-9999], colors="k",
linestyles="solid")

pl.xticks([])
pl.yticks([])

print " - predict species distribution"

Predict species distribution using the training data
Z = np.ones((data.Ny, data.Nx), dtype=np.float64)

We’ll predict only for the land points.
idx = np.where(land_reference > -9999)
coverages_land = data.coverages[:, idx[0], idx[1]].T

pred = clf.decision_function((coverages_land - mean) / std)[:, 0]
Z *= pred.min()
Z[idx[0], idx[1]] = pred

levels = np.linspace(Z.min(), Z.max(), 25)
Z[land_reference == -9999] = -9999

plot contours of the prediction
pl.contourf(X, Y, Z, levels=levels, cmap=pl.cm.Reds)
pl.colorbar(format=’%.2f’)

scatter training/testing points
pl.scatter(species.pts_train[’dd long’], species.pts_train[’dd lat’],

s=2 ** 2, c=’black’,
marker=’^’, label=’train’)

pl.scatter(species.pts_test[’dd long’], species.pts_test[’dd lat’],
s=2 ** 2, c=’black’,
marker=’x’, label=’test’)

pl.legend()
pl.title(species.name)
pl.axis(’equal’)

Compute AUC w.r.t. background points
pred_background = Z[background_points[0], background_points[1]]
pred_test = clf.decision_function((species.cov_test - mean)

/ std)[:, 0]
scores = np.r_[pred_test, pred_background]
y = np.r_[np.ones(pred_test.shape), np.zeros(pred_background.shape)]
fpr, tpr, thresholds = metrics.roc_curve(y, scores)
roc_auc = metrics.auc(fpr, tpr)
pl.text(-35, -70, "AUC: %.3f" % roc_auc, ha="right")
print "\n Area under the ROC curve : %f" % roc_auc

2.1. Examples 725

scikit-learn user guide, Release 0.12-git

print "\ntime elapsed: %.2fs" % (time() - t0)

plot_species_distribution()
pl.show()

Figure 2.28: Visualizing the stock market structure

Visualizing the stock market structure

This example employs several unsupervised learning techniques to extract the stock market structure from variations
in historical quotes.

The quantity that we use is the daily variation in quote price: quotes that are linked tend to cofluctuate during a day.

Learning a graph structure

We use sparse inverse covariance estimation to find which quotes are correlated conditionally on the others. Specifi-
cally, sparse inverse covariance gives us a graph, that is a list of connection. For each symbol, the symbols that it is
connected too are those useful to expain its fluctuations.

Clustering

We use clustering to group together quotes that behave similarly. Here, amongst the various clustering techniques
available in the scikit-learn, we use Affinity propagation as it does not enforce equal-size clusters, and it can choose
automatically the number of clusters from the data.

Note that this gives us a different indication than the graph, as the graph reflects conditional relations between variables,
while the clustering reflects marginal properties: variables clustered together can be considered as having a similar
impact at the level of the full stock market.

Embedding in 2D space

For visualization purposes, we need to lay out the different symbols on a 2D canvas. For this we use Manifold learning
techniques to retrieve 2D embedding.

Visualization

The output of the 3 models are combined in a 2D graph where nodes represents the stocks and edges the:

726 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

• cluster labels are used to define the color of the nodes

• the sparse covariance model is used to display the strength of the edges

• the 2D embedding is used to position the nodes in the plan

This example has a fair amount of visualization-related code, as visualization is crucial here to display the graph. One
of the challenge is to position the labels minimizing overlap. For this we use an heuristic based on the direction of the
nearest neighbor along each axis.

Script output:

Cluster 1: Pepsi, Coca Cola, Kellogg
Cluster 2: Apple, Amazon, Yahoo
Cluster 3: GlaxoSmithKline, Novartis, Sanofi-Aventis
Cluster 4: Comcast, Time Warner, Cablevision
Cluster 5: ConocoPhillips, Chevron, Total, Valero Energy, Exxon
Cluster 6: Walgreen, CVS
Cluster 7: Kraft Foods
Cluster 8: Navistar, Sony, Marriott, Caterpillar, Canon, Toyota, Honda, Mitsubishi, Xerox, Unilever
Cluster 9: Kimberly-Clark, Colgate-Palmolive, Procter Gamble
Cluster 10: American express, Ryder, Goldman Sachs, Wal-Mart, General Electrics, Pfizer, 3M, Wells Fargo, DuPont de Nemours, Bank of America, AIG, Home Depot, News Corp, Ford, JPMorgan Chase, Mc Donalds
Cluster 11: Microsoft, SAP, IBM, Texas instruments, HP, Dell, Cisco
Cluster 12: Raytheon, Boeing, Lookheed Martin, General Dynamics, Northrop Grumman

2.1. Examples 727

scikit-learn user guide, Release 0.12-git

Python source code: plot_stock_market.py

print __doc__

Author: Gael Varoquaux gael.varoquaux@normalesup.org
License: BSD

import datetime

import numpy as np
import pylab as pl
from matplotlib import finance
from matplotlib.collections import LineCollection

from sklearn import cluster, covariance, manifold

###
Retrieve the data from Internet

Choose a time period reasonnably calm (not too long ago so that we get
high-tech firms, and before the 2008 crash)
d1 = datetime.datetime(2003, 01, 01)
d2 = datetime.datetime(2008, 01, 01)

symbol_dict = {
’TOT’: ’Total’,
’XOM’: ’Exxon’,
’CVX’: ’Chevron’,
’COP’: ’ConocoPhillips’,
’VLO’: ’Valero Energy’,
’MSFT’: ’Microsoft’,
’IBM’: ’IBM’,
’TWX’: ’Time Warner’,
’CMCSA’: ’Comcast’,
’CVC’: ’Cablevision’,
’YHOO’: ’Yahoo’,
’DELL’: ’Dell’,
’HPQ’: ’HP’,
’AMZN’: ’Amazon’,
’TM’: ’Toyota’,
’CAJ’: ’Canon’,
’MTU’: ’Mitsubishi’,
’SNE’: ’Sony’,
’F’: ’Ford’,
’HMC’: ’Honda’,
’NAV’: ’Navistar’,
’NOC’: ’Northrop Grumman’,
’BA’: ’Boeing’,
’KO’: ’Coca Cola’,
’MMM’: ’3M’,
’MCD’: ’Mc Donalds’,
’PEP’: ’Pepsi’,
’KFT’: ’Kraft Foods’,
’K’: ’Kellogg’,
’UN’: ’Unilever’,
’MAR’: ’Marriott’,
’PG’: ’Procter Gamble’,
’CL’: ’Colgate-Palmolive’,
’NWS’: ’News Corp’,

728 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

’GE’: ’General Electrics’,
’WFC’: ’Wells Fargo’,
’JPM’: ’JPMorgan Chase’,
’AIG’: ’AIG’,
’AXP’: ’American express’,
’BAC’: ’Bank of America’,
’GS’: ’Goldman Sachs’,
’AAPL’: ’Apple’,
’SAP’: ’SAP’,
’CSCO’: ’Cisco’,
’TXN’: ’Texas instruments’,
’XRX’: ’Xerox’,
’LMT’: ’Lookheed Martin’,
’WMT’: ’Wal-Mart’,
’WAG’: ’Walgreen’,
’HD’: ’Home Depot’,
’GSK’: ’GlaxoSmithKline’,
’PFE’: ’Pfizer’,
’SNY’: ’Sanofi-Aventis’,
’NVS’: ’Novartis’,
’KMB’: ’Kimberly-Clark’,
’R’: ’Ryder’,
’GD’: ’General Dynamics’,
’RTN’: ’Raytheon’,
’CVS’: ’CVS’,
’CAT’: ’Caterpillar’,
’DD’: ’DuPont de Nemours’,

}

symbols, names = np.array(symbol_dict.items()).T

quotes = [finance.quotes_historical_yahoo(symbol, d1, d2, asobject=True)
for symbol in symbols]

open = np.array([q.open for q in quotes]).astype(np.float)
close = np.array([q.close for q in quotes]).astype(np.float)

The daily variations of the quotes are what carry most information
variation = close - open

###
Learn a graphical structure from the correlations
edge_model = covariance.GraphLassoCV()

standardize the time series: using correlations rather than covariance
is more efficient for structure recovery
X = variation.copy().T
X /= X.std(axis=0)
edge_model.fit(X)

###
Cluster using affinity propagation

_, labels = cluster.affinity_propagation(edge_model.covariance_)
n_labels = labels.max()

for i in range(n_labels + 1):
print ’Cluster %i: %s’ % ((i + 1), ’, ’.join(names[labels == i]))

2.1. Examples 729

scikit-learn user guide, Release 0.12-git

###
Find a low-dimension embedding for visualization: find the best position of
the nodes (the stocks) on a 2D plane

We use a dense eigen_solver to achieve reproducibility (arpack is
initiated with random vectors that we don’t control). In addition, we
use a large number of neighbors to capture the large-scale structure.
node_position_model = manifold.LocallyLinearEmbedding(

n_components=2, eigen_solver=’dense’, n_neighbors=6)

embedding = node_position_model.fit_transform(X.T).T

###
Visualization
pl.figure(1, facecolor=’w’, figsize=(10, 8))
pl.clf()
ax = pl.axes([0., 0., 1., 1.])
pl.axis(’off’)

Display a graph of the partial correlations
partial_correlations = edge_model.precision_.copy()
d = 1 / np.sqrt(np.diag(partial_correlations))
partial_correlations *= d
partial_correlations *= d[:, np.newaxis]
non_zero = (np.abs(np.triu(partial_correlations, k=1)) > 0.02)

Plot the nodes using the coordinates of our embedding
pl.scatter(embedding[0], embedding[1], s=100 * d ** 2, c=labels,

cmap=pl.cm.spectral)

Plot the edges
start_idx, end_idx = np.where(non_zero)
#a sequence of (*line0*, *line1*, *line2*), where::
linen = (x0, y0), (x1, y1), ... (xm, ym)
segments = [[embedding[:, start], embedding[:, stop]]

for start, stop in zip(start_idx, end_idx)]
values = np.abs(partial_correlations[non_zero])
lc = LineCollection(segments,

zorder=0, cmap=pl.cm.hot_r,
norm=pl.Normalize(0, .7 * values.max()))

lc.set_array(values)
lc.set_linewidths(15 * values)
ax.add_collection(lc)

Add a label to each node. The challenge here is that we want to
position the labels to avoid overlap with other labels
for index, (name, label, (x, y)) in enumerate(

zip(names, labels, embedding.T)):

dx = x - embedding[0]
dx[index] = 1
dy = y - embedding[1]
dy[index] = 1
this_dx = dx[np.argmin(np.abs(dy))]
this_dy = dy[np.argmin(np.abs(dx))]
if this_dx > 0:

horizontalalignment = ’left’
x = x + .002

730 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

else:
horizontalalignment = ’right’
x = x - .002

if this_dy > 0:
verticalalignment = ’bottom’
y = y + .002

else:
verticalalignment = ’top’
y = y - .002

pl.text(x, y, name, size=10,
horizontalalignment=horizontalalignment,
verticalalignment=verticalalignment,
bbox=dict(facecolor=’w’,

edgecolor=pl.cm.spectral(label / float(n_labels)),
alpha=.6))

pl.xlim(embedding[0].min() - .15 * embedding[0].ptp(),
embedding[0].max() + .10 * embedding[0].ptp(),)

pl.ylim(embedding[1].min() - .03 * embedding[1].ptp(),
embedding[1].max() + .03 * embedding[1].ptp())

pl.show()

Figure 2.29: Compressive sensing: tomography reconstruction with L1 prior (Lasso)

Compressive sensing: tomography reconstruction with L1 prior (Lasso)

This example shows the reconstruction of an image from a set of parallel projections, acquired along different angles.
Such a dataset is acquired in computed tomography (CT).

Without any prior information on the sample, the number of projections required to reconstruct the image is of the
order of the linear size l of the image (in pixels). For simplicity we consider here a sparse image, where only pixels
on the boundary of objects have a non-zero value. Such data could correspond for example to a cellular material.
Note however that most images are sparse in a different basis, such as the Haar wavelets. Only l/7 projections are
acquired, therefore it is necessary to use prior information available on the sample (its sparsity): this is an example of
compressive sensing.

The tomography projection operation is a linear transformation. In addition to the data-fidelity term corresponding to a
linear regression, we penalize the L1 norm of the image to account for its sparsity. The resulting optimization problem
is called the Lasso. We use the class sklearn.linear_model.sparse.Lasso, that uses the coordinate descent
algorithm. Importantly, this implementation is more computationally efficient on a sparse matrix, as the projection
operator used here.

The reconstruction with L1 penalization gives a result with zero error (all pixels are successfully labeled with 0 or 1),
even if noise was added to the projections. In comparison, an L2 penalization (sklearn.linear_model.Ridge)
produces a large number of labeling errors for the pixels. Important artifacts are observed on the reconstructed image,
contrary to the L1 penalization. Note in particular the circular artifact separating the pixels in the corners, that have
contributed to fewer projections than the central disk.

2.1. Examples 731

scikit-learn user guide, Release 0.12-git

Python source code: plot_tomography_l1_reconstruction.py

print __doc__

Author: Emmanuelle Gouillart <emmanuelle.gouillart@nsup.org>
License: Simplified BSD

import numpy as np
from scipy import sparse
from scipy import ndimage
from sklearn.linear_model.sparse import Lasso
from sklearn.linear_model import Ridge
import matplotlib.pyplot as plt

def _weights(x, dx=1, orig=0):
x = np.ravel(x)
floor_x = np.floor((x - orig) / dx)
alpha = (x - orig - floor_x * dx) / dx
return np.hstack((floor_x, floor_x + 1)), np.hstack((1 - alpha, alpha))

def _generate_center_coordinates(l_x):
l_x = float(l_x)
X, Y = np.mgrid[:l_x, :l_x]
center = l_x / 2.
X += 0.5 - center
Y += 0.5 - center
return X, Y

def build_projection_operator(l_x, n_dir):
""" Compute the tomography design matrix.

Parameters

l_x : int
linear size of image array

732 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

n_dir : int
number of angles at which projections are acquired.

Returns

p : sparse matrix of shape (n_dir l_x, l_x**2)
"""
X, Y = _generate_center_coordinates(l_x)
angles = np.linspace(0, np.pi, n_dir, endpoint=False)
data_inds, weights, camera_inds = [], [], []
data_unravel_indices = np.arange(l_x ** 2)
data_unravel_indices = np.hstack((data_unravel_indices,

data_unravel_indices))
for i, angle in enumerate(angles):

Xrot = np.cos(angle) * X - np.sin(angle) * Y
inds, w = _weights(Xrot, dx=1, orig=X.min())
mask = np.logical_and(inds >= 0, inds < l_x)
weights += list(w[mask])
camera_inds += list(inds[mask] + i * l_x)
data_inds += list(data_unravel_indices[mask])

proj_operator = sparse.coo_matrix((weights, (camera_inds, data_inds)))
return proj_operator

def generate_synthetic_data():
""" Synthetic binary data """
rs = np.random.RandomState(0)
n_pts = 36.
x, y = np.ogrid[0:l, 0:l]
mask_outer = (x - l / 2) ** 2 + (y - l / 2) ** 2 < (l / 2) ** 2
mask = np.zeros((l, l))
points = l * rs.rand(2, n_pts)
mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1
mask = ndimage.gaussian_filter(mask, sigma=l / n_pts)
res = np.logical_and(mask > mask.mean(), mask_outer)
return res - ndimage.binary_erosion(res)

Generate synthetic images, and projections
l = 128
proj_operator = build_projection_operator(l, l / 7.)
data = generate_synthetic_data()
proj = proj_operator * data.ravel()[:, np.newaxis]
proj += 0.15 * np.random.randn(*proj.shape)

Reconstruction with L2 (Ridge) penalization
rgr_ridge = Ridge(alpha=0.2)
rgr_ridge.fit(proj_operator, proj.ravel())
rec_l2 = rgr_ridge.coef_.reshape(l, l)

Reconstruction with L1 (Lasso) penalization
the best value of alpha was determined using cross validation
with LassoCV
rgr_lasso = Lasso(alpha=0.001)
rgr_lasso.fit(proj_operator, proj.ravel())
rec_l1 = rgr_lasso.coef_.reshape(l, l)

plt.figure(figsize=(8, 3.3))

2.1. Examples 733

scikit-learn user guide, Release 0.12-git

plt.subplot(131)
plt.imshow(data, cmap=plt.cm.gray, interpolation=’nearest’)
plt.axis(’off’)
plt.title(’original image’)
plt.subplot(132)
plt.imshow(rec_l2, cmap=plt.cm.gray, interpolation=’nearest’)
plt.title(’L2 penalization’)
plt.axis(’off’)
plt.subplot(133)
plt.imshow(rec_l1, cmap=plt.cm.gray, interpolation=’nearest’)
plt.title(’L1 penalization’)
plt.axis(’off’)

plt.subplots_adjust(hspace=0.01, wspace=0.01, top=1, bottom=0, left=0,
right=1)

plt.show()

Figure 2.30: Faces recognition example using eigenfaces and SVMs

Faces recognition example using eigenfaces and SVMs

The dataset used in this example is a preprocessed excerpt of the “Labeled Faces in the Wild”, aka LFW:

http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB)

Expected results for the top 5 most represented people in the dataset:

precision recall f1-score support

Gerhard_Schroeder 0.91 0.75 0.82 28
Donald_Rumsfeld 0.84 0.82 0.83 33

Tony_Blair 0.65 0.82 0.73 34
Colin_Powell 0.78 0.88 0.83 58

George_W_Bush 0.93 0.86 0.90 129

avg / total 0.86 0.84 0.85 282

Python source code: face_recognition.py

print __doc__

from time import time
import logging
import pylab as pl

from sklearn.cross_validation import train_test_split

734 Chapter 2. Example Gallery

http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz

scikit-learn user guide, Release 0.12-git

from sklearn.datasets import fetch_lfw_people
from sklearn.grid_search import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.decomposition import RandomizedPCA
from sklearn.svm import SVC

Display progress logs on stdout
logging.basicConfig(level=logging.INFO, format=’%(asctime)s %(message)s’)

###
Download the data, if not already on disk and load it as numpy arrays

lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

introspect the images arrays to find the shapes (for plotting)
n_samples, h, w = lfw_people.images.shape

fot machine learning we use the 2 data directly (as relative pixel
positions info is ignored by this model)
X = lfw_people.data
n_features = X.shape[1]

the label to predict is the id of the person
y = lfw_people.target
target_names = lfw_people.target_names
n_classes = target_names.shape[0]

print "Total dataset size:"
print "n_samples: %d" % n_samples
print "n_features: %d" % n_features
print "n_classes: %d" % n_classes

###
Split into a training set and a test set using a stratified k fold

split into a training and testing set
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_fraction=0.25)

###
Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled
dataset): unsupervised feature extraction / dimensionality reduction
n_components = 150

print "Extracting the top %d eigenfaces from %d faces" % (
n_components, X_train.shape[0])

t0 = time()
pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train)
print "done in %0.3fs" % (time() - t0)

eigenfaces = pca.components_.reshape((n_components, h, w))

print "Projecting the input data on the eigenfaces orthonormal basis"
t0 = time()

2.1. Examples 735

scikit-learn user guide, Release 0.12-git

X_train_pca = pca.transform(X_train)
X_test_pca = pca.transform(X_test)
print "done in %0.3fs" % (time() - t0)

###
Train a SVM classification model

print "Fitting the classifier to the training set"
t0 = time()
param_grid = {
’C’: [1e3, 5e3, 1e4, 5e4, 1e5],
’gamma’: [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1],

}
clf = GridSearchCV(SVC(kernel=’rbf’, class_weight=’auto’), param_grid)
clf = clf.fit(X_train_pca, y_train)
print "done in %0.3fs" % (time() - t0)
print "Best estimator found by grid search:"
print clf.best_estimator_

###
Quantitative evaluation of the model quality on the test set

print "Predicting the people names on the testing set"
t0 = time()
y_pred = clf.predict(X_test_pca)
print "done in %0.3fs" % (time() - t0)

print classification_report(y_test, y_pred, target_names=target_names)
print confusion_matrix(y_test, y_pred, labels=range(n_classes))

###
Qualitative evaluation of the predictions using matplotlib

def plot_gallery(images, titles, h, w, n_row=3, n_col=4):
"""Helper function to plot a gallery of portraits"""
pl.figure(figsize=(1.8 * n_col, 2.4 * n_row))
pl.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)
for i in range(n_row * n_col):

pl.subplot(n_row, n_col, i + 1)
pl.imshow(images[i].reshape((h, w)), cmap=pl.cm.gray)
pl.title(titles[i], size=12)
pl.xticks(())
pl.yticks(())

plot the result of the prediction on a portion of the test set

def title(y_pred, y_test, target_names, i):
pred_name = target_names[y_pred[i]].rsplit(’ ’, 1)[-1]
true_name = target_names[y_test[i]].rsplit(’ ’, 1)[-1]
return ’predicted: %s\ntrue: %s’ % (pred_name, true_name)

prediction_titles = [title(y_pred, y_test, target_names, i)
for i in range(y_pred.shape[0])]

736 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

plot_gallery(X_test, prediction_titles, h, w)

plot the gallery of the most significative eigenfaces

eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]
plot_gallery(eigenfaces, eigenface_titles, h, w)

pl.show()

Figure 2.31: Libsvm GUI

Libsvm GUI

A simple graphical frontend for Libsvm mainly intended for didactic purposes. You can create data points by point
and click and visualize the decision region induced by different kernels and parameter settings.

To create positive examples click the left mouse button; to create negative examples click the right button.

If all examples are from the same class, it uses a one-class SVM.

Python source code: svm_gui.py

from __future__ import division

print __doc__

Author: Peter Prettenhoer <peter.prettenhofer@gmail.com>
#
License: BSD Style.

import matplotlib
matplotlib.use(’TkAgg’)

from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from matplotlib.backends.backend_tkagg import NavigationToolbar2TkAgg
from matplotlib.figure import Figure
from matplotlib.contour import ContourSet

import Tkinter as Tk
import sys
import numpy as np

from sklearn import svm
from sklearn.datasets import dump_svmlight_file

y_min, y_max = -50, 50
x_min, x_max = -50, 50

2.1. Examples 737

scikit-learn user guide, Release 0.12-git

class Model(object):
"""The Model which hold the data. It implements the
observable in the observer pattern and notifies the
registered observers on change event.
"""

def __init__(self):
self.observers = []
self.surface = None
self.data = []
self.cls = None
self.surface_type = 0

def changed(self, event):
"""Notify the observers. """
for observer in self.observers:

observer.update(event, self)

def add_observer(self, observer):
"""Register an observer. """
self.observers.append(observer)

def set_surface(self, surface):
self.surface = surface

def dump_svmlight_file(self, file):
data = np.array(self.data)
X = data[:, 0:2]
y = data[:, 2]
dump_svmlight_file(X, y, file)

class Controller(object):
def __init__(self, model):

self.model = model
self.kernel = Tk.IntVar()
self.surface_type = Tk.IntVar()
Whether or not a model has been fitted
self.fitted = False

def fit(self):
print "fit the model"
train = np.array(self.model.data)
X = train[:, 0:2]
y = train[:, 2]

C = float(self.complexity.get())
gamma = float(self.gamma.get())
coef0 = float(self.coef0.get())
degree = int(self.degree.get())
kernel_map = {0: "linear", 1: "rbf", 2: "poly"}
if len(np.unique(y)) == 1:

clf = svm.OneClassSVM(kernel=kernel_map[self.kernel.get()],
gamma=gamma, coef0=coef0, degree=degree)

clf.fit(X)
else:

clf = svm.SVC(kernel=kernel_map[self.kernel.get()], C=C,

738 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

gamma=gamma, coef0=coef0, degree=degree)
clf.fit(X, y)

if hasattr(clf, ’score’):
print "Accuracy:", clf.score(X, y) * 100

X1, X2, Z = self.decision_surface(clf)
self.model.clf = clf
self.model.set_surface((X1, X2, Z))
self.model.surface_type = self.surface_type.get()
self.fitted = True
self.model.changed("surface")

def decision_surface(self, cls):
delta = 1
x = np.arange(x_min, x_max + delta, delta)
y = np.arange(y_min, y_max + delta, delta)
X1, X2 = np.meshgrid(x, y)
Z = cls.decision_function(np.c_[X1.ravel(), X2.ravel()])
Z = Z.reshape(X1.shape)
return X1, X2, Z

def clear_data(self):
self.model.data = []
self.fitted = False
self.model.changed("clear")

def add_example(self, x, y, label):
self.model.data.append((x, y, label))
self.model.changed("example_added")

update decision surface if already fitted.
self.refit()

def refit(self):
"""Refit the model if already fitted. """
if self.fitted:

self.fit()

class View(object):
"""Test docstring. """
def __init__(self, root, controller):

f = Figure()
ax = f.add_subplot(111)
ax.set_xticks([])
ax.set_yticks([])
ax.set_xlim((x_min, x_max))
ax.set_ylim((y_min, y_max))
canvas = FigureCanvasTkAgg(f, master=root)
canvas.show()
canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
canvas.mpl_connect(’button_press_event’, self.onclick)
toolbar = NavigationToolbar2TkAgg(canvas, root)
toolbar.update()
self.controllbar = ControllBar(root, controller)
self.f = f
self.ax = ax
self.canvas = canvas

2.1. Examples 739

scikit-learn user guide, Release 0.12-git

self.controller = controller
self.contours = []
self.c_labels = None
self.plot_kernels()

def plot_kernels(self):
self.ax.text(-50, -60, "Linear: $u^T v$")
self.ax.text(-20, -60, "RBF: $\exp (-\gamma \| u-v \|^2)$")
self.ax.text(10, -60, "Poly: $(\gamma \, u^T v + r)^d$")

def onclick(self, event):
if event.xdata and event.ydata:

if event.button == 1:
self.controller.add_example(event.xdata, event.ydata, 1)

elif event.button == 3:
self.controller.add_example(event.xdata, event.ydata, -1)

def update_example(self, model, idx):
x, y, l = model.data[idx]
if l == 1:

color = ’w’
elif l == -1:

color = ’k’
self.ax.plot([x], [y], "%so" % color, scalex=0.0, scaley=0.0)

def update(self, event, model):
if event == "examples_loaded":

for i in xrange(len(model.data)):
self.update_example(model, i)

if event == "example_added":
self.update_example(model, -1)

if event == "clear":
self.ax.clear()
self.ax.set_xticks([])
self.ax.set_yticks([])
self.contours = []
self.c_labels = None
self.plot_kernels()

if event == "surface":
self.remove_surface()
self.plot_support_vectors(model.clf.support_vectors_)
self.plot_decision_surface(model.surface, model.surface_type)

self.canvas.draw()

def remove_surface(self):
"""Remove old decision surface."""
if len(self.contours) > 0:

for contour in self.contours:
if isinstance(contour, ContourSet):

for lineset in contour.collections:
lineset.remove()

else:
contour.remove()

self.contours = []

740 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

def plot_support_vectors(self, support_vectors):
"""Plot the support vectors by placing circles over the
corresponding data points and adds the circle collection
to the contours list."""
cs = self.ax.scatter(support_vectors[:, 0], support_vectors[:, 1],

s=80, edgecolors="k", facecolors="none")
self.contours.append(cs)

def plot_decision_surface(self, surface, type):
X1, X2, Z = surface
if type == 0:

levels = [-1.0, 0.0, 1.0]
linestyles = [’dashed’, ’solid’, ’dashed’]
colors = ’k’
self.contours.append(self.ax.contour(X1, X2, Z, levels,

colors=colors,
linestyles=linestyles))

elif type == 1:
self.contours.append(self.ax.contourf(X1, X2, Z, 10,

cmap=matplotlib.cm.bone,
origin=’lower’,
alpha=0.85))

self.contours.append(self.ax.contour(X1, X2, Z, [0.0],
colors=’k’,
linestyles=[’solid’]))

else:
raise ValueError("surface type unknown")

class ControllBar(object):
def __init__(self, root, controller):

fm = Tk.Frame(root)
kernel_group = Tk.Frame(fm)
Tk.Radiobutton(kernel_group, text="Linear", variable=controller.kernel,

value=0, command=controller.refit).pack(anchor=Tk.W)
Tk.Radiobutton(kernel_group, text="RBF", variable=controller.kernel,

value=1, command=controller.refit).pack(anchor=Tk.W)
Tk.Radiobutton(kernel_group, text="Poly", variable=controller.kernel,

value=2, command=controller.refit).pack(anchor=Tk.W)
kernel_group.pack(side=Tk.LEFT)

valbox = Tk.Frame(fm)
controller.complexity = Tk.StringVar()
controller.complexity.set("1.0")
c = Tk.Frame(valbox)
Tk.Label(c, text="C:", anchor="e", width=7).pack(side=Tk.LEFT)
Tk.Entry(c, width=6, textvariable=controller.complexity).pack(

side=Tk.LEFT)
c.pack()

controller.gamma = Tk.StringVar()
controller.gamma.set("0.01")
g = Tk.Frame(valbox)
Tk.Label(g, text="gamma:", anchor="e", width=7).pack(side=Tk.LEFT)
Tk.Entry(g, width=6, textvariable=controller.gamma).pack(side=Tk.LEFT)
g.pack()

controller.degree = Tk.StringVar()

2.1. Examples 741

scikit-learn user guide, Release 0.12-git

controller.degree.set("3")
d = Tk.Frame(valbox)
Tk.Label(d, text="degree:", anchor="e", width=7).pack(side=Tk.LEFT)
Tk.Entry(d, width=6, textvariable=controller.degree).pack(side=Tk.LEFT)
d.pack()

controller.coef0 = Tk.StringVar()
controller.coef0.set("0")
r = Tk.Frame(valbox)
Tk.Label(r, text="coef0:", anchor="e", width=7).pack(side=Tk.LEFT)
Tk.Entry(r, width=6, textvariable=controller.coef0).pack(side=Tk.LEFT)
r.pack()
valbox.pack(side=Tk.LEFT)

cmap_group = Tk.Frame(fm)
Tk.Radiobutton(cmap_group, text="Hyperplanes",

variable=controller.surface_type, value=0,
command=controller.refit).pack(anchor=Tk.W)

Tk.Radiobutton(cmap_group, text="Surface",
variable=controller.surface_type, value=1,
command=controller.refit).pack(anchor=Tk.W)

cmap_group.pack(side=Tk.LEFT)

train_button = Tk.Button(fm, text=’Fit’, width=5,
command=controller.fit)

train_button.pack()
fm.pack(side=Tk.LEFT)
Tk.Button(fm, text=’Clear’, width=5,

command=controller.clear_data).pack(side=Tk.LEFT)

def get_parser():
from optparse import OptionParser
op = OptionParser()
op.add_option("--output",

action="store", type="str", dest="output",
help="Path where to dump data.")

return op

def main(argv):
op = get_parser()
opts, args = op.parse_args(argv[1:])
root = Tk.Tk()
model = Model()
controller = Controller(model)
root.wm_title("Scikit-learn Libsvm GUI")
view = View(root, controller)
model.add_observer(view)
Tk.mainloop()

if opts.output:
model.dump_svmlight_file(opts.output)

if __name__ == "__main__":
main(sys.argv)

742 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Figure 2.32: Topics extraction with Non-Negative Matrix Factorization

Topics extraction with Non-Negative Matrix Factorization

This is a proof of concept application of Non Negative Matrix Factorization of the term frequency matrix of a corpus
of documents so as to extract an additive model of the topic structure of the corpus.

The default parameters (n_samples / n_features / n_topics) should make the example runnable in a couple of tens of
seconds. You can try to increase the dimensions of the problem be ware than the time complexity is polynomial.

Here are some sample extracted topics that look quite good:

Topic #0: god people bible israel jesus christian true moral think christians believe don say human israeli church life
children jewish

Topic #1: drive windows card drivers video scsi software pc thanks vga graphics help disk uni dos file ide controller
work

Topic #2: game team nhl games ca hockey players buffalo edu cc year play university teams baseball columbia league
player toronto

Topic #3: window manager application mit motif size display widget program xlib windows user color event informa-
tion use events x11r5 values

Topic #4: pitt gordon banks cs science pittsburgh univ computer soon disease edu reply pain health david article
medical medicine 16

Python source code: topics_extraction_with_nmf.py

Author: Olivier Grisel <olivier.grisel@ensta.org>
License: Simplified BSD

from time import time
from sklearn.feature_extraction import text
from sklearn import decomposition
from sklearn import datasets

n_samples = 1000
n_features = 1000
n_topics = 10
n_top_words = 20

Load the 20 newsgroups dataset and vectorize it using the most common word
frequency with TF-IDF weighting (without top 5% stop words)

t0 = time()
print "Loading dataset and extracting TF-IDF features..."
dataset = datasets.fetch_20newsgroups(shuffle=True, random_state=1)

vectorizer = text.CountVectorizer(max_df=0.95, max_features=n_features)

2.1. Examples 743

scikit-learn user guide, Release 0.12-git

counts = vectorizer.fit_transform(dataset.data[:n_samples])
tfidf = text.TfidfTransformer().fit_transform(counts)
print "done in %0.3fs." % (time() - t0)

Fit the NMF model
print "Fitting the NMF model on with n_samples=%d and n_features=%d..." % (

n_samples, n_features)
nmf = decomposition.NMF(n_components=n_topics).fit(tfidf)
print "done in %0.3fs." % (time() - t0)

Inverse the vectorizer vocabulary to be able
feature_names = vectorizer.get_feature_names()

for topic_idx, topic in enumerate(nmf.components_):
print "Topic #%d:" % topic_idx
print " ".join([feature_names[i]

for i in topic.argsort()[:-n_top_words - 1:-1]])
print

Figure 2.33: Wikipedia principal eigenvector

Wikipedia principal eigenvector

A classical way to assert the relative importance of vertices in a graph is to compute the principal eigenvector of the
adjacency matrix so as to assign to each vertex the values of the components of the first eigenvector as a centrality
score:

http://en.wikipedia.org/wiki/Eigenvector_centrality

On the graph of webpages and links those values are called the PageRank scores by Google.

The goal of this example is to analyze the graph of links inside wikipedia articles to rank articles by relative importance
according to this eigenvector centrality.

The traditional way to compute the principal eigenvector is to use the power iteration method:

http://en.wikipedia.org/wiki/Power_iteration

Here the computation is achieved thanks to Martinsson’s Randomized SVD algoritm implemented in the scikit.

The graph data is fetched from the DBpedia dumps. DBpedia is an extraction of the latent structured data of the
Wikipedia content.

Python source code: wikipedia_principal_eigenvector.py

print __doc__

Author: Olivier Grisel <olivier.grisel@ensta.org>
License: Simplified BSD

744 Chapter 2. Example Gallery

http://en.wikipedia.org/wiki/Eigenvector_centrality
http://en.wikipedia.org/wiki/Power_iteration

scikit-learn user guide, Release 0.12-git

from bz2 import BZ2File
import os
from datetime import datetime
from pprint import pprint
from time import time

import numpy as np

from scipy import sparse

from sklearn.utils.extmath import randomized_svd
from sklearn.externals.joblib import Memory

###
Where to download the data, if not already on disk
redirects_url = "http://downloads.dbpedia.org/3.5.1/en/redirects_en.nt.bz2"
redirects_filename = redirects_url.rsplit("/", 1)[1]

page_links_url = "http://downloads.dbpedia.org/3.5.1/en/page_links_en.nt.bz2"
page_links_filename = page_links_url.rsplit("/", 1)[1]

resources = [
(redirects_url, redirects_filename),
(page_links_url, page_links_filename),

]

for url, filename in resources:
if not os.path.exists(filename):

import urllib
print "Downloading data from ’%s’, please wait..." % url
opener = urllib.urlopen(url)
open(filename, ’wb’).write(opener.read())
print

###
Loading the redirect files

memory = Memory(cachedir=".")

def index(redirects, index_map, k):
"""Find the index of an article name after redirect resolution"""
k = redirects.get(k, k)
return index_map.setdefault(k, len(index_map))

DBPEDIA_RESOURCE_PREFIX_LEN = len("http://dbpedia.org/resource/")
SHORTNAME_SLICE = slice(DBPEDIA_RESOURCE_PREFIX_LEN + 1, -1)

def short_name(nt_uri):
"""Remove the < and > URI markers and the common URI prefix"""
return nt_uri[SHORTNAME_SLICE]

def get_redirects(redirects_filename):

2.1. Examples 745

scikit-learn user guide, Release 0.12-git

"""Parse the redirections and build a transitively closed map out of it"""
redirects = {}
print "Parsing the NT redirect file"
for l, line in enumerate(BZ2File(redirects_filename)):

split = line.split()
if len(split) != 4:

print "ignoring malformed line: " + line
continue

redirects[short_name(split[0])] = short_name(split[2])
if l % 1000000 == 0:

print "[%s] line: %08d" % (datetime.now().isoformat(), l)

compute the transitive closure
print "Computing the transitive closure of the redirect relation"
for l, source in enumerate(redirects.keys()):

transitive_target = None
target = redirects[source]
seen = set([source])
while True:

transitive_target = target
target = redirects.get(target)
if target is None or target in seen:

break
seen.add(target)

redirects[source] = transitive_target
if l % 1000000 == 0:

print "[%s] line: %08d" % (datetime.now().isoformat(), l)

return redirects

disabling joblib as the pickling of large dicts seems much too slow
#@memory.cache
def get_adjacency_matrix(redirects_filename, page_links_filename, limit=None):

"""Extract the adjacency graph as a scipy sparse matrix

Redirects are resolved first.

Returns X, the scipy sparse adjacency matrix, redirects as python
dict from article names to article names and index_map a python dict
from article names to python int (article indexes).
"""

print "Computing the redirect map"
redirects = get_redirects(redirects_filename)

print "Computing the integer index map"
index_map = dict()
links = list()
for l, line in enumerate(BZ2File(page_links_filename)):

split = line.split()
if len(split) != 4:

print "ignoring malformed line: " + line
continue

i = index(redirects, index_map, short_name(split[0]))
j = index(redirects, index_map, short_name(split[2]))
links.append((i, j))
if l % 1000000 == 0:

746 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

print "[%s] line: %08d" % (datetime.now().isoformat(), l)

if limit is not None and l >= limit - 1:
break

print "Computing the adjacency matrix"
X = sparse.lil_matrix((len(index_map), len(index_map)), dtype=np.float32)
for i, j in links:

X[i, j] = 1.0
del links
print "Converting to CSR representation"
X = X.tocsr()
print "CSR conversion done"
return X, redirects, index_map

stop after 5M links to make it possible to work in RAM
X, redirects, index_map = get_adjacency_matrix(

redirects_filename, page_links_filename, limit=5000000)
names = dict((i, name) for name, i in index_map.iteritems())

print "Computing the principal singular vectors using randomized_svd"
t0 = time()
U, s, V = randomized_svd(X, 5, n_iterations=3)
print "done in %0.3fs" % (time() - t0)

print the names of the wikipedia related strongest compenents of the the
principal singular vector which should be similar to the highest eigenvector
print "Top wikipedia pages according to principal singular vectors"
pprint([names[i] for i in np.abs(U.T[0]).argsort()[-10:]])
pprint([names[i] for i in np.abs(V[0]).argsort()[-10:]])

def centrality_scores(X, alpha=0.85, max_iter=100, tol=1e-10):
"""Power iteration computation of the principal eigenvector

This method is also known as Google PageRank and the implementation
is based on the one from the NetworkX project (BSD licensed too)
with copyrights by:

Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>

"""
n = X.shape[0]
X = X.copy()
incoming_counts = np.asarray(X.sum(axis=1)).ravel()

print "Normalizing the graph"
for i in incoming_counts.nonzero()[0]:

X.data[X.indptr[i]:X.indptr[i + 1]] *= 1.0 / incoming_counts[i]
dangle = np.asarray(np.where(X.sum(axis=1) == 0, 1.0 / n, 0)).ravel()

scores = np.ones(n, dtype=np.float32) / n # initial guess
for i in range(max_iter):

print "power iteration #%d" % i
prev_scores = scores
scores = (alpha * (scores * X + np.dot(dangle, prev_scores))

2.1. Examples 747

scikit-learn user guide, Release 0.12-git

+ (1 - alpha) * prev_scores.sum() / n)
check convergence: normalized l_inf norm
scores_max = np.abs(scores).max()
if scores_max == 0.0:

scores_max = 1.0
err = np.abs(scores - prev_scores).max() / scores_max
print "error: %0.6f" % err
if err < n * tol:

return scores

return scores

print "Computing principal eigenvector score using a power iteration method"
t0 = time()
scores = centrality_scores(X, max_iter=100, tol=1e-10)
print "done in %0.3fs" % (time() - t0)
pprint([names[i] for i in np.abs(scores).argsort()[-10:]])

2.1.3 Clustering

Examples concerning the sklearn.cluster package.

Figure 2.34: Adjustment for chance in clustering performance evaluation

Adjustment for chance in clustering performance evaluation

The following plots demonstrate the impact of the number of clusters and number of samples on various clustering
performance evaluation metrics.

Non-adjusted measures such as the V-Measure show a dependency between the number of clusters and the number of
samples: the mean V-Measure of random labeling increases signicantly as the number of clusters is closer to the total
number of samples used to compute the measure.

Adjusted for chance measure such as ARI display some random variations centered around a mean score of 0.0 for
any number of samples and clusters.

Only adjusted measures can hence safely be used as a consensus index to evaluate the average stability of clustering
algorithms for a given value of k on various overlapping sub-samples of the dataset.

748 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

•

•

Script output:

Computing adjusted_rand_score for 10 values of n_clusters and n_samples=100
done in 0.253s
Computing v_measure_score for 10 values of n_clusters and n_samples=100
done in 2.110s
Computing adjusted_mutual_info_score for 10 values of n_clusters and n_samples=100
done in 7.992s
Computing mutual_info_score for 10 values of n_clusters and n_samples=100
done in 0.033s
Computing adjusted_rand_score for 10 values of n_clusters and n_samples=1000
done in 0.432s
Computing v_measure_score for 10 values of n_clusters and n_samples=1000
done in 0.932s
Computing adjusted_mutual_info_score for 10 values of n_clusters and n_samples=1000
done in 21.824s
Computing mutual_info_score for 10 values of n_clusters and n_samples=1000
done in 0.155s

Python source code: plot_adjusted_for_chance_measures.py

print __doc__

Author: Olivier Grisel <olivier.grisel@ensta.org>
License: Simplified BSD

import numpy as np
import pylab as pl
from time import time

2.1. Examples 749

scikit-learn user guide, Release 0.12-git

from sklearn import metrics

def uniform_labelings_scores(score_func, n_samples, n_clusters_range,
fixed_n_classes=None, n_runs=5, seed=42):

"""Compute score for 2 random uniform cluster labelings.

Both random labelings have the same number of clusters for each value
possible value in ‘‘n_clusters_range‘‘.

When fixed_n_classes is not None the first labeling is considered a ground
truth class assignement with fixed number of classes.
"""
random_labels = np.random.RandomState(seed).random_integers
scores = np.zeros((len(n_clusters_range), n_runs))

if fixed_n_classes is not None:
labels_a = random_labels(low=0, high=fixed_n_classes - 1,

size=n_samples)

for i, k in enumerate(n_clusters_range):
for j in range(n_runs):

if fixed_n_classes is None:
labels_a = random_labels(low=0, high=k - 1, size=n_samples)

labels_b = random_labels(low=0, high=k - 1, size=n_samples)
scores[i, j] = score_func(labels_a, labels_b)

return scores

score_funcs = [
metrics.adjusted_rand_score,
metrics.v_measure_score,
metrics.adjusted_mutual_info_score,
metrics.mutual_info_score,

]

2 independent random clusterings with equal cluster number

n_samples = 100
n_clusters_range = np.linspace(2, n_samples, 10).astype(np.int)

pl.figure(1)

plots = []
names = []
for score_func in score_funcs:

print "Computing %s for %d values of n_clusters and n_samples=%d" % (
score_func.__name__, len(n_clusters_range), n_samples)

t0 = time()
scores = uniform_labelings_scores(score_func, n_samples, n_clusters_range)
print "done in %0.3fs" % (time() - t0)
plots.append(pl.errorbar(

n_clusters_range, np.median(scores, axis=1), scores.std(axis=1))[0])
names.append(score_func.__name__)

pl.title("Clustering measures for 2 random uniform labelings\n"
"with equal number of clusters")

pl.xlabel(’Number of clusters (Number of samples is fixed to %d)’ % n_samples)

750 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

pl.ylabel(’Score value’)
pl.legend(plots, names)
pl.ylim(ymin=-0.05, ymax=1.05)

Random labeling with varying n_clusters against ground class labels
with fixed number of clusters

n_samples = 1000
n_clusters_range = np.linspace(2, 100, 10).astype(np.int)
n_classes = 10

pl.figure(2)

plots = []
names = []
for score_func in score_funcs:

print "Computing %s for %d values of n_clusters and n_samples=%d" % (
score_func.__name__, len(n_clusters_range), n_samples)

t0 = time()
scores = uniform_labelings_scores(score_func, n_samples, n_clusters_range,

fixed_n_classes=n_classes)
print "done in %0.3fs" % (time() - t0)
plots.append(pl.errorbar(

n_clusters_range, scores.mean(axis=1), scores.std(axis=1))[0])
names.append(score_func.__name__)

pl.title("Clustering measures for random uniform labeling\n"
"against reference assignement with %d classes" % n_classes)

pl.xlabel(’Number of clusters (Number of samples is fixed to %d)’ % n_samples)
pl.ylabel(’Score value’)
pl.ylim(ymin=-0.05, ymax=1.05)
pl.legend(plots, names)
pl.show()

Figure 2.35: Demo of affinity propagation clustering algorithm

Demo of affinity propagation clustering algorithm

Reference: Brendan J. Frey and Delbert Dueck, “Clustering by Passing Messages Between Data Points”, Science Feb.
2007

2.1. Examples 751

scikit-learn user guide, Release 0.12-git

Script output:

Estimated number of clusters: 3
Homogeneity: 0.885
Completeness: 0.885
V-measure: 0.885
Adjusted Rand Index: 0.922
Adjusted Mutual Information: 0.884
Silhouette Coefficient: 0.774

Python source code: plot_affinity_propagation.py

print __doc__

import numpy as np
from sklearn.cluster import AffinityPropagation
from sklearn import metrics
from sklearn.datasets.samples_generator import make_blobs

##
Generate sample data
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=300, centers=centers, cluster_std=0.5)

##
Compute similarities
X_norms = np.sum(X ** 2, axis=1)

752 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

S = - X_norms[:, np.newaxis] - X_norms[np.newaxis, :] + 2 * np.dot(X, X.T)
p = 10 * np.median(S)

##
Compute Affinity Propagation
af = AffinityPropagation().fit(S, p)
cluster_centers_indices = af.cluster_centers_indices_
labels = af.labels_

n_clusters_ = len(cluster_centers_indices)

print ’Estimated number of clusters: %d’ % n_clusters_
print "Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels)
print "Completeness: %0.3f" % metrics.completeness_score(labels_true, labels)
print "V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels)
print "Adjusted Rand Index: %0.3f" % \

metrics.adjusted_rand_score(labels_true, labels)
print "Adjusted Mutual Information: %0.3f" % \

metrics.adjusted_mutual_info_score(labels_true, labels)
D = (S / np.min(S))
print ("Silhouette Coefficient: %0.3f" %

metrics.silhouette_score(D, labels, metric=’precomputed’))

##
Plot result
import pylab as pl
from itertools import cycle

pl.close(’all’)
pl.figure(1)
pl.clf()

colors = cycle(’bgrcmykbgrcmykbgrcmykbgrcmyk’)
for k, col in zip(range(n_clusters_), colors):

class_members = labels == k
cluster_center = X[cluster_centers_indices[k]]
pl.plot(X[class_members, 0], X[class_members, 1], col + ’.’)
pl.plot(cluster_center[0], cluster_center[1], ’o’, markerfacecolor=col,

markeredgecolor=’k’, markersize=14)
for x in X[class_members]:

pl.plot([cluster_center[0], x[0]], [cluster_center[1], x[1]], col)

pl.title(’Estimated number of clusters: %d’ % n_clusters_)
pl.show()

Comparing different clustering algorithms on toy datasets

This example aims at showing characteristics of different clustering algorithms on datasets that are “interesting” but
still in 2D. The last dataset is an example of a ‘null’ situation for clustering: the data is homogeneous, and there is no
good clustering.

While these examples give some intuition about the algorithms, this intuition might not apply to very high dimensional
data.

The results could be improved by tweaking the parameters for each clustering strategy, for instance setting the number
of clusters for the methods that needs this parameter specified. Note that affinity propagation has a tendency to create
many clusters. Thus in this example its two parameters (damping and per-point preference) were set to to mitigate this

2.1. Examples 753

scikit-learn user guide, Release 0.12-git

Figure 2.36: Comparing different clustering algorithms on toy datasets

behavior.

Python source code: plot_cluster_comparison.py

print __doc__

import time

import numpy as np
import pylab as pl

from sklearn import cluster, datasets
from sklearn.metrics import euclidean_distances

754 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

from sklearn.neighbors import kneighbors_graph
from sklearn.preprocessing import Scaler

np.random.seed(0)

Generate datasets. We choose the size big enough to see the scalability
of the algorithms, but not too big to avoid too long running times
n_samples = 1500
noisy_circles = datasets.make_circles(n_samples=n_samples, factor=.5,

noise=.05)
noisy_moons = datasets.make_moons(n_samples=n_samples, noise=.05)
blobs = datasets.make_blobs(n_samples=n_samples, random_state=8)
no_structure = np.random.rand(n_samples, 2), None

colors = np.array([x for x in ’bgrcmykbgrcmykbgrcmykbgrcmyk’])
colors = np.hstack([colors] * 20)

pl.figure(figsize=(14, 9.5))
pl.subplots_adjust(left=.001, right=.999, bottom=.001, top=.96, wspace=.05,

hspace=.01)

plot_num = 1
for i_dataset, dataset in enumerate([noisy_circles, noisy_moons, blobs,

no_structure]):
X, y = dataset
normalize dataset for easier parameter selection
X = Scaler().fit_transform(X)

estimate bandwidth for mean shift
bandwidth = cluster.estimate_bandwidth(X, quantile=0.3)

connectivity matrix for structured Ward
connectivity = kneighbors_graph(X, n_neighbors=10)
make connectivity symmetric
connectivity = 0.5 * (connectivity + connectivity.T)

Compute distances
distances = euclidean_distances(X)

create clustering estimators
ms = cluster.MeanShift(bandwidth=bandwidth, bin_seeding=True)
two_means = cluster.MiniBatchKMeans(n_clusters=2)
ward_five = cluster.Ward(n_clusters=2, connectivity=connectivity)
spectral = cluster.SpectralClustering(n_clusters=2, mode=’arpack’)
dbscan = cluster.DBSCAN(eps=.2)
affinity_propagation = cluster.AffinityPropagation(damping=.9)

for algorithm in [two_means, affinity_propagation, ms, spectral,
ward_five, dbscan]:

predict cluster memberships
t0 = time.time()
if algorithm == spectral:

algorithm.fit(connectivity)
elif algorithm == affinity_propagation:

Set a low preference to avoid creating too many
clusters. This parameter is hard to set in practice
algorithm.fit(-distances, p=-50 * distances.max())

else:

2.1. Examples 755

scikit-learn user guide, Release 0.12-git

algorithm.fit(X)
t1 = time.time()
if hasattr(algorithm, ’labels_’):

y_pred = algorithm.labels_.astype(np.int)
else:

y_pred = algorithm.predict(X)

plot
pl.subplot(4, 6, plot_num)
if i_dataset == 0:

pl.title(str(algorithm).split(’(’)[0], size=18)
pl.scatter(X[:, 0], X[:, 1], color=colors[y_pred].tolist(), s=10)

if hasattr(algorithm, ’cluster_centers_’):
centers = algorithm.cluster_centers_
center_colors = colors[:len(centers)]
pl.scatter(centers[:, 0], centers[:, 1], s=100, c=center_colors)

pl.xlim(-2, 2)
pl.ylim(-2, 2)
pl.xticks(())
pl.yticks(())
pl.text(.99, .01, (’%.2fs’ % (t1 - t0)).lstrip(’0’),

transform=pl.gca().transAxes, size=15,
horizontalalignment=’right’)

plot_num += 1

pl.show()

Figure 2.37: K-means Clustering

K-means Clustering

The plots display firstly what a K-means algorithm would yield using three clusters. It is then shown what the effect
of a bad initialization is on the classification process: By setting n_init to only 1 (default is 10), the amount of times
that the algorithm will be run with different centroid seeds is reduced. The next plot displays what using eight clusters
would deliver and finally the ground truth.

•

756 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

•

•

•

Python source code: plot_cluster_iris.py

print __doc__

Code source: Gael Varoqueux
Modified for Documentation merge by Jaques Grobler
License: BSD

import numpy as np
import pylab as pl
from mpl_toolkits.mplot3d import Axes3D

from sklearn.cluster import KMeans
from sklearn import datasets

np.random.seed(5)

centers = [[1, 1], [-1, -1], [1, -1]]
iris = datasets.load_iris()
X = iris.data
y = iris.target

estimators = {’k_means_iris_3’: KMeans(n_clusters=3),
’k_means_iris_8’: KMeans(n_clusters=8),
’k_means_iris_bad_init’: KMeans(n_clusters=3, n_init=1, init=’random’),
}

2.1. Examples 757

scikit-learn user guide, Release 0.12-git

fignum = 1
for name, est in estimators.iteritems():

fig = pl.figure(fignum, figsize=(4, 3))
pl.clf()
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)

pl.cla()
est.fit(X)
labels = est.labels_

ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=labels.astype(np.float))

ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])
ax.set_xlabel(’Petal width’)
ax.set_ylabel(’Sepal length’)
ax.set_zlabel(’Petal length’)
fignum = fignum + 1

Plot the ground truth
fig = pl.figure(fignum, figsize=(4, 3))
pl.clf()
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)

pl.cla()

for name, label in [(’Setosa’, 0),
(’Versicolour’, 1),
(’Virginica’, 2)]:

ax.text3D(X[y == label, 3].mean(),
X[y == label, 0].mean() + 1.5,
X[y == label, 2].mean(), name,
horizontalalignment=’center’,
bbox=dict(alpha=.5, edgecolor=’w’, facecolor=’w’),
)

Reorder the labels to have colors matching the cluster results
y = np.choose(y, [1, 2, 0]).astype(np.float)
ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=y)

ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])
ax.set_xlabel(’Petal width’)
ax.set_ylabel(’Sepal length’)
ax.set_zlabel(’Petal length’)
pl.show()

Color Quantization using K-Means

Performs a pixel-wise Vector Quantization (VQ) of an image of the summer palace (China), reducing the number of
colors required to show the image from 96,615 unique colors to 64, while preserving the overall appearance quality.

In this example, pixels are represented in a 3D-space and K-means is used to find 64 color clusters. In the image
processing literature, the codebook obtained from K-means (the cluster centers) is called the color palette. Using a
single byte, up to 256 colors can be addressed, whereas an RGB encoding requires 3 bytes per pixel. The GIF file

758 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Figure 2.38: Color Quantization using K-Means

format, for example, uses such a palette.

For comparison, a quantized image using a random codebook (colors picked up randomly) is also shown.

•

•

2.1. Examples 759

scikit-learn user guide, Release 0.12-git

•

Script output:

Fitting estimator on a small sub-sample of the data
done in 1.165s.
Predicting color indices on the full image (k-means)
done in 1.024s.
Predicting color indices on the full image (random)
done in 1.131s.

Python source code: plot_color_quantization.py

Authors: Robert Layton <robertlayton@gmail.com>
Olivier Grisel <olivier.grisel@ensta.org>
Mathieu Blondel <mathieu@mblondel.org>
#
License: BSD

print __doc__
import numpy as np
import pylab as pl
from sklearn.cluster import KMeans
from sklearn.metrics import euclidean_distances
from sklearn.datasets import load_sample_image
from sklearn.utils import shuffle
from time import time

n_colors = 64

Load the Summer Palace photo
china = load_sample_image("china.jpg")

Convert to floats instead of the default 8 bits integer coding. Dividing by
255 is important so that pl.imshow behaves works well on foat data (need to
be in the range [0-1]
china = np.array(china, dtype=np.float64) / 255

Load Image and transform to a 2D numpy array.
w, h, d = original_shape = tuple(china.shape)
assert d == 3
image_array = np.reshape(china, (w * h, d))

print "Fitting estimator on a small sub-sample of the data"
t0 = time()
image_array_sample = shuffle(image_array, random_state=0)[:1000]

760 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

kmeans = KMeans(n_clusters=n_colors, random_state=0).fit(image_array_sample)
print "done in %0.3fs." % (time() - t0)

Get labels for all points
print "Predicting color indices on the full image (k-means)"
t0 = time()
labels = kmeans.predict(image_array)
print "done in %0.3fs." % (time() - t0)

codebook_random = shuffle(image_array, random_state=0)[:n_colors + 1]
print "Predicting color indices on the full image (random)"
t0 = time()
dist = euclidean_distances(codebook_random, image_array, squared=True)
labels_random = dist.argmin(axis=0)
print "done in %0.3fs." % (time() - t0)

def recreate_image(codebook, labels, w, h):
"""Recreate the (compressed) image from the code book & labels"""
d = codebook.shape[1]
image = np.zeros((w, h, d))
label_idx = 0
for i in range(w):

for j in range(h):
image[i][j] = codebook[labels[label_idx]]
label_idx += 1

return image

Display all results, alongside original image
pl.figure(1)
pl.clf()
ax = pl.axes([0, 0, 1, 1])
pl.axis(’off’)
pl.title(’Original image (96,615 colors)’)
pl.imshow(china)

pl.figure(2)
pl.clf()
ax = pl.axes([0, 0, 1, 1])
pl.axis(’off’)
pl.title(’Quantized image (64 colors, K-Means)’)
pl.imshow(recreate_image(kmeans.cluster_centers_, labels, w, h))

pl.figure(3)
pl.clf()
ax = pl.axes([0, 0, 1, 1])
pl.axis(’off’)
pl.title(’Quantized image (64 colors, Random)’)
pl.imshow(recreate_image(codebook_random, labels_random, w, h))
pl.show()

Demo of DBSCAN clustering algorithm

Finds core samples of high density and expands clusters from them.

2.1. Examples 761

scikit-learn user guide, Release 0.12-git

Figure 2.39: Demo of DBSCAN clustering algorithm

Script output:

Estimated number of clusters: 2
Homogeneity: 0.517
Completeness: 0.660
V-measure: 0.580
Adjusted Rand Index: 0.501
Adjusted Mutual Information: 0.516
Silhouette Coefficient: 0.381

Python source code: plot_dbscan.py

print __doc__

import numpy as np

762 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

from scipy.spatial import distance
from sklearn.cluster import DBSCAN
from sklearn import metrics
from sklearn.datasets.samples_generator import make_blobs

##
Generate sample data
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4)

##
Compute similarities
D = distance.squareform(distance.pdist(X))
S = 1 - (D / np.max(D))

##
Compute DBSCAN
db = DBSCAN(eps=0.95, min_samples=10).fit(S)
core_samples = db.core_sample_indices_
labels = db.labels_

Number of clusters in labels, ignoring noise if present.
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)

print ’Estimated number of clusters: %d’ % n_clusters_
print "Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels)
print "Completeness: %0.3f" % metrics.completeness_score(labels_true, labels)
print "V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels)
print "Adjusted Rand Index: %0.3f" % \

metrics.adjusted_rand_score(labels_true, labels)
print "Adjusted Mutual Information: %0.3f" % \

metrics.adjusted_mutual_info_score(labels_true, labels)
print ("Silhouette Coefficient: %0.3f" %

metrics.silhouette_score(D, labels, metric=’precomputed’))

##
Plot result
import pylab as pl
from itertools import cycle

pl.close(’all’)
pl.figure(1)
pl.clf()

Black removed and is used for noise instead.
colors = cycle(’bgrcmybgrcmybgrcmybgrcmy’)
for k, col in zip(set(labels), colors):

if k == -1:
Black used for noise.
col = ’k’
markersize = 6

class_members = [index[0] for index in np.argwhere(labels == k)]
cluster_core_samples = [index for index in core_samples

if labels[index] == k]
for index in class_members:

x = X[index]
if index in core_samples and k != -1:

2.1. Examples 763

scikit-learn user guide, Release 0.12-git

markersize = 14
else:

markersize = 6
pl.plot(x[0], x[1], ’o’, markerfacecolor=col,

markeredgecolor=’k’, markersize=markersize)

pl.title(’Estimated number of clusters: %d’ % n_clusters_)
pl.show()

Figure 2.40: Feature agglomeration

Feature agglomeration

These images how similiar features are merged together using feature agglomeration.

Python source code: plot_digits_agglomeration.py

print __doc__

Code source: Gael Varoqueux
Modified for Documentation merge by Jaques Grobler
License: BSD

import numpy as np
import pylab as pl

764 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

from sklearn import datasets, cluster
from sklearn.feature_extraction.image import grid_to_graph

digits = datasets.load_digits()
images = digits.images
X = np.reshape(images, (len(images), -1))
connectivity = grid_to_graph(*images[0].shape)

agglo = cluster.WardAgglomeration(connectivity=connectivity,
n_clusters=32)

agglo.fit(X)
X_reduced = agglo.transform(X)

X_restored = agglo.inverse_transform(X_reduced)
images_restored = np.reshape(X_restored, images.shape)
pl.figure(1, figsize=(4, 3.5))
pl.clf()
pl.subplots_adjust(left=.01, right=.99, bottom=.01, top=.91)
for i in range(4):

pl.subplot(3, 4, i + 1)
pl.imshow(images[i], cmap=pl.cm.gray,

vmax=16, interpolation=’nearest’)
pl.xticks(())
pl.yticks(())
if i == 1:

pl.title(’Original data’)
pl.subplot(3, 4, 4 + i + 1)
pl.imshow(images_restored[i],

cmap=pl.cm.gray, vmax=16, interpolation=’nearest’)
if i == 1:

pl.title(’Agglomerated data’)
pl.xticks(())
pl.yticks(())

pl.subplot(3, 4, 10)
pl.imshow(np.reshape(agglo.labels_, images[0].shape),

interpolation=’nearest’, cmap=pl.cm.spectral)
pl.xticks(())
pl.yticks(())
pl.title(’Labels’)

Figure 2.41: Feature agglomeration vs. univariate selection

Feature agglomeration vs. univariate selection

This example compares 2 dimensionality reduction strategies:

• univariate feature selection with Anova

• feature agglomeration with Ward hierarchical clustering

Both methods are compared in a regression problem using a BayesianRidge as supervised estimator.

2.1. Examples 765

scikit-learn user guide, Release 0.12-git

Script output:
__
[Memory] Calling sklearn.cluster.hierarchical.ward_tree...
ward_tree(array([[-0.451933, ..., -0.675318],

...,
[0.275706, ..., -1.085711]]),

<1600x1600 sparse matrix of type ’<type ’numpy.int32’>’
with 7840 stored elements in COOrdinate format>, copy=True, n_components=1)

__ward_tree - 0.3s, 0.0min
__
[Memory] Calling sklearn.cluster.hierarchical.ward_tree...
ward_tree(array([[0.905206, ..., 0.161245],

...,
[-0.849835, ..., -1.091621]]),

<1600x1600 sparse matrix of type ’<type ’numpy.int32’>’
with 7840 stored elements in COOrdinate format>, copy=True, n_components=1)

__ward_tree - 0.3s, 0.0min
__
[Memory] Calling sklearn.cluster.hierarchical.ward_tree...
ward_tree(array([[0.905206, ..., -0.675318],

...,
[-0.849835, ..., -1.085711]]),

<1600x1600 sparse matrix of type ’<type ’numpy.int32’>’
with 7840 stored elements in COOrdinate format>, copy=True, n_components=1)

__ward_tree - 0.3s, 0.0min
__
[Memory] Calling sklearn.feature_selection.univariate_selection.f_regression...
f_regression(array([[-0.451933, ..., 0.275706],

...,
[-0.675318, ..., -1.085711]]),

array([25.267703, ..., -25.026711]))
___f_regression - 0.0s, 0.0min
__
[Memory] Calling sklearn.feature_selection.univariate_selection.f_regression...
f_regression(array([[0.905206, ..., -0.849835],

...,
[0.161245, ..., -1.091621]]),

array([-27.447268, ..., -112.638768]))
___f_regression - 0.0s, 0.0min
__
[Memory] Calling sklearn.feature_selection.univariate_selection.f_regression...
f_regression(array([[0.905206, ..., -0.849835],

766 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

...,
[-0.675318, ..., -1.085711]]),

array([-27.447268, ..., -25.026711]))
___f_regression - 0.0s, 0.0min

Python source code: plot_feature_agglomeration_vs_univariate_selection.py

Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
License: BSD Style.

print __doc__

import shutil
import tempfile

import numpy as np
import pylab as pl
from scipy import linalg, ndimage

from sklearn.feature_extraction.image import grid_to_graph
from sklearn import feature_selection
from sklearn.cluster import WardAgglomeration
from sklearn.linear_model import BayesianRidge
from sklearn.pipeline import Pipeline
from sklearn.grid_search import GridSearchCV
from sklearn.externals.joblib import Memory
from sklearn.cross_validation import KFold

###
Generate data
n_samples = 200
size = 40 # image size
roi_size = 15
snr = 5.
np.random.seed(0)
mask = np.ones([size, size], dtype=np.bool)

coef = np.zeros((size, size))
coef[0:roi_size, 0:roi_size] = -1.
coef[-roi_size:, -roi_size:] = 1.

X = np.random.randn(n_samples, size ** 2)
for x in X: # smooth data

x[:] = ndimage.gaussian_filter(x.reshape(size, size), sigma=1.0).ravel()
X -= X.mean(axis=0)
X /= X.std(axis=0)

y = np.dot(X, coef.ravel())
noise = np.random.randn(y.shape[0])
noise_coef = (linalg.norm(y, 2) / np.exp(snr / 20.)) / linalg.norm(noise, 2)
y += noise_coef * noise # add noise

###
Compute the coefs of a Bayesian Ridge with GridSearch
cv = KFold(len(y), 2) # cross-validation generator for model selection
ridge = BayesianRidge()
cachedir = tempfile.mkdtemp()
mem = Memory(cachedir=cachedir, verbose=1)

2.1. Examples 767

scikit-learn user guide, Release 0.12-git

Ward agglomeration followed by BayesianRidge
A = grid_to_graph(n_x=size, n_y=size)
ward = WardAgglomeration(n_clusters=10, connectivity=A, memory=mem,

n_components=1)
clf = Pipeline([(’ward’, ward), (’ridge’, ridge)])
Select the optimal number of parcels with grid search
clf = GridSearchCV(clf, {’ward__n_clusters’: [10, 20, 30]}, n_jobs=1, cv=cv)
clf.fit(X, y) # set the best parameters
coef_ = clf.best_estimator_.steps[-1][1].coef_
coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_)
coef_agglomeration_ = coef_.reshape(size, size)

Anova univariate feature selection followed by BayesianRidge
f_regression = mem.cache(feature_selection.f_regression) # caching function
anova = feature_selection.SelectPercentile(f_regression)
clf = Pipeline([(’anova’, anova), (’ridge’, ridge)])
Select the optimal percentage of features with grid search
clf = GridSearchCV(clf, {’anova__percentile’: [5, 10, 20]}, cv=cv)
clf.fit(X, y) # set the best parameters
coef_ = clf.best_estimator_.steps[-1][1].coef_
coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_)
coef_selection_ = coef_.reshape(size, size)

###
Inverse the transformation to plot the results on an image
pl.close(’all’)
pl.figure(figsize=(7.3, 2.7))
pl.subplot(1, 3, 1)
pl.imshow(coef, interpolation="nearest", cmap=pl.cm.RdBu_r)
pl.title("True weights")
pl.subplot(1, 3, 2)
pl.imshow(coef_selection_, interpolation="nearest", cmap=pl.cm.RdBu_r)
pl.title("Feature Selection")
pl.subplot(1, 3, 3)
pl.imshow(coef_agglomeration_, interpolation="nearest", cmap=pl.cm.RdBu_r)
pl.title("Feature Agglomeration")
pl.subplots_adjust(0.04, 0.0, 0.98, 0.94, 0.16, 0.26)
pl.show()

Attempt to remove the temporary cachedir, but don’t worry if it fails
shutil.rmtree(cachedir, ignore_errors=True)

Figure 2.42: A demo of K-Means clustering on the handwritten digits data

A demo of K-Means clustering on the handwritten digits data

In this example with compare the various initialization strategies for K-means in terms of runtime and quality of the
results.

768 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

As the ground truth is known here, we also apply different cluster quality metrics to judge the goodness of fit of the
cluster labels to the ground truth.

Cluster quality metrics evaluated (see Clustering performance evaluation for definitions and discussions of the met-
rics):

Shorthand full name
homo homogeneity score
compl completeness score
v-meas V measure
ARI adjusted Rand index
AMI adjusted mutual information
silhouette silhouette coefficient

Script output:

n_digits: 10, n_samples 1797, n_features 64

init time inertia homo compl v-meas ARI AMI silhouette
k-means++ 1.90s 69432 0.602 0.650 0.625 0.465 0.598 0.146

random 1.80s 69694 0.669 0.710 0.689 0.553 0.666 0.147
PCA-based 0.14s 71820 0.673 0.715 0.693 0.567 0.670 0.150

Python source code: plot_kmeans_digits.py

2.1. Examples 769

scikit-learn user guide, Release 0.12-git

print __doc__

from time import time
import numpy as np
import pylab as pl

from sklearn import metrics
from sklearn.cluster import KMeans
from sklearn.datasets import load_digits
from sklearn.decomposition import PCA
from sklearn.preprocessing import scale

np.random.seed(42)

digits = load_digits()
data = scale(digits.data)

n_samples, n_features = data.shape
n_digits = len(np.unique(digits.target))
labels = digits.target

sample_size = 300

print "n_digits: %d, \t n_samples %d, \t n_features %d" % (n_digits,
n_samples, n_features)

print 79 * ’_’
print (’% 9s’ % ’init’

’ time inertia homo compl v-meas ARI AMI silhouette’)

def bench_k_means(estimator, name, data):
t0 = time()
estimator.fit(data)
print ’% 9s %.2fs %i %.3f %.3f %.3f %.3f %.3f %.3f’ % (

name, (time() - t0), estimator.inertia_,
metrics.homogeneity_score(labels, estimator.labels_),
metrics.completeness_score(labels, estimator.labels_),
metrics.v_measure_score(labels, estimator.labels_),
metrics.adjusted_rand_score(labels, estimator.labels_),
metrics.adjusted_mutual_info_score(labels, estimator.labels_),
metrics.silhouette_score(data, estimator.labels_,

metric=’euclidean’,
sample_size=sample_size),

)

bench_k_means(KMeans(init=’k-means++’, n_clusters=n_digits, n_init=10),
name="k-means++", data=data)

bench_k_means(KMeans(init=’random’, n_clusters=n_digits, n_init=10),
name="random", data=data)

in this case the seeding of the centers is deterministic, hence we run the
kmeans algorithm only once with n_init=1
pca = PCA(n_components=n_digits).fit(data)
bench_k_means(KMeans(init=pca.components_, n_clusters=n_digits, n_init=1),

name="PCA-based",

770 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

data=data)
print 79 * ’_’

###
Visualize the results on PCA-reduced data

reduced_data = PCA(n_components=2).fit_transform(data)
kmeans = KMeans(init=’k-means++’, n_clusters=n_digits, n_init=10)
kmeans.fit(reduced_data)

Step size of the mesh. Decrease to increase the quality of the VQ.
h = .02 # point in the mesh [x_min, m_max]x[y_min, y_max].

Plot the decision boundary. For that, we will asign a color to each
x_min, x_max = reduced_data[:, 0].min() + 1, reduced_data[:, 0].max() - 1
y_min, y_max = reduced_data[:, 1].min() + 1, reduced_data[:, 1].max() - 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

Obtain labels for each point in mesh. Use last trained model.
Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()])

Put the result into a color plot
Z = Z.reshape(xx.shape)
pl.figure(1)
pl.clf()
pl.imshow(Z, interpolation=’nearest’,

extent=(xx.min(), xx.max(), yy.min(), yy.max()),
cmap=pl.cm.Paired,
aspect=’auto’, origin=’lower’)

pl.plot(reduced_data[:, 0], reduced_data[:, 1], ’k.’, markersize=2)
Plot the centroids as a white X
centroids = kmeans.cluster_centers_
pl.scatter(centroids[:, 0], centroids[:, 1],

marker=’x’, s=169, linewidths=3,
color=’w’, zorder=10)

pl.title(’K-means clustering on the digits dataset (PCA-reduced data)\n’
’Centroids are marked with white cross’)

pl.xlim(x_min, x_max)
pl.ylim(y_min, y_max)
pl.xticks(())
pl.yticks(())
pl.show()

Figure 2.43: Empirical evaluation of the impact of k-means initialization

2.1. Examples 771

scikit-learn user guide, Release 0.12-git

Empirical evaluation of the impact of k-means initialization

Evaluate the ability of k-means initializations strategies to make the algorithm convergence robust as measured by the
relative standard deviation of the inertia of the clustering (i.e. the sum of distances to the nearest cluster center).

The first plot shows the best inertia reached for each combination of the model (KMeans or MiniBatchKMeans)
and the init method (init="random" or init="kmeans++") for increasing values of the n_init parameter
that controls the number of initializations.

The second plot demonstrate one single run of the MiniBatchKMeans estimator using a init="random" and
n_init=1. This run leads to a bad convergence (local optimum) with estimated centers between stucked between
ground truth clusters.

The dataset used for evaluation is a 2D grid of isotropic gaussian clusters widely spaced.

•

•

Script output:

Evaluation of KMeans with k-means++ init
Evaluation of KMeans with random init
Evaluation of MiniBatchKMeans with k-means++ init
Evaluation of MiniBatchKMeans with random init

Python source code: plot_kmeans_stability_low_dim_dense.py

print __doc__

Author: Olivier Grisel <olivier.grisel@ensta.org>
License: Simplified BSD

import numpy as np

772 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

import pylab as pl
import matplotlib.cm as cm

from sklearn.utils import shuffle
from sklearn.utils import check_random_state
from sklearn.cluster import MiniBatchKMeans
from sklearn.cluster import KMeans

random_state = np.random.RandomState(0)

Number of run (with randomly generated dataset) for each strategy so as
to be able to compute an estimate of the standard deviation
n_runs = 5

k-means models can do several random inits so as to be able to trade
CPU time for convergence robustness
n_init_range = np.array([1, 5, 10, 15, 20])

Datasets generation parameters
n_samples_per_center = 100
grid_size = 3
scale = 0.1
n_clusters = grid_size ** 2

def make_data(random_state, n_samples_per_center, grid_size, scale):
random_state = check_random_state(random_state)
centers = np.array([[i, j]

for i in range(grid_size)
for j in range(grid_size)])

n_clusters_true, n_featues = centers.shape

noise = random_state.normal(
scale=scale, size=(n_samples_per_center, centers.shape[1]))

X = np.concatenate([c + noise for c in centers])
y = np.concatenate([[i] * n_samples_per_center

for i in range(n_clusters_true)])
return shuffle(X, y, random_state=random_state)

Part 1: Quantitative evaluation of various init methods

fig = pl.figure()
plots = []
legends = []

cases = [
(KMeans, ’k-means++’, {}),
(KMeans, ’random’, {}),
(MiniBatchKMeans, ’k-means++’, {’max_no_improvement’: 3}),
(MiniBatchKMeans, ’random’, {’max_no_improvement’: 3, ’init_size’: 500}),

]

for factory, init, params in cases:
print "Evaluation of %s with %s init" % (factory.__name__, init)
inertia = np.empty((len(n_init_range), n_runs))

for run_id in range(n_runs):

2.1. Examples 773

scikit-learn user guide, Release 0.12-git

X, y = make_data(run_id, n_samples_per_center, grid_size, scale)
for i, n_init in enumerate(n_init_range):

km = factory(n_clusters=n_clusters, init=init, random_state=run_id,
n_init=n_init, **params).fit(X)

inertia[i, run_id] = km.inertia_
p = pl.errorbar(n_init_range, inertia.mean(axis=1), inertia.std(axis=1))
plots.append(p[0])
legends.append("%s with %s init" % (factory.__name__, init))

pl.xlabel(’n_init’)
pl.ylabel(’inertia’)
pl.legend(plots, legends)
pl.title("Mean inertia for various k-means init across %d runs" % n_runs)

Part 2: Qualitative visual inspection of the convergence

X, y = make_data(random_state, n_samples_per_center, grid_size, scale)
km = MiniBatchKMeans(n_clusters=n_clusters, init=’random’, n_init=1,

random_state=random_state).fit(X)

fig = pl.figure()
for k in range(n_clusters):

my_members = km.labels_ == k
color = cm.spectral(float(k) / n_clusters, 1)
pl.plot(X[my_members, 0], X[my_members, 1], ’o’, marker=’.’, c=color)
cluster_center = km.cluster_centers_[k]
pl.plot(cluster_center[0], cluster_center[1], ’o’,

markerfacecolor=color, markeredgecolor=’k’, markersize=6)
pl.title("Example cluster allocation with a single random init\n"

"with MiniBatchKMeans")

pl.show()

Figure 2.44: Vector Quantization Example

Vector Quantization Example

The classic image processing example, Lena, an 8-bit grayscale bit-depth, 512 x 512 sized image, is used here to
illustrate how k-means is used for vector quantization.

•

774 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

•

•

•

Python source code: plot_lena_compress.py

print __doc__

Code source: Gael Varoqueux
Modified for Documentation merge by Jaques Grobler
License: BSD

import numpy as np
import scipy as sp
import pylab as pl

from sklearn import cluster

n_clusters = 5
np.random.seed(0)

try:
lena = sp.lena()

except AttributeError:
Newer versions of scipy have lena in misc
from scipy import misc
lena = misc.lena()

X = lena.reshape((-1, 1)) # We need an (n_sample, n_feature) array
k_means = cluster.KMeans(n_clusters=n_clusters, n_init=4)
k_means.fit(X)
values = k_means.cluster_centers_.squeeze()
labels = k_means.labels_

create an array from labels and values
lena_compressed = np.choose(labels, values)
lena_compressed.shape = lena.shape

vmin = lena.min()
vmax = lena.max()

2.1. Examples 775

scikit-learn user guide, Release 0.12-git

original lena
pl.figure(1, figsize=(3, 2.2))
pl.imshow(lena, cmap=pl.cm.gray, vmin=vmin, vmax=256)

compressed lena
pl.figure(2, figsize=(3, 2.2))
pl.imshow(lena_compressed, cmap=pl.cm.gray, vmin=vmin, vmax=vmax)

equal bins lena
regular_values = np.linspace(0, 256, n_clusters + 1)
regular_labels = np.searchsorted(regular_values, lena) - 1
regular_values = .5 * (regular_values[1:] + regular_values[:-1]) # mean
regular_lena = np.choose(regular_labels.ravel(), regular_values)
regular_lena.shape = lena.shape
pl.figure(3, figsize=(3, 2.2))
pl.imshow(regular_lena, cmap=pl.cm.gray, vmin=vmin, vmax=vmax)

histogram
pl.figure(4, figsize=(3, 2.2))
pl.clf()
pl.axes([.01, .01, .98, .98])
pl.hist(X, bins=256, color=’.5’, edgecolor=’.5’)
pl.yticks(())
pl.xticks(regular_values)
values = np.sort(values)
for center_1, center_2 in zip(values[:-1], values[1:]):

pl.axvline(.5 * (center_1 + center_2), color=’b’)

for center_1, center_2 in zip(regular_values[:-1], regular_values[1:]):
pl.axvline(.5 * (center_1 + center_2), color=’b’, linestyle=’--’)

pl.show()

Figure 2.45: Segmenting the picture of Lena in regions

Segmenting the picture of Lena in regions

This example uses Spectral clustering on a graph created from voxel-to-voxel difference on an image to break this
image into multiple partly-homogenous regions.

This procedure (spectral clustering on an image) is an efficient approximate solution for finding normalized graph cuts.

776 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Python source code: plot_lena_segmentation.py

print __doc__

Author: Gael Varoquaux <gael.varoquaux@normalesup.org>
License: BSD

import numpy as np
import scipy as sp
import pylab as pl

from sklearn.feature_extraction import image
from sklearn.cluster import spectral_clustering

lena = sp.misc.lena()
Downsample the image by a factor of 4
lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2]
lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2]

Convert the image into a graph with the value of the gradient on the
edges.
graph = image.img_to_graph(lena)

Take a decreasing function of the gradient: an exponential
The smaller beta is, the more independent the segmentation is of the

2.1. Examples 777

scikit-learn user guide, Release 0.12-git

actual image. For beta=1, the segmentation is close to a voronoi
beta = 5
eps = 1e-6
graph.data = np.exp(-beta * graph.data / lena.std()) + eps

Apply spectral clustering (this step goes much faster if you have pyamg
installed)
N_REGIONS = 11
labels = spectral_clustering(graph, n_clusters=N_REGIONS)
labels = labels.reshape(lena.shape)

###
Visualize the resulting regions
pl.figure(figsize=(5, 5))
pl.imshow(lena, cmap=pl.cm.gray)
for l in range(N_REGIONS):

pl.contour(labels == l, contours=1,
colors=[pl.cm.spectral(l / float(N_REGIONS)),])

pl.xticks(())
pl.yticks(())
pl.show()

Figure 2.46: A demo of structured Ward hierarchical clustering on Lena image

A demo of structured Ward hierarchical clustering on Lena image

Compute the segmentation of a 2D image with Ward hierarchical clustering. The clustering is spatially constrained in
order for each segmented region to be in one piece.

778 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Script output:

Compute structured hierarchical clustering...
Elaspsed time: 18.7588250637
Number of pixels: 65536
Number of clusters: 15

Python source code: plot_lena_ward_segmentation.py

Author : Vincent Michel, 2010
Alexandre Gramfort, 2011
License: BSD Style.

print __doc__

import time as time
import numpy as np
import scipy as sp
import pylab as pl
from sklearn.feature_extraction.image import grid_to_graph
from sklearn.cluster import Ward

###
Generate data
lena = sp.misc.lena()
Downsample the image by a factor of 4

2.1. Examples 779

scikit-learn user guide, Release 0.12-git

lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2]
X = np.reshape(lena, (-1, 1))

###
Define the structure A of the data. Pixels connected to their neighbors.
connectivity = grid_to_graph(*lena.shape)

###
Compute clustering
print "Compute structured hierarchical clustering..."
st = time.time()
n_clusters = 15 # number of regions
ward = Ward(n_clusters=n_clusters, connectivity=connectivity).fit(X)
label = np.reshape(ward.labels_, lena.shape)
print "Elaspsed time: ", time.time() - st
print "Number of pixels: ", label.size
print "Number of clusters: ", np.unique(label).size

###
Plot the results on an image
pl.figure(figsize=(5, 5))
pl.imshow(lena, cmap=pl.cm.gray)
for l in range(n_clusters):

pl.contour(label == l, contours=1,
colors=[pl.cm.spectral(l / float(n_clusters)),])

pl.xticks(())
pl.yticks(())
pl.show()

Figure 2.47: A demo of the mean-shift clustering algorithm

A demo of the mean-shift clustering algorithm

Reference:

Dorin Comaniciu and Peter Meer, “Mean Shift: A robust approach toward feature space analysis”. IEEE Transactions
on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619.

780 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Script output:

number of estimated clusters : 3

Python source code: plot_mean_shift.py

print __doc__

import numpy as np
from sklearn.cluster import MeanShift, estimate_bandwidth
from sklearn.datasets.samples_generator import make_blobs

###
Generate sample data
centers = [[1, 1], [-1, -1], [1, -1]]
X, _ = make_blobs(n_samples=10000, centers=centers, cluster_std=0.6)

###
Compute clustering with MeanShift

The following bandwidth can be automatically detected using
bandwidth = estimate_bandwidth(X, quantile=0.2, n_samples=500)

ms = MeanShift(bandwidth=bandwidth, bin_seeding=True)
ms.fit(X)
labels = ms.labels_
cluster_centers = ms.cluster_centers_

2.1. Examples 781

scikit-learn user guide, Release 0.12-git

labels_unique = np.unique(labels)
n_clusters_ = len(labels_unique)

print "number of estimated clusters : %d" % n_clusters_

###
Plot result
import pylab as pl
from itertools import cycle

pl.figure(1)
pl.clf()

colors = cycle(’bgrcmykbgrcmykbgrcmykbgrcmyk’)
for k, col in zip(range(n_clusters_), colors):

my_members = labels == k
cluster_center = cluster_centers[k]
pl.plot(X[my_members, 0], X[my_members, 1], col + ’.’)
pl.plot(cluster_center[0], cluster_center[1], ’o’, markerfacecolor=col,

markeredgecolor=’k’, markersize=14)
pl.title(’Estimated number of clusters: %d’ % n_clusters_)
pl.show()

Figure 2.48: A demo of the K Means clustering algorithm

A demo of the K Means clustering algorithm

We want to compare the performance of the MiniBatchKMeans and KMeans: the MiniBatchKMeans is faster, but
gives slightly different results (see Mini Batch K-Means).

We will cluster a set of data, first with KMeans and then with MiniBatchKMeans, and plot the results. We will also
plot the points that are labelled differently between the two algorithms.

Python source code: plot_mini_batch_kmeans.py

782 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

print __doc__

import time

import numpy as np
import pylab as pl

from sklearn.cluster import MiniBatchKMeans, KMeans
from sklearn.metrics.pairwise import euclidean_distances
from sklearn.datasets.samples_generator import make_blobs

##
Generate sample data
np.random.seed(0)

batch_size = 45
centers = [[1, 1], [-1, -1], [1, -1]]
n_clusters = len(centers)
X, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=0.7)

##
Compute clustering with Means

k_means = KMeans(init=’k-means++’, n_clusters=3, n_init=10)
t0 = time.time()
k_means.fit(X)
t_batch = time.time() - t0
k_means_labels = k_means.labels_
k_means_cluster_centers = k_means.cluster_centers_
k_means_labels_unique = np.unique(k_means_labels)

##
Compute clustering with MiniBatchKMeans

mbk = MiniBatchKMeans(init=’k-means++’, n_clusters=3, batch_size=batch_size,
n_init=10, max_no_improvement=10, verbose=0)

t0 = time.time()
mbk.fit(X)
t_mini_batch = time.time() - t0
mbk_means_labels = mbk.labels_
mbk_means_cluster_centers = mbk.cluster_centers_
mbk_means_labels_unique = np.unique(mbk_means_labels)

##
Plot result

fig = pl.figure(figsize=(8, 3))
fig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9)
colors = [’#4EACC5’, ’#FF9C34’, ’#4E9A06’]

We want to have the same colors for the same cluster from the
MiniBatchKMeans and the KMeans algorithm. Let’s pair the cluster centers per
closest one.

distance = euclidean_distances(k_means_cluster_centers,
mbk_means_cluster_centers,
squared=True)

order = distance.argmin(axis=1)

2.1. Examples 783

scikit-learn user guide, Release 0.12-git

KMeans
ax = fig.add_subplot(1, 3, 1)
for k, col in zip(range(n_clusters), colors):

my_members = k_means_labels == k
cluster_center = k_means_cluster_centers[k]
ax.plot(X[my_members, 0], X[my_members, 1], ’w’,

markerfacecolor=col, marker=’.’)
ax.plot(cluster_center[0], cluster_center[1], ’o’, markerfacecolor=col,

markeredgecolor=’k’, markersize=6)
ax.set_title(’KMeans’)
ax.set_xticks(())
ax.set_yticks(())
pl.text(-3.5, 1.8, ’train time: %.2fs\ninertia: %f’ % (

t_batch, k_means.inertia_))

MiniBatchKMeans
ax = fig.add_subplot(1, 3, 2)
for k, col in zip(range(n_clusters), colors):

my_members = mbk_means_labels == order[k]
cluster_center = mbk_means_cluster_centers[order[k]]
ax.plot(X[my_members, 0], X[my_members, 1], ’w’,

markerfacecolor=col, marker=’.’)
ax.plot(cluster_center[0], cluster_center[1], ’o’, markerfacecolor=col,

markeredgecolor=’k’, markersize=6)
ax.set_title(’MiniBatchKMeans’)
ax.set_xticks(())
ax.set_yticks(())
pl.text(-3.5, 1.8, ’train time: %.2fs\ninertia: %f’ %

(t_mini_batch, mbk.inertia_))

Initialise the different array to all False
different = (mbk_means_labels == 4)
ax = fig.add_subplot(1, 3, 3)

for l in range(n_clusters):
different += ((k_means_labels == k) != (mbk_means_labels == order[k]))

identic = np.logical_not(different)
ax.plot(X[identic, 0], X[identic, 1], ’w’,

markerfacecolor=’#bbbbbb’, marker=’.’)
ax.plot(X[different, 0], X[different, 1], ’w’,

markerfacecolor=’m’, marker=’.’)
ax.set_title(’Difference’)
ax.set_xticks(())
ax.set_yticks(())

pl.show()

Spectral clustering for image segmentation

In this example, an image with connected circles is generated and Spectral clustering is used to separate the circles.

In these settings, the spectral clustering approach solves the problem know as ‘normalized graph cuts’: the image is
seen as a graph of connected voxels, and the spectral clustering algorithm amounts to choosing graph cuts defining
regions while minimizing the ratio of the gradient along the cut, and the volume of the region.

As the algorithm tries to balance the volume (ie balance the region sizes), if we take circles with different sizes, the

784 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Figure 2.49: Spectral clustering for image segmentation

segmentation fails.

In addition, as there is no useful information in the intensity of the image, or its gradient, we choose to perform the
spectral clustering on a graph that is only weakly informed by the gradient. This is close to performing a Voronoi
partition of the graph.

In addition, we use the mask of the objects to restrict the graph to the outline of the objects. In this example, we are
interested in separating the objects one from the other, and not from the background.

•

•

2.1. Examples 785

scikit-learn user guide, Release 0.12-git

•

•

Python source code: plot_segmentation_toy.py

print __doc__

Authors: Emmanuelle Gouillart <emmanuelle.gouillart@normalesup.org>
Gael Varoquaux <gael.varoquaux@normalesup.org>
License: BSD

import numpy as np
import pylab as pl

from sklearn.feature_extraction import image
from sklearn.cluster import spectral_clustering

###
l = 100
x, y = np.indices((l, l))

center1 = (28, 24)
center2 = (40, 50)

786 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

center3 = (67, 58)
center4 = (24, 70)

radius1, radius2, radius3, radius4 = 16, 14, 15, 14

circle1 = (x - center1[0]) ** 2 + (y - center1[1]) ** 2 < radius1 ** 2
circle2 = (x - center2[0]) ** 2 + (y - center2[1]) ** 2 < radius2 ** 2
circle3 = (x - center3[0]) ** 2 + (y - center3[1]) ** 2 < radius3 ** 2
circle4 = (x - center4[0]) ** 2 + (y - center4[1]) ** 2 < radius4 ** 2

###
4 circles
img = circle1 + circle2 + circle3 + circle4
mask = img.astype(bool)
img = img.astype(float)

img += 1 + 0.2 * np.random.randn(*img.shape)

Convert the image into a graph with the value of the gradient on the
edges.
graph = image.img_to_graph(img, mask=mask)

Take a decreasing function of the gradient: we take it weakly
dependant from the gradient the segmentation is close to a voronoi
graph.data = np.exp(-graph.data / graph.data.std())

Force the solver to be arpack, since amg is numerically
unstable on this example
labels = spectral_clustering(graph, n_clusters=4, mode=’arpack’)
label_im = -np.ones(mask.shape)
label_im[mask] = labels

pl.matshow(img)
pl.matshow(label_im)

###
2 circles
img = circle1 + circle2
mask = img.astype(bool)
img = img.astype(float)

img += 1 + 0.2 * np.random.randn(*img.shape)

graph = image.img_to_graph(img, mask=mask)
graph.data = np.exp(-graph.data / graph.data.std())

labels = spectral_clustering(graph, n_clusters=2, mode=’arpack’)
label_im = -np.ones(mask.shape)
label_im[mask] = labels

pl.matshow(img)
pl.matshow(label_im)

pl.show()

2.1. Examples 787

scikit-learn user guide, Release 0.12-git

Figure 2.50: Hierarchical clustering: structured vs unstructured ward

Hierarchical clustering: structured vs unstructured ward

Example builds a swiss roll dataset and runs Hierarchical clustering on their position.

In a first step, the hierarchical clustering without connectivity constraints on structure, solely based on distance,
whereas in a second step clustering restricted to the k-Nearest Neighbors graph: it’s a hierarchical clustering with
structure prior.

Some of the clusters learned without connectivity constraints do not respect the structure of the swiss roll and extend
across different folds of the manifolds. On the opposite, when opposing connectivity constraints, the clusters form a
nice parcellation of the swiss roll.

•

•

Script output:

Compute unstructured hierarchical clustering...
Elapsed time: 0.912338972092
Number of points: 1000

788 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Compute structured hierarchical clustering...
Elapsed time: 0.172855138779
Number of points: 1000

Python source code: plot_ward_structured_vs_unstructured.py

Authors : Vincent Michel, 2010
Alexandre Gramfort, 2010
Gael Varoquaux, 2010
License: BSD

print __doc__

import time as time
import numpy as np
import pylab as pl
import mpl_toolkits.mplot3d.axes3d as p3
from sklearn.cluster import Ward
from sklearn.datasets.samples_generator import make_swiss_roll

###
Generate data (swiss roll dataset)
n_samples = 1000
noise = 0.05
X, _ = make_swiss_roll(n_samples, noise)
Make it thinner
X[:, 1] *= .5

###
Compute clustering
print "Compute unstructured hierarchical clustering..."
st = time.time()
ward = Ward(n_clusters=6).fit(X)
label = ward.labels_
print "Elapsed time: ", time.time() - st
print "Number of points: ", label.size

###
Plot result
fig = pl.figure()
ax = p3.Axes3D(fig)
ax.view_init(7, -80)
for l in np.unique(label):

ax.plot3D(X[label == l, 0], X[label == l, 1], X[label == l, 2],
’o’, color=pl.cm.jet(np.float(l) / np.max(label + 1)))

pl.title(’Without connectivity constraints’)

###
Define the structure A of the data. Here a 10 nearest neighbors
from sklearn.neighbors import kneighbors_graph
connectivity = kneighbors_graph(X, n_neighbors=10)

###
Compute clustering
print "Compute structured hierarchical clustering..."
st = time.time()
ward = Ward(n_clusters=6, connectivity=connectivity).fit(X)

2.1. Examples 789

scikit-learn user guide, Release 0.12-git

label = ward.labels_
print "Elapsed time: ", time.time() - st
print "Number of points: ", label.size

###
Plot result
fig = pl.figure()
ax = p3.Axes3D(fig)
ax.view_init(7, -80)
for l in np.unique(label):

ax.plot3D(X[label == l, 0], X[label == l, 1], X[label == l, 2],
’o’, color=pl.cm.jet(float(l) / np.max(label + 1)))

pl.title(’With connectivity constraints’)

pl.show()

2.1.4 Covariance estimation

Examples concerning the sklearn.covariance package.

Figure 2.51: Ledoit-Wolf vs Covariance simple estimation

Ledoit-Wolf vs Covariance simple estimation

The usual covariance maximum likelihood estimate can be regularized using shrinkage. Ledoit and Wolf proposed a
close formula to compute the asymptotical optimal shrinkage parameter (minimizing a MSE criterion), yielding the
Ledoit-Wolf covariance estimate.

Chen et al. proposed an improvement of the Ledoit-Wolf shrinkage parameter, the OAS coefficient, whose convergence
is significantly better under the assumption that the data are gaussian.

In this example, we compute the likelihood of unseen data for different values of the shrinkage parameter, highlighting
the LW and OAS estimates. The Ledoit-Wolf estimate stays close to the likelihood criterion optimal value, which is
an artifact of the method since it is asymptotic and we are working with a small number of observations. The OAS
estimate deviates from the likelihood criterion optimal value but better approximate the MSE optimal value, especially
for a small number a observations.

790 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Python source code: plot_covariance_estimation.py

print __doc__

import numpy as np
import pylab as pl
from scipy import linalg

###
Generate sample data
n_features, n_samples = 30, 20
base_X_train = np.random.normal(size=(n_samples, n_features))
base_X_test = np.random.normal(size=(n_samples, n_features))

Color samples
coloring_matrix = np.random.normal(size=(n_features, n_features))
X_train = np.dot(base_X_train, coloring_matrix)
X_test = np.dot(base_X_test, coloring_matrix)

###
Compute Ledoit-Wolf and Covariances on a grid of shrinkages

from sklearn.covariance import LedoitWolf, OAS, ShrunkCovariance, \
log_likelihood, empirical_covariance

Ledoit-Wolf optimal shrinkage coefficient estimate

2.1. Examples 791

scikit-learn user guide, Release 0.12-git

lw = LedoitWolf()
loglik_lw = lw.fit(X_train, assume_centered=True).score(

X_test, assume_centered=True)

OAS coefficient estimate
oa = OAS()
loglik_oa = oa.fit(X_train, assume_centered=True).score(

X_test, assume_centered=True)

spanning a range of possible shrinkage coefficient values
shrinkages = np.logspace(-3, 0, 30)
negative_logliks = [-ShrunkCovariance(shrinkage=s).fit(

X_train, assume_centered=True).score(X_test, assume_centered=True) \
for s in shrinkages]

getting the likelihood under the real model
real_cov = np.dot(coloring_matrix.T, coloring_matrix)
emp_cov = empirical_covariance(X_train)
loglik_real = -log_likelihood(emp_cov, linalg.inv(real_cov))

###
Plot results
pl.figure()
pl.title("Regularized covariance: likelihood and shrinkage coefficient")
pl.xlabel(’Shrinkage’)
pl.ylabel(’Negative log-likelihood’)
range shrinkage curve
pl.loglog(shrinkages, negative_logliks)

real likelihood reference
BUG: hlines(..., linestyle=’--’) breaks on some older versions of matplotlib
#pl.hlines(loglik_real, pl.xlim()[0], pl.xlim()[1], color=’red’,
label="real covariance likelihood", linestyle=’--’)
pl.plot(pl.xlim(), 2 * [loglik_real], ’--r’,

label="real covariance likelihood")

adjust view
lik_max = np.amax(negative_logliks)
lik_min = np.amin(negative_logliks)
ylim0 = lik_min - 5. * np.log((pl.ylim()[1] - pl.ylim()[0]))
ylim1 = lik_max + 10. * np.log(lik_max - lik_min)
LW likelihood
pl.vlines(lw.shrinkage_, ylim0, -loglik_lw, color=’g’,

linewidth=3, label=’Ledoit-Wolf estimate’)
OAS likelihood
pl.vlines(oa.shrinkage_, ylim0, -loglik_oa, color=’orange’,

linewidth=3, label=’OAS estimate’)

pl.ylim(ylim0, ylim1)
pl.xlim(shrinkages[0], shrinkages[-1])
pl.legend()
pl.show()

Ledoit-Wolf vs OAS estimation

The usual covariance maximum likelihood estimate can be regularized using shrinkage. Ledoit and Wolf proposed a
close formula to compute the asymptotical optimal shrinkage parameter (minimizing a MSE criterion), yielding the

792 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Figure 2.52: Ledoit-Wolf vs OAS estimation

Ledoit-Wolf covariance estimate.

Chen et al. proposed an improvement of the Ledoit-Wolf shrinkage parameter, the OAS coefficient, whose convergence
is significantly better under the assumption that the data are gaussian.

This example, inspired from Chen’s publication [1], shows a comparison of the estimated MSE of the LW and OAS
methods, using gaussian distributed data.

[1] “Shrinkage Algorithms for MMSE Covariance Estimation” Chen et al., IEEE Trans. on Sign. Proc., Volume 58,
Issue 10, October 2010.

Python source code: plot_lw_vs_oas.py

print __doc__

2.1. Examples 793

scikit-learn user guide, Release 0.12-git

import numpy as np
import pylab as pl
from scipy.linalg import toeplitz, cholesky

from sklearn.covariance import LedoitWolf, OAS

###
n_features = 100
simulation covariance matrix (AR(1) process)
r = 0.1
real_cov = toeplitz(r ** np.arange(n_features))
coloring_matrix = cholesky(real_cov)

n_samples_range = np.arange(6, 31, 1)
repeat = 100
lw_mse = np.zeros((n_samples_range.size, repeat))
oa_mse = np.zeros((n_samples_range.size, repeat))
lw_shrinkage = np.zeros((n_samples_range.size, repeat))
oa_shrinkage = np.zeros((n_samples_range.size, repeat))
for i, n_samples in enumerate(n_samples_range):

for j in range(repeat):
X = np.dot(

np.random.normal(size=(n_samples, n_features)), coloring_matrix.T)

lw = LedoitWolf(store_precision=False)
lw.fit(X, assume_centered=True)
lw_mse[i, j] = lw.error_norm(real_cov, scaling=False)
lw_shrinkage[i, j] = lw.shrinkage_

oa = OAS(store_precision=False)
oa.fit(X, assume_centered=True)
oa_mse[i, j] = oa.error_norm(real_cov, scaling=False)
oa_shrinkage[i, j] = oa.shrinkage_

plot MSE
pl.subplot(2, 1, 1)
pl.errorbar(n_samples_range, lw_mse.mean(1), yerr=lw_mse.std(1),

label=’Ledoit-Wolf’, color=’g’)
pl.errorbar(n_samples_range, oa_mse.mean(1), yerr=oa_mse.std(1),

label=’OAS’, color=’r’)
pl.ylabel("Squared error")
pl.legend(loc="upper right")
pl.title("Comparison of covariance estimators")
pl.xlim(5, 31)

plot shrinkage coefficient
pl.subplot(2, 1, 2)
pl.errorbar(n_samples_range, lw_shrinkage.mean(1), yerr=lw_shrinkage.std(1),

label=’Ledoit-Wolf’, color=’g’)
pl.errorbar(n_samples_range, oa_shrinkage.mean(1), yerr=oa_shrinkage.std(1),

label=’OAS’, color=’r’)
pl.xlabel("n_samples")
pl.ylabel("Shrinkage")
pl.legend(loc="lower right")
pl.ylim(pl.ylim()[0], 1. + (pl.ylim()[1] - pl.ylim()[0]) / 10.)
pl.xlim(5, 31)

pl.show()

794 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Figure 2.53: Robust covariance estimation and Mahalanobis distances relevance

Robust covariance estimation and Mahalanobis distances relevance

For Gaussian ditributed data, the distance of an observation xi to the mode of the distribution can be computed using
its Mahalanobis distance: d(µ,Σ)(xi)

2 = (xi − µ)′Σ−1(xi − µ) where µ and Σ are the location and the covariance of
the underlying gaussian distribution.

In practice, µ and Σ are replaced by some estimates. The usual covariance maximum likelihood estimate is very
sensitive to the presence of outliers in the data set and therefor, the corresponding Mahalanobis distances are. One
would better have to use a robust estimator of covariance to garanty that the estimation is resistant to “errorneous”
observations in the data set and that the associated Mahalanobis distances accurately reflect the true organisation of
the observations.

The Minimum Covariance Determinant estimator is a robust, high-breakdown point (i.e. it can be used to estimate the
covariance matrix of highly contaminated datasets, up to :math:‘ rac{n_samples-n_features-1}{2}‘ outliers) estimator
of covariance. The idea is to find :math:‘ rac{n_samples+n_features+1}{2}‘ observations whose empirical covariance
has the smallest determinant, yielding a “pure” subset of observations from which to compute standards estimates of
location and covariance.

The Minimum Covariance Determinant estimator (MCD) has been introduced by P.J.Rousseuw in [1].

This example illustrates how the Mahalanobis distances are affected by outlying data: observations drawn from a
contaminating distribution are not distinguishable from the observations comming from the real, Gaussian distribution
that one may want to work with. Using MCD-based Mahalanobis distances, the two populations become distinguish-
able. Associated applications are outliers detection, observations ranking, clustering, ... For vizualisation purpose, the
cubique root of the Mahalanobis distances are represented in the boxplot, as Wilson and Hilferty suggest [2]

[1] P. J. Rousseeuw. Least median of squares regression. J. Am Stat Ass, 79:871, 1984.

[2] Wilson, E. B., & Hilferty, M. M. (1931). The distribution of chi-square. Proceedings of the National
Academy of Sciences of the United States of America, 17, 684-688.

2.1. Examples 795

scikit-learn user guide, Release 0.12-git

Python source code: plot_mahalanobis_distances.py

print __doc__

import numpy as np
import pylab as pl

from sklearn.covariance import EmpiricalCovariance, MinCovDet

n_samples = 125
n_outliers = 25
n_features = 2

generate data
gen_cov = np.eye(n_features)
gen_cov[0, 0] = 2.
X = np.dot(np.random.randn(n_samples, n_features), gen_cov)
add some outliers
outliers_cov = np.eye(n_features)
outliers_cov[np.arange(1, n_features), np.arange(1, n_features)] = 7.
X[-n_outliers:] = np.dot(np.random.randn(n_outliers, n_features), outliers_cov)

fit a Minimum Covariance Determinant (MCD) robust estimator to data
robust_cov = MinCovDet().fit(X)

compare estimators learnt from the full data set with true parameters

796 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

emp_cov = EmpiricalCovariance().fit(X)

###
Display results
fig = pl.figure()
pl.subplots_adjust(hspace=-.1, wspace=.4, top=.95, bottom=.05)

Show data set
subfig1 = pl.subplot(3, 1, 1)
inlier_plot = subfig1.scatter(X[:, 0], X[:, 1],

color=’black’, label=’inliers’)
outlier_plot = subfig1.scatter(X[:, 0][-n_outliers:], X[:, 1][-n_outliers:],

color=’red’, label=’outliers’)
subfig1.set_xlim(subfig1.get_xlim()[0], 11.)
subfig1.set_title("Mahalanobis distances of a contaminated data set:")

Show contours of the distance functions
xx, yy = np.meshgrid(np.linspace(pl.xlim()[0], pl.xlim()[1], 100),

np.linspace(pl.ylim()[0], pl.ylim()[1], 100))
zz = np.c_[xx.ravel(), yy.ravel()]

mahal_emp_cov = emp_cov.mahalanobis(zz)
mahal_emp_cov = mahal_emp_cov.reshape(xx.shape)
emp_cov_contour = subfig1.contour(xx, yy, np.sqrt(mahal_emp_cov),

cmap=pl.cm.PuBu_r,
linestyles=’dashed’)

mahal_robust_cov = robust_cov.mahalanobis(zz)
mahal_robust_cov = mahal_robust_cov.reshape(xx.shape)
robust_contour = subfig1.contour(xx, yy, np.sqrt(mahal_robust_cov),

cmap=pl.cm.YlOrBr_r,
linestyles=’dotted’)

subfig1.legend([emp_cov_contour.collections[1],
robust_contour.collections[1], inlier_plot, outlier_plot],
[’MLE dist’, ’robust dist’, ’inliers’, ’outliers’],
loc="upper right", borderaxespad=0)

pl.xticks(())
pl.yticks(())

Plot the scores for each point
emp_mahal = emp_cov.mahalanobis(X - np.mean(X, 0)) ** (0.33)
subfig2 = pl.subplot(2, 2, 3)
subfig2.boxplot([emp_mahal[:-n_outliers], emp_mahal[-n_outliers:]], widths=.25)
subfig2.plot(1.26 * np.ones(n_samples - n_outliers),

emp_mahal[:-n_outliers], ’+k’, markeredgewidth=1)
subfig2.plot(2.26 * np.ones(n_outliers),

emp_mahal[-n_outliers:], ’+k’, markeredgewidth=1)
subfig2.axes.set_xticklabels((’inliers’, ’outliers’), size=15)
subfig2.set_ylabel(r"$\sqrt[3]{\rm{(Mahal. dist.)}}$", size=16)
subfig2.set_title("1. from non-robust estimates\n(Maximum Likelihood)")
pl.yticks(())

robust_mahal = robust_cov.mahalanobis(X - robust_cov.location_) ** (0.33)
subfig3 = pl.subplot(2, 2, 4)
subfig3.boxplot([robust_mahal[:-n_outliers], robust_mahal[-n_outliers:]],

widths=.25)
subfig3.plot(1.26 * np.ones(n_samples - n_outliers),

2.1. Examples 797

scikit-learn user guide, Release 0.12-git

robust_mahal[:-n_outliers], ’+k’, markeredgewidth=1)
subfig3.plot(2.26 * np.ones(n_outliers),

robust_mahal[-n_outliers:], ’+k’, markeredgewidth=1)
subfig3.axes.set_xticklabels((’inliers’, ’outliers’), size=15)
subfig3.set_ylabel(r"$\sqrt[3]{\rm{(Mahal. dist.)}}$", size=16)
subfig3.set_title("2. from robust estimates\n(Minimum Covariance Determinant)")
pl.yticks(())

pl.show()

Figure 2.54: Outlier detection with several methods.

Outlier detection with several methods.

This example illustrates two ways of performing Novelty and Outlier Detection when the amount of contamination is
known:

• based on a robust estimator of covariance, which is assuming that the data are Gaussian distributed and performs
better than the One-Class SVM in that case.

• using the One-Class SVM and its ability to capture the shape of the data set, hence performing better when the
data is strongly non-Gaussian, i.e. with two well-separated clusters;

The ground truth about inliers and outliers is given by the points colors while the orange-filled area indicates which
points are reported as outliers by each method.

Here, we assume that we know the fraction of outliers in the datasets. Thus rather than using the ‘predict’ method of
the objects, we set the threshold on the decision_function to separate out the corresponding fraction.

•

•

798 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

•

Python source code: plot_outlier_detection.py

print __doc__

import numpy as np
import pylab as pl
import matplotlib.font_manager
from scipy import stats

from sklearn import svm
from sklearn.covariance import EllipticEnvelope

Example settings
n_samples = 200
outliers_fraction = 0.25
clusters_separation = [0, 1, 2]

define two outlier detection tools to be compared
classifiers = {

"One-Class SVM": svm.OneClassSVM(nu=0.95 * outliers_fraction + 0.05,
kernel="rbf", gamma=0.1),

"robust covariance estimator": EllipticEnvelope(contamination=.1),
}

Compare given classifiers under given settings
xx, yy = np.meshgrid(np.linspace(-7, 7, 500), np.linspace(-7, 7, 500))
n_inliers = int((1. - outliers_fraction) * n_samples)
n_outliers = int(outliers_fraction * n_samples)
ground_truth = np.ones(n_samples, dtype=int)
ground_truth[-n_outliers:] = 0

Fit the problem with varying cluster separation
for i, offset in enumerate(clusters_separation):

np.random.seed(42)
Data generation
X1 = 0.3 * np.random.randn(0.5 * n_inliers, 2) - offset
X2 = 0.3 * np.random.randn(0.5 * n_inliers, 2) + offset
X = np.r_[X1, X2]
Add outliers
X = np.r_[X, np.random.uniform(low=-6, high=6, size=(n_outliers, 2))]

Fit the model with the One-Class SVM
pl.figure(figsize=(10, 5))
for i, (clf_name, clf) in enumerate(classifiers.iteritems()):

fit the data and tag outliers
clf.fit(X)
y_pred = clf.decision_function(X).ravel()
threshold = stats.scoreatpercentile(y_pred,

2.1. Examples 799

scikit-learn user guide, Release 0.12-git

100 * outliers_fraction)
y_pred = y_pred > threshold
n_errors = (y_pred != ground_truth).sum()
plot the levels lines and the points
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
subplot = pl.subplot(1, 2, i + 1)
subplot.set_title("Outlier detection")
subplot.contourf(xx, yy, Z, levels=np.linspace(Z.min(), threshold, 7),

cmap=pl.cm.Blues_r)
a = subplot.contour(xx, yy, Z, levels=[threshold],

linewidths=2, colors=’red’)
subplot.contourf(xx, yy, Z, levels=[threshold, Z.max()],

colors=’orange’)
b = subplot.scatter(X[:-n_outliers, 0], X[:-n_outliers, 1], c=’white’)
c = subplot.scatter(X[-n_outliers:, 0], X[-n_outliers:, 1], c=’black’)
subplot.axis(’tight’)
subplot.legend(

[a.collections[0], b, c],
[’learned decision function’, ’true inliers’, ’true outliers’],
prop=matplotlib.font_manager.FontProperties(size=11))

subplot.set_xlabel("%d. %s (errors: %d)" % (i + 1, clf_name, n_errors))
subplot.set_xlim((-7, 7))
subplot.set_ylim((-7, 7))

pl.subplots_adjust(0.04, 0.1, 0.96, 0.94, 0.1, 0.26)

pl.show()

Figure 2.55: Robust vs Empirical covariance estimate

Robust vs Empirical covariance estimate

The usual covariance maximum likelihood estimate is very sensitive to the presence of outliers in the data set. In
such a case, one would have better to use a robust estimator of covariance to garanty that the estimation is resistant to
“errorneous” observations in the data set.

The Minimum Covariance Determinant estimator is a robust, high-breakdown point (i.e. it can be used to estimate the
covariance matrix of highly contaminated datasets, up to :math:‘ rac{n_samples-n_features-1}{2}‘ outliers) estimator
of covariance. The idea is to find :math:‘ rac{n_samples+n_features+1}{2}‘ observations whose empirical covariance
has the smallest determinant, yielding a “pure” subset of observations from which to compute standards estimates of
location and covariance. After a correction step aiming at compensating the fact the the estimates were learnt from
only a portion of the initial data, we end up with robust estimates of the data set location and covariance.

The Minimum Covariance Determinant estimator (MCD) has been introduced by P.J.Rousseuw in [1].

In this example, we compare the estimation errors that are made when using three types of location and covariance
estimates on contaminated gaussian distributed data sets:

800 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

• The mean and the empirical covariance of the full dataset, which break down as soon as there are outliers in the
data set

• The robust MCD, that has a low error provided n_samples > 5 * n_features

• The mean and the empirical covariance of the observations that are known to be good ones. This can be consid-
ered as a “perfect” MCD estimation, so one can trust our implementation by comparing to this case.

[1] P. J. Rousseeuw. Least median of squares regression. J. Am Stat Ass, 79:871, 1984.

[2] Johanna Hardin, David M Rocke. Journal of Computational and Graphical Statistics. December 1, 2005,
14(4): 928-946.

Python source code: plot_robust_vs_empirical_covariance.py

print __doc__

import numpy as np
import pylab as pl
import matplotlib.font_manager

from sklearn.covariance import EmpiricalCovariance, MinCovDet

example settings
n_samples = 80
n_features = 5
repeat = 10

2.1. Examples 801

scikit-learn user guide, Release 0.12-git

range_n_outliers = np.concatenate(
(np.linspace(0, n_samples / 8, 5),
np.linspace(n_samples / 8, n_samples / 2, 5)[1:-1]))

definition of arrays to store results
err_loc_mcd = np.zeros((range_n_outliers.size, repeat))
err_cov_mcd = np.zeros((range_n_outliers.size, repeat))
err_loc_emp_full = np.zeros((range_n_outliers.size, repeat))
err_cov_emp_full = np.zeros((range_n_outliers.size, repeat))
err_loc_emp_pure = np.zeros((range_n_outliers.size, repeat))
err_cov_emp_pure = np.zeros((range_n_outliers.size, repeat))

computation
for i, n_outliers in enumerate(range_n_outliers):

for j in range(repeat):
generate data
X = np.random.randn(n_samples, n_features)
add some outliers
outliers_index = np.random.permutation(n_samples)[:n_outliers]
outliers_offset = 10. * \

(np.random.randint(2, size=(n_outliers, n_features)) - 0.5)
X[outliers_index] += outliers_offset
inliers_mask = np.ones(n_samples).astype(bool)
inliers_mask[outliers_index] = False

fit a Minimum Covariance Determinant (MCD) robust estimator to data
S = MinCovDet().fit(X)
compare raw robust estimates with the true location and covariance
err_loc_mcd[i, j] = np.sum(S.location_ ** 2)
err_cov_mcd[i, j] = S.error_norm(np.eye(n_features))
compare estimators learnt from the full data set with true parameters
err_loc_emp_full[i, j] = np.sum(X.mean(0) ** 2)
err_cov_emp_full[i, j] = EmpiricalCovariance().fit(X).error_norm(

np.eye(n_features))
compare with an empirical covariance learnt from a pure data set
(i.e. "perfect" MCD)
pure_X = X[inliers_mask]
pure_location = pure_X.mean(0)
pure_emp_cov = EmpiricalCovariance().fit(pure_X)
err_loc_emp_pure[i, j] = np.sum(pure_location ** 2)
err_cov_emp_pure[i, j] = pure_emp_cov.error_norm(np.eye(n_features))

Display results
font_prop = matplotlib.font_manager.FontProperties(size=11)
pl.subplot(2, 1, 1)
pl.errorbar(range_n_outliers, err_loc_mcd.mean(1),

yerr=err_loc_mcd.std(1) / np.sqrt(repeat),
label="Robust location", color=’m’)

pl.errorbar(range_n_outliers, err_loc_emp_full.mean(1),
yerr=err_loc_emp_full.std(1) / np.sqrt(repeat),
label="Full data set mean", color=’green’)

pl.errorbar(range_n_outliers, err_loc_emp_pure.mean(1),
yerr=err_loc_emp_pure.std(1) / np.sqrt(repeat),
label="Pure data set mean", color=’black’)

pl.title("Influence of outliers on the location estimation")
pl.ylabel(r"Error ($||\mu - \hat{\mu}||_2^2$)")
pl.legend(loc="upper left", prop=font_prop)

802 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

pl.subplot(2, 1, 2)
x_size = range_n_outliers.size
pl.errorbar(range_n_outliers, err_cov_mcd.mean(1),

yerr=err_cov_mcd.std(1),
label="Robust covariance (MCD)", color=’m’)

pl.errorbar(range_n_outliers[:(x_size / 5 + 1)],
err_cov_emp_full.mean(1)[:(x_size / 5 + 1)],
yerr=err_cov_emp_full.std(1)[:(x_size / 5 + 1)],
label="Full data set empirical covariance", color=’green’)

pl.plot(range_n_outliers[(x_size / 5):(x_size / 2 - 1)],
err_cov_emp_full.mean(1)[(x_size / 5):(x_size / 2 - 1)],
color=’green’, ls=’--’)

pl.errorbar(range_n_outliers, err_cov_emp_pure.mean(1),
yerr=err_cov_emp_pure.std(1),
label="Pure data set empirical covariance", color=’black’)

pl.title("Influence of outliers on the covariance estimation")
pl.xlabel("Amount of contamination (%)")
pl.ylabel("RMSE")
pl.legend(loc="upper center", prop=font_prop)

pl.show()

Figure 2.56: Sparse inverse covariance estimation

Sparse inverse covariance estimation

Using the GraphLasso estimator to learn a covariance and sparse precision from a small number of samples.

To estimate a probabilistic model (e.g. a Gaussian model), estimating the precision matrix, that is the inverse covari-
ance matrix, is as important as estimating the covariance matrix. Indeed a Gaussian model is parametrized by the
precision matrix.

To be in favorable recovery conditions, we sample the data from a model with a sparse inverse covariance matrix. In
addition, we ensure that the data is not too much correlated (limiting the largest coefficient of the precision matrix) and
that there a no small coefficients in the precision matrix that cannot be recovered. In addition, with a small number of
observations, it is easier to recover a correlation matrix rather than a covariance, thus we scale the time series.

Here, the number of samples is slightly larger than the number of dimensions, thus the empirical covariance is still
invertible. However, as the observations are strongly correlated, the empirical covariance matrix is ill-conditioned and
as a result its inverse –the empirical precision matrix– is very far from the ground truth.

If we use l2 shrinkage, as with the Ledoit-Wolf estimator, as the number of samples is small, we need to shrink a lot.
As a result, the Ledoit-Wolf precision is fairly close to the ground truth precision, that is not far from being diagonal,
but the off-diagonal structure is lost.

The l1-penalized estimator can recover part of this off-diagonal structure. It learns a sparse precision. It is not
able to recover the exact sparsity pattern: it detects too many non-zero coefficients. However, the highest non-zero
coefficients of the l1 estimated correspond to the non-zero coefficients in the ground truth. Finally, the coefficients of

2.1. Examples 803

scikit-learn user guide, Release 0.12-git

the l1 precision estimate are biased toward zero: because of the penalty, they are all smaller than the corresponding
ground truth value, as can be seen on the figure.

Note that, the color range of the precision matrices is tweeked to improve readibility of the figure. The full range of
values of the empirical precision is not displayed.

The alpha parameter of the GraphLasso setting the sparsity of the model is set by internal cross-validation in the
GraphLassoCV. As can be seen on figure 2, the grid to compute the cross-validation score is iteratively refined in the
neighborhood of the maximum.

•

•

Python source code: plot_sparse_cov.py

print __doc__
author: Gael Varoquaux <gael.varoquaux@inria.fr>
License: BSD Style
Copyright: INRIA

import numpy as np
from scipy import linalg
from sklearn.datasets import make_sparse_spd_matrix
from sklearn.covariance import GraphLassoCV, ledoit_wolf
import pylab as pl

##
Generate the data
n_samples = 60
n_features = 20

prng = np.random.RandomState(1)
prec = make_sparse_spd_matrix(n_features, alpha=.98,

smallest_coef=.4,
largest_coef=.7,
random_state=prng)

cov = linalg.inv(prec)
d = np.sqrt(np.diag(cov))
cov /= d
cov /= d[:, np.newaxis]

804 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

prec *= d
prec *= d[:, np.newaxis]
X = prng.multivariate_normal(np.zeros(n_features), cov, size=n_samples)
X -= X.mean(axis=0)
X /= X.std(axis=0)

##
Estimate the covariance
emp_cov = np.dot(X.T, X) / n_samples

model = GraphLassoCV()
model.fit(X)
cov_ = model.covariance_
prec_ = model.precision_

lw_cov_, _ = ledoit_wolf(X)
lw_prec_ = linalg.inv(lw_cov_)

##
Plot the results
pl.figure(figsize=(10, 6))
pl.subplots_adjust(left=0.02, right=0.98)

plot the covariances
covs = [(’Empirical’, emp_cov), (’Ledoit-Wolf’, lw_cov_),

(’GraphLasso’, cov_), (’True’, cov)]
vmax = cov_.max()
for i, (name, this_cov) in enumerate(covs):

pl.subplot(2, 4, i + 1)
pl.imshow(this_cov, interpolation=’nearest’, vmin=-vmax, vmax=vmax,

cmap=pl.cm.RdBu_r)
pl.xticks(())
pl.yticks(())
pl.title(’%s covariance’ % name)

plot the precisions
precs = [(’Empirical’, linalg.inv(emp_cov)), (’Ledoit-Wolf’, lw_prec_),

(’GraphLasso’, prec_), (’True’, prec)]
vmax = .9 * prec_.max()
for i, (name, this_prec) in enumerate(precs):

ax = pl.subplot(2, 4, i + 5)
pl.imshow(np.ma.masked_equal(this_prec, 0),

interpolation=’nearest’, vmin=-vmax, vmax=vmax,
cmap=pl.cm.RdBu_r)

pl.xticks(())
pl.yticks(())
pl.title(’%s precision’ % name)
ax.set_axis_bgcolor(’.7’)

plot the model selection metric
pl.figure(figsize=(4, 3))
pl.axes([.2, .15, .75, .7])
pl.plot(model.cv_alphas_, np.mean(model.cv_scores, axis=1), ’o-’)
pl.axvline(model.alpha_, color=’.5’)
pl.title(’Model selection’)
pl.ylabel(’Cross-validation score’)
pl.xlabel(’alpha’)

2.1. Examples 805

scikit-learn user guide, Release 0.12-git

pl.show()

2.1.5 Dataset examples

Examples concerning the sklearn.datasets package.

Figure 2.57: The Digit Dataset

The Digit Dataset

This dataset is made up of 1797 8x8 images. Each image, like the one shown below, is of a hand-written digit. In order
to ultilise an 8x8 figure like this, we’d have to first transform it into a feature vector with lengh 64.

See here for more information about this dataset.

Python source code: plot_digits_last_image.py

print __doc__

Code source: Gael Varoqueux
Modified for Documentation merge by Jaques Grobler
License: BSD

from sklearn import datasets

import pylab as pl

#Load the digits dataset

806 Chapter 2. Example Gallery

http://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits

scikit-learn user guide, Release 0.12-git

digits = datasets.load_digits()

#Display the first digit
pl.figure(1, figsize=(3, 3))
pl.imshow(digits.images[-1], cmap=pl.cm.gray_r, interpolation=’nearest’)
pl.show()

Figure 2.58: The Iris Dataset

The Iris Dataset

This data sets consists of 3 different types of irises’ (Setosa, Versicolour, and Virginica) petal and sepal length, stored
in a 150x4 numpy.ndarray

The rows being the samples and the columns being: Sepal Length, Sepal Width, Petal Length and Petal Width.

The below plot uses the first two features. See here for more information on this dataset.

Python source code: plot_iris_dataset.py

print __doc__

Code source: Gael Varoqueux
Modified for Documentation merge by Jaques Grobler
License: BSD

import pylab as pl
from sklearn import datasets

import some data to play with
iris = datasets.load_iris()

2.1. Examples 807

http://en.wikipedia.org/wiki/Iris_flower_data_set

scikit-learn user guide, Release 0.12-git

X = iris.data[:, :2] # we only take the first two features.
Y = iris.target

x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5

pl.figure(1, figsize=(4, 3))
pl.clf()

Plot also the training points
pl.scatter(X[:, 0], X[:, 1], c=Y, cmap=pl.cm.Paired)
pl.xlabel(’Sepal length’)
pl.ylabel(’Sepal width’)

pl.xlim(x_min, x_max)
pl.ylim(y_min, y_max)
pl.xticks(())
pl.yticks(())

pl.show()

Figure 2.59: Plot randomly generated classification dataset

Plot randomly generated classification dataset

Plot several randomly generated 2D classification datasets. This example illustrates the datasets.make_classification
function.

Three binary and two multi-class classification datasets are generated, with different numbers of informative features
and clusters per class.

808 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Python source code: plot_random_dataset.py

print __doc__

import pylab as pl

from sklearn.datasets import make_classification

pl.figure(figsize=(8, 6))
pl.subplots_adjust(bottom=.05, top=.9, left=.05, right=.95)

pl.subplot(221)
pl.title("One informative feature, one cluster", fontsize=’small’)
X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=1,

n_clusters_per_class=1)
pl.scatter(X1[:, 0], X1[:, 1], marker=’o’, c=Y1)

pl.subplot(222)
pl.title("Two informative features, one cluster", fontsize=’small’)
X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2,

n_clusters_per_class=1)
pl.scatter(X1[:, 0], X1[:, 1], marker=’o’, c=Y1)

pl.subplot(223)
pl.title("Two informative features, two clusters", fontsize=’small’)
X2, Y2 = make_classification(n_features=2, n_redundant=0, n_informative=2)

2.1. Examples 809

scikit-learn user guide, Release 0.12-git

pl.scatter(X2[:, 0], X2[:, 1], marker=’o’, c=Y2)

pl.subplot(224)
pl.title("Multi-class, two informative features, one cluster",

fontsize=’small’)
X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2,

n_clusters_per_class=1, n_classes=3)
pl.scatter(X1[:, 0], X1[:, 1], marker=’o’, c=Y1)

pl.show()

2.1.6 Decomposition

Examples concerning the sklearn.decomposition package.

Figure 2.60: Faces dataset decompositions

Faces dataset decompositions

This example applies to The Olivetti faces dataset different unsupervised matrix decomposition (dimension reduction)
methods from the module sklearn.decomposition (see the documentation chapter Decomposing signals in
components (matrix factorization problems)) .

•

810 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

•

•

•

•

2.1. Examples 811

scikit-learn user guide, Release 0.12-git

•

•

Script output:

Dataset consists of 400 faces
Extracting the top 6 Eigenfaces - RandomizedPCA...
done in 0.491s
Extracting the top 6 Non-negative components - NMF...
done in 2.500s
Extracting the top 6 Independent components - FastICA...
done in 1.971s
Extracting the top 6 Sparse comp. - MiniBatchSparsePCA...
done in 1.763s
Extracting the top 6 MiniBatchDictionaryLearning...
done in 1.350s
Extracting the top 6 Cluster centers - MiniBatchKMeans...
done in 0.463s

Python source code: plot_faces_decomposition.py

print __doc__

Authors: Vlad Niculae, Alexandre Gramfort
License: BSD

import logging
from time import time

from numpy.random import RandomState
import pylab as pl

from sklearn.datasets import fetch_olivetti_faces

812 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

from sklearn.cluster import MiniBatchKMeans
from sklearn import decomposition

Display progress logs on stdout
logging.basicConfig(level=logging.INFO,

format=’%(asctime)s %(levelname)s %(message)s’)
n_row, n_col = 2, 3
n_components = n_row * n_col
image_shape = (64, 64)
rng = RandomState(0)

###
Load faces data
dataset = fetch_olivetti_faces(shuffle=True, random_state=rng)
faces = dataset.data

n_samples, n_features = faces.shape

global centering
faces_centered = faces - faces.mean(axis=0)

local centering
faces_centered -= faces_centered.mean(axis=1).reshape(n_samples, -1)

print "Dataset consists of %d faces" % n_samples

###
def plot_gallery(title, images):

pl.figure(figsize=(2. * n_col, 2.26 * n_row))
pl.suptitle(title, size=16)
for i, comp in enumerate(images):

pl.subplot(n_row, n_col, i + 1)
vmax = max(comp.max(), -comp.min())
pl.imshow(comp.reshape(image_shape), cmap=pl.cm.gray,

interpolation=’nearest’,
vmin=-vmax, vmax=vmax)

pl.xticks(())
pl.yticks(())

pl.subplots_adjust(0.01, 0.05, 0.99, 0.93, 0.04, 0.)

###
List of the different estimators, whether to center and transpose the
problem, and whether the transformer uses the clustering API.
estimators = [

(’Eigenfaces - RandomizedPCA’,
decomposition.RandomizedPCA(n_components=n_components, whiten=True),
True),

(’Non-negative components - NMF’,
decomposition.NMF(n_components=n_components, init=’nndsvda’, beta=5.0,

tol=5e-3, sparseness=’components’),
False),

(’Independent components - FastICA’,
decomposition.FastICA(n_components=n_components, whiten=True,

max_iter=10),
True),

2.1. Examples 813

scikit-learn user guide, Release 0.12-git

(’Sparse comp. - MiniBatchSparsePCA’,
decomposition.MiniBatchSparsePCA(n_components=n_components, alpha=0.8,

n_iter=100, chunk_size=3,
random_state=rng),

True),

(’MiniBatchDictionaryLearning’,
decomposition.MiniBatchDictionaryLearning(n_atoms=15, alpha=0.1,

n_iter=50, chunk_size=3,
random_state=rng),

True),

(’Cluster centers - MiniBatchKMeans’,
MiniBatchKMeans(n_clusters=n_components, tol=1e-3, batch_size=20,

max_iter=50, random_state=rng),
True)

]

###
Plot a sample of the input data

plot_gallery("First centered Olivetti faces", faces_centered[:n_components])

###
Do the estimation and plot it

for name, estimator, center in estimators:
print "Extracting the top %d %s..." % (n_components, name)
t0 = time()
data = faces
if center:

data = faces_centered
estimator.fit(data)
train_time = (time() - t0)
print "done in %0.3fs" % train_time
if hasattr(estimator, ’cluster_centers_’):

components_ = estimator.cluster_centers_
else:

components_ = estimator.components_
plot_gallery(’%s - Train time %.1fs’ % (name, train_time),

components_[:n_components])

pl.show()

Figure 2.61: Blind source separation using FastICA

814 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Blind source separation using FastICA

Independent component analysis (ICA) is used to estimate sources given noisy measurements. Imagine 2 instruments
playing simultaneously and 2 microphones recording the mixed signals. ICA is used to recover the sources ie. what is
played by each instrument.

Python source code: plot_ica_blind_source_separation.py

print __doc__

import numpy as np
import pylab as pl
from sklearn.decomposition import FastICA

###
Generate sample data
np.random.seed(0)
n_samples = 2000
time = np.linspace(0, 10, n_samples)
s1 = np.sin(2 * time) # Signal 1 : sinusoidal signal
s2 = np.sign(np.sin(3 * time)) # Signal 2 : square signal
S = np.c_[s1, s2]
S += 0.2 * np.random.normal(size=S.shape) # Add noise

S /= S.std(axis=0) # Standardize data
Mix data

2.1. Examples 815

scikit-learn user guide, Release 0.12-git

A = np.array([[1, 1], [0.5, 2]]) # Mixing matrix
X = np.dot(S, A.T) # Generate observations
Compute ICA
ica = FastICA()
S_ = ica.fit(X).transform(X) # Get the estimated sources
A_ = ica.get_mixing_matrix() # Get estimated mixing matrix
assert np.allclose(X, np.dot(S_, A_.T))

###
Plot results
pl.figure()
pl.subplot(3, 1, 1)
pl.plot(S)
pl.title(’True Sources’)
pl.subplot(3, 1, 2)
pl.plot(X)
pl.title(’Observations (mixed signal)’)
pl.subplot(3, 1, 3)
pl.plot(S_)
pl.title(’ICA estimated sources’)
pl.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.36)
pl.show()

Figure 2.62: FastICA on 2D point clouds

FastICA on 2D point clouds

Illustrate visually the results of Independent component analysis (ICA) vs Principal component analysis (PCA) in the
feature space.

Representing ICA in the feature space gives the view of ‘geometric ICA’: ICA is an algorithm that finds directions in
the feature space corresponding to projections with high non-Gaussianity. These directions need not be orthogonal in
the original feature space, but they are orthogonal in the whitened feature space, in which all directions correspond to
the same variance.

PCA, on the other hand, finds orthogonal directions in the raw feature space that correspond to directions accounting
for maximum variance.

Here we simulate independent sources using a highly non-Gaussian process, 2 student T with a low number of degrees
of freedom (top left figure). We mix them to create observations (top right figure). In this raw observation space, di-
rections identified by PCA are represented by green vectors. We represent the signal in the PCA space, after whitening
by the variance corresponding to the PCA vectors (lower left). Running ICA corresponds to finding a rotation in this
space to identify the directions of largest non-Gaussianity (lower right).

816 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Python source code: plot_ica_vs_pca.py

print __doc__

Authors: Alexandre Gramfort, Gael Varoquaux
License: BSD

import numpy as np
import pylab as pl

from sklearn.decomposition import PCA, FastICA

###
Generate sample data
rng = np.random.RandomState(42)
S = rng.standard_t(1.5, size=(20000, 2))
S[:, 0] *= 2.

Mix data
A = np.array([[1, 1], [0, 2]]) # Mixing matrix

X = np.dot(S, A.T) # Generate observations

pca = PCA()
S_pca_ = pca.fit(X).transform(X)

2.1. Examples 817

scikit-learn user guide, Release 0.12-git

ica = FastICA(random_state=rng)
S_ica_ = ica.fit(X).transform(X) # Estimate the sources

S_ica_ /= S_ica_.std(axis=0)

###
Plot results

def plot_samples(S, axis_list=None):
pl.scatter(S[:, 0], S[:, 1], s=2, marker=’o’, linewidths=0, zorder=10)
if axis_list is not None:

colors = [(0, 0.6, 0), (0.6, 0, 0)]
for color, axis in zip(colors, axis_list):

axis /= axis.std()
x_axis, y_axis = axis
Trick to get legend to work
pl.plot(0.1 * x_axis, 0.1 * y_axis, linewidth=2, color=color)
pl.quiver(x_axis, y_axis, x_axis, y_axis, zorder=11, width=0.01,
pl.quiver(0, 0, x_axis, y_axis, zorder=11, width=0.01,

scale=6, color=color)

pl.hlines(0, -3, 3)
pl.vlines(0, -3, 3)
pl.xlim(-3, 3)
pl.ylim(-3, 3)
pl.xlabel(’x’)
pl.ylabel(’y’)

pl.subplot(2, 2, 1)
plot_samples(S / S.std())
pl.title(’True Independent Sources’)

axis_list = [pca.components_.T, ica.get_mixing_matrix()]
pl.subplot(2, 2, 2)
plot_samples(X / np.std(X), axis_list=axis_list)
pl.legend([’PCA’, ’ICA’], loc=’upper left’)
pl.title(’Observations’)

pl.subplot(2, 2, 3)
plot_samples(S_pca_ / np.std(S_pca_, axis=0))
pl.title(’PCA scores’)

pl.subplot(2, 2, 4)
plot_samples(S_ica_ / np.std(S_ica_))
pl.title(’ICA estimated sources’)

pl.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.26)

pl.show()

Image denoising using dictionary learning

An example comparing the effect of reconstructing noisy fragments of Lena using online Dictionary Learning and
various transform methods.

The dictionary is fitted on the non-distorted left half of the image, and subsequently used to reconstruct the right half.

818 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Figure 2.63: Image denoising using dictionary learning

A common practice for evaluating the results of image denoising is by looking at the difference between the recon-
struction and the original image. If the reconstruction is perfect this will look like gaussian noise.

It can be seen from the plots that the results of Orthogonal Matching Pursuit (OMP) with two non-zero coefficients is
a bit less biased than when keeping only one (the edges look less prominent). It is in addition closer from the ground
truth in Frobenius norm.

The result of Least Angle Regression is much more strongly biased: the difference is reminiscent of the local intensity
value of the original image.

Thresholding is clearly not useful for denoising, but it is here to show that it can produce a suggestive output with
very high speed, and thus be useful for other tasks such as object classification, where performance is not necessarily
related to visualisation.

•

•

•

2.1. Examples 819

scikit-learn user guide, Release 0.12-git

•

•

•

Script output:

Distorting image...
Extracting clean patches...
done in 0.27s.
Learning the dictionary...
done in 9.67s.
Extracting noisy patches...
done in 0.19s.
Orthogonal Matching Pursuit
1 atom ...
done in 6.15s.
Orthogonal Matching Pursuit
2 atoms ...
done in 9.46s.
Least-angle regression
5 atoms ...
done in 50.56s.
Thresholding
alpha=0.1 ...

done in 0.97s.

Python source code: plot_image_denoising.py

print __doc__

from time import time

820 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

import pylab as pl
import numpy as np

from scipy.misc import lena

from sklearn.decomposition import MiniBatchDictionaryLearning
from sklearn.feature_extraction.image import extract_patches_2d
from sklearn.feature_extraction.image import reconstruct_from_patches_2d

###
Load Lena image and extract patches

lena = lena() / 256.0

downsample for higher speed
lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2]
lena /= 4.0
height, width = lena.shape

Distort the right half of the image
print ’Distorting image...’
distorted = lena.copy()
distorted[:, height / 2:] += 0.075 * np.random.randn(width, height / 2)

Extract all clean patches from the left half of the image
print ’Extracting clean patches...’
t0 = time()
patch_size = (7, 7)
data = extract_patches_2d(distorted[:, :height / 2], patch_size)
data = data.reshape(data.shape[0], -1)
data -= np.mean(data, axis=0)
data /= np.std(data, axis=0)
print ’done in %.2fs.’ % (time() - t0)

###
Learn the dictionary from clean patches

print ’Learning the dictionary... ’
t0 = time()
dico = MiniBatchDictionaryLearning(n_atoms=100, alpha=1, n_iter=500)
V = dico.fit(data).components_
dt = time() - t0
print ’done in %.2fs.’ % dt

pl.figure(figsize=(4.2, 4))
for i, comp in enumerate(V[:100]):

pl.subplot(10, 10, i + 1)
pl.imshow(comp.reshape(patch_size), cmap=pl.cm.gray_r,

interpolation=’nearest’)
pl.xticks(())
pl.yticks(())

pl.suptitle(’Dictionary learned from Lena patches\n’ +
’Train time %.1fs on %d patches’ % (dt, len(data)),
fontsize=16)

pl.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23)

###

2.1. Examples 821

scikit-learn user guide, Release 0.12-git

Display the distorted image

def show_with_diff(image, reference, title):
"""Helper function to display denoising"""
pl.figure(figsize=(5, 3.3))
pl.subplot(1, 2, 1)
pl.title(’Image’)
pl.imshow(image, vmin=0, vmax=1, cmap=pl.cm.gray, interpolation=’nearest’)
pl.xticks(())
pl.yticks(())
pl.subplot(1, 2, 2)
difference = image - reference

pl.title(’Difference (norm: %.2f)’ % np.sqrt(np.sum(difference ** 2)))
pl.imshow(difference, vmin=-0.5, vmax=0.5, cmap=pl.cm.PuOr,

interpolation=’nearest’)
pl.xticks(())
pl.yticks(())
pl.suptitle(title, size=16)
pl.subplots_adjust(0.02, 0.02, 0.98, 0.79, 0.02, 0.2)

show_with_diff(distorted, lena, ’Distorted image’)

###
Extract noisy patches and reconstruct them using the dictionary

print ’Extracting noisy patches... ’
t0 = time()
data = extract_patches_2d(distorted[:, height / 2:], patch_size)
data = data.reshape(data.shape[0], -1)
intercept = np.mean(data, axis=0)
data -= intercept
print ’done in %.2fs.’ % (time() - t0)

transform_algorithms = [
(’Orthogonal Matching Pursuit\n1 atom’, ’omp’,
{’transform_n_nonzero_coefs’: 1}),

(’Orthogonal Matching Pursuit\n2 atoms’, ’omp’,
{’transform_n_nonzero_coefs’: 2}),

(’Least-angle regression\n5 atoms’, ’lars’,
{’transform_n_nonzero_coefs’: 5}),

(’Thresholding\n alpha=0.1’, ’threshold’, {’transform_alpha’: .1})]

reconstructions = {}
for title, transform_algorithm, kwargs in transform_algorithms:

print title, ’... ’
reconstructions[title] = lena.copy()
t0 = time()
dico.set_params(transform_algorithm=transform_algorithm, **kwargs)
code = dico.transform(data)
patches = np.dot(code, V)

if transform_algorithm == ’threshold’:
patches -= patches.min()
patches /= patches.max()

patches += intercept
patches = patches.reshape(len(data), *patch_size)

822 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

if transform_algorithm == ’threshold’:
patches -= patches.min()
patches /= patches.max()

reconstructions[title][:, height / 2:] = reconstruct_from_patches_2d(
patches, (width, height / 2))

dt = time() - t0
print ’done in %.2fs.’ % dt
show_with_diff(reconstructions[title], lena,

title + ’ (time: %.1fs)’ % dt)

pl.show()

Figure 2.64: Kernel PCA

Kernel PCA

This example shows that Kernel PCA is able to find a projection of the data that makes data linearly separable.

2.1. Examples 823

scikit-learn user guide, Release 0.12-git

Python source code: plot_kernel_pca.py

print __doc__

Authors: Mathieu Blondel
Andreas Mueller
License: BSD

import numpy as np
import pylab as pl

from sklearn.decomposition import PCA, KernelPCA
from sklearn.datasets import make_circles

np.random.seed(0)

X, y = make_circles(n_samples=400, factor=.3, noise=.05)

kpca = KernelPCA(kernel="rbf", fit_inverse_transform=True, gamma=10)
X_kpca = kpca.fit_transform(X)
X_back = kpca.inverse_transform(X_kpca)
pca = PCA()
X_pca = pca.fit_transform(X)

Plot results

824 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

pl.figure()
pl.subplot(2, 2, 1, aspect=’equal’)
pl.title("Original space")
reds = y == 0
blues = y == 1

pl.plot(X[reds, 0], X[reds, 1], "ro")
pl.plot(X[blues, 0], X[blues, 1], "bo")
pl.xlabel("x_1")
pl.ylabel("x_2")

X1, X2 = np.meshgrid(np.linspace(-1.5, 1.5, 50), np.linspace(-1.5, 1.5, 50))
X_grid = np.array([np.ravel(X1), np.ravel(X2)]).T
projection on the first principal component (in the phi space)
Z_grid = kpca.transform(X_grid)[:, 0].reshape(X1.shape)
pl.contour(X1, X2, Z_grid, colors=’grey’, linewidths=1, origin=’lower’)

pl.subplot(2, 2, 2, aspect=’equal’)
pl.plot(X_pca[reds, 0], X_pca[reds, 1], "ro")
pl.plot(X_pca[blues, 0], X_pca[blues, 1], "bo")
pl.title("Projection by PCA")
pl.xlabel("1st principal component")
pl.ylabel("2nd component")

pl.subplot(2, 2, 3, aspect=’equal’)
pl.plot(X_kpca[reds, 0], X_kpca[reds, 1], "ro")
pl.plot(X_kpca[blues, 0], X_kpca[blues, 1], "bo")
pl.title("Projection by KPCA")
pl.xlabel("1st principal component in space induced by ϕ")
pl.ylabel("2nd component")

pl.subplot(2, 2, 4, aspect=’equal’)
pl.plot(X_back[reds, 0], X_back[reds, 1], "ro")
pl.plot(X_back[blues, 0], X_back[blues, 1], "bo")
pl.title("Original space after inverse transform")
pl.xlabel("x_1")
pl.ylabel("x_2")

pl.subplots_adjust(0.02, 0.10, 0.98, 0.94, 0.04, 0.35)

pl.show()

Figure 2.65: Principal Component Analysis

Principal Component Analysis

These figures aid in illustrating how a the point cloud can be very flad in one direction - which is where PCA would
come in to choose a direction that is not flat.

2.1. Examples 825

scikit-learn user guide, Release 0.12-git

•

•

Python source code: plot_pca_3d.py

print __doc__

Code source: Gael Varoqueux
Modified for Documentation merge by Jaques Grobler
License: BSD

import pylab as pl
import numpy as np
from scipy import stats
from mpl_toolkits.mplot3d import Axes3D

e = np.exp(1)
np.random.seed(4)

def pdf(x):
return 0.5 * (stats.norm(scale=0.25 / e).pdf(x)

+ stats.norm(scale=4 / e).pdf(x))

y = np.random.normal(scale=0.5, size=(30000))
x = np.random.normal(scale=0.5, size=(30000))
z = np.random.normal(scale=0.1, size=len(x))

density = pdf(x) * pdf(y)
pdf_z = pdf(5 * z)

density *= pdf_z

a = x + y
b = 2 * y
c = a - b + z

norm = np.sqrt(a.var() + b.var())
a /= norm
b /= norm

826 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

###
Plot the figures
def plot_figs(fig_num, elev, azim):

fig = pl.figure(fig_num, figsize=(4, 3))
pl.clf()
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=elev, azim=azim)

ax.scatter(a[::10], b[::10], c[::10], c=density, marker=’+’,
alpha=.4)

Y = np.c_[a, b, c]
U, pca_score, V = np.linalg.svd(Y, full_matrices=False)
x_pca_axis, y_pca_axis, z_pca_axis = V.T * pca_score / pca_score.min()

x_pca_axis, y_pca_axis, z_pca_axis = 3 * V.T
x_pca_plane = np.r_[x_pca_axis[:2], - x_pca_axis[1::-1]]
y_pca_plane = np.r_[y_pca_axis[:2], - y_pca_axis[1::-1]]
z_pca_plane = np.r_[z_pca_axis[:2], - z_pca_axis[1::-1]]
x_pca_plane.shape = (2, 2)
y_pca_plane.shape = (2, 2)
z_pca_plane.shape = (2, 2)
ax.plot_surface(x_pca_plane, y_pca_plane, z_pca_plane)
ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])

elev = -40
azim = -80
plot_figs(1, elev, azim)

elev = 30
azim = 20
plot_figs(2, elev, azim)

pl.show()

Figure 2.66: PCA example with Iris Data-set

2.1. Examples 827

scikit-learn user guide, Release 0.12-git

PCA example with Iris Data-set

Python source code: plot_pca_iris.py

print __doc__

Code source: Gael Varoqueux
License: BSD

import numpy as np
import pylab as pl
from mpl_toolkits.mplot3d import Axes3D

from sklearn import decomposition
from sklearn import datasets

np.random.seed(5)

centers = [[1, 1], [-1, -1], [1, -1]]
iris = datasets.load_iris()
X = iris.data
y = iris.target

fig = pl.figure(1, figsize=(4, 3))
pl.clf()
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)

pl.cla()
pca = decomposition.PCA(n_components=3)
pca.fit(X)
X = pca.transform(X)

for name, label in [(’Setosa’, 0), (’Versicolour’, 1), (’Virginica’, 2)]:
ax.text3D(X[y == label, 0].mean(),

X[y == label, 1].mean() + 1.5,
X[y == label, 2].mean(), name,

828 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

horizontalalignment=’center’,
bbox=dict(alpha=.5, edgecolor=’w’, facecolor=’w’),
)

Reorder the labels to have colors matching the cluster results
y = np.choose(y, [1, 2, 0]).astype(np.float)
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=y, cmap=pl.cm.spectral)

x_surf = [X[:, 0].min(), X[:, 0].max(),
X[:, 0].min(), X[:, 0].max()]

y_surf = [X[:, 0].max(), X[:, 0].max(),
X[:, 0].min(), X[:, 0].min()]

x_surf = np.array(x_surf)
y_surf = np.array(y_surf)
v0 = pca.transform(pca.components_[0])
v0 /= v0[-1]
v1 = pca.transform(pca.components_[1])
v1 /= v1[-1]

ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])

pl.show()

Figure 2.67: Comparison of LDA and PCA 2D projection of Iris dataset

Comparison of LDA and PCA 2D projection of Iris dataset

The Iris dataset represents 3 kind of Iris flowers (Setosa, Versicolour and Virginica) with 4 attributes: sepal length,
sepal width, petal length and petal width.

Principal Component Analysis (PCA) applied to this data identifies the combination of attributes (principal compo-
nents, or directions in the feature space) that account for the most variance in the data. Here we plot the different
samples on the 2 first principal components.

Linear Discriminant Analysis (LDA) tries to identify attributes that account for the most variance between classes. In
particular, LDA, in constrast to PCA, is a supervised method, using known class labels.

2.1. Examples 829

scikit-learn user guide, Release 0.12-git

•

•

Script output:

explained variance ratio (first two components): [0.92461621 0.05301557]

Python source code: plot_pca_vs_lda.py

print __doc__

import pylab as pl

from sklearn import datasets
from sklearn.decomposition import PCA
from sklearn.lda import LDA

iris = datasets.load_iris()

X = iris.data
y = iris.target
target_names = iris.target_names

pca = PCA(n_components=2)
X_r = pca.fit(X).transform(X)

lda = LDA(n_components=2)
X_r2 = lda.fit(X, y).transform(X)

Percentage of variance explained for each components
print ’explained variance ratio (first two components):’, \

pca.explained_variance_ratio_

830 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

pl.figure()
for c, i, target_name in zip("rgb", [0, 1, 2], target_names):

pl.scatter(X_r[y == i, 0], X_r[y == i, 1], c=c, label=target_name)
pl.legend()
pl.title(’PCA of IRIS dataset’)

pl.figure()
for c, i, target_name in zip("rgb", [0, 1, 2], target_names):

pl.scatter(X_r2[y == i, 0], X_r2[y == i, 1], c=c, label=target_name)
pl.legend()
pl.title(’LDA of IRIS dataset’)

pl.show()

Figure 2.68: Sparse coding with a precomputed dictionary

Sparse coding with a precomputed dictionary

Transform a signal as a sparse combination of Ricker wavelets. This example visually compares different sparse coding
methods using the sklearn.decomposition.SparseCoder estimator. The Ricker (also known as mexican
hat or the second derivative of a gaussian) is not a particularily good kernel to represent piecewise constant signals
like this one. It can therefore be seen how much adding different widths of atoms matters and it therefore motivates
learning the dictionary to best fit your type of signals.

The richer dictionary on the right is not larger in size, heavier subsampling is performed in order to stay on the same
order of magnitude.

2.1. Examples 831

scikit-learn user guide, Release 0.12-git

Python source code: plot_sparse_coding.py

print __doc__

import numpy as np
import matplotlib.pylab as pl

from sklearn.decomposition import SparseCoder

def ricker_function(resolution, center, width):
"""Discrete sub-sampled Ricker (mexican hat) wavelet"""
x = np.linspace(0, resolution - 1, resolution)
x = (2 / ((np.sqrt(3 * width) * np.pi ** 1 / 4))) * (

1 - ((x - center) ** 2 / width ** 2)) * np.exp(
(-(x - center) ** 2) / (2 * width ** 2))

return x

def ricker_matrix(width, resolution, n_atoms):
"""Dictionary of Ricker (mexican hat) wavelets"""
centers = np.linspace(0, resolution - 1, n_atoms)
D = np.empty((n_atoms, resolution))
for i, center in enumerate(centers):

D[i] = ricker_function(resolution, center, width)
D /= np.sqrt(np.sum(D ** 2, axis=1))[:, np.newaxis]
return D

resolution = 1024
subsampling = 3 # subsampling factor
width = 100
n_atoms = resolution / subsampling

Compute a wavelet dictionary
D_fixed = ricker_matrix(width=width, resolution=resolution, n_atoms=n_atoms)
D_multi = np.r_[tuple(ricker_matrix(width=w, resolution=resolution,

n_atoms=np.floor(n_atoms / 5))
for w in (10, 50, 100, 500, 1000))]

Generate a signal
y = np.linspace(0, resolution - 1, resolution)
first_quarter = y < resolution / 4
y[first_quarter] = 3.
y[np.logical_not(first_quarter)] = -1.

List the different sparse coding methods in the following format:
(title, transform_algorithm, transform_alpha, transform_n_nozero_coefs)
estimators = [(’OMP’, ’omp’, None, 15),

(’Lasso’, ’lasso_cd’, 2, None),
]

pl.figure(figsize=(13, 6))
for subplot, (D, title) in enumerate(zip((D_fixed, D_multi),

(’fixed width’, ’multiple widths’))):
pl.subplot(1, 2, subplot + 1)
pl.title(’Sparse coding against %s dictionary’ % title)
pl.plot(y, ls=’dotted’, label=’Original signal’)
Do a wavelet approximation

832 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

for title, algo, alpha, n_nonzero in estimators:
coder = SparseCoder(dictionary=D, transform_n_nonzero_coefs=n_nonzero,

transform_alpha=alpha, transform_algorithm=algo)
x = coder.transform(y)
density = len(np.flatnonzero(x))
x = np.ravel(np.dot(x, D))
squared_error = np.sum((y - x) ** 2)
pl.plot(x, label=’%s: %s nonzero coefs,\n%.2f error’ %

(title, density, squared_error))

Soft thresholding debiasing
coder = SparseCoder(dictionary=D, transform_algorithm=’threshold’,

transform_alpha=20)
x = coder.transform(y)
_, idx = np.where(x != 0)
x[0, idx], _, _, _ = np.linalg.lstsq(D[idx, :].T, y)
x = np.ravel(np.dot(x, D))
squared_error = np.sum((y - x) ** 2)
pl.plot(x,

label=’Thresholding w/ debiasing:\n%d nonzero coefs, %.2f error’ %
(len(idx), squared_error))

pl.axis(’tight’)
pl.legend()

pl.subplots_adjust(.04, .07, .97, .90, .09, .2)
pl.show()

2.1.7 Ensemble methods

Examples concerning the sklearn.ensemble package.

Figure 2.69: Feature importances with forests of trees

Feature importances with forests of trees

This examples shows the use of forests of trees to evaluate the importance of features on an artifical classification task.
The red plots are the feature importances of each individual tree, and the blue plot is the feature importance of the
whole forest.

As expected, the knee in the blue plot suggests that 3 features are informative, while the remaining are not.

2.1. Examples 833

scikit-learn user guide, Release 0.12-git

Script output:

Feature ranking:
1. feature 1 (0.245865)
2. feature 0 (0.194416)
3. feature 2 (0.174455)
4. feature 7 (0.057138)
5. feature 8 (0.055967)
6. feature 4 (0.055516)
7. feature 5 (0.055179)
8. feature 9 (0.054639)
9. feature 3 (0.053921)
10. feature 6 (0.052904)

Python source code: plot_forest_importances.py

print __doc__

import numpy as np

from sklearn.datasets import make_classification
from sklearn.ensemble import ExtraTreesClassifier

Build a classification task using 3 informative features
X, y = make_classification(n_samples=1000,

n_features=10,

834 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

n_informative=3,
n_redundant=0,
n_repeated=0,
n_classes=2,
random_state=0,
shuffle=False)

Build a forest and compute the feature importances
forest = ExtraTreesClassifier(n_estimators=250,

compute_importances=True,
random_state=0)

forest.fit(X, y)
importances = forest.feature_importances_
indices = np.argsort(importances)[::-1]

Print the feature ranking
print "Feature ranking:"

for f in xrange(10):
print "%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]])

Plot the feature importances of the trees and of the forest
import pylab as pl
pl.figure()
pl.title("Feature importances")

for tree in forest.estimators_:
pl.plot(xrange(10), tree.feature_importances_[indices], "r")

pl.plot(xrange(10), importances[indices], "b")
pl.show()

Figure 2.70: Pixel importances with a parallel forest of trees

Pixel importances with a parallel forest of trees

This example shows the use of forests of trees to evaluate the importance of the pixels in an image classification task
(faces). The hotter the pixel, the more important.

The code below also illustrates how the construction and the computation of the predictions can be parallelized within
multiple jobs.

2.1. Examples 835

scikit-learn user guide, Release 0.12-git

Script output:

Fitting ExtraTreesClassifier on faces data with 1 cores...
done in 25.886s

Python source code: plot_forest_importances_faces.py

print __doc__

from time import time
import pylab as pl

from sklearn.datasets import fetch_olivetti_faces
from sklearn.ensemble import ExtraTreesClassifier

Number of cores to use to perform parallel fitting of the forest model
n_jobs = 1

Loading the digits dataset

836 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

data = fetch_olivetti_faces()
X = data.images.reshape((len(data.images), -1))
y = data.target

mask = y < 5 # Limit to 5 classes
X = X[mask]
y = y[mask]

Build a forest and compute the pixel importances
print "Fitting ExtraTreesClassifier on faces data with %d cores..." % n_jobs
t0 = time()
forest = ExtraTreesClassifier(n_estimators=1000,

max_features=128,
compute_importances=True,
n_jobs=n_jobs,
random_state=0)

forest.fit(X, y)
print "done in %0.3fs" % (time() - t0)
importances = forest.feature_importances_
importances = importances.reshape(data.images[0].shape)

Plot pixel importances
pl.matshow(importances, cmap=pl.cm.hot)
pl.title("Pixel importances with forests of trees")
pl.show()

Figure 2.71: Plot the decision surfaces of ensembles of trees on the iris dataset

Plot the decision surfaces of ensembles of trees on the iris dataset

Plot the decision surfaces of forests of randomized trees trained on pairs of features of the iris dataset.

This plot compares the decision surfaces learned by a decision tree classifier (first column), by a random forest classi-
fier (second column) and by an extra- trees classifier (third column).

In the first row, the classifiers are built using the sepal width and the sepal length features only, on the second row
using the petal length and sepal length only, and on the third row using the petal width and the petal length only.

2.1. Examples 837

scikit-learn user guide, Release 0.12-git

Python source code: plot_forest_iris.py

print __doc__

import numpy as np
import pylab as pl

from sklearn import clone
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier
from sklearn.tree import DecisionTreeClassifier

Parameters
n_classes = 3
n_estimators = 30
plot_colors = "bry"
plot_step = 0.02

Load data
iris = load_iris()

plot_idx = 1

for pair in ([0, 1], [0, 2], [2, 3]):
for model in (DecisionTreeClassifier(),

RandomForestClassifier(n_estimators=n_estimators),

838 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

ExtraTreesClassifier(n_estimators=n_estimators)):
We only take the two corresponding features
X = iris.data[:, pair]
y = iris.target

Shuffle
idx = np.arange(X.shape[0])
np.random.seed(13)
np.random.shuffle(idx)
X = X[idx]
y = y[idx]

Standardize
mean = X.mean(axis=0)
std = X.std(axis=0)
X = (X - mean) / std

Train
clf = clone(model)
clf = model.fit(X, y)

Plot the decision boundary
pl.subplot(3, 3, plot_idx)

x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),

np.arange(y_min, y_max, plot_step))

if isinstance(model, DecisionTreeClassifier):
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
cs = pl.contourf(xx, yy, Z, cmap=pl.cm.Paired)

else:
for tree in model.estimators_:

Z = tree.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
cs = pl.contourf(xx, yy, Z, alpha=0.1, cmap=pl.cm.Paired)

pl.axis("tight")

Plot the training points
for i, c in zip(xrange(n_classes), plot_colors):

idx = np.where(y == i)
pl.scatter(X[idx, 0], X[idx, 1], c=c, label=iris.target_names[i],

cmap=pl.cm.Paired)

pl.axis("tight")

plot_idx += 1

pl.suptitle("Decision surfaces of a decision tree, of a random forest, and of "
"an extra-trees classifier")

pl.show()

2.1. Examples 839

scikit-learn user guide, Release 0.12-git

Figure 2.72: Gradient Boosting regression

Gradient Boosting regression

Demonstrate Gradient Boosting on the boston housing dataset.

This example fits a Gradient Boosting model with least squares loss and 500 regression trees of depth 4.

Script output:

MSE: 6.2736

Python source code: plot_gradient_boosting_regression.py

print __doc__

Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
#
License: BSD

import numpy as np
import pylab as pl
from sklearn import ensemble
from sklearn import datasets
from sklearn.utils import shuffle
from sklearn.metrics import mean_squared_error

###

840 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Load data
boston = datasets.load_boston()
X, y = shuffle(boston.data, boston.target, random_state=13)
X = X.astype(np.float32)
offset = int(X.shape[0] * 0.9)
X_train, y_train = X[:offset], y[:offset]
X_test, y_test = X[offset:], y[offset:]

###
Fit regression model
params = {’n_estimators’: 500, ’max_depth’: 4, ’min_samples_split’: 1,

’learn_rate’: 0.01, ’loss’: ’ls’}
clf = ensemble.GradientBoostingRegressor(**params)

clf.fit(X_train, y_train)
mse = mean_squared_error(y_test, clf.predict(X_test))
print("MSE: %.4f" % mse)

###
Plot training deviance

compute test set deviance
test_score = np.zeros((params[’n_estimators’],), dtype=np.float64)

for i, y_pred in enumerate(clf.staged_decision_function(X_test)):
test_score[i] = clf.loss_(y_test, y_pred)

pl.figure(figsize=(12, 6))
pl.subplot(1, 2, 1)
pl.title(’Deviance’)
pl.plot(np.arange(params[’n_estimators’]) + 1, clf.train_score_, ’b-’,

label=’Training Set Deviance’)
pl.plot(np.arange(params[’n_estimators’]) + 1, test_score, ’r-’,

label=’Test Set Deviance’)
pl.legend(loc=’upper right’)
pl.xlabel(’Boosting Iterations’)
pl.ylabel(’Deviance’)

###
Plot feature importance
feature_importance = clf.feature_importances_
make importances relative to max importance
feature_importance = 100.0 * (feature_importance / feature_importance.max())
sorted_idx = np.argsort(feature_importance)
pos = np.arange(sorted_idx.shape[0]) + .5
pl.subplot(1, 2, 2)
pl.barh(pos, feature_importance[sorted_idx], align=’center’)
pl.yticks(pos, boston.feature_names[sorted_idx])
pl.xlabel(’Relative Importance’)
pl.title(’Variable Importance’)
pl.show()

Gradient Boosting regularization

Illustration of the effect of different regularization strategies for Gradient Boosting. The example is taken from Hastie
et al 2009.

2.1. Examples 841

scikit-learn user guide, Release 0.12-git

Figure 2.73: Gradient Boosting regularization

The loss function used is binomial deviance. In combination with shrinkage, stochastic gradient boosting (Sample 0.5)
can produce more accurate models. Subsampling without shrinkage usually does poorly.

Python source code: plot_gradient_boosting_regularization.py

print __doc__

Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
#
License: BSD

import numpy as np
import pylab as pl
from sklearn import ensemble

842 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

from sklearn import datasets

X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1)
X = X.astype(np.float32)

X_train, X_test = X[:2000], X[2000:]
y_train, y_test = y[:2000], y[2000:]

original_params = {’n_estimators’: 1000, ’max_depth’: 2, ’random_state’: 1,
’min_samples_split’: 5}

pl.figure()

for label, color, setting in [(’No shrinkage’, ’orange’,
{’learn_rate’: 1.0, ’subsample’: 1.0}),
(’Shrink=0.1’, ’turquoise’,
{’learn_rate’: 0.1, ’subsample’: 1.0}),
(’Sample=0.5’, ’blue’,
{’learn_rate’: 1.0, ’subsample’: 0.5}),
(’Shrink=0.1, Sample=0.5’, ’gray’,
{’learn_rate’: 0.1, ’subsample’: 0.5})]:

params = dict(original_params)
params.update(setting)

clf = ensemble.GradientBoostingClassifier(**params)
clf.fit(X_train, y_train)

compute test set deviance
test_deviance = np.zeros((params[’n_estimators’],), dtype=np.float64)

for i, y_pred in enumerate(clf.staged_decision_function(X_test)):
test_deviance[i] = clf.loss_(y_test, y_pred)

pl.plot(np.arange(test_deviance.shape[0]) + 1, test_deviance, ’-’,
color=color, label=label)

pl.title(’Deviance’)
pl.legend(loc=’upper left’)
pl.xlabel(’Boosting Iterations’)
pl.ylabel(’Test Set Deviance’)

pl.show()

2.1.8 Tutorial exercices

Exercises for the tutorials

Figure 2.74: Cross-validation on diabetes Dataset Exercise

2.1. Examples 843

scikit-learn user guide, Release 0.12-git

Cross-validation on diabetes Dataset Exercise

This exercise is used in the Cross-validated estimators part of the Model selection: choosing estimators and their
parameters section of the A tutorial on statistical-learning for scientific data processing.

Script output:

[0.10000000000000001, 0.10000000000000001, 0.10000000000000001]

Python source code: plot_cv_diabetes.py

print __doc__

import numpy as np
import pylab as pl

from sklearn import cross_validation, datasets, linear_model

diabetes = datasets.load_diabetes()
X = diabetes.data
y = diabetes.target

lasso = linear_model.Lasso()

alphas = np.logspace(-4, -1, 20)

scores = list()
scores_std = list()

for alpha in alphas:
lasso.alpha = alpha
this_scores = cross_validation.cross_val_score(lasso, X, y, n_jobs=1)
scores.append(np.mean(this_scores))
scores_std.append(np.std(this_scores))

pl.figure(1, figsize=(2.5, 2))
pl.clf()
pl.axes([.1, .25, .8, .7])
pl.semilogx(alphas, scores)
pl.semilogx(alphas, np.array(scores) + np.array(scores_std) / 20, ’b--’)
pl.semilogx(alphas, np.array(scores) - np.array(scores_std) / 20, ’b--’)
pl.yticks(())
pl.ylabel(’CV score’)
pl.xlabel(’alpha’)
pl.axhline(np.max(scores), linestyle=’--’, color=’.5’)

844 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

pl.text(2e-4, np.max(scores) + 1e-4, ’.489’)

##
Bonus: how much can you trust the selection of alpha?
k_fold = cross_validation.KFold(len(X), 3)
print [lasso.fit(X[train], y[train]).alpha for train, _ in k_fold]

Figure 2.75: Cross-validation on Digits Dataset Exercise

Cross-validation on Digits Dataset Exercise

This exercise is used in the Cross-validation generators part of the Model selection: choosing estimators and their
parameters section of the A tutorial on statistical-learning for scientific data processing.

Python source code: plot_cv_digits.py

print __doc__

import numpy as np
from sklearn import cross_validation, datasets, svm

digits = datasets.load_digits()
X = digits.data
y = digits.target

svc = svm.SVC()
C_s = np.logspace(1, 10, 10)

scores = list()
scores_std = list()
for C in C_s:

svc.C = C
this_scores = cross_validation.cross_val_score(svc, X, y, n_jobs=1)
scores.append(np.mean(this_scores))
scores_std.append(np.std(this_scores))

import pylab as pl
pl.figure(1, figsize=(2.5, 2))

2.1. Examples 845

scikit-learn user guide, Release 0.12-git

pl.clf()
pl.axes([.1, .25, .8, .7])
pl.semilogx(C_s, scores)
pl.semilogx(C_s, np.array(scores) + np.array(scores_std), ’b--’)
pl.semilogx(C_s, np.array(scores) - np.array(scores_std), ’b--’)
pl.yticks(())
pl.ylabel(’CV score’)
pl.xlabel(’Parameter C’)
pl.ylim(0, 1.1)
#pl.axhline(np.max(scores), linestyle=’--’, color=’.5’)
pl.text(C_s[np.argmax(scores)], .9 * np.max(scores), ’%.3f’ % np.max(scores),

verticalalignment=’top’, horizontalalignment=’center’,)
pl.show()

Figure 2.76: Digits Classification Exercise

Digits Classification Exercise

This exercise is used in the Classification part of the Supervised learning: predicting an output variable from high-
dimensional observations section of the A tutorial on statistical-learning for scientific data processing.

Script output:

KNN score: 0.961111
LogisticRegression score: 0.938889

Python source code: plot_digits_classification_exercise.py

print __doc__

from sklearn import datasets, neighbors, linear_model

digits = datasets.load_digits()
X_digits = digits.data
y_digits = digits.target

n_samples = len(X_digits)

X_train = X_digits[:.9 * n_samples]
y_train = y_digits[:.9 * n_samples]
X_test = X_digits[.9 * n_samples:]
y_test = y_digits[.9 * n_samples:]

knn = neighbors.KNeighborsClassifier()
logistic = linear_model.LogisticRegression()

print(’KNN score: %f’ %

846 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

knn.fit(X_train, y_train).score(X_test, y_test))
print(’LogisticRegression score: %f’ %

logistic.fit(X_train, y_train).score(X_test, y_test))

Figure 2.77: SVM Exercise

SVM Exercise

This exercise is used in the Using kernels part of the Supervised learning: predicting an output variable from high-
dimensional observations section of the A tutorial on statistical-learning for scientific data processing.

•

•

Python source code: plot_iris_exercise.py

print __doc__

import numpy as np
import pylab as pl

2.1. Examples 847

scikit-learn user guide, Release 0.12-git

from sklearn import datasets, svm

iris = datasets.load_iris()
X = iris.data
y = iris.target

X = X[y != 0, :2]
y = y[y != 0]

n_sample = len(X)

np.random.seed(0)
order = np.random.permutation(n_sample)
X = X[order]
y = y[order].astype(np.float)

X_train = X[:.9 * n_sample]
y_train = y[:.9 * n_sample]
X_test = X[.9 * n_sample:]
y_test = y[.9 * n_sample:]

fit the model
for fig_num, kernel in enumerate((’linear’, ’rbf’, ’poly’)):

clf = svm.SVC(kernel=kernel, gamma=10)
clf.fit(X_train, y_train)

pl.figure(fig_num)
pl.clf()
pl.scatter(X[:, 0], X[:, 1], c=y, zorder=10, cmap=pl.cm.Paired)

Circle out the test data
pl.scatter(X_test[:, 0], X_test[:, 1],

s=80, facecolors=’none’, zorder=10)

pl.axis(’tight’)
x_min = X[:, 0].min()
x_max = X[:, 0].max()
y_min = X[:, 1].min()
y_max = X[:, 1].max()

XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()])

Put the result into a color plot
Z = Z.reshape(XX.shape)
pl.pcolormesh(XX, YY, Z > 0, cmap=pl.cm.Paired)
pl.contour(XX, YY, Z, colors=[’k’, ’k’, ’k’],

linestyles=[’--’, ’-’, ’--’],
levels=[-.5, 0, .5])

pl.title(kernel)
pl.show()

2.1.9 Gaussian Process for Machine Learning

Examples concerning the sklearn.gaussian_process package.

848 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Figure 2.78: Gaussian Processes classification example: exploiting the probabilistic output

Gaussian Processes classification example: exploiting the probabilistic output

A two-dimensional regression exercise with a post-processing allowing for probabilistic classification thanks to the
Gaussian property of the prediction.

The figure illustrates the probability that the prediction is negative with respect to the remaining uncertainty in the
prediction. The red and blue lines corresponds to the 95% confidence interval on the prediction of the zero level set.

Python source code: plot_gp_probabilistic_classification_after_regression.py

print __doc__

Author: Vincent Dubourg <vincent.dubourg@gmail.com>
License: BSD style

2.1. Examples 849

scikit-learn user guide, Release 0.12-git

import numpy as np
from scipy import stats
from sklearn.gaussian_process import GaussianProcess
from matplotlib import pyplot as pl
from matplotlib import cm

Standard normal distribution functions
phi = stats.distributions.norm().pdf
PHI = stats.distributions.norm().cdf
PHIinv = stats.distributions.norm().ppf

A few constants
lim = 8

def g(x):
"""The function to predict (classification will then consist in predicting
whether g(x) <= 0 or not)"""
return 5. - x[:, 1] - .5 * x[:, 0] ** 2.

Design of experiments
X = np.array([[-4.61611719, -6.00099547],

[4.10469096, 5.32782448],
[0.00000000, -0.50000000],
[-6.17289014, -4.6984743],
[1.3109306, -6.93271427],
[-5.03823144, 3.10584743],
[-2.87600388, 6.74310541],
[5.21301203, 4.26386883]])

Observations
y = g(X)

Instanciate and fit Gaussian Process Model
gp = GaussianProcess(theta0=5e-1)

Don’t perform MLE or you’ll get a perfect prediction for this simple example!
gp.fit(X, y)

Evaluate real function, the prediction and its MSE on a grid
res = 50
x1, x2 = np.meshgrid(np.linspace(- lim, lim, res), \

np.linspace(- lim, lim, res))
xx = np.vstack([x1.reshape(x1.size), x2.reshape(x2.size)]).T

y_true = g(xx)
y_pred, MSE = gp.predict(xx, eval_MSE=True)
sigma = np.sqrt(MSE)
y_true = y_true.reshape((res, res))
y_pred = y_pred.reshape((res, res))
sigma = sigma.reshape((res, res))
k = PHIinv(.975)

Plot the probabilistic classification iso-values using the Gaussian property
of the prediction
fig = pl.figure(1)
ax = fig.add_subplot(111)
ax.axes.set_aspect(’equal’)

850 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

pl.xticks([])
pl.yticks([])
ax.set_xticklabels([])
ax.set_yticklabels([])
pl.xlabel(’x_1’)
pl.ylabel(’x_2’)

cax = pl.imshow(np.flipud(PHI(- y_pred / sigma)), cmap=cm.gray_r, alpha=0.8, \
extent=(- lim, lim, - lim, lim))

norm = pl.matplotlib.colors.Normalize(vmin=0., vmax=0.9)
cb = pl.colorbar(cax, ticks=[0., 0.2, 0.4, 0.6, 0.8, 1.], norm=norm)
cb.set_label(’${\\rm \mathbb{P}}\left[\widehat{G}(\mathbf{x}) \leq 0\\right]$’)

pl.plot(X[y <= 0, 0], X[y <= 0, 1], ’r.’, markersize=12)

pl.plot(X[y > 0, 0], X[y > 0, 1], ’b.’, markersize=12)

cs = pl.contour(x1, x2, y_true, [0.], colors=’k’, \
linestyles=’dashdot’)

cs = pl.contour(x1, x2, PHI(- y_pred / sigma), [0.025], colors=’b’, \
linestyles=’solid’)

pl.clabel(cs, fontsize=11)

cs = pl.contour(x1, x2, PHI(- y_pred / sigma), [0.5], colors=’k’, \
linestyles=’dashed’)

pl.clabel(cs, fontsize=11)

cs = pl.contour(x1, x2, PHI(- y_pred / sigma), [0.975], colors=’r’, \
linestyles=’solid’)

pl.clabel(cs, fontsize=11)

pl.show()

Figure 2.79: Gaussian Processes regression: basic introductory example

Gaussian Processes regression: basic introductory example

A simple one-dimensional regression exercise computed in two different ways:

1. A noise-free case with a cubic correlation model

2. A noisy case with a squared Euclidean correlation model

In both cases, the model parameters are estimated using the maximum likelihood principle.

The figures illustrate the interpolating property of the Gaussian Process model as well as its probabilistic nature in the
form of a pointwise 95% confidence interval.

2.1. Examples 851

scikit-learn user guide, Release 0.12-git

Note that the parameter nugget is applied as a Tikhonov regularization of the assumed covariance between the
training points. In the special case of the squared euclidean correlation model, nugget is mathematically equivalent to
a normalized variance: That is

•

•

Python source code: plot_gp_regression.py

print __doc__

Author: Vincent Dubourg <vincent.dubourg@gmail.com>
Jake Vanderplas <vanderplas@astro.washington.edu>
License: BSD style

import numpy as np
from sklearn.gaussian_process import GaussianProcess
from matplotlib import pyplot as pl

np.random.seed(1)

def f(x):
"""The function to predict."""
return x * np.sin(x)

#--
First the noiseless case
X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T

Observations
y = f(X).ravel()

852 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Mesh the input space for evaluations of the real function, the prediction and
its MSE
x = np.atleast_2d(np.linspace(0, 10, 1000)).T

Instanciate a Gaussian Process model
gp = GaussianProcess(corr=’cubic’, theta0=1e-2, thetaL=1e-4, thetaU=1e-1, \

random_start=100)

Fit to data using Maximum Likelihood Estimation of the parameters
gp.fit(X, y)

Make the prediction on the meshed x-axis (ask for MSE as well)
y_pred, MSE = gp.predict(x, eval_MSE=True)
sigma = np.sqrt(MSE)

Plot the function, the prediction and the 95% confidence interval based on
the MSE
fig = pl.figure()
pl.plot(x, f(x), ’r:’, label=u’$f(x) = x\,\sin(x)$’)
pl.plot(X, y, ’r.’, markersize=10, label=u’Observations’)
pl.plot(x, y_pred, ’b-’, label=u’Prediction’)
pl.fill(np.concatenate([x, x[::-1]]), \

np.concatenate([y_pred - 1.9600 * sigma,
(y_pred + 1.9600 * sigma)[::-1]]), \

alpha=.5, fc=’b’, ec=’None’, label=’95% confidence interval’)
pl.xlabel(’x’)
pl.ylabel(’$f(x)$’)
pl.ylim(-10, 20)
pl.legend(loc=’upper left’)

#--
now the noisy case
X = np.linspace(0.1, 9.9, 20)
X = np.atleast_2d(X).T

Observations and noise
y = f(X).ravel()
dy = 0.5 + 1.0 * np.random.random(y.shape)
noise = np.random.normal(0, dy)
y += noise

Mesh the input space for evaluations of the real function, the prediction and
its MSE
x = np.atleast_2d(np.linspace(0, 10, 1000)).T

Instanciate a Gaussian Process model
gp = GaussianProcess(corr=’squared_exponential’, theta0=1e-1,

thetaL=1e-3, thetaU=1,
nugget=(dy / y) ** 2,
random_start=100)

Fit to data using Maximum Likelihood Estimation of the parameters
gp.fit(X, y)

Make the prediction on the meshed x-axis (ask for MSE as well)
y_pred, MSE = gp.predict(x, eval_MSE=True)
sigma = np.sqrt(MSE)

2.1. Examples 853

scikit-learn user guide, Release 0.12-git

Plot the function, the prediction and the 95% confidence interval based on
the MSE
fig = pl.figure()
pl.plot(x, f(x), ’r:’, label=u’$f(x) = x\,\sin(x)$’)
pl.errorbar(X.ravel(), y, dy, fmt=’r.’, markersize=10, label=u’Observations’)
pl.plot(x, y_pred, ’b-’, label=u’Prediction’)
pl.fill(np.concatenate([x, x[::-1]]), \

np.concatenate([y_pred - 1.9600 * sigma,
(y_pred + 1.9600 * sigma)[::-1]]), \

alpha=.5, fc=’b’, ec=’None’, label=’95% confidence interval’)
pl.xlabel(’x’)
pl.ylabel(’$f(x)$’)
pl.ylim(-10, 20)
pl.legend(loc=’upper left’)

pl.show()

Figure 2.80: Gaussian Processes regression: goodness-of-fit on the ‘diabetes’ dataset

Gaussian Processes regression: goodness-of-fit on the ‘diabetes’ dataset

This example consists in fitting a Gaussian Process model onto the diabetes dataset.

The correlation parameters are determined by means of maximum likelihood estimation (MLE). An anisotropic
squared exponential correlation model with a constant regression model are assumed. We also used a nugget = 1e-2 in
order to account for the (strong) noise in the targets.

We compute then compute a cross-validation estimate of the coefficient of determination (R2) without reperforming
MLE, using the set of correlation parameters found on the whole dataset.

Python source code: gp_diabetes_dataset.py

print __doc__

Author: Vincent Dubourg <vincent.dubourg@gmail.com>
License: BSD style

from sklearn import datasets
from sklearn.gaussian_process import GaussianProcess
from sklearn.cross_validation import cross_val_score, KFold

Load the dataset from scikit’s data sets
diabetes = datasets.load_diabetes()
X, y = diabetes.data, diabetes.target

Instanciate a GP model
gp = GaussianProcess(regr=’constant’, corr=’absolute_exponential’,

854 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

theta0=[1e-4] * 10, thetaL=[1e-12] * 10,
thetaU=[1e-2] * 10, nugget=1e-2, optimizer=’Welch’)

Fit the GP model to the data performing maximum likelihood estimation
gp.fit(X, y)

Deactivate maximum likelihood estimation for the cross-validation loop
gp.theta0 = gp.theta # Given correlation parameter = MLE
gp.thetaL, gp.thetaU = None, None # None bounds deactivate MLE

Perform a cross-validation estimate of the coefficient of determination using
the cross_validation module using all CPUs available on the machine
K = 20 # folds
R2 = cross_val_score(gp, X, y=y, cv=KFold(y.size, K), n_jobs=1).mean()
print("The %d-Folds estimate of the coefficient of determination is R2 = %s"

% (K, R2))

2.1.10 Generalized Linear Models

Examples concerning the sklearn.linear_model package.

Figure 2.81: Automatic Relevance Determination Regression (ARD)

Automatic Relevance Determination Regression (ARD)

Fit regression model with Bayesian Ridge Regression.

Compared to the OLS (ordinary least squares) estimator, the coefficient weights are slightly shifted toward zeros, wich
stabilises them.

The histogram of the estimated weights is very peaked, as a sparsity-inducing prior is implied on the weights.

The estimation of the model is done by iteratively maximizing the marginal log-likelihood of the observations.

2.1. Examples 855

scikit-learn user guide, Release 0.12-git

•

•

•

Python source code: plot_ard.py

print __doc__

import numpy as np
import pylab as pl
from scipy import stats

from sklearn.linear_model import ARDRegression, LinearRegression

856 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

###
Generating simulated data with Gaussian weigthts

Parameters of the example
np.random.seed(0)
n_samples, n_features = 100, 100
Create gaussian data
X = np.random.randn(n_samples, n_features)
Create weigts with a precision lambda_ of 4.
lambda_ = 4.
w = np.zeros(n_features)
Only keep 10 weights of interest
relevant_features = np.random.randint(0, n_features, 10)
for i in relevant_features:

w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_))
Create noite with a precision alpha of 50.
alpha_ = 50.
noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples)
Create the target
y = np.dot(X, w) + noise

###
Fit the ARD Regression
clf = ARDRegression(compute_score=True)
clf.fit(X, y)

ols = LinearRegression()
ols.fit(X, y)

###
Plot the true weights, the estimated weights and the histogram of the
weights
pl.figure(figsize=(6, 5))
pl.title("Weights of the model")
pl.plot(clf.coef_, ’b-’, label="ARD estimate")
pl.plot(ols.coef_, ’r--’, label="OLS estimate")
pl.plot(w, ’g-’, label="Ground truth")
pl.xlabel("Features")
pl.ylabel("Values of the weights")
pl.legend(loc=1)

pl.figure(figsize=(6, 5))
pl.title("Histogram of the weights")
pl.hist(clf.coef_, bins=n_features, log=True)
pl.plot(clf.coef_[relevant_features], 5 * np.ones(len(relevant_features)),

’ro’, label="Relevant features")
pl.ylabel("Features")
pl.xlabel("Values of the weights")
pl.legend(loc=1)

pl.figure(figsize=(6, 5))
pl.title("Marginal log-likelihood")
pl.plot(clf.scores_)
pl.ylabel("Score")
pl.xlabel("Iterations")
pl.show()

2.1. Examples 857

scikit-learn user guide, Release 0.12-git

Figure 2.82: Bayesian Ridge Regression

Bayesian Ridge Regression

Computes a Bayesian Ridge Regression on a synthetic dataset.

Compared to the OLS (ordinary least squares) estimator, the coefficient weights are slightly shifted toward zeros, wich
stabilises them.

As the prior on the weights is a Gaussian prior, the histogram of the estimated weights is Gaussian.

The estimation of the model is done by iteratively maximizing the marginal log-likelihood of the observations.

•

•

858 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

•

Python source code: plot_bayesian_ridge.py

print __doc__

import numpy as np
import pylab as pl
from scipy import stats

from sklearn.linear_model import BayesianRidge, LinearRegression

###
Generating simulated data with Gaussian weigthts
np.random.seed(0)
n_samples, n_features = 100, 100
X = np.random.randn(n_samples, n_features) # Create gaussian data
Create weigts with a precision lambda_ of 4.
lambda_ = 4.
w = np.zeros(n_features)
Only keep 10 weights of interest
relevant_features = np.random.randint(0, n_features, 10)
for i in relevant_features:

w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_))
Create noise with a precision alpha of 50.
alpha_ = 50.
noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples)
Create the target
y = np.dot(X, w) + noise

###
Fit the Bayesian Ridge Regression and an OLS for comparison
clf = BayesianRidge(compute_score=True)
clf.fit(X, y)

ols = LinearRegression()
ols.fit(X, y)

###
Plot true weights, estimated weights and histogram of the weights
pl.figure(figsize=(6, 5))
pl.title("Weights of the model")
pl.plot(clf.coef_, ’b-’, label="Bayesian Ridge estimate")
pl.plot(w, ’g-’, label="Ground truth")
pl.plot(ols.coef_, ’r--’, label="OLS estimate")

2.1. Examples 859

scikit-learn user guide, Release 0.12-git

pl.xlabel("Features")
pl.ylabel("Values of the weights")
pl.legend(loc="best", prop=dict(size=12))

pl.figure(figsize=(6, 5))
pl.title("Histogram of the weights")
pl.hist(clf.coef_, bins=n_features, log=True)
pl.plot(clf.coef_[relevant_features], 5 * np.ones(len(relevant_features)),

’ro’, label="Relevant features")
pl.ylabel("Features")
pl.xlabel("Values of the weights")
pl.legend(loc="lower left")

pl.figure(figsize=(6, 5))
pl.title("Marginal log-likelihood")
pl.plot(clf.scores_)
pl.ylabel("Score")
pl.xlabel("Iterations")
pl.show()

Figure 2.83: Logistic Regression 3-class Classifier

Logistic Regression 3-class Classifier

Show below is a logistic-regression classifiers decision boundaries on the iris dataset. The datapoints are colored
according to their labels.

Python source code: plot_iris_logistic.py

print __doc__

860 Chapter 2. Example Gallery

http://en.wikipedia.org/wiki/Iris_flower_data_set

scikit-learn user guide, Release 0.12-git

Code source: Gael Varoqueux
Modified for Documentation merge by Jaques Grobler
License: BSD

import numpy as np
import pylab as pl
from sklearn import linear_model, datasets

import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features.
Y = iris.target

h = .02 # step size in the mesh

logreg = linear_model.LogisticRegression(C=1e5)

we create an instance of Neighbours Classifier and fit the data.
logreg.fit(X, Y)

Plot the decision boundary. For that, we will asign a color to each
point in the mesh [x_min, m_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()])

Put the result into a color plot
Z = Z.reshape(xx.shape)
pl.figure(1, figsize=(4, 3))
pl.pcolormesh(xx, yy, Z, cmap=pl.cm.Paired)

Plot also the training points
pl.scatter(X[:, 0], X[:, 1], c=Y, edgecolors=’k’, cmap=pl.cm.Paired)
pl.xlabel(’Sepal length’)
pl.ylabel(’Sepal width’)

pl.xlim(xx.min(), xx.max())
pl.ylim(yy.min(), yy.max())
pl.xticks(())
pl.yticks(())

pl.show()

Figure 2.84: Lasso and Elastic Net for Sparse Signals

2.1. Examples 861

scikit-learn user guide, Release 0.12-git

Lasso and Elastic Net for Sparse Signals

Script output:

Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000,
normalize=False, positive=False, precompute=auto, tol=0.0001,
warm_start=False)

r^2 on test data : 0.384710
ElasticNet(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000,

normalize=False, positive=False, precompute=auto, rho=0.7,
tol=0.0001, warm_start=False)

r^2 on test data : 0.240176

Python source code: plot_lasso_and_elasticnet.py

print __doc__

import numpy as np
import pylab as pl

from sklearn.metrics import r2_score

###
generate some sparse data to play with
np.random.seed(42)

862 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

n_samples, n_features = 50, 200
X = np.random.randn(n_samples, n_features)
coef = 3 * np.random.randn(n_features)
inds = np.arange(n_features)
np.random.shuffle(inds)
coef[inds[10:]] = 0 # sparsify coef
y = np.dot(X, coef)

add noise
y += 0.01 * np.random.normal((n_samples,))

Split data in train set and test set
n_samples = X.shape[0]
X_train, y_train = X[:n_samples / 2], y[:n_samples / 2]
X_test, y_test = X[n_samples / 2:], y[n_samples / 2:]

###
Lasso
from sklearn.linear_model import Lasso

alpha = 0.1
lasso = Lasso(alpha=alpha)

y_pred_lasso = lasso.fit(X_train, y_train).predict(X_test)
r2_score_lasso = r2_score(y_test, y_pred_lasso)
print lasso
print "r^2 on test data : %f" % r2_score_lasso

###
ElasticNet
from sklearn.linear_model import ElasticNet

enet = ElasticNet(alpha=alpha, rho=0.7)

y_pred_enet = enet.fit(X_train, y_train).predict(X_test)
r2_score_enet = r2_score(y_test, y_pred_enet)
print enet
print "r^2 on test data : %f" % r2_score_enet

pl.plot(enet.coef_, label=’Elastic net coefficients’)
pl.plot(lasso.coef_, label=’Lasso coefficients’)
pl.plot(coef, ’--’, label=’original coefficients’)
pl.legend(loc=’best’)
pl.title("Lasso R^2: %f, Elastic Net R^2: %f" % (r2_score_lasso,

r2_score_enet))
pl.show()

Figure 2.85: Lasso and Elastic Net

2.1. Examples 863

scikit-learn user guide, Release 0.12-git

Lasso and Elastic Net

Lasso and elastic net (L1 and L2 penalisation) implemented using a coordinate descent.

The coefficients can be forced to be positive.

•

•

•

Script output:

Computing regularization path using the lasso...
Computing regularization path using the positive lasso...
Computing regularization path using the elastic net...
Computing regularization path using the positve elastic net...

Python source code: plot_lasso_coordinate_descent_path.py

864 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

print __doc__

Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
License: BSD Style.

import numpy as np
import pylab as pl

from sklearn.linear_model import lasso_path, enet_path
from sklearn import datasets

diabetes = datasets.load_diabetes()
X = diabetes.data
y = diabetes.target

X /= X.std(0) # Standardize data (easier to set the rho parameter)

###
Compute paths

eps = 5e-3 # the smaller it is the longer is the path

print "Computing regularization path using the lasso..."
models = lasso_path(X, y, eps=eps)
alphas_lasso = np.array([model.alpha for model in models])
coefs_lasso = np.array([model.coef_ for model in models])

print "Computing regularization path using the positive lasso..."
models = lasso_path(X, y, eps=eps, positive=True)
alphas_positive_lasso = np.array([model.alpha for model in models])
coefs_positive_lasso = np.array([model.coef_ for model in models])

print "Computing regularization path using the elastic net..."
models = enet_path(X, y, eps=eps, rho=0.8)
alphas_enet = np.array([model.alpha for model in models])
coefs_enet = np.array([model.coef_ for model in models])

print "Computing regularization path using the positve elastic net..."
models = enet_path(X, y, eps=eps, rho=0.8, positive=True)
alphas_positive_enet = np.array([model.alpha for model in models])
coefs_positive_enet = np.array([model.coef_ for model in models])

###
Display results

pl.figure(1)
ax = pl.gca()
ax.set_color_cycle(2 * [’b’, ’r’, ’g’, ’c’, ’k’])
l1 = pl.plot(coefs_lasso)
l2 = pl.plot(coefs_enet, linestyle=’--’)

pl.xlabel(’-Log(lambda)’)
pl.ylabel(’weights’)
pl.title(’Lasso and Elastic-Net Paths’)
pl.legend((l1[-1], l2[-1]), (’Lasso’, ’Elastic-Net’), loc=’lower left’)
pl.axis(’tight’)

2.1. Examples 865

scikit-learn user guide, Release 0.12-git

pl.figure(2)
ax = pl.gca()
ax.set_color_cycle(2 * [’b’, ’r’, ’g’, ’c’, ’k’])
l1 = pl.plot(coefs_lasso)
l2 = pl.plot(coefs_positive_lasso, linestyle=’--’)

pl.xlabel(’-Log(lambda)’)
pl.ylabel(’weights’)
pl.title(’Lasso and positive Lasso’)
pl.legend((l1[-1], l2[-1]), (’Lasso’, ’positive Lasso’), loc=’lower left’)
pl.axis(’tight’)

pl.figure(3)
ax = pl.gca()
ax.set_color_cycle(2 * [’b’, ’r’, ’g’, ’c’, ’k’])
l1 = pl.plot(coefs_enet)
l2 = pl.plot(coefs_positive_enet, linestyle=’--’)

pl.xlabel(’-Log(lambda)’)
pl.ylabel(’weights’)
pl.title(’Elastic-Net and positive Elastic-Net’)
pl.legend((l1[-1], l2[-1]), (’Elastic-Net’, ’positive Elastic-Net’),

loc=’lower left’)
pl.axis(’tight’)
pl.show()

Figure 2.86: Lasso path using LARS

Lasso path using LARS

Computes Lasso Path along the regularization parameter using the LARS algorithm on the diabetest dataset. Each
color represents a different feature of the coefficient vector, and this is displayed as a function of the regularization
parameter.

866 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Script output:

Computing regularization path using the LARS ...
.

Python source code: plot_lasso_lars.py

print __doc__

Author: Fabian Pedregosa <fabian.pedregosa@inria.fr>
Alexandre Gramfort <alexandre.gramfort@inria.fr>
License: BSD Style.

import numpy as np
import pylab as pl

from sklearn import linear_model
from sklearn import datasets

diabetes = datasets.load_diabetes()
X = diabetes.data
y = diabetes.target

print "Computing regularization path using the LARS ..."
alphas, _, coefs = linear_model.lars_path(X, y, method=’lasso’, verbose=True)

xx = np.sum(np.abs(coefs.T), axis=1)

2.1. Examples 867

scikit-learn user guide, Release 0.12-git

xx /= xx[-1]

pl.plot(xx, coefs.T)
ymin, ymax = pl.ylim()
pl.vlines(xx, ymin, ymax, linestyle=’dashed’)
pl.xlabel(’|coef| / max|coef|’)
pl.ylabel(’Coefficients’)
pl.title(’LASSO Path’)
pl.axis(’tight’)
pl.show()

Figure 2.87: Lasso model selection: Cross-Validation / AIC / BIC

Lasso model selection: Cross-Validation / AIC / BIC

Use the Akaike information criterion (AIC), the Bayes Information criterion (BIC) and cross-validation to select an
optimal value of the regularization parameter alpha of the Lasso estimator.

Results obtained with LassoLarsIC are based on AIC/BIC criteria.

Information-criterion based model selection is very fast, but it relies on a proper estimation of degrees of freedom, are
derived for large samples (asymptotic results) and assume the model is correct, i.e. that the data are actually generated
by this model. They also tend to break when the problem is badly conditioned (more features than samples).

For cross-validation, we use 20-fold with 2 algorithms to compute the Lasso path: coordinate descent, as implemented
by the LassoCV class, and Lars (least angle regression) as implemented by the LassoLarsCV class. Both algorithms
give roughly the same results. They differ with regards to their execution speed and sources of numerical errors.

Lars computes a path solution only for each kink in the path. As a result, it is very efficient when there are only of
few kinks, which is the case if there are few features or samples. Also, it is able to compute the full path without
setting any meta parameter. On the opposite, coordinate descent compute the path points on a pre-specified grid (here
we use the default). Thus it is more efficient if the number of grid points is smaller than the number of kinks in the
path. Such a strategy can be interesting if the number of features is really large and there are enough samples to select
a large amount. In terms of numerical errors, for heavily correlated variables, Lars will accumulate more erros, while
the coordinate descent algorithm will only sample the path on a grid.

Note how the optimal value of alpha varies for each fold. This illustrates why nested-cross validation is necessary
when trying to evaluate the performance of a method for which a parameter is chosen by cross-validation: this choice
of parameter may not be optimal for unseen data.

868 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

•

•

•

Script output:

Computing regularization path using the coordinate descent lasso...
Computing regularization path using the Lars lasso...

Python source code: plot_lasso_model_selection.py

print __doc__

Author: Olivier Grisel, Gael Varoquaux, Alexandre Gramfort
License: BSD Style.

import time

2.1. Examples 869

scikit-learn user guide, Release 0.12-git

import numpy as np
import pylab as pl

from sklearn.linear_model import LassoCV, LassoLarsCV, LassoLarsIC
from sklearn import datasets

diabetes = datasets.load_diabetes()
X = diabetes.data
y = diabetes.target

rng = np.random.RandomState(42)
X = np.c_[X, rng.randn(X.shape[0], 14)] # add some bad features

normalize data as done by Lars to allow for comparison
X /= np.sqrt(np.sum(X ** 2, axis=0))

##
LassoLarsIC: least angle regression with BIC/AIC criterion

model_bic = LassoLarsIC(criterion=’bic’)
t1 = time.time()
model_bic.fit(X, y)
t_bic = time.time() - t1
alpha_bic_ = model_bic.alpha_

model_aic = LassoLarsIC(criterion=’aic’)
model_aic.fit(X, y)
alpha_aic_ = model_aic.alpha_

def plot_ic_criterion(model, name, color):
alpha_ = model.alpha_
alphas_ = model.alphas_
criterion_ = model.criterion_
pl.plot(-np.log10(alphas_), criterion_, ’--’, color=color,

linewidth=3, label=’%s criterion’ % name)
pl.axvline(-np.log10(alpha_), color=color,

linewidth=3, label=’alpha: %s estimate’ % name)
pl.xlabel(’-log(lambda)’)
pl.ylabel(’criterion’)

pl.figure()
plot_ic_criterion(model_aic, ’AIC’, ’b’)
plot_ic_criterion(model_bic, ’BIC’, ’r’)
pl.legend()
pl.title(’Information-criterion for model selection (training time %.3fs)’

% t_bic)

##
LassoCV: coordinate descent

Compute paths
print "Computing regularization path using the coordinate descent lasso..."
t1 = time.time()
model = LassoCV(cv=20).fit(X, y)
t_lasso_cv = time.time() - t1

Display results

870 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

m_log_alphas = -np.log10(model.alphas)

pl.figure()
ymin, ymax = 2300, 3800
pl.plot(m_log_alphas, model.mse_path_, ’:’)
pl.plot(m_log_alphas, model.mse_path_.mean(axis=-1), ’k’,

label=’Average across the folds’, linewidth=2)
pl.axvline(-np.log10(model.alpha), linestyle=’--’, color=’k’,

label=’alpha: CV estimate’)

pl.legend()

pl.xlabel(’-log(lambda)’)
pl.ylabel(’Mean square error’)
pl.title(’Mean square error on each fold: coordinate descent ’

’(train time: %.2fs)’ % t_lasso_cv)
pl.axis(’tight’)
pl.ylim(ymin, ymax)

##
LassoLarsCV: least angle regression

Compute paths
print "Computing regularization path using the Lars lasso..."
t1 = time.time()
model = LassoLarsCV(cv=20).fit(X, y)
t_lasso_lars_cv = time.time() - t1

Display results
m_log_alphas = -np.log10(model.cv_alphas)

pl.figure()
pl.plot(m_log_alphas, model.cv_mse_path_, ’:’)
pl.plot(m_log_alphas, model.cv_mse_path_.mean(axis=-1), ’k’,

label=’Average across the folds’, linewidth=2)
pl.axvline(-np.log10(model.alpha), linestyle=’--’, color=’k’,

label=’alpha CV’)
pl.legend()

pl.xlabel(’-log(lambda)’)
pl.ylabel(’Mean square error’)
pl.title(’Mean square error on each fold: Lars (train time: %.2fs)’ %

t_lasso_lars_cv)
pl.axis(’tight’)
pl.ylim(ymin, ymax)

pl.show()

Figure 2.88: Logit function

2.1. Examples 871

scikit-learn user guide, Release 0.12-git

Logit function

Show in the plot is how the logistic regression would, in this synthetic dataset, classify values as either 0 or 1, i.e. class
one or two, using the logit-curve.

Python source code: plot_logistic.py

print __doc__

Code source: Gael Varoqueux
License: BSD

import numpy as np
import pylab as pl

from sklearn import linear_model

this is our test set, it’s just a straight line with some
gaussian noise
xmin, xmax = -5, 5
n_samples = 100
np.random.seed(0)
X = np.random.normal(size=n_samples)
y = (X > 0).astype(np.float)
X[X > 0] *= 4
X += .3 * np.random.normal(size=n_samples)

X = X[:, np.newaxis]
run the classifier
clf = linear_model.LogisticRegression(C=1e5)
clf.fit(X, y)

and plot the result
pl.figure(1, figsize=(4, 3))
pl.clf()
pl.scatter(X.ravel(), y, color=’black’, zorder=20)
X_test = np.linspace(-5, 10, 300)

872 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

def model(x):
return 1 / (1 + np.exp(-x))

loss = model(X_test * clf.coef_ + clf.intercept_).ravel()
pl.plot(X_test, loss, color=’blue’, linewidth=3)

ols = linear_model.LinearRegression()
ols.fit(X, y)
pl.plot(X_test, ols.coef_ * X_test + ols.intercept_, linewidth=1)
pl.axhline(.5, color=’.5’)

pl.ylabel(’y’)
pl.xlabel(’X’)
pl.xticks(())
pl.yticks(())
pl.ylim(-.25, 1.25)
pl.xlim(-4, 10)

pl.show()

Figure 2.89: L1 Penalty and Sparsity in Logistic Regression

L1 Penalty and Sparsity in Logistic Regression

Comparison of the sparsity (percentage of zero coefficients) of solutions when L1 and L2 penalty are used for different
values of C. We can see that large values of C give more freedom to the model. Conversely, smaller values of C
constrain the model more. In the L1 penalty case, this leads to sparser solutions.

We classify 8x8 images of digits into two classes: 0-4 against 5-9. The visualization shows coefficients of the models
for varying C.

2.1. Examples 873

scikit-learn user guide, Release 0.12-git

Script output:

C=10.000000
Sparsity with L1 penalty: 6.250000
score with L1 penalty: 0.910406
Sparsity with L2 penalty: 4.687500
score with L2 penalty: 0.909293
C=100.000000
Sparsity with L1 penalty: 4.687500
score with L1 penalty: 0.908737
Sparsity with L2 penalty: 4.687500
score with L2 penalty: 0.909850
C=1000.000000
Sparsity with L1 penalty: 4.687500
score with L1 penalty: 0.910406
Sparsity with L2 penalty: 4.687500
score with L2 penalty: 0.909850

Python source code: plot_logistic_l1_l2_sparsity.py

print __doc__

Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
Mathieu Blondel <mathieu@mblondel.org>
Andreas Mueller <amueller@ais.uni-bonn.de>
License: BSD Style.

874 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

import numpy as np
import pylab as pl

from sklearn.linear_model import LogisticRegression
from sklearn import datasets
from sklearn.preprocessing import Scaler

digits = datasets.load_digits()

X, y = digits.data, digits.target
X = Scaler().fit_transform(X)

classify small against large digits
y = (y > 4).astype(np.int)

Set regularization parameter
for i, C in enumerate(10. ** np.arange(1, 4)):

turn down tolerance for short training time
clf_l1_LR = LogisticRegression(C=C, penalty=’l1’, tol=0.01)
clf_l2_LR = LogisticRegression(C=C, penalty=’l2’, tol=0.01)
clf_l1_LR.fit(X, y)
clf_l2_LR.fit(X, y)

coef_l1_LR = clf_l1_LR.coef_.ravel()
coef_l2_LR = clf_l2_LR.coef_.ravel()

coef_l1_LR contains zeros due to the
L1 sparsity inducing norm

sparsity_l1_LR = np.mean(coef_l1_LR == 0) * 100
sparsity_l2_LR = np.mean(coef_l2_LR == 0) * 100

print "C=%f" % C
print "Sparsity with L1 penalty: %f" % sparsity_l1_LR
print "score with L1 penalty: %f" % clf_l1_LR.score(X, y)
print "Sparsity with L2 penalty: %f" % sparsity_l2_LR
print "score with L2 penalty: %f" % clf_l2_LR.score(X, y)

l1_plot = pl.subplot(3, 2, 2 * i + 1)
l2_plot = pl.subplot(3, 2, 2 * (i + 1))
if i == 0:

l1_plot.set_title("L1 penalty")
l2_plot.set_title("L2 penalty")

l1_plot.imshow(np.abs(coef_l1_LR.reshape(8, 8)), interpolation=’nearest’,
cmap=’binary’, vmax=1, vmin=0)

l2_plot.imshow(np.abs(coef_l2_LR.reshape(8, 8)), interpolation=’nearest’,
cmap=’binary’, vmax=1, vmin=0)

pl.text(-8, 3, "C = %d" % C)

l1_plot.set_xticks(())
l1_plot.set_yticks(())
l2_plot.set_xticks(())
l2_plot.set_yticks(())

pl.show()

2.1. Examples 875

scikit-learn user guide, Release 0.12-git

Figure 2.90: Path with L1- Logistic Regression

Path with L1- Logistic Regression

Computes path on IRIS dataset.

Script output:

Computing regularization path ...
This took 0:00:00.024074

Python source code: plot_logistic_path.py

print __doc__

Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
License: BSD Style.

876 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

from datetime import datetime
import numpy as np
import pylab as pl

from sklearn import linear_model
from sklearn import datasets
from sklearn.svm import l1_min_c

iris = datasets.load_iris()
X = iris.data
y = iris.target

X = X[y != 2]
y = y[y != 2]

X -= np.mean(X, 0)

###
Demo path functions

cs = l1_min_c(X, y, loss=’log’) * np.logspace(0, 3)

print "Computing regularization path ..."
start = datetime.now()
clf = linear_model.LogisticRegression(C=1.0, penalty=’l1’, tol=1e-6)
coefs_ = []
for c in cs:

clf.set_params(C=c)
clf.fit(X, y)
coefs_.append(clf.coef_.ravel().copy())

print "This took ", datetime.now() - start

coefs_ = np.array(coefs_)
pl.plot(np.log10(cs), coefs_)
ymin, ymax = pl.ylim()
pl.xlabel(’log(C)’)
pl.ylabel(’Coefficients’)
pl.title(’Logistic Regression Path’)
pl.axis(’tight’)
pl.show()

Figure 2.91: Linear Regression Example

2.1. Examples 877

scikit-learn user guide, Release 0.12-git

Linear Regression Example

This example uses the only the first feature of the diabetes dataset, in order to illustrate a two-dimensional plot of
this regression technique. The straight line can be seen in the plot, showing how linear regression attempts to draw a
straight line that will best minimize the residual sum of squares between the observed responses in the dataset, and the
responses predicted by the linear approximation.

The coefficients, the residual sum of squares and the variance score are also calculated.

Script output:

Coefficients:
[938.23786125]
Residual sum of squares: 2548.07
Variance score: 0.47

Python source code: plot_ols.py

print __doc__

Code source: Jaques Grobler
License: BSD

import pylab as pl
import numpy as np

878 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

from sklearn import datasets, linear_model

Load the diabetes dataset
diabetes = datasets.load_diabetes()

Use only one feature
diabetes_X = diabetes.data[:, np.newaxis]
diabetes_X_temp = diabetes_X[:, :, 2]

Split the data into training/testing sets
diabetes_X_train = diabetes_X_temp[:-20]
diabetes_X_test = diabetes_X_temp[-20:]

from sklearn.datasets.samples_generator import make_regression

this is our test set, it’s just a straight line with some
gaussian noise
X, Y = make_regression(n_samples=100, n_features=1, n_informative=1,\

random_state=0, noise=35)

Split the targets into training/testing sets
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]

Create linear regression object
regr = linear_model.LinearRegression()

Train the model using the training sets
regr.fit(diabetes_X_train, diabetes_y_train)

The coefficients
print ’Coefficients: \n’, regr.coef_
The mean square error
print ("Residual sum of squares: %.2f" %

np.mean((regr.predict(diabetes_X_test) - diabetes_y_test) ** 2))
Explained variance score: 1 is perfect prediction
print (’Variance score: %.2f’ % regr.score(diabetes_X_test, diabetes_y_test))

Plot outputs
pl.scatter(diabetes_X_test, diabetes_y_test, color=’black’)
pl.plot(diabetes_X_test, regr.predict(diabetes_X_test), color=’blue’,

linewidth=3)

pl.xticks(())
pl.yticks(())

pl.show()

Figure 2.92: Sparsity Example: Fitting only features 1 and 2

2.1. Examples 879

scikit-learn user guide, Release 0.12-git

Sparsity Example: Fitting only features 1 and 2

Features 1 and 2 of the diabetes-dataset are fitted and plotted below. It illustrates that although feature 2 has a strong
coefficient on the full model, it does not give us much regarding y when compared to just feautre 1

•

•

•

Python source code: plot_ols_3d.py

print __doc__

Code source: Gael Varoqueux
Modified for Documentation merge by Jaques Grobler
License: BSD

import pylab as pl
import numpy as np
from mpl_toolkits.mplot3d import Axes3D

from sklearn import datasets, linear_model

diabetes = datasets.load_diabetes()
indices = (0, 1)

X_train = diabetes.data[:-20, indices]
X_test = diabetes.data[-20:, indices]
y_train = diabetes.target[:-20]
y_test = diabetes.target[-20:]

ols = linear_model.LinearRegression()

880 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

ols.fit(X_train, y_train)

###
Plot the figure
def plot_figs(fig_num, elev, azim, X_train, clf):

fig = pl.figure(fig_num, figsize=(4, 3))
pl.clf()
ax = Axes3D(fig, elev=elev, azim=azim)

ax.scatter(X_train[:, 0], X_train[:, 1], y_train, c=’k’, marker=’+’)
ax.plot_surface(np.array([[-.1, -.1], [.15, .15]]),

np.array([[-.1, .15], [-.1, .15]]),
clf.predict(np.array([[-.1, -.1, .15, .15],

[-.1, .15, -.1, .15]]).T
).reshape((2, 2)),

alpha=.5)
ax.set_xlabel(’X_1’)
ax.set_ylabel(’X_2’)
ax.set_zlabel(’Y’)
ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])

#Generate the three different figures from different views
elev = 43.5
azim = -110
plot_figs(1, elev, azim, X_train, ols)

elev = -.5
azim = 0
plot_figs(2, elev, azim, X_train, ols)

elev = -.5
azim = 90
plot_figs(3, elev, azim, X_train, ols)

pl.show()

Figure 2.93: Ordinary Least Squares and Ridge Regression Variance

Ordinary Least Squares and Ridge Regression Variance

Due to the few points in each dimension and the straight line that linear regression uses to follow these points as well
as it can, noise on the observations will cause great variace as shown in the first plot. Every line’s slope can vary quite
a bit for each prediction due to the noise induced in the observations.

Ridge regression is basically minimizing a penalised version of the least-squared function. The penalising shrinks the
value of the regression coefficients. Despite the few data points in each dimension, the slope of the prediction is much
more stable and the variance in the line itself is greatly reduced, in comparison to that of the standard linear regression

2.1. Examples 881

scikit-learn user guide, Release 0.12-git

•

•

Python source code: plot_ols_ridge_variance.py

print __doc__

Code source: Gael Varoqueux
Modified for Documentation merge by Jaques Grobler
License: BSD

import numpy as np
import pylab as pl

from sklearn import linear_model

X_train = np.c_[.5, 1].T
y_train = [.5, 1]
X_test = np.c_[0, 2].T

np.random.seed(0)

classifiers = dict(
ols=linear_model.LinearRegression(),
ridge=linear_model.Ridge(alpha=.1)
)

fignum = 1
for name, clf in classifiers.iteritems():

fig = pl.figure(fignum, figsize=(4, 3))
pl.clf()
ax = pl.axes([.12, .12, .8, .8])

for _ in range(6):
this_X = .1 * np.random.normal(size=(2, 1)) + X_train
clf.fit(this_X, y_train)

ax.plot(X_test, clf.predict(X_test), color=’.5’)
ax.scatter(this_X, y_train, s=3, c=’.5’, marker=’o’, zorder=10)

882 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

clf.fit(X_train, y_train)
ax.plot(X_test, clf.predict(X_test), linewidth=2, color=’blue’)
ax.scatter(X_train, y_train, s=30, c=’r’, marker=’+’, zorder=10)

ax.set_xticks(())
ax.set_yticks(())
ax.set_ylim((0, 1.6))
ax.set_xlabel(’X’)
ax.set_ylabel(’y’)
ax.set_xlim(0, 2)
fignum += 1

pl.show()

Figure 2.94: Orthogonal Matching Pursuit

Orthogonal Matching Pursuit

Using orthogonal matching pursuit for recovering a sparse signal from a noisy measurement encoded with a dictionary

2.1. Examples 883

scikit-learn user guide, Release 0.12-git

Python source code: plot_omp.py

print __doc__

import pylab as pl
import numpy as np
from sklearn.linear_model import orthogonal_mp
from sklearn.datasets import make_sparse_coded_signal

n_components, n_features = 512, 100
n_atoms = 17

generate the data
###################

y = Dx
|x|_0 = n_atoms

y, D, x = make_sparse_coded_signal(n_samples=1,
n_components=n_components,
n_features=n_features,
n_nonzero_coefs=n_atoms,
random_state=0)

idx, = x.nonzero()

884 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

distort the clean signal
##########################
y_noisy = y + 0.05 * np.random.randn(len(y))

plot the sparse signal
########################
pl.subplot(3, 1, 1)
pl.xlim(0, 512)
pl.title("Sparse signal")
pl.stem(idx, x[idx])

plot the noise-free reconstruction
####################################
x_r = orthogonal_mp(D, y, n_atoms)
idx_r, = x_r.nonzero()
pl.subplot(3, 1, 2)
pl.xlim(0, 512)
pl.title("Recovered signal from noise-free measurements")
pl.stem(idx_r, x_r[idx_r])

plot the noisy reconstruction
###############################
x_r = orthogonal_mp(D, y_noisy, n_atoms)
idx_r, = x_r.nonzero()
pl.subplot(3, 1, 3)
pl.xlim(0, 512)
pl.title("Recovered signal from noisy measurements")
pl.stem(idx_r, x_r[idx_r])

pl.subplots_adjust(0.06, 0.04, 0.94, 0.90, 0.20, 0.38)
pl.suptitle(’Sparse signal recovery with Orthogonal Matching Pursuit’,

fontsize=16)
pl.show()

Figure 2.95: Polynomial interpolation

Polynomial interpolation

This example demonstrates how to approximate a function with a polynomial of degree n_degree by using ridge
regression. Concretely, from n_samples 1d points, it suffices to build the Vandermonde matrix, which is n_samples x
n_degree+1 and has the following form:

[[1, x_1, x_1 ** 2, x_1 ** 3, ...], [1, x_2, x_2 ** 2, x_2 ** 3, ...], ...]

Intuitively, this matrix can be interpreted as a matrix of pseudo features (the points raised to some power). The matrix
is akin to (but different from) the matrix induced by a polynomial kernel.

2.1. Examples 885

scikit-learn user guide, Release 0.12-git

This example shows that you can do non-linear regression with a linear model, by manually adding non-linear features.
Kernel methods extend this idea and can induce very high (even infinite) dimensional feature spaces.

Python source code: plot_polynomial_interpolation.py

print __doc__

Author: Mathieu Blondel
License: BSD Style.

import numpy as np
import pylab as pl

from sklearn.linear_model import Ridge

def f(x):
""" function to approximate by polynomial interpolation"""
return x * np.sin(x)

generate points used to plot
x_plot = np.linspace(0, 10, 100)

generate points and keep a subset of them
x = np.linspace(0, 10, 100)
rng = np.random.RandomState(0)

886 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

rng.shuffle(x)
x = np.sort(x[:20])
y = f(x)

pl.plot(x_plot, f(x_plot), label="ground truth")
pl.scatter(x, y, label="training points")

for degree in [3, 4, 5]:
ridge = Ridge()
ridge.fit(np.vander(x, degree + 1), y)
pl.plot(x_plot, ridge.predict(np.vander(x_plot, degree + 1)),

label="degree %d" % degree)

pl.legend(loc=’lower left’)

pl.show()

Figure 2.96: Plot Ridge coefficients as a function of the regularization

Plot Ridge coefficients as a function of the regularization

Shows the effect of collinearity in the coefficients or the Ridge. Each color represents a different feature of the
coefficient vector, and this is displayed as a function of the regularization parameter.

At the end of the path, as alpha tends toward zero and the solution tends towards the ordinary least squares, coefficients
exhibit big oscillations.

2.1. Examples 887

scikit-learn user guide, Release 0.12-git

Python source code: plot_ridge_path.py

Author: Fabian Pedregosa -- <fabian.pedregosa@inria.fr>
License: BSD Style.

print __doc__

import numpy as np
import pylab as pl
from sklearn import linear_model

X is the 10x10 Hilbert matrix
X = 1. / (np.arange(1, 11) + np.arange(0, 10)[:, np.newaxis])
y = np.ones(10)

###
Compute paths

n_alphas = 200
alphas = np.logspace(-10, -2, n_alphas)
clf = linear_model.Ridge(fit_intercept=False)

coefs = []
for a in alphas:

clf.set_params(alpha=a)
clf.fit(X, y)

888 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

coefs.append(clf.coef_)

###
Display results

ax = pl.gca()
ax.set_color_cycle([’b’, ’r’, ’g’, ’c’, ’k’, ’y’, ’m’])

ax.plot(alphas, coefs)
ax.set_xscale(’log’)
ax.set_xlim(ax.get_xlim()[::-1]) # reverse axis
pl.xlabel(’alpha’)
pl.ylabel(’weights’)
pl.title(’Ridge coefficients as a function of the regularization’)
pl.axis(’tight’)
pl.show()

Figure 2.97: Plot multi-class SGD on the iris dataset

Plot multi-class SGD on the iris dataset

Plot decision surface of multi-class SGD on iris dataset. The hyperplanes corresponding to the three one-versus-all
(OVA) classifiers are represented by the dashed lines.

2.1. Examples 889

scikit-learn user guide, Release 0.12-git

Python source code: plot_sgd_iris.py

print __doc__

import numpy as np
import pylab as pl
from sklearn import datasets
from sklearn.linear_model import SGDClassifier

import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features. We could

avoid this ugly slicing by using a two-dim dataset
y = iris.target
colors = "bry"

shuffle
idx = np.arange(X.shape[0])
np.random.seed(13)
np.random.shuffle(idx)
X = X[idx]
y = y[idx]

standardize
mean = X.mean(axis=0)
std = X.std(axis=0)

890 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

X = (X - mean) / std

h = .02 # step size in the mesh

clf = SGDClassifier(alpha=0.001, n_iter=100).fit(X, y)

create a mesh to plot in
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))

Plot the decision boundary. For that, we will asign a color to each
point in the mesh [x_min, m_max]x[y_min, y_max].
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Put the result into a color plot
Z = Z.reshape(xx.shape)
cs = pl.contourf(xx, yy, Z, cmap=pl.cm.Paired)
pl.axis(’tight’)

Plot also the training points
for i, color in zip(clf.classes_, colors):

idx = np.where(y == i)
pl.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i],

cmap=pl.cm.Paired)
pl.title("Decision surface of multi-class SGD")
pl.axis(’tight’)

Plot the three one-against-all classifiers
xmin, xmax = pl.xlim()
ymin, ymax = pl.ylim()
coef = clf.coef_
intercept = clf.intercept_

def plot_hyperplane(c, color):
def line(x0):

return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1]

pl.plot([xmin, xmax], [line(xmin), line(xmax)],
ls="--", color=color)

for i, color in zip(clf.classes_, colors):
plot_hyperplane(i, color)

pl.legend()
pl.show()

Figure 2.98: SGD: Convex Loss Functions

2.1. Examples 891

scikit-learn user guide, Release 0.12-git

SGD: Convex Loss Functions

Plot the convex loss functions supported by sklearn.linear_model.stochastic_gradient.

Python source code: plot_sgd_loss_functions.py

print __doc__

import numpy as np
import pylab as pl
from sklearn.linear_model.sgd_fast import Hinge, \

ModifiedHuber, SquaredLoss

###
Define loss funcitons
xmin, xmax = -3, 3
hinge = Hinge(1)
log_loss = lambda z, p: np.log2(1.0 + np.exp(-z))
modified_huber = ModifiedHuber()
squared_loss = SquaredLoss()

###
Plot loss funcitons
xx = np.linspace(xmin, xmax, 100)
pl.plot([xmin, 0, 0, xmax], [1, 1, 0, 0], ’k-’,

label="Zero-one loss")

892 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

pl.plot(xx, [hinge.loss(x, 1) for x in xx], ’g-’,
label="Hinge loss")

pl.plot(xx, [log_loss(x, 1) for x in xx], ’r-’,
label="Log loss")

pl.plot(xx, [modified_huber.loss(x, 1) for x in xx], ’y-’,
label="Modified huber loss")

#pl.plot(xx, [2.0*squared_loss.loss(x, 1) for x in xx], ’c-’,
label="Squared loss")
pl.ylim((0, 5))
pl.legend(loc="upper right")
pl.xlabel(r"$y \cdot f(x)$")
pl.ylabel("$L(y, f(x))$")
pl.show()

Figure 2.99: Ordinary Least Squares with SGD

Ordinary Least Squares with SGD

Simple Ordinary Least Squares example with stochastic gradient descent, we draw the linear least squares solution for
a random set of points in the plane.

2.1. Examples 893

scikit-learn user guide, Release 0.12-git

Python source code: plot_sgd_ols.py

print __doc__

import pylab as pl

from sklearn.linear_model import SGDRegressor
from sklearn.datasets.samples_generator import make_regression

this is our test set, it’s just a straight line with some
gaussian noise
X, Y = make_regression(n_samples=100, n_features=1, n_informative=1,\

random_state=0, noise=35)

run the classifier
clf = SGDRegressor(alpha=0.1, n_iter=20)
clf.fit(X, Y)

and plot the result
pl.scatter(X, Y, color=’black’)
pl.plot(X, clf.predict(X), color=’blue’, linewidth=3)
pl.show()

894 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Figure 2.100: SGD: Penalties

SGD: Penalties

Plot the contours of the three penalties supported by sklearn.linear_model.stochastic_gradient.

Python source code: plot_sgd_penalties.py

from __future__ import division
print __doc__

import numpy as np
import pylab as pl

def l1(xs):

2.1. Examples 895

scikit-learn user guide, Release 0.12-git

return np.array([np.sqrt((1 - np.sqrt(x ** 2.0)) ** 2.0) for x in xs])

def l2(xs):
return np.array([np.sqrt(1.0 - x ** 2.0) for x in xs])

def el(xs, z):
return np.array([(2 - 2 * x - 2 * z + 4 * x * z -

(4 * z ** 2
- 8 * x * z ** 2
+ 8 * x ** 2 * z ** 2
- 16 * x ** 2 * z ** 3
+ 8 * x * z ** 3 + 4 * x ** 2 * z ** 4) ** (1. / 2)

- 2 * x * z ** 2) / (2 - 4 * z) for x in xs])

def cross(ext):
pl.plot([-ext, ext], [0, 0], "k-")
pl.plot([0, 0], [-ext, ext], "k-")

xs = np.linspace(0, 1, 100)

alpha = 0.501 # 0.5 division throuh zero

cross(1.2)

pl.plot(xs, l1(xs), "r-", label="L1")
pl.plot(xs, -1.0 * l1(xs), "r-")
pl.plot(-1 * xs, l1(xs), "r-")
pl.plot(-1 * xs, -1.0 * l1(xs), "r-")

pl.plot(xs, l2(xs), "b-", label="L2")
pl.plot(xs, -1.0 * l2(xs), "b-")
pl.plot(-1 * xs, l2(xs), "b-")
pl.plot(-1 * xs, -1.0 * l2(xs), "b-")

pl.plot(xs, el(xs, alpha), "y-", label="Elastic Net")
pl.plot(xs, -1.0 * el(xs, alpha), "y-")
pl.plot(-1 * xs, el(xs, alpha), "y-")
pl.plot(-1 * xs, -1.0 * el(xs, alpha), "y-")

pl.xlabel(r"w_0")
pl.ylabel(r"w_1")
pl.legend()

pl.axis("equal")
pl.show()

SGD: Maximum margin separating hyperplane

Plot the maximum margin separating hyperplane within a two-class separable dataset using a linear Support Vector
Machines classifier trained using SGD.

896 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Figure 2.101: SGD: Maximum margin separating hyperplane

Python source code: plot_sgd_separating_hyperplane.py

print __doc__

import numpy as np
import pylab as pl
from sklearn.linear_model import SGDClassifier
from sklearn.datasets.samples_generator import make_blobs

we create 50 separable points
X, Y = make_blobs(n_samples=50, centers=2, random_state=0, cluster_std=0.60)

fit the model
clf = SGDClassifier(loss="hinge", alpha=0.01, n_iter=200, fit_intercept=True)

2.1. Examples 897

scikit-learn user guide, Release 0.12-git

clf.fit(X, Y)

plot the line, the points, and the nearest vectors to the plane
xx = np.linspace(-1, 5, 10)
yy = np.linspace(-1, 5, 10)

X1, X2 = np.meshgrid(xx, yy)
Z = np.empty(X1.shape)
for (i, j), val in np.ndenumerate(X1):

x1 = val
x2 = X2[i, j]
p = clf.decision_function([x1, x2])
Z[i, j] = p[0]

levels = [-1.0, 0.0, 1.0]
linestyles = [’dashed’, ’solid’, ’dashed’]
colors = ’k’
pl.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles)
pl.scatter(X[:, 0], X[:, 1], c=Y, cmap=pl.cm.Paired)

pl.axis(’tight’)
pl.show()

Figure 2.102: SGD: Separating hyperplane with weighted classes

SGD: Separating hyperplane with weighted classes

Fit linear SVMs with and without class weighting. Allows to handle problems with unbalanced classes.

898 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Python source code: plot_sgd_weighted_classes.py

print __doc__

import numpy as np
import pylab as pl
from sklearn.linear_model import SGDClassifier

we create 40 separable points
np.random.seed(0)
n_samples_1 = 1000
n_samples_2 = 100
X = np.r_[1.5 * np.random.randn(n_samples_1, 2),

0.5 * np.random.randn(n_samples_2, 2) + [2, 2]]
y = np.array([0] * (n_samples_1) + [1] * (n_samples_2), dtype=np.float64)
idx = np.arange(y.shape[0])
np.random.shuffle(idx)
X = X[idx]
y = y[idx]
mean = X.mean(axis=0)
std = X.std(axis=0)
X = (X - mean) / std

fit the model and get the separating hyperplane
clf = SGDClassifier(n_iter=100, alpha=0.01)
clf.fit(X, y)

2.1. Examples 899

scikit-learn user guide, Release 0.12-git

w = clf.coef_.ravel()
a = -w[0] / w[1]
xx = np.linspace(-5, 5)
yy = a * xx - clf.intercept_ / w[1]

get the separating hyperplane using weighted classes
wclf = SGDClassifier(n_iter=100, alpha=0.01, class_weight={1: 10})
wclf.fit(X, y)

ww = wclf.coef_.ravel()
wa = -ww[0] / ww[1]
wyy = wa * xx - wclf.intercept_ / ww[1]

plot separating hyperplanes and samples
h0 = pl.plot(xx, yy, ’k-’, label=’no weights’)
h1 = pl.plot(xx, wyy, ’k--’, label=’with weights’)
pl.scatter(X[:, 0], X[:, 1], c=y, cmap=pl.cm.Paired)
pl.legend()

pl.axis(’tight’)
pl.show()

Figure 2.103: SGD: Weighted samples

SGD: Weighted samples

Plot decision function of a weighted dataset, where the size of points is proportional to its weight.

900 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Python source code: plot_sgd_weighted_samples.py

print __doc__

import numpy as np
import pylab as pl
from sklearn import linear_model

we create 20 points
np.random.seed(0)
X = np.r_[np.random.randn(10, 2) + [1, 1], np.random.randn(10, 2)]
y = [1] * 10 + [-1] * 10
sample_weight = 100 * np.abs(np.random.randn(20))
and assign a bigger weight to the last 10 samples
sample_weight[:10] *= 10

plot the weighted data points
xx, yy = np.meshgrid(np.linspace(-4, 5, 500), np.linspace(-4, 5, 500))
pl.figure()
pl.scatter(X[:, 0], X[:, 1], c=y, s=sample_weight, alpha=0.9,

cmap=pl.cm.bone)

fit the unweighted model
clf = linear_model.SGDClassifier(alpha=0.01, n_iter=100)
clf.fit(X, y)
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])

2.1. Examples 901

scikit-learn user guide, Release 0.12-git

Z = Z.reshape(xx.shape)
no_weights = pl.contour(xx, yy, Z, levels=[0], linestyles=[’solid’])

fit the weighted model
clf = linear_model.SGDClassifier(alpha=0.01, n_iter=100)
clf.fit(X, y, sample_weight=sample_weight)
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
samples_weights = pl.contour(xx, yy, Z, levels=[0], linestyles=[’dashed’])

pl.legend([no_weights.collections[0], samples_weights.collections[0]],
["no weights", "with weights"], loc="lower left")

pl.xticks(())
pl.yticks(())
pl.show()

Figure 2.104: Sparse recovery: feature selection for sparse linear models

Sparse recovery: feature selection for sparse linear models

Given a small number of observations, we want to recover which features of X are relevant to explain y. For this sparse
linear models can outperform standard statistical tests if the true model is sparse, i.e. if a small fraction of the features
are relevant.

As detailed in the compressive sensing notes, the ability of L1-based approach to identify the relevant variables de-
pends on the sparsity of the ground truth, the number of samples, the number of features, the conditionning of the
design matrix on the signal subspace, the amount of noise, and the absolute value of the smallest non-zero coefficient
[Wainwright2006] (http://statistics.berkeley.edu/tech-reports/709.pdf).

Here we keep all parameters constant and vary the conditionning of the design matrix. For a well-conditionned
design matrix (small mutual incoherence) we are exactly in compressive sensing conditions (i.i.d Gaussian sensing
matrix), and L1-recovery with the Lasso performs very well. For an ill-conditionned matrix (high mutual incoherence),
regressors are very correlated, and the Lasso randomly selects one. However, randomized-Lasso can recover the
ground truth well.

In each situation, we first vary the alpha parameter setting the sparsity of the estimated model and look at the stability
scores of the randomized Lasso. This analysis, knowing the ground truth, shows an optimal regime in which relevant
features stand out from the irrelevant ones. If alpha is chosen too small, non-relevant variables enter the model. On
the opposite, if alpha is selected too large, the Lasso is equivalent to stepwise regression, and thus brings no advantage
over a univariate F-test.

In a second time, we set alpha and compare the performance of different feature selection methods, using the area
under curve (AUC) of the precision-recall.

902 Chapter 2. Example Gallery

http://statistics.berkeley.edu/tech-reports/709.pdf

scikit-learn user guide, Release 0.12-git

•

•

•

•

2.1. Examples 903

scikit-learn user guide, Release 0.12-git

Python source code: plot_sparse_recovery.py

print __doc__

Author: Alexandre Gramfort and Gael Varoquaux
License: BSD

import pylab as pl
import numpy as np
from scipy import linalg

from sklearn.linear_model import RandomizedLasso, lasso_stability_path, \
LassoLarsCV

from sklearn.feature_selection import f_regression
from sklearn.preprocessing import Scaler
from sklearn.metrics import auc, precision_recall_curve
from sklearn.ensemble import ExtraTreesRegressor

def mutual_incoherence(X_relevant, X_irelevant):
"""Mutual incoherence, as defined by formula (26a) of [Wainwright2006].
"""
projector = np.dot(

np.dot(X_irelevant.T, X_relevant),
linalg.pinv(np.dot(X_relevant.T, X_relevant))
)

return np.max(np.abs(projector).sum(axis=1))

for conditionning in (1, 1e-4):
###
Simulate regression data with a correlated design
n_features = 501
n_relevant_features = 3
noise_level = .2
coef_min = .2
The Donoho-Tanner phase transition is around n_samples=25: below we
will completely fail to recover in the well-conditionned case
n_samples = 25
block_size = n_relevant_features

rng = np.random.RandomState(42)

The coefficients of our model
coef = np.zeros(n_features)
coef[:n_relevant_features] = coef_min + rng.rand(n_relevant_features)

The correlation of our design: variables correlated by blocs of 3
corr = np.zeros((n_features, n_features))
for i in range(0, n_features, block_size):

corr[i:i + block_size, i:i + block_size] = 1 - conditionning
corr.flat[::n_features + 1] = 1
corr = linalg.cholesky(corr)

Our design
X = rng.normal(size=(n_samples, n_features))
X = np.dot(X, corr)
Keep [Wainwright2006] (26c) constant
X[:n_relevant_features] /= np.abs(

904 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

linalg.svdvals(X[:n_relevant_features])).max()
X = Scaler().fit_transform(X.copy())

The output variable
y = np.dot(X, coef)
y /= np.std(y)
We scale the added noise as a function of the average correlation
between the design and the output variable
y += noise_level * rng.normal(size=n_samples)
mi = mutual_incoherence(X[:, :n_relevant_features],

X[:, n_relevant_features:])

###
Plot stability selection path, using a high eps for early stopping
of the path, to save computation time
alpha_grid, scores_path = lasso_stability_path(X, y,

random_state=42, eps=0.05)

pl.figure()
We plot the path as a function of alpha/alpha_max to the power 1/3: the
power 1/3 scales the path less brutally than the log, and enables to
see the progression along the path
hg = pl.plot(alpha_grid[1:] ** .333, scores_path[coef != 0].T[1:], ’r’)
hb = pl.plot(alpha_grid[1:] ** .333, scores_path[coef == 0].T[1:], ’k’)
ymin, ymax = pl.ylim()
pl.xlabel(r’$(\alpha / \alpha_{max})^{1/3}$’)
pl.ylabel(’Stability score: proportion of times selected’)
pl.title(’Stability Scores Path - Mutual incoherence: %.1f’ % mi)
pl.axis(’tight’)
pl.legend((hg[0], hb[0]), (’relevant features’, ’irrelevant features’),

loc=’best’)

###
Plot the estimated stability scores for a given alpha

Use 6-fold cross-validation rather than the default 3-fold: it leads to
a better choice of alpha:
lars_cv = LassoLarsCV(cv=6).fit(X, y)

Run the RandomizedLasso: we use a paths going down to .1*alpha_max
to avoid exploring the regime in which very noisy variables enter
the model
alphas = np.linspace(lars_cv.alphas_[0], .1 * lars_cv.alphas_[0], 6)
clf = RandomizedLasso(alpha=alphas, random_state=42).fit(X, y)
trees = ExtraTreesRegressor(100, compute_importances=True).fit(X, y)
Compare with F-score
F, _ = f_regression(X, y)

pl.figure()
for name, score in [(’F-test’, F),

(’Stability selection’, clf.scores_),
(’Lasso coefs’, np.abs(lars_cv.coef_)),
(’Trees’, trees.feature_importances_),
]:

precision, recall, thresholds = precision_recall_curve(coef != 0,
score)

pl.semilogy(np.maximum(score / np.max(score), 1e-4),
label="%s. AUC: %.3f" % (name, auc(recall, precision)))

2.1. Examples 905

scikit-learn user guide, Release 0.12-git

pl.plot(np.where(coef != 0)[0], [2e-4] * n_relevant_features, ’mo’,
label="Ground truth")

pl.xlabel("Features")
pl.ylabel("Score")
Plot only the 100 first coefficients
pl.xlim(0, 100)
pl.legend(loc=’best’)
pl.title(’Feature selection scores - Mutual incoherence: %.1f’

% mi)

pl.show()

Figure 2.105: Lasso on dense and sparse data

Lasso on dense and sparse data

We show that linear_model.Lasso and linear_model.sparse.Lasso provide the same results and that in the case of sparse
data linear_model.sparse.Lasso improves the speed.

Python source code: lasso_dense_vs_sparse_data.py

print __doc__

from time import time
from scipy import sparse
from scipy import linalg

from sklearn.datasets.samples_generator import make_regression
from sklearn.linear_model.sparse import Lasso as SparseLasso
from sklearn.linear_model import Lasso as DenseLasso

###
The two Lasso implementations on Dense data
print "--- Dense matrices"

X, y = make_regression(n_samples=200, n_features=5000, random_state=0)

alpha = 1
sparse_lasso = SparseLasso(alpha=alpha, fit_intercept=False, max_iter=1000)
dense_lasso = DenseLasso(alpha=alpha, fit_intercept=False, max_iter=1000)

t0 = time()
sparse_lasso.fit(X, y)
print "Sparse Lasso done in %fs" % (time() - t0)

906 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

t0 = time()
dense_lasso.fit(X, y)
print "Dense Lasso done in %fs" % (time() - t0)

print "Distance between coefficients : %s" % linalg.norm(sparse_lasso.coef_
- dense_lasso.coef_)

###
The two Lasso implementations on Sparse data
print "--- Sparse matrices"

Xs = X.copy()
Xs[Xs < 2.5] = 0.0
Xs = sparse.coo_matrix(Xs)
Xs = Xs.tocsc()

print "Matrix density : %s %%" % (Xs.nnz / float(X.size) * 100)

alpha = 0.1
sparse_lasso = SparseLasso(alpha=alpha, fit_intercept=False, max_iter=10000)
dense_lasso = DenseLasso(alpha=alpha, fit_intercept=False, max_iter=10000)

t0 = time()
sparse_lasso.fit(Xs, y)
print "Sparse Lasso done in %fs" % (time() - t0)

t0 = time()
dense_lasso.fit(Xs.todense(), y)
print "Dense Lasso done in %fs" % (time() - t0)

print "Distance between coefficients : %s" % linalg.norm(sparse_lasso.coef_
- dense_lasso.coef_)

2.1.11 Manifold learning

Examples concerning the sklearn.manifold package.

Figure 2.106: Comparison of Manifold Learning methods

Comparison of Manifold Learning methods

An illustration of dimensionality reduction on the S-curve dataset with various manifold learning methods.

2.1. Examples 907

scikit-learn user guide, Release 0.12-git

For a discussion and comparison of these algorithms, see the manifold module page

Note that the purpose of the MDS is to find a low-dimensional representation of the data (here 2D) in which the
distances respect well the distances in the original high-dimensional space, unlike other manifold-learning algorithms,
it does not seeks an isotropic representation of the data in the low-dimensional space.

Script output:

standard: 0.2 sec
ltsa: 0.59 sec
hessian: 0.56 sec
modified: 0.49 sec
Isomap: 0.83 sec
MDS: 15 sec

Python source code: plot_compare_methods.py

Author: Jake Vanderplas -- <vanderplas@astro.washington.edu>

print __doc__

from time import time

import pylab as pl
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.ticker import NullFormatter

from sklearn import manifold, datasets
from sklearn.metrics import euclidean_distances

Next line to silence pyflakes. This import is needed.
Axes3D

n_points = 1000
X, color = datasets.samples_generator.make_s_curve(n_points)
n_neighbors = 10

908 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

n_components = 2

fig = pl.figure(figsize=(15, 8))
pl.suptitle("Manifold Learning with %i points, %i neighbors"

% (1000, n_neighbors), fontsize=14)

try:
compatibility matplotlib < 1.0
ax = fig.add_subplot(241, projection=’3d’)
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=pl.cm.Spectral)
ax.view_init(4, -72)

except:
ax = fig.add_subplot(241, projection=’3d’)
pl.scatter(X[:, 0], X[:, 2], c=color, cmap=pl.cm.Spectral)

methods = [’standard’, ’ltsa’, ’hessian’, ’modified’]
labels = [’LLE’, ’LTSA’, ’Hessian LLE’, ’Modified LLE’]

for i, method in enumerate(methods):
t0 = time()
Y = manifold.LocallyLinearEmbedding(n_neighbors, n_components,

eigen_solver=’auto’,
method=method).fit_transform(X)

t1 = time()
print "%s: %.2g sec" % (methods[i], t1 - t0)

ax = fig.add_subplot(242 + i)
pl.scatter(Y[:, 0], Y[:, 1], c=color, cmap=pl.cm.Spectral)
pl.title("%s (%.2g sec)" % (labels[i], t1 - t0))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
pl.axis(’tight’)

t0 = time()
Y = manifold.Isomap(n_neighbors, n_components).fit_transform(X)
t1 = time()
print "Isomap: %.2g sec" % (t1 - t0)
ax = fig.add_subplot(246)
pl.scatter(Y[:, 0], Y[:, 1], c=color, cmap=pl.cm.Spectral)
pl.title("Isomap (%.2g sec)" % (t1 - t0))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
pl.axis(’tight’)

t0 = time()
mds = manifold.MDS(n_components, max_iter=100, n_init=1)
Y = mds.fit_transform(euclidean_distances(X))
t1 = time()
print "MDS: %.2g sec" % (t1 - t0)
ax = fig.add_subplot(247)
pl.scatter(Y[:, 0], Y[:, 1], c=color, cmap=pl.cm.Spectral)
pl.title("MDS (%.2g sec)" % (t1 - t0))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
pl.axis(’tight’)

2.1. Examples 909

scikit-learn user guide, Release 0.12-git

pl.show()

Figure 2.107: Manifold learning on handwritten digits: Locally Linear Embedding, Isomap...

Manifold learning on handwritten digits: Locally Linear Embedding, Isomap...

An illustration of various embeddings on the digits dataset.

•

•

910 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

•

•

•

•

2.1. Examples 911

scikit-learn user guide, Release 0.12-git

•

•

•

Script output:

Computing random projection
Computing PCA projection
Computing LDA projection
Computing Isomap embedding
Done.
Computing LLE embedding
Done. Reconstruction error: 1.28555e-06
Computing modified LLE embedding
Done. Reconstruction error: 0.359782
Computing Hessian LLE embedding
Done. Reconstruction error: 0.212118
Computing LTSA embedding

912 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Done. Reconstruction error: 0.212075
Computing MDS embedding
Done. Stress: 143525262.393712

Python source code: plot_lle_digits.py

Authors: Fabian Pedregosa <fabian.pedregosa@inria.fr>
Olivier Grisel <olivier.grisel@ensta.org>
Mathieu Blondel <mathieu@mblondel.org>
License: BSD, (C) INRIA 2011

print __doc__
from time import time

import numpy as np
import pylab as pl
from matplotlib import offsetbox
from sklearn.utils.fixes import qr_economic
from sklearn import manifold, datasets, decomposition, lda
from sklearn.metrics import euclidean_distances

digits = datasets.load_digits(n_class=6)
X = digits.data
y = digits.target
n_samples, n_features = X.shape
n_neighbors = 30

#--
Scale and visualize the embedding vectors
def plot_embedding(X, title=None):

x_min, x_max = np.min(X, 0), np.max(X, 0)
X = (X - x_min) / (x_max - x_min)

pl.figure()
ax = pl.subplot(111)
for i in range(X.shape[0]):

pl.text(X[i, 0], X[i, 1], str(digits.target[i]),
color=pl.cm.Set1(y[i] / 10.),
fontdict={’weight’: ’bold’, ’size’: 9})

if hasattr(offsetbox, ’AnnotationBbox’):
only print thumbnails with matplotlib > 1.0
shown_images = np.array([[1., 1.]]) # just something big
for i in range(digits.data.shape[0]):

dist = np.sum((X[i] - shown_images) ** 2, 1)
if np.min(dist) < 4e-3:

don’t show points that are too close
continue

shown_images = np.r_[shown_images, [X[i]]]
imagebox = offsetbox.AnnotationBbox(

offsetbox.OffsetImage(digits.images[i], cmap=pl.cm.gray_r),
X[i])

ax.add_artist(imagebox)
pl.xticks([]), pl.yticks([])
if title is not None:

pl.title(title)

2.1. Examples 913

scikit-learn user guide, Release 0.12-git

#--
Plot images of the digits
N = 20
img = np.zeros((10 * N, 10 * N))
for i in range(N):

ix = 10 * i + 1
for j in range(N):

iy = 10 * j + 1
img[ix:ix + 8, iy:iy + 8] = X[i * N + j].reshape((8, 8))

pl.imshow(img, cmap=pl.cm.binary)
pl.xticks([])
pl.yticks([])
pl.title(’A selection from the 64-dimensional digits dataset’)

#--
Random 2D projection using a random unitary matrix
print "Computing random projection"
rng = np.random.RandomState(42)
Q, _ = qr_economic(rng.normal(size=(n_features, 2)))
X_projected = np.dot(Q.T, X.T).T
plot_embedding(X_projected, "Random Projection of the digits")

#--
Projection on to the first 2 principal components

print "Computing PCA projection"
t0 = time()
X_pca = decomposition.RandomizedPCA(n_components=2).fit_transform(X)
plot_embedding(X_pca,

"Principal Components projection of the digits (time %.2fs)" %
(time() - t0))

#--
Projection on to the first 2 linear discriminant components

print "Computing LDA projection"
X2 = X.copy()
X2.flat[::X.shape[1] + 1] += 0.01 # Make X invertible
t0 = time()
X_lda = lda.LDA(n_components=2).fit_transform(X2, y)
plot_embedding(X_lda,

"Linear Discriminant projection of the digits (time %.2fs)" %
(time() - t0))

#--
Isomap projection of the digits dataset
print "Computing Isomap embedding"
t0 = time()
X_iso = manifold.Isomap(n_neighbors, n_components=2).fit_transform(X)
print "Done."
plot_embedding(X_iso,

"Isomap projection of the digits (time %.2fs)" %
(time() - t0))

914 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

#--
Locally linear embedding of the digits dataset
print "Computing LLE embedding"
clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2,

method=’standard’)
t0 = time()
X_lle = clf.fit_transform(X)
print "Done. Reconstruction error: %g" % clf.reconstruction_error_
plot_embedding(X_lle,

"Locally Linear Embedding of the digits (time %.2fs)" %
(time() - t0))

#--
Modified Locally linear embedding of the digits dataset
print "Computing modified LLE embedding"
clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2,

method=’modified’)
t0 = time()
X_mlle = clf.fit_transform(X)
print "Done. Reconstruction error: %g" % clf.reconstruction_error_
plot_embedding(X_mlle,

"Modified Locally Linear Embedding of the digits (time %.2fs)" %
(time() - t0))

#--
HLLE embedding of the digits dataset
print "Computing Hessian LLE embedding"
clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2,

method=’hessian’)
t0 = time()
X_hlle = clf.fit_transform(X)
print "Done. Reconstruction error: %g" % clf.reconstruction_error_
plot_embedding(X_hlle,

"Hessian Locally Linear Embedding of the digits (time %.2fs)" %
(time() - t0))

#--
LTSA embedding of the digits dataset
print "Computing LTSA embedding"
clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2,

method=’ltsa’)
t0 = time()
X_ltsa = clf.fit_transform(X)
print "Done. Reconstruction error: %g" % clf.reconstruction_error_
plot_embedding(X_ltsa,

"Local Tangent Space Alignment of the digits (time %.2fs)" %
(time() - t0))

#--
MDS embedding of the digits dataset
print "Computing MDS embedding"
clf = manifold.MDS(n_components=2, n_init=1, max_iter=100)
t0 = time()
X_mds = clf.fit_transform(euclidean_distances(X))
print "Done. Stress: %f" % clf.stress_

2.1. Examples 915

scikit-learn user guide, Release 0.12-git

plot_embedding(X_mds,
"MDS embedding of the digits (time %.2fs)" %
(time() - t0))

pl.show()

Figure 2.108: Multi-dimensional scaling

Multi-dimensional scaling

An illustration of the metric and non-metric MDS on generated noisy data.

The reconstructed points using the metric MDS and non metric MDS are slightly shifted to avoid overlapping.

Python source code: plot_mds.py

916 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Author: Nelle Varoquaux <nelle.varoquaux@gmail.com>
Licence: BSD

print __doc__
import numpy as np

from matplotlib import pyplot as plt
from matplotlib.collections import LineCollection

from sklearn import manifold
from sklearn.metrics import euclidean_distances
from sklearn.decomposition import PCA

n_samples = 20
seed = np.random.RandomState(seed=3)
X_true = seed.randint(0, 20, 2 * n_samples).astype(np.float)
X_true = X_true.reshape((n_samples, 2))
Center the data
X_true -= X_true.mean()

similarities = euclidean_distances(X_true)

Add noise to the similarities
noise = np.random.rand(n_samples, n_samples)
noise = noise + noise.T
noise[np.arange(noise.shape[0]), np.arange(noise.shape[0])] = 0
similarities += noise

mds = manifold.MDS(n_components=2, max_iter=3000,
eps=1e-9, random_state=seed,
n_jobs=1)

pos = mds.fit(similarities).embedding_

nmds = manifold.MDS(n_components=2, metric=False,
max_iter=3000,
eps=1e-9, random_state=seed, n_jobs=1)

npos = mds.fit_transform(similarities)

Rotate the data
clf = PCA(n_components=2)
X_true = clf.fit_transform(X_true)

pos = clf.fit_transform(pos)

npos = clf.fit_transform(pos)

fig = plt.figure(1)
ax = plt.axes([0., 0., 1., 1.])

plt.scatter(X_true[:, 0], X_true[:, 1], c=’r’, s=20)
plt.scatter(pos[:, 0] + 0.2, pos[:, 1] + 0.2, s=20, c=’g’)
plt.scatter(npos[:, 0] - 0.2, npos[:, 1] - 0.2, s=20, c=’b’)
plt.legend((’True position’, ’MDS’, ’NMDS’), loc=’best’)

similarities = similarities.max() / similarities * 100
similarities[np.isinf(similarities)] = 0

Plot the edges

2.1. Examples 917

scikit-learn user guide, Release 0.12-git

start_idx, end_idx = np.where(pos)
#a sequence of (*line0*, *line1*, *line2*), where::
linen = (x0, y0), (x1, y1), ... (xm, ym)
segments = [[pos[i, :], pos[j, :]]

for i in range(len(pos)) for j in range(len(pos))]
values = np.abs(similarities)
lc = LineCollection(segments,

zorder=0, cmap=plt.cm.hot_r,
norm=plt.Normalize(0, values.max()))

lc.set_array(similarities.flatten())
lc.set_linewidths(0.5 * np.ones(len(segments)))
ax.add_collection(lc)

plt.show()

Figure 2.109: Swiss Roll reduction with LLE

Swiss Roll reduction with LLE

An illustration of Swiss Roll reduction with locally linear embedding

918 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Script output:

Computing LLE embedding
Done. Reconstruction error: 9.68564e-08

Python source code: plot_swissroll.py

Author: Fabian Pedregosa -- <fabian.pedregosa@inria.fr>
License: BSD, (C) INRIA 2011

print __doc__

import pylab as pl

This import is needed to modify the way figure behaves
from mpl_toolkits.mplot3d import Axes3D
Axes3D

#--
Locally linear embedding of the swiss roll

from sklearn import manifold, datasets
X, color = datasets.samples_generator.make_swiss_roll(n_samples=1500)

print "Computing LLE embedding"
X_r, err = manifold.locally_linear_embedding(X, n_neighbors=12,

n_components=2)

2.1. Examples 919

scikit-learn user guide, Release 0.12-git

print "Done. Reconstruction error: %g" % err

#--
Plot result

fig = pl.figure()
try:

compatibility matplotlib < 1.0
ax = fig.add_subplot(211, projection=’3d’)
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=pl.cm.Spectral)

except:
ax = fig.add_subplot(211)
ax.scatter(X[:, 0], X[:, 2], c=color, cmap=pl.cm.Spectral)

ax.set_title("Original data")
ax = fig.add_subplot(212)
ax.scatter(X_r[:, 0], X_r[:, 1], c=color, cmap=pl.cm.Spectral)
pl.axis(’tight’)
pl.xticks([]), pl.yticks([])
pl.title(’Projected data’)
pl.show()

2.1.12 Gaussian Mixture Models

Examples concerning the sklearn.mixture package.

Figure 2.110: Gaussian Mixture Model Ellipsoids

Gaussian Mixture Model Ellipsoids

Plot the confidence ellipsoids of a mixture of two gaussians with EM and variational dirichlet process.

Both models have access to five components with which to fit the data. Note that the EM model will necessarily use all
five components while the DP model will effectively only use as many as are needed for a good fit. This is a property
of the Dirichlet Process prior. Here we can see that the EM model splits some components arbitrarily, because it is
trying to fit too many components, while the Dirichlet Process model adapts it number of state automatically.

This example doesn’t show it, as we’re in a low-dimensional space, but another advantage of the dirichlet process
model is that it can fit full covariance matrices effectively even when there are less examples per cluster than there are
dimensions in the data, due to regularization properties of the inference algorithm.

920 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Python source code: plot_gmm.py

import itertools

import numpy as np
from scipy import linalg
import pylab as pl
import matplotlib as mpl

from sklearn import mixture

Number of samples per component
n_samples = 500

Generate random sample, two components
np.random.seed(0)
C = np.array([[0., -0.1], [1.7, .4]])
X = np.r_[np.dot(np.random.randn(n_samples, 2), C),

.7 * np.random.randn(n_samples, 2) + np.array([-6, 3])]

Fit a mixture of gaussians with EM using five components
gmm = mixture.GMM(n_components=5, covariance_type=’full’)
gmm.fit(X)

Fit a dirichlet process mixture of gaussians using five components
dpgmm = mixture.DPGMM(n_components=5, covariance_type=’full’)

2.1. Examples 921

scikit-learn user guide, Release 0.12-git

dpgmm.fit(X)

color_iter = itertools.cycle([’r’, ’g’, ’b’, ’c’, ’m’])

for i, (clf, title) in enumerate([(gmm, ’GMM’),
(dpgmm, ’Dirichlet Process GMM’)]):

splot = pl.subplot(2, 1, 1 + i)
Y_ = clf.predict(X)
for i, (mean, covar, color) in enumerate(zip(

clf.means_, clf._get_covars(), color_iter)):
v, w = linalg.eigh(covar)
u = w[0] / linalg.norm(w[0])
as the DP will not use every component it has access to
unless it needs it, we shouldn’t plot the redundant
components.
if not np.any(Y_ == i):

continue
pl.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color)

Plot an ellipse to show the Gaussian component
angle = np.arctan(u[1] / u[0])
angle = 180 * angle / np.pi # convert to degrees
ell = mpl.patches.Ellipse(mean, v[0], v[1], 180 + angle, color=color)
ell.set_clip_box(splot.bbox)
ell.set_alpha(0.5)
splot.add_artist(ell)

pl.xlim(-10, 10)
pl.ylim(-3, 6)
pl.xticks(())
pl.yticks(())
pl.title(title)

pl.show()

Figure 2.111: GMM classification

GMM classification

Demonstration of Gaussian mixture models for classification.

Plots predicted labels on both training and held out test data using a variety of GMM classifiers on the iris dataset.

Compares GMMs with spherical, diagonal, full, and tied covariance matrices in increasing order of performance.
Although one would expect full covariance to perform best in general, it is prone to overfitting on small datasets and
does not generalize well to held out test data.

On the plots, train data is shown as dots, while test data is shown as crosses. The iris dataset is four-dimensional. Only

922 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

the first two dimensions are shown here, and thus some points are separated in other dimensions.

Python source code: plot_gmm_classifier.py

print __doc__

Author: Ron Weiss <ronweiss@gmail.com>, Gael Varoquaux
License: BSD Style.

Id

import pylab as pl
import matplotlib as mpl
import numpy as np

from sklearn import datasets
from sklearn.cross_validation import StratifiedKFold
from sklearn.mixture import GMM

2.1. Examples 923

scikit-learn user guide, Release 0.12-git

def make_ellipses(gmm, ax):
for n, color in enumerate(’rgb’):

v, w = np.linalg.eigh(gmm._get_covars()[n][:2, :2])
u = w[0] / np.linalg.norm(w[0])
angle = np.arctan2(u[1], u[0])
angle = 180 * angle / np.pi # convert to degrees
v *= 9
ell = mpl.patches.Ellipse(gmm.means_[n, :2], v[0], v[1],

180 + angle, color=color)
ell.set_clip_box(ax.bbox)
ell.set_alpha(0.5)
ax.add_artist(ell)

iris = datasets.load_iris()

Break up the dataset into non-overlapping training (75%) and testing
(25%) sets.
skf = StratifiedKFold(iris.target, k=4)
Only take the first fold.
train_index, test_index = skf.__iter__().next()

X_train = iris.data[train_index]
y_train = iris.target[train_index]
X_test = iris.data[test_index]
y_test = iris.target[test_index]

n_classes = len(np.unique(y_train))

Try GMMs using different types of covariances.
classifiers = dict((covar_type, GMM(n_components=n_classes,

covariance_type=covar_type, init_params=’wc’, n_iter=20))
for covar_type in [’spherical’, ’diag’, ’tied’, ’full’])

n_classifiers = len(classifiers)

pl.figure(figsize=(3 * n_classifiers / 2, 6))
pl.subplots_adjust(bottom=.01, top=0.95, hspace=.15, wspace=.05,

left=.01, right=.99)

for index, (name, classifier) in enumerate(classifiers.iteritems()):
Since we have class labels for the training data, we can
initialize the GMM parameters in a supervised manner.
classifier.means_ = np.array([X_train[y_train == i].mean(axis=0)

for i in xrange(n_classes)])

Train the other parameters using the EM algorithm.
classifier.fit(X_train)

h = pl.subplot(2, n_classifiers / 2, index + 1)
make_ellipses(classifier, h)

for n, color in enumerate(’rgb’):
data = iris.data[iris.target == n]
pl.scatter(data[:, 0], data[:, 1], 0.8, color=color,

label=iris.target_names[n])
Plot the test data with crosses

924 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

for n, color in enumerate(’rgb’):
data = X_test[y_test == n]
pl.plot(data[:, 0], data[:, 1], ’x’, color=color)

y_train_pred = classifier.predict(X_train)
train_accuracy = np.mean(y_train_pred.ravel() == y_train.ravel()) * 100
pl.text(0.05, 0.9, ’Train accuracy: %.1f’ % train_accuracy,

transform=h.transAxes)

y_test_pred = classifier.predict(X_test)
test_accuracy = np.mean(y_test_pred.ravel() == y_test.ravel()) * 100
pl.text(0.05, 0.8, ’Test accuracy: %.1f’ % test_accuracy,

transform=h.transAxes)

pl.xticks(())
pl.yticks(())
pl.title(name)

pl.legend(loc=’lower right’, prop=dict(size=12))

pl.show()

Figure 2.112: Density Estimation for a mixture of Gaussians

Density Estimation for a mixture of Gaussians

Plot the density estimation of a mixture of two gaussians. Data is generated from two gaussians with different centers
and covariance matrices.

2.1. Examples 925

scikit-learn user guide, Release 0.12-git

Python source code: plot_gmm_pdf.py

import numpy as np
import pylab as pl
from sklearn import mixture

n_samples = 300

generate random sample, two components
np.random.seed(0)
C = np.array([[0., -0.7], [3.5, .7]])
X_train = np.r_[np.dot(np.random.randn(n_samples, 2), C),

np.random.randn(n_samples, 2) + np.array([20, 20])]

clf = mixture.GMM(n_components=2, covariance_type=’full’)
clf.fit(X_train)

x = np.linspace(-20.0, 30.0)
y = np.linspace(-20.0, 40.0)
X, Y = np.meshgrid(x, y)
XX = np.c_[X.ravel(), Y.ravel()]
Z = np.log(-clf.eval(XX)[0])
Z = Z.reshape(X.shape)

CS = pl.contour(X, Y, Z)
CB = pl.colorbar(CS, shrink=0.8, extend=’both’)

926 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

pl.scatter(X_train[:, 0], X_train[:, 1], .8)

pl.axis(’tight’)
pl.show()

Figure 2.113: Gaussian Mixture Model Selection

Gaussian Mixture Model Selection

This example shows that model selection can be perfomed with Gaussian Mixture Models using information-theoretic
criteria (BIC). Model selection concerns both the covariance type and the number of components in the model. In that
case, AIC also provides the right result (not shown to save time), but BIC is better suited if the problem is to identify
the right model. Unlike Bayesian procedures, such inferences are prior-free.

In that case, the model with 2 components and full covariance (which corresponds to the true generative model) is
selected.

2.1. Examples 927

scikit-learn user guide, Release 0.12-git

Python source code: plot_gmm_selection.py

print __doc__

import itertools

import numpy as np
from scipy import linalg
import pylab as pl
import matplotlib as mpl

from sklearn import mixture

Number of samples per component
n_samples = 500

Generate random sample, two components
np.random.seed(0)
C = np.array([[0., -0.1], [1.7, .4]])
X = np.r_[np.dot(np.random.randn(n_samples, 2), C),

.7 * np.random.randn(n_samples, 2) + np.array([-6, 3])]

lowest_bic = np.infty
bic = []
n_components_range = range(1, 7)
cv_types = [’spherical’, ’tied’, ’diag’, ’full’]

928 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

for cv_type in cv_types:
for n_components in n_components_range:

Fit a mixture of gaussians with EM
gmm = mixture.GMM(n_components=n_components, covariance_type=cv_type)
gmm.fit(X)
bic.append(gmm.bic(X))
if bic[-1] < lowest_bic:

lowest_bic = bic[-1]
best_gmm = gmm

bic = np.array(bic)
color_iter = itertools.cycle([’k’, ’r’, ’g’, ’b’, ’c’, ’m’, ’y’])
clf = best_gmm
bars = []

Plot the BIC scores
spl = pl.subplot(2, 1, 1)
for i, (cv_type, color) in enumerate(zip(cv_types, color_iter)):

xpos = np.array(n_components_range) + .2 * (i - 2)
bars.append(pl.bar(xpos, bic[i * len(n_components_range):

(i + 1) * len(n_components_range)],
width=.2, color=color))

pl.xticks(n_components_range)
pl.ylim([bic.min() * 1.01 - .01 * bic.max(), bic.max()])
pl.title(’BIC score per model’)
xpos = np.mod(bic.argmin(), len(n_components_range)) + .65 +\

.2 * np.floor(bic.argmin() / len(n_components_range))
pl.text(xpos, bic.min() * 0.97 + .03 * bic.max(), ’*’, fontsize=14)
spl.set_xlabel(’Number of components’)
spl.legend([b[0] for b in bars], cv_types)

Plot the winner
splot = pl.subplot(2, 1, 2)
Y_ = clf.predict(X)
for i, (mean, covar, color) in enumerate(zip(clf.means_, clf.covars_,

color_iter)):
v, w = linalg.eigh(covar)
if not np.any(Y_ == i):

continue
pl.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color)

Plot an ellipse to show the Gaussian component
angle = np.arctan2(w[0][1], w[0][0])
angle = 180 * angle / np.pi # convert to degrees
v *= 4
ell = mpl.patches.Ellipse(mean, v[0], v[1], 180 + angle, color=color)
ell.set_clip_box(splot.bbox)
ell.set_alpha(.5)
splot.add_artist(ell)

pl.xlim(-10, 10)
pl.ylim(-3, 6)
pl.xticks(())
pl.yticks(())
pl.title(’Selected GMM: full model, 2 components’)
pl.subplots_adjust(hspace=.35, bottom=.02)
pl.show()

2.1. Examples 929

scikit-learn user guide, Release 0.12-git

Figure 2.114: Gaussian Mixture Model Sine Curve

Gaussian Mixture Model Sine Curve

This example highlights the advantages of the Dirichlet Process: complexity control and dealing with sparse data. The
dataset is formed by 100 points loosely spaced following a noisy sine curve. The fit by the GMM class, using the
expectation-maximization algorithm to fit a mixture of 10 gaussian components, finds too-small components and very
little structure. The fits by the dirichlet process, however, show that the model can either learn a global structure for the
data (small alpha) or easily interpolate to finding relevant local structure (large alpha), never falling into the problems
shown by the GMM class.

Python source code: plot_gmm_sin.py

import itertools

import numpy as np

930 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

from scipy import linalg
import pylab as pl
import matplotlib as mpl

from sklearn import mixture

Number of samples per component
n_samples = 100

Generate random sample following a sine curve
np.random.seed(0)
X = np.zeros((n_samples, 2))
step = 4 * np.pi / n_samples

for i in xrange(X.shape[0]):
x = i * step - 6
X[i, 0] = x + np.random.normal(0, 0.1)
X[i, 1] = 3 * (np.sin(x) + np.random.normal(0, .2))

color_iter = itertools.cycle([’r’, ’g’, ’b’, ’c’, ’m’])

for i, (clf, title) in enumerate([
(mixture.GMM(n_components=10, covariance_type=’full’, n_iter=100), \

"Expectation-maximization"),
(mixture.DPGMM(n_components=10, covariance_type=’full’,

alpha=0.01, n_iter=100),
"Dirichlet Process,alpha=0.01"),
(mixture.DPGMM(n_components=10, covariance_type=’diag’,

alpha=100., n_iter=100),
"Dirichlet Process,alpha=100.")
]):

clf.fit(X)
splot = pl.subplot(3, 1, 1 + i)
Y_ = clf.predict(X)
for i, (mean, covar, color) in enumerate(zip(

clf.means_, clf._get_covars(), color_iter)):
v, w = linalg.eigh(covar)
u = w[0] / linalg.norm(w[0])
as the DP will not use every component it has access to
unless it needs it, we shouldn’t plot the redundant
components.
if not np.any(Y_ == i):

continue
pl.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color)

Plot an ellipse to show the Gaussian component
angle = np.arctan(u[1] / u[0])
angle = 180 * angle / np.pi # convert to degrees
ell = mpl.patches.Ellipse(mean, v[0], v[1], 180 + angle, color=color)
ell.set_clip_box(splot.bbox)
ell.set_alpha(0.5)
splot.add_artist(ell)

pl.xlim(-6, 4 * np.pi - 6)
pl.ylim(-5, 5)

2.1. Examples 931

scikit-learn user guide, Release 0.12-git

pl.title(title)
pl.xticks(())
pl.yticks(())

pl.show()

2.1.13 Nearest Neighbors

Examples concerning the sklearn.neighbors package.

Figure 2.115: Nearest Neighbors Classification

Nearest Neighbors Classification

Sample usage of Nearest Neighbors classification. It will plot the decision boundaries for each class.

•

•

932 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Python source code: plot_classification.py

print __doc__

import numpy as np
import pylab as pl
from matplotlib.colors import ListedColormap
from sklearn import neighbors, datasets

n_neighbors = 15

import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features. We could

avoid this ugly slicing by using a two-dim dataset
y = iris.target

h = .02 # step size in the mesh

Create color maps
cmap_light = ListedColormap([’#FFAAAA’, ’#AAFFAA’, ’#AAAAFF’])
cmap_bold = ListedColormap([’#FF0000’, ’#00FF00’, ’#0000FF’])

for weights in [’uniform’, ’distance’]:
we create an instance of Neighbours Classifier and fit the data.
clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
clf.fit(X, y)

Plot the decision boundary. For that, we will asign a color to each
point in the mesh [x_min, m_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

Put the result into a color plot
Z = Z.reshape(xx.shape)
pl.figure()
pl.pcolormesh(xx, yy, Z, cmap=cmap_light)

Plot also the training points
pl.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
pl.title("3-Class classification (k = %i, weights = ’%s’)"

% (n_neighbors, weights))
pl.axis(’tight’)

pl.show()

Nearest Centroid Classification

Sample usage of Nearest Centroid classification. It will plot the decision boundaries for each class.

2.1. Examples 933

scikit-learn user guide, Release 0.12-git

Figure 2.116: Nearest Centroid Classification

•

•

Script output:

None 0.813333333333
0.1 0.826666666667

Python source code: plot_nearest_centroid.py

print __doc__

import numpy as np
import pylab as pl
from matplotlib.colors import ListedColormap
from sklearn import datasets
from sklearn.neighbors import NearestCentroid

n_neighbors = 15

import some data to play with

934 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features. We could

avoid this ugly slicing by using a two-dim dataset
y = iris.target

h = .02 # step size in the mesh

Create color maps
cmap_light = ListedColormap([’#FFAAAA’, ’#AAFFAA’, ’#AAAAFF’])
cmap_bold = ListedColormap([’#FF0000’, ’#00FF00’, ’#0000FF’])

for shrinkage in [None, 0.1]:
we create an instance of Neighbours Classifier and fit the data.
clf = NearestCentroid(shrink_threshold=shrinkage)
clf.fit(X, y)
y_pred = clf.predict(X)
print shrinkage, np.mean(y == y_pred)
Plot the decision boundary. For that, we will asign a color to each
point in the mesh [x_min, m_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

Put the result into a color plot
Z = Z.reshape(xx.shape)
pl.figure()
pl.pcolormesh(xx, yy, Z, cmap=cmap_light)

Plot also the training points
pl.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
pl.title("3-Class classification (shrink_threshold=%r)"

% shrinkage)
pl.axis(’tight’)

pl.show()

Figure 2.117: Nearest Neighbors regression

Nearest Neighbors regression

Demonstrate the resolution of a regression problem using a k-Nearest Neighbor and the interpolation of the target
using both barycenter and constant weights.

2.1. Examples 935

scikit-learn user guide, Release 0.12-git

Python source code: plot_regression.py

print __doc__

Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
Fabian Pedregosa <fabian.pedregosa@inria.fr>
#
License: BSD, (C) INRIA

###
Generate sample data
import numpy as np
import pylab as pl
from sklearn import neighbors

np.random.seed(0)
X = np.sort(5 * np.random.rand(40, 1), axis=0)
T = np.linspace(0, 5, 500)[:, np.newaxis]
y = np.sin(X).ravel()

Add noise to targets
y[::5] += 1 * (0.5 - np.random.rand(8))

###
Fit regression model

936 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

n_neighbors = 5

for i, weights in enumerate([’uniform’, ’distance’]):
knn = neighbors.KNeighborsRegressor(n_neighbors, weights=weights)
y_ = knn.fit(X, y).predict(T)

pl.subplot(2, 1, i + 1)
pl.scatter(X, y, c=’k’, label=’data’)
pl.plot(T, y_, c=’g’, label=’prediction’)
pl.axis(’tight’)
pl.legend()
pl.title("KNeighborsRegressor (k = %i, weights = ’%s’)" % (n_neighbors,

weights))

pl.show()

2.1.14 Semi Supervised Classification

Examples concerning the sklearn.semi_supervised package.

Figure 2.118: Label Propagation digits: Demonstrating performance

Label Propagation digits: Demonstrating performance

This example demonstrates the power of semisupervised learning by training a Label Spreading model to classify
handwritten digits with sets of very few labels.

The handwritten digit dataset has 1797 total points. The model will be trained using all points, but only 30 will be
labeled. Results in the form of a confusion matrix and a series of metrics over each class will be very good.

At the end, the top 10 most uncertain predictions will be shown.

2.1. Examples 937

scikit-learn user guide, Release 0.12-git

Script output:

Label Spreading model: 30 labeled & 300 unlabeled points (330 total)
precision recall f1-score support

0 1.00 1.00 1.00 23
1 0.58 0.54 0.56 28
2 0.96 0.93 0.95 29
3 0.00 0.00 0.00 28
4 0.91 0.80 0.85 25
5 0.96 0.79 0.87 33
6 0.97 0.97 0.97 36
7 0.89 1.00 0.94 34
8 0.48 0.83 0.61 29
9 0.54 0.77 0.64 35

avg / total 0.73 0.77 0.74 300

Confusion matrix
[[23 0 0 0 0 0 0 0 0]
[0 15 1 0 0 1 0 11 0]
[0 0 27 0 0 0 2 0 0]
[0 5 0 20 0 0 0 0 0]
[0 0 0 0 26 0 0 1 6]
[0 1 0 0 0 35 0 0 0]
[0 0 0 0 0 0 34 0 0]
[0 5 0 0 0 0 0 24 0]
[0 0 0 2 1 0 2 3 27]]

938 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Python source code: plot_label_propagation_digits.py

print __doc__

Authors: Clay Woolam <clay@woolam.org>
Licence: BSD

import numpy as np
import pylab as pl

from scipy import stats

from sklearn import datasets
from sklearn.semi_supervised import label_propagation

from sklearn.metrics import metrics
from sklearn.metrics.metrics import confusion_matrix

digits = datasets.load_digits()
rng = np.random.RandomState(0)
indices = np.arange(len(digits.data))
rng.shuffle(indices)

X = digits.data[indices[:330]]
y = digits.target[indices[:330]]
images = digits.images[indices[:330]]

n_total_samples = len(y)
n_labeled_points = 30

indices = np.arange(n_total_samples)

unlabeled_set = indices[n_labeled_points:]

shuffle everything around
y_train = np.copy(y)
y_train[unlabeled_set] = -1

###
Learn with LabelSpreading
lp_model = label_propagation.LabelSpreading(gamma=0.25, max_iters=5)
lp_model.fit(X, y_train)
predicted_labels = lp_model.transduction_[unlabeled_set]
true_labels = y[unlabeled_set]

cm = confusion_matrix(true_labels, predicted_labels,
labels=lp_model.classes_)

print "Label Spreading model: %d labeled & %d unlabeled points (%d total)" % \
(n_labeled_points, n_total_samples - n_labeled_points, n_total_samples)

print metrics.classification_report(true_labels, predicted_labels)

print "Confusion matrix"
print cm

calculate uncertainty values for each transduced distribution
pred_entropies = stats.distributions.entropy(lp_model.label_distributions_.T)

2.1. Examples 939

scikit-learn user guide, Release 0.12-git

pick the top 10 most uncertain labels
uncertainty_index = np.argsort(pred_entropies)[-10:]

###
plot
f = pl.figure(figsize=(7, 5))
for index, image_index in enumerate(uncertainty_index):

image = images[image_index]

sub = f.add_subplot(2, 5, index + 1)
sub.imshow(image, cmap=pl.cm.gray_r)
pl.xticks([])
pl.yticks([])
sub.set_title(’predict: %i\ntrue: %i’ % (

lp_model.transduction_[image_index], y[image_index]))

f.suptitle(’Learning with small amount of labeled data’)
pl.show()

Figure 2.119: Label Propagation digits active learning

Label Propagation digits active learning

Demonstrates an active learning technique to learn handwritten digits using label propagation.

We start by training a label propagation model with only 10 labeled points, then we select the top five most uncertain
points to label. Next, we train with 15 labeled points (original 10 + 5 new ones). We repeat this process four times to
have a model trained with 30 labeled examples.

A plot will appear showing the top 5 most uncertain digits for each iteration of training. These may or may not contain
mistakes, but we will train the next model with their true labels.

940 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Script output:

Iteration 0 __
Label Spreading model: 10 labeled & 320 unlabeled (330 total)

precision recall f1-score support

0 0.00 0.00 0.00 24
1 0.49 0.90 0.63 29
2 0.88 0.97 0.92 31
3 0.00 0.00 0.00 28
4 0.00 0.00 0.00 27
5 0.89 0.49 0.63 35
6 0.86 0.95 0.90 40
7 0.75 0.92 0.83 36
8 0.54 0.79 0.64 33
9 0.41 0.86 0.56 37

avg / total 0.52 0.63 0.55 320

Confusion matrix
[[26 1 0 0 1 0 1]
[1 30 0 0 0 0 0]
[0 0 17 6 0 2 10]
[2 0 0 38 0 0 0]
[0 3 0 0 33 0 0]
[7 0 0 0 0 26 0]

2.1. Examples 941

scikit-learn user guide, Release 0.12-git

[0 0 2 0 0 3 32]]
Iteration 1 __
Label Spreading model: 15 labeled & 315 unlabeled (330 total)

precision recall f1-score support

0 1.00 1.00 1.00 23
1 0.61 0.59 0.60 29
2 0.91 0.97 0.94 31
3 1.00 0.56 0.71 27
4 0.79 0.88 0.84 26
5 0.89 0.46 0.60 35
6 0.86 0.95 0.90 40
7 0.97 0.92 0.94 36
8 0.54 0.84 0.66 31
9 0.70 0.81 0.75 37

avg / total 0.82 0.80 0.79 315

Confusion matrix
[[23 0 0 0 0 0 0 0 0 0]
[0 17 1 0 2 0 0 1 7 1]
[0 1 30 0 0 0 0 0 0 0]
[0 0 0 15 0 0 0 0 10 2]
[0 3 0 0 23 0 0 0 0 0]
[0 0 0 0 1 16 6 0 2 10]
[0 2 0 0 0 0 38 0 0 0]
[0 0 2 0 1 0 0 33 0 0]
[0 5 0 0 0 0 0 0 26 0]
[0 0 0 0 2 2 0 0 3 30]]

Iteration 2 __
Label Spreading model: 20 labeled & 310 unlabeled (330 total)

precision recall f1-score support

0 1.00 1.00 1.00 23
1 0.68 0.59 0.63 29
2 0.91 0.97 0.94 31
3 0.96 1.00 0.98 23
4 0.81 1.00 0.89 25
5 0.89 0.46 0.60 35
6 0.86 0.95 0.90 40
7 0.97 0.92 0.94 36
8 0.68 0.84 0.75 31
9 0.75 0.81 0.78 37

avg / total 0.85 0.84 0.83 310

Confusion matrix
[[23 0 0 0 0 0 0 0 0 0]
[0 17 1 0 2 0 0 1 7 1]
[0 1 30 0 0 0 0 0 0 0]
[0 0 0 23 0 0 0 0 0 0]
[0 0 0 0 25 0 0 0 0 0]
[0 0 0 1 1 16 6 0 2 9]
[0 2 0 0 0 0 38 0 0 0]
[0 0 2 0 1 0 0 33 0 0]
[0 5 0 0 0 0 0 0 26 0]
[0 0 0 0 2 2 0 0 3 30]]

Iteration 3 __

942 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Label Spreading model: 25 labeled & 305 unlabeled (330 total)
precision recall f1-score support

0 1.00 1.00 1.00 23
1 0.70 0.85 0.77 27
2 1.00 0.90 0.95 31
3 1.00 1.00 1.00 23
4 1.00 1.00 1.00 25
5 0.96 0.74 0.83 34
6 1.00 0.95 0.97 40
7 0.90 1.00 0.95 35
8 0.83 0.81 0.82 31
9 0.75 0.83 0.79 36

avg / total 0.91 0.90 0.90 305

Confusion matrix
[[23 0 0 0 0 0 0 0 0 0]
[0 23 0 0 0 0 0 0 4 0]
[0 1 28 0 0 0 0 2 0 0]
[0 0 0 23 0 0 0 0 0 0]
[0 0 0 0 25 0 0 0 0 0]
[0 0 0 0 0 25 0 0 0 9]
[0 2 0 0 0 0 38 0 0 0]
[0 0 0 0 0 0 0 35 0 0]
[0 5 0 0 0 0 0 0 25 1]
[0 2 0 0 0 1 0 2 1 30]]

Iteration 4 __
Label Spreading model: 30 labeled & 300 unlabeled (330 total)

precision recall f1-score support

0 1.00 1.00 1.00 23
1 0.77 0.88 0.82 26
2 1.00 0.90 0.95 31
3 1.00 1.00 1.00 23
4 1.00 1.00 1.00 25
5 0.94 0.97 0.95 32
6 1.00 0.97 0.99 39
7 0.90 1.00 0.95 35
8 0.89 0.81 0.85 31
9 0.94 0.89 0.91 35

avg / total 0.94 0.94 0.94 300

Confusion matrix
[[23 0 0 0 0 0 0 0 0 0]
[0 23 0 0 0 0 0 0 3 0]
[0 1 28 0 0 0 0 2 0 0]
[0 0 0 23 0 0 0 0 0 0]
[0 0 0 0 25 0 0 0 0 0]
[0 0 0 0 0 31 0 0 0 1]
[0 1 0 0 0 0 38 0 0 0]
[0 0 0 0 0 0 0 35 0 0]
[0 5 0 0 0 0 0 0 25 1]
[0 0 0 0 0 2 0 2 0 31]]

Python source code: plot_label_propagation_digits_active_learning.py

2.1. Examples 943

scikit-learn user guide, Release 0.12-git

print __doc__

Authors: Clay Woolam <clay@woolam.org>
Licence: BSD

import numpy as np
import pylab as pl
from scipy import stats

from sklearn import datasets
from sklearn.semi_supervised import label_propagation
from sklearn.metrics import classification_report, confusion_matrix

digits = datasets.load_digits()
rng = np.random.RandomState(0)
indices = np.arange(len(digits.data))
rng.shuffle(indices)

X = digits.data[indices[:330]]
y = digits.target[indices[:330]]
images = digits.images[indices[:330]]

n_total_samples = len(y)
n_labeled_points = 10

unlabeled_indices = np.arange(n_total_samples)[n_labeled_points:]
f = pl.figure()

for i in range(5):
y_train = np.copy(y)
y_train[unlabeled_indices] = -1

lp_model = label_propagation.LabelSpreading(gamma=0.25, max_iters=5)
lp_model.fit(X, y_train)

predicted_labels = lp_model.transduction_[unlabeled_indices]
true_labels = y[unlabeled_indices]

cm = confusion_matrix(true_labels, predicted_labels,
labels=lp_model.classes_)

print (’Iteration %i ’ + 70 * ’_’) % i
print "Label Spreading model: %d labeled & %d unlabeled (%d total)" %\

(n_labeled_points, n_total_samples - n_labeled_points, n_total_samples)

print classification_report(true_labels, predicted_labels)

print "Confusion matrix"
print cm

compute the entropies of transduced label distributions
pred_entropies = stats.distributions.entropy(

lp_model.label_distributions_.T)

select five digit examples that the classifier is most uncertain about
uncertainty_index = uncertainty_index = np.argsort(pred_entropies)[-5:]

keep track of indicies that we get labels for

944 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

delete_indices = np.array([])

f.text(.05, (1 - (i + 1) * .183),
"model %d\n\nfit with\n%d labels" % ((i + 1), i * 5 + 10), size=10)

for index, image_index in enumerate(uncertainty_index):
image = images[image_index]

sub = f.add_subplot(5, 5, index + 1 + (5 * i))
sub.imshow(image, cmap=pl.cm.gray_r)
sub.set_title(’predict: %i\ntrue: %i’ % (

lp_model.transduction_[image_index], y[image_index]), size=10)
sub.axis(’off’)

labeling 5 points, remote from labeled set
delete_index, = np.where(unlabeled_indices == image_index)
delete_indices = np.concatenate((delete_indices, delete_index))

unlabeled_indices = np.delete(unlabeled_indices, delete_indices)
n_labeled_points += 5

f.suptitle("Active learning with Label Propagation.\nRows show 5 most "
"uncertain labels to learn with the next model.")

pl.subplots_adjust(0.12, 0.03, 0.9, 0.8, 0.2, 0.45)
pl.show()

Figure 2.120: Label Propagation learning a complex structure

Label Propagation learning a complex structure

Example of LabelPropagation learning a complex internal structure to demonstrate “manifold learning”. The outer
circle should be labeled “red” and the inner circle “blue”. Because both label groups lie inside their own distinct
shape, we can see that the labels propagate correctly around the circle.

2.1. Examples 945

scikit-learn user guide, Release 0.12-git

Python source code: plot_label_propagation_structure.py

print __doc__

Authors: Clay Woolam <clay@woolam.org>
Andreas Mueller <amueller@ais.uni-bonn.de>
Licence: BSD

import numpy as np
import pylab as pl
from sklearn.semi_supervised import label_propagation
from sklearn.datasets import make_circles

generate ring with inner box
n_samples = 200
X, y = make_circles(n_samples=n_samples, shuffle=False)
outer, inner = 0, 1
labels = -np.ones(n_samples)
labels[0] = outer
labels[-1] = inner

###
Learn with LabelSpreading
label_spread = label_propagation.LabelSpreading(kernel=’knn’, alpha=1.0)
label_spread.fit(X, labels)

###
Plot output labels
output_labels = label_spread.transduction_
pl.figure(figsize=(8.5, 4))
pl.subplot(1, 2, 1)
plot_outer_labeled, = pl.plot(X[labels == outer, 0],

X[labels == outer, 1], ’rs’)
plot_unlabeled, = pl.plot(X[labels == -1, 0], X[labels == -1, 1], ’g.’)
plot_inner_labeled, = pl.plot(X[labels == inner, 0],

X[labels == inner, 1], ’bs’)
pl.legend((plot_outer_labeled, plot_inner_labeled, plot_unlabeled),

(’Outer Labeled’, ’Inner Labeled’, ’Unlabeled’), ’upper left’,

946 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

numpoints=1, shadow=False)
pl.title("Raw data (2 classes=red and blue)")

pl.subplot(1, 2, 2)
output_label_array = np.asarray(output_labels)
outer_numbers = np.where(output_label_array == outer)[0]
inner_numbers = np.where(output_label_array == inner)[0]
plot_outer, = pl.plot(X[outer_numbers, 0], X[outer_numbers, 1], ’rs’)
plot_inner, = pl.plot(X[inner_numbers, 0], X[inner_numbers, 1], ’bs’)
pl.legend((plot_outer, plot_inner), (’Outer Learned’, ’Inner Learned’),

’upper left’, numpoints=1, shadow=False)
pl.title("Labels learned with Label Spreading (KNN)")

pl.subplots_adjust(left=0.07, bottom=0.07, right=0.93, top=0.92)
pl.show()

Figure 2.121: Decision boundary of label propagation versus SVM on the Iris dataset

Decision boundary of label propagation versus SVM on the Iris dataset

Comparison for decision boundary generated on iris dataset between Label Propagation and SVM.

This demonstrates Label Propagation learning a good boundary even with a small amount of labeled data.

2.1. Examples 947

scikit-learn user guide, Release 0.12-git

Python source code: plot_label_propagation_versus_svm_iris.py

print __doc__

Authors: Clay Woolam <clay@woolam.org>
Licence: BSD

import numpy as np
import pylab as pl
from sklearn import datasets
from sklearn import svm
from sklearn.semi_supervised import label_propagation

rng = np.random.RandomState(0)

iris = datasets.load_iris()

X = iris.data[:, :2]
y = iris.target

step size in the mesh
h = .02

y_30 = np.copy(y)
y_30[rng.rand(len(y)) < 0.3] = -1
y_50 = np.copy(y)

948 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

y_50[rng.rand(len(y)) < 0.5] = -1
we create an instance of SVM and fit out data. We do not scale our
data since we want to plot the support vectors
ls30 = (label_propagation.LabelSpreading().fit(X, y_30),

y_30)
ls50 = (label_propagation.LabelSpreading().fit(X, y_50),

y_50)
ls100 = (label_propagation.LabelSpreading().fit(X, y), y)
rbf_svc = (svm.SVC(kernel=’rbf’).fit(X, y), y)

create a mesh to plot in
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))

title for the plots
titles = [’Label Spreading 30% data’,

’Label Spreading 50% data’,
’Label Spreading 100% data’,
’SVC with rbf kernel’]

color_map = {-1: (1, 1, 1), 0: (0, 0, .9), 1: (1, 0, 0), 2: (.8, .6, 0)}

for i, (clf, y_train) in enumerate((ls30, ls50, ls100, rbf_svc)):
Plot the decision boundary. For that, we will asign a color to each
point in the mesh [x_min, m_max]x[y_min, y_max].
pl.subplot(2, 2, i + 1)
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

Put the result into a color plot
Z = Z.reshape(xx.shape)
pl.contourf(xx, yy, Z, cmap=pl.cm.Paired)
pl.axis(’off’)

Plot also the training points
colors = [color_map[y] for y in y_train]
pl.scatter(X[:, 0], X[:, 1], c=colors, cmap=pl.cm.Paired)

pl.title(titles[i])

pl.text(.90, 0, "Unlabeled points are colored white")
pl.show()

2.1.15 Support Vector Machines

Examples concerning the sklearn.svm package.

SVM with custom kernel

Simple usage of Support Vector Machines to classify a sample. It will plot the decision surface and the support vectors.

2.1. Examples 949

scikit-learn user guide, Release 0.12-git

Figure 2.122: SVM with custom kernel

Python source code: plot_custom_kernel.py

print __doc__

import numpy as np
import pylab as pl
from sklearn import svm, datasets

import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features. We could

avoid this ugly slicing by using a two-dim dataset
Y = iris.target

950 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

def my_kernel(x, y):
"""
We create a custom kernel:

(2 0)
k(x, y) = x () y.T

(0 1)
"""
M = np.array([[2, 0], [0, 1.0]])
return np.dot(np.dot(x, M), y.T)

h = .02 # step size in the mesh

we create an instance of SVM and fit out data.
clf = svm.SVC(kernel=my_kernel)
clf.fit(X, Y)

Plot the decision boundary. For that, we will asign a color to each
point in the mesh [x_min, m_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

Put the result into a color plot
Z = Z.reshape(xx.shape)
pl.pcolormesh(xx, yy, Z, cmap=pl.cm.Paired)

Plot also the training points
pl.scatter(X[:, 0], X[:, 1], c=Y, cmap=pl.cm.Paired)
pl.title(’3-Class classification using Support Vector Machine with custom’

’ kernel’)
pl.axis(’tight’)
pl.show()

Figure 2.123: Plot different SVM classifiers in the iris dataset

Plot different SVM classifiers in the iris dataset

Comparison of different linear SVM classifiers on the iris dataset. It will plot the decision surface for four different
SVM classifiers.

2.1. Examples 951

scikit-learn user guide, Release 0.12-git

Python source code: plot_iris.py

print __doc__

import numpy as np
import pylab as pl
from sklearn import svm, datasets

import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features. We could

avoid this ugly slicing by using a two-dim dataset
Y = iris.target

h = .02 # step size in the mesh

we create an instance of SVM and fit out data. We do not scale our
data since we want to plot the support vectors
C = 1.0 # SVM regularization parameter
svc = svm.SVC(kernel=’linear’, C=C).fit(X, Y)
rbf_svc = svm.SVC(kernel=’rbf’, gamma=0.7, C=C).fit(X, Y)
poly_svc = svm.SVC(kernel=’poly’, degree=3, C=C).fit(X, Y)
lin_svc = svm.LinearSVC(C=C).fit(X, Y)

create a mesh to plot in
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1

952 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))

title for the plots
titles = [’SVC with linear kernel’,

’SVC with RBF kernel’,
’SVC with polynomial (degree 3) kernel’,
’LinearSVC (linear kernel)’]

for i, clf in enumerate((svc, rbf_svc, poly_svc, lin_svc)):
Plot the decision boundary. For that, we will asign a color to each
point in the mesh [x_min, m_max]x[y_min, y_max].
pl.subplot(2, 2, i + 1)
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

Put the result into a color plot
Z = Z.reshape(xx.shape)
pl.contourf(xx, yy, Z, cmap=pl.cm.Paired)
pl.axis(’off’)

Plot also the training points
pl.scatter(X[:, 0], X[:, 1], c=Y, cmap=pl.cm.Paired)

pl.title(titles[i])

pl.show()

Figure 2.124: One-class SVM with non-linear kernel (RBF)

One-class SVM with non-linear kernel (RBF)

One-class SVM is an unsupervised algorithm that learns a decision function for novelty detection: classifying new
data as similar or different to the training set.

2.1. Examples 953

scikit-learn user guide, Release 0.12-git

Python source code: plot_oneclass.py

print __doc__

import numpy as np
import pylab as pl
import matplotlib.font_manager
from sklearn import svm

xx, yy = np.meshgrid(np.linspace(-5, 5, 500), np.linspace(-5, 5, 500))
Generate train data
X = 0.3 * np.random.randn(100, 2)
X_train = np.r_[X + 2, X - 2]
Generate some regular novel observations
X = 0.3 * np.random.randn(20, 2)
X_test = np.r_[X + 2, X - 2]
Generate some abnormal novel observations
X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2))

fit the model
clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1)
clf.fit(X_train)
y_pred_train = clf.predict(X_train)
y_pred_test = clf.predict(X_test)
y_pred_outliers = clf.predict(X_outliers)
n_error_train = y_pred_train[y_pred_train == -1].size

954 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

n_error_test = y_pred_test[y_pred_test == -1].size
n_error_outliers = y_pred_outliers[y_pred_outliers == 1].size

plot the line, the points, and the nearest vectors to the plane
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

pl.title("Novelty Detection")
pl.contourf(xx, yy, Z, levels=np.linspace(Z.min(), 0, 7), cmap=pl.cm.Blues_r)
a = pl.contour(xx, yy, Z, levels=[0], linewidths=2, colors=’red’)
pl.contourf(xx, yy, Z, levels=[0, Z.max()], colors=’orange’)

b1 = pl.scatter(X_train[:, 0], X_train[:, 1], c=’white’)
b2 = pl.scatter(X_test[:, 0], X_test[:, 1], c=’green’)
c = pl.scatter(X_outliers[:, 0], X_outliers[:, 1], c=’red’)
pl.axis(’tight’)
pl.xlim((-5, 5))
pl.ylim((-5, 5))
pl.legend([a.collections[0], b1, b2, c],

["learned frontier", "training observations",
"new regular observations", "new abnormal observations"],

loc="upper left",
prop=matplotlib.font_manager.FontProperties(size=11))

pl.xlabel(
"error train: %d/200 ; errors novel regular: %d/20 ; " \

"errors novel abnormal: %d/20"
% (n_error_train, n_error_test, n_error_outliers))

pl.show()

Figure 2.125: RBF SVM parameters

RBF SVM parameters

This example illustrates the effect of the parameters gamma and C of the rbf kernel SVM.

Intuitively, the gamma parameter defines how far the influence of a single training example reaches, with low values
meaning ‘far’ and high values meaning ‘close’. The C parameter trades off misclassification of training examples
against simplicity of the decision surface. A low C makes the decision surface smooth, while a high C aims at
classifying all training examples correctly.

Two plots are generated. The first is a visualization of the decision function for a variety of parameter values, and the
second is a heatmap of the classifier’s cross-validation accuracy as a function of C and gamma.

2.1. Examples 955

scikit-learn user guide, Release 0.12-git

•

•

Script output:

(’The best classifier is: ’, SVC(C=1000000.0, cache_size=200, class_weight=None, coef0=0.0, degree=3,
gamma=0.0001, kernel=’rbf’, probability=False, shrinking=True, tol=0.001,
verbose=False))

Python source code: plot_rbf_parameters.py

print __doc__

import numpy as np
import pylab as pl

from sklearn.svm import SVC
from sklearn.preprocessing import Scaler
from sklearn.datasets import load_iris
from sklearn.cross_validation import StratifiedKFold
from sklearn.grid_search import GridSearchCV

##
Load and prepare data set
#
dataset for grid search
iris = load_iris()
X = iris.data
Y = iris.target

dataset for decision function visualization
X_2d = X[:, :2]

956 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

X_2d = X_2d[Y > 0]
Y_2d = Y[Y > 0]
Y_2d -= 1

It is usually a good idea to scale the data for SVM training.
We are cheating a bit in this example in scaling all of the data,
instead of fitting the transformation on the training set and
just applying it on the test set.

scaler = Scaler()

X = scaler.fit_transform(X)
X_2d = scaler.fit_transform(X_2d)

##
Train classifier
#
For an initial search, a logarithmic grid with basis
10 is often helpful. Using a basis of 2, a finer
tuning can be achieved but at a much higher cost.

C_range = 10.0 ** np.arange(-2, 9)
gamma_range = 10.0 ** np.arange(-5, 4)
param_grid = dict(gamma=gamma_range, C=C_range)

grid = GridSearchCV(SVC(), param_grid=param_grid, cv=StratifiedKFold(y=Y, k=3))
grid.fit(X, Y)

print("The best classifier is: ", grid.best_estimator_)

Now we need to fit a classifier for all parameters in the 2d version
(we use a smaller set of parameters here because it takes a while to train)
C_2d_range = [1, 1e2, 1e4]
gamma_2d_range = [1e-1, 1, 1e1]
classifiers = []
for C in C_2d_range:

for gamma in gamma_2d_range:
clf = SVC(C=C, gamma=gamma)
clf.fit(X_2d, Y_2d)
classifiers.append((C, gamma, clf))

##
visualization
#
draw visualization of parameter effects
pl.figure(figsize=(8, 6))
xx, yy = np.meshgrid(np.linspace(-5, 5, 200), np.linspace(-5, 5, 200))
for (k, (C, gamma, clf)) in enumerate(classifiers):

evaluate decision function in a grid
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

visualize decision function for these parameters
pl.subplot(len(C_2d_range), len(gamma_2d_range), k + 1)
pl.title("gamma 10^%d, C 10^%d" % (np.log10(gamma), np.log10(C)),

size=’medium’)

visualize parameter’s effect on decision function

2.1. Examples 957

scikit-learn user guide, Release 0.12-git

pl.pcolormesh(xx, yy, -Z, cmap=pl.cm.jet)
pl.scatter(X_2d[:, 0], X_2d[:, 1], c=Y_2d, cmap=pl.cm.jet)
pl.xticks(())
pl.yticks(())
pl.axis(’tight’)

plot the scores of the grid
grid_scores_ contains parameter settings and scores
score_dict = grid.grid_scores_

We extract just the scores
scores = [x[1] for x in score_dict]
scores = np.array(scores).reshape(len(C_range), len(gamma_range))

draw heatmap of accuracy as a function of gamma and C
pl.figure(figsize=(8, 6))
pl.subplots_adjust(left=0.05, right=0.95, bottom=0.15, top=0.95)
pl.imshow(scores, interpolation=’nearest’, cmap=pl.cm.spectral)
pl.xlabel(’gamma’)
pl.ylabel(’C’)
pl.colorbar()
pl.xticks(np.arange(len(gamma_range)), gamma_range, rotation=45)
pl.yticks(np.arange(len(C_range)), C_range)

pl.show()

Figure 2.126: SVM: Maximum margin separating hyperplane

SVM: Maximum margin separating hyperplane

Plot the maximum margin separating hyperplane within a two-class separable dataset using a Support Vector Machines
classifier with linear kernel.

958 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Python source code: plot_separating_hyperplane.py

print __doc__

import numpy as np
import pylab as pl
from sklearn import svm

we create 40 separable points
np.random.seed(0)
X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]]
Y = [0] * 20 + [1] * 20

fit the model
clf = svm.SVC(kernel=’linear’)
clf.fit(X, Y)

get the separating hyperplane
w = clf.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(-5, 5)
yy = a * xx - (clf.intercept_[0]) / w[1]

plot the parallels to the separating hyperplane that pass through the
support vectors
b = clf.support_vectors_[0]

2.1. Examples 959

scikit-learn user guide, Release 0.12-git

yy_down = a * xx + (b[1] - a * b[0])
b = clf.support_vectors_[-1]
yy_up = a * xx + (b[1] - a * b[0])

plot the line, the points, and the nearest vectors to the plane
pl.plot(xx, yy, ’k-’)
pl.plot(xx, yy_down, ’k--’)
pl.plot(xx, yy_up, ’k--’)

pl.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1],
s=80, facecolors=’none’)

pl.scatter(X[:, 0], X[:, 1], c=Y, cmap=pl.cm.Paired)

pl.axis(’tight’)
pl.show()

Figure 2.127: SVM: Separating hyperplane for unbalanced classes

SVM: Separating hyperplane for unbalanced classes

Find the optimal separating hyperplane using an SVC for classes that are unbalanced.

We first find the separating plane with a plain SVC and then plot (dashed) the separating hyperplane with automatically
correction for unbalanced classes.

960 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Python source code: plot_separating_hyperplane_unbalanced.py

print __doc__

import numpy as np
import pylab as pl
from sklearn import svm

we create 40 separable points
rng = np.random.RandomState(0)
n_samples_1 = 1000
n_samples_2 = 100
X = np.r_[1.5 * rng.randn(n_samples_1, 2),

0.5 * rng.randn(n_samples_2, 2) + [2, 2]]
y = [0] * (n_samples_1) + [1] * (n_samples_2)

fit the model and get the separating hyperplane
clf = svm.SVC(kernel=’linear’, C=1.0)
clf.fit(X, y)

w = clf.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(-5, 5)
yy = a * xx - clf.intercept_[0] / w[1]

2.1. Examples 961

scikit-learn user guide, Release 0.12-git

get the separating hyperplane using weighted classes
wclf = svm.SVC(kernel=’linear’, class_weight={1: 10})
wclf.fit(X, y)

ww = wclf.coef_[0]
wa = -ww[0] / ww[1]
wyy = wa * xx - wclf.intercept_[0] / ww[1]

plot separating hyperplanes and samples
h0 = pl.plot(xx, yy, ’k-’, label=’no weights’)
h1 = pl.plot(xx, wyy, ’k--’, label=’with weights’)
pl.scatter(X[:, 0], X[:, 1], c=y, cmap=pl.cm.Paired)
pl.legend()

pl.axis(’tight’)
pl.show()

Figure 2.128: SVM-Anova: SVM with univariate feature selection

SVM-Anova: SVM with univariate feature selection

This example shows how to perform univariate feature before running a SVC (support vector classifier) to improve the
classification scores.

962 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Python source code: plot_svm_anova.py

print __doc__

import numpy as np
import pylab as pl
from sklearn import svm, datasets, feature_selection, cross_validation
from sklearn.pipeline import Pipeline

###
Import some data to play with
digits = datasets.load_digits()
y = digits.target
Throw away data, to be in the curse of dimension settings
y = y[:200]
X = digits.data[:200]
n_samples = len(y)
X = X.reshape((n_samples, -1))
add 200 non-informative features
X = np.hstack((X, 2 * np.random.random((n_samples, 200))))

###
Create a feature-selection transform and an instance of SVM that we
combine together to have an full-blown estimator

transform = feature_selection.SelectPercentile(feature_selection.f_classif)

2.1. Examples 963

scikit-learn user guide, Release 0.12-git

clf = Pipeline([(’anova’, transform), (’svc’, svm.SVC(C=1.0))])

###
Plot the cross-validation score as a function of percentile of features
score_means = list()
score_stds = list()
percentiles = (1, 3, 6, 10, 15, 20, 30, 40, 60, 80, 100)

for percentile in percentiles:
clf.set_params(anova__percentile=percentile)
Compute cross-validation score using all CPUs
this_scores = cross_validation.cross_val_score(clf, X, y, n_jobs=1)
score_means.append(this_scores.mean())
score_stds.append(this_scores.std())

pl.errorbar(percentiles, score_means, np.array(score_stds))

pl.title(
’Performance of the SVM-Anova varying the percentile of features selected’)

pl.xlabel(’Percentile’)
pl.ylabel(’Prediction rate’)

pl.axis(’tight’)
pl.show()

Figure 2.129: SVM-SVC (Support Vector Classification)

SVM-SVC (Support Vector Classification)

The classification application of the SVM is used below. The Iris dataset has been used for this example

The decision boundaries, are shown with all the points in the training-set.

964 Chapter 2. Example Gallery

http://en.wikipedia.org/wiki/Iris_flower_data_set

scikit-learn user guide, Release 0.12-git

Python source code: plot_svm_iris.py

print __doc__

Code source: Gael Varoqueux
Modified for Documentation merge by Jaques Grobler
License: BSD

import numpy as np
import pylab as pl
from sklearn import svm, datasets

import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features.
Y = iris.target

h = .02 # step size in the mesh

clf = svm.SVC(C=1.0, kernel=’linear’)

we create an instance of SVM Classifier and fit the data.
clf.fit(X, Y)

Plot the decision boundary. For that, we will asign a color to each
point in the mesh [x_min, m_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

Put the result into a color plot
Z = Z.reshape(xx.shape)
pl.figure(1, figsize=(4, 3))
pl.pcolormesh(xx, yy, Z, cmap=pl.cm.Paired)

Plot also the training points

2.1. Examples 965

scikit-learn user guide, Release 0.12-git

pl.scatter(X[:, 0], X[:, 1], c=Y, cmap=pl.cm.Paired)
pl.xlabel(’Sepal length’)
pl.ylabel(’Sepal width’)

pl.xlim(xx.min(), xx.max())
pl.ylim(yy.min(), yy.max())
pl.xticks(())
pl.yticks(())

pl.show()

Figure 2.130: SVM-Kernels

SVM-Kernels

Three different types of SVM-Kernels are displayed below. The polynomial and RBF are especially useful when the
data-points are not linearly seperable.

•

•

•

Python source code: plot_svm_kernels.py

966 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

print __doc__

Code source: Gael Varoqueux
License: BSD

import numpy as np
import pylab as pl
from sklearn import svm

Our dataset and targets
X = np.c_[(.4, -.7),

(-1.5, -1),
(-1.4, -.9),
(-1.3, -1.2),
(-1.1, -.2),
(-1.2, -.4),
(-.5, 1.2),
(-1.5, 2.1),
(1, 1),
--
(1.3, .8),
(1.2, .5),
(.2, -2),
(.5, -2.4),
(.2, -2.3),
(0, -2.7),
(1.3, 2.1),

].T
Y = [0] * 8 + [1] * 8

figure number
fignum = 1

fit the model
for kernel in (’linear’, ’poly’, ’rbf’):

clf = svm.SVC(kernel=kernel, gamma=2)
clf.fit(X, Y)

plot the line, the points, and the nearest vectors to the plane
pl.figure(fignum, figsize=(4, 3))
pl.clf()

pl.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1],
s=80, facecolors=’none’, zorder=10)

pl.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=pl.cm.Paired)

pl.axis(’tight’)
x_min = -3
x_max = 3
y_min = -3
y_max = 3

XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()])

Put the result into a color plot

2.1. Examples 967

scikit-learn user guide, Release 0.12-git

Z = Z.reshape(XX.shape)
pl.figure(fignum, figsize=(4, 3))
pl.pcolormesh(XX, YY, Z > 0, cmap=pl.cm.Paired)
pl.contour(XX, YY, Z, colors=[’k’, ’k’, ’k’],

linestyles=[’--’, ’-’, ’--’],
levels=[-.5, 0, .5])

pl.xlim(x_min, x_max)
pl.ylim(y_min, y_max)

pl.xticks(())
pl.yticks(())
fignum = fignum + 1

pl.show()

Figure 2.131: SVM Margins Example

SVM Margins Example

The plots below illustrate the effect the parameter C has on the seperation line. A large value of C basically tells our
model that we do not have that much faith in our data’s distrubution, and will only consider points close to line of
seperation.

A small value of C includes more/all the observations, allowing the margins to be calculated using all the data in the
area.

•

•

Python source code: plot_svm_margin.py

print __doc__

Code source: Gael Varoqueux

968 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Modified for Documentation merge by Jaques Grobler
License: BSD

import numpy as np
import pylab as pl
from sklearn import svm

we create 40 separable points
np.random.seed(0)
X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]]
Y = [0] * 20 + [1] * 20

figure number
fignum = 1

fit the model
for name, penality in ((’unreg’, 1), (’reg’, 0.05)):

clf = svm.SVC(kernel=’linear’, C=penality)
clf.fit(X, Y)

get the separating hyperplane
w = clf.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(-5, 5)
yy = a * xx - (clf.intercept_[0]) / w[1]

plot the parallels to the separating hyperplane that pass through the
support vectors
margin = 1 / np.sqrt(np.sum(clf.coef_ ** 2))
yy_down = yy + a * margin
yy_up = yy - a * margin

plot the line, the points, and the nearest vectors to the plane
pl.figure(fignum, figsize=(4, 3))
pl.clf()
pl.plot(xx, yy, ’k-’)
pl.plot(xx, yy_down, ’k--’)
pl.plot(xx, yy_up, ’k--’)

pl.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1],
s=80, facecolors=’none’, zorder=10)

pl.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=pl.cm.Paired)

pl.axis(’tight’)
x_min = -4.8
x_max = 4.2
y_min = -6
y_max = 6

XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
Z = clf.predict(np.c_[XX.ravel(), YY.ravel()])

Put the result into a color plot
Z = Z.reshape(XX.shape)
pl.figure(fignum, figsize=(4, 3))
pl.pcolormesh(XX, YY, Z, cmap=pl.cm.Paired)

2.1. Examples 969

scikit-learn user guide, Release 0.12-git

pl.xlim(x_min, x_max)
pl.ylim(y_min, y_max)

pl.xticks(())
pl.yticks(())
fignum = fignum + 1

pl.show()

Figure 2.132: Non-linear SVM

Non-linear SVM

Perform binary classification using non-linear SVC with RBF kernel. The target to predict is a XOR of the inputs.

The color map illustrates the decision function learn by the SVC.

970 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

Python source code: plot_svm_nonlinear.py

print __doc__

import numpy as np
import pylab as pl
from sklearn import svm

xx, yy = np.meshgrid(np.linspace(-3, 3, 500),
np.linspace(-3, 3, 500))

np.random.seed(0)
X = np.random.randn(300, 2)
Y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0)

fit the model
clf = svm.NuSVC()
clf.fit(X, Y)

plot the decision function for each datapoint on the grid
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

pl.imshow(Z, interpolation=’nearest’,
extent=(xx.min(), xx.max(), yy.min(), yy.max()),
aspect=’auto’, origin=’lower’, cmap=pl.cm.PuOr_r)

contours = pl.contour(xx, yy, Z, levels=[0], linewidths=2,

2.1. Examples 971

scikit-learn user guide, Release 0.12-git

linetypes=’--’)
pl.scatter(X[:, 0], X[:, 1], s=30, c=Y, cmap=pl.cm.Paired)
pl.xticks(())
pl.yticks(())
pl.axis([-3, 3, -3, 3])
pl.show()

Figure 2.133: Support Vector Regression (SVR) using linear and non-linear kernels

Support Vector Regression (SVR) using linear and non-linear kernels

Toy example of 1D regression using linear, polynominial and RBF kernels.

Python source code: plot_svm_regression.py

972 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

print __doc__

###
Generate sample data
import numpy as np

X = np.sort(5 * np.random.rand(40, 1), axis=0)
y = np.sin(X).ravel()

###
Add noise to targets
y[::5] += 3 * (0.5 - np.random.rand(8))

###
Fit regression model
from sklearn.svm import SVR

svr_rbf = SVR(kernel=’rbf’, C=1e3, gamma=0.1)
svr_lin = SVR(kernel=’linear’, C=1e3)
svr_poly = SVR(kernel=’poly’, C=1e3, degree=2)
y_rbf = svr_rbf.fit(X, y).predict(X)
y_lin = svr_lin.fit(X, y).predict(X)
y_poly = svr_poly.fit(X, y).predict(X)

###
look at the results
import pylab as pl
pl.scatter(X, y, c=’k’, label=’data’)
pl.hold(’on’)
pl.plot(X, y_rbf, c=’g’, label=’RBF model’)
pl.plot(X, y_lin, c=’r’, label=’Linear model’)
pl.plot(X, y_poly, c=’b’, label=’Polynomial model’)
pl.xlabel(’data’)
pl.ylabel(’target’)
pl.title(’Support Vector Regression’)
pl.legend()
pl.show()

Figure 2.134: SVM: Weighted samples

SVM: Weighted samples

Plot decision function of a weighted dataset, where the size of points is proportional to its weight.

2.1. Examples 973

scikit-learn user guide, Release 0.12-git

Python source code: plot_weighted_samples.py

print __doc__

import numpy as np
import pylab as pl
from sklearn import svm

we create 20 points
np.random.seed(0)
X = np.r_[np.random.randn(10, 2) + [1, 1], np.random.randn(10, 2)]
Y = [1] * 10 + [-1] * 10
sample_weight = 100 * np.abs(np.random.randn(20))
and assign a bigger weight to the last 10 samples
sample_weight[:10] *= 10

fit the model
clf = svm.SVC()
clf.fit(X, Y, sample_weight=sample_weight)

plot the decision function
xx, yy = np.meshgrid(np.linspace(-4, 5, 500), np.linspace(-4, 5, 500))

Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

974 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

plot the line, the points, and the nearest vectors to the plane
pl.contourf(xx, yy, Z, alpha=0.75, cmap=pl.cm.bone)
pl.scatter(X[:, 0], X[:, 1], c=Y, s=sample_weight, alpha=0.9, cmap=pl.cm.bone)

pl.axis(’off’)
pl.show()

2.1.16 Decision Trees

Examples concerning the sklearn.tree package.

Figure 2.135: Plot the decision surface of a decision tree on the iris dataset

Plot the decision surface of a decision tree on the iris dataset

Plot the decision surface of a decision tree trained on pairs of features of the iris dataset.

For each pair of iris features, the decision tree learns decision boundaries made of combinations of simple thresholding
rules inferred from the training samples.

2.1. Examples 975

scikit-learn user guide, Release 0.12-git

Python source code: plot_iris.py

print __doc__

import numpy as np
import pylab as pl

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier

Parameters
n_classes = 3
plot_colors = "bry"
plot_step = 0.02

Load data
iris = load_iris()

for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3],
[1, 2], [1, 3], [2, 3]]):

We only take the two corresponding features
X = iris.data[:, pair]
y = iris.target

Shuffle
idx = np.arange(X.shape[0])

976 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

np.random.seed(13)
np.random.shuffle(idx)
X = X[idx]
y = y[idx]

Standardize
mean = X.mean(axis=0)
std = X.std(axis=0)
X = (X - mean) / std

Train
clf = DecisionTreeClassifier().fit(X, y)

Plot the decision boundary
pl.subplot(2, 3, pairidx + 1)

x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),

np.arange(y_min, y_max, plot_step))

Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
cs = pl.contourf(xx, yy, Z, cmap=pl.cm.Paired)

pl.xlabel(iris.feature_names[pair[0]])
pl.ylabel(iris.feature_names[pair[1]])
pl.axis("tight")

Plot the training points
for i, color in zip(xrange(n_classes), plot_colors):

idx = np.where(y == i)
pl.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i],

cmap=pl.cm.Paired)

pl.axis("tight")

pl.suptitle("Decision surface of a decision tree using paired features")
pl.legend()
pl.show()

Figure 2.136: Decision Tree Regression

Decision Tree Regression

1D regression with decision trees: the decision tree is used to fit a sine curve with addition noisy observation. As a
result, it learns local linear regressions approximating the sine curve.

2.1. Examples 977

scikit-learn user guide, Release 0.12-git

We can see that if the maximum depth of the tree (controled by the max_depth parameter) is set too high, the decision
trees learn too fine details of the training data and learn from the noise, i.e. they overfit.

Python source code: plot_tree_regression.py

print __doc__

import numpy as np

Create a random dataset
rng = np.random.RandomState(1)
X = np.sort(5 * rng.rand(80, 1), axis=0)
y = np.sin(X).ravel()
y[::5] += 3 * (0.5 - rng.rand(16))

Fit regression model
from sklearn.tree import DecisionTreeRegressor

clf_1 = DecisionTreeRegressor(max_depth=2)
clf_2 = DecisionTreeRegressor(max_depth=5)
clf_1.fit(X, y)
clf_2.fit(X, y)

Predict
X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]
y_1 = clf_1.predict(X_test)

978 Chapter 2. Example Gallery

scikit-learn user guide, Release 0.12-git

y_2 = clf_2.predict(X_test)

Plot the results
import pylab as pl

pl.figure()
pl.scatter(X, y, c="k", label="data")
pl.plot(X_test, y_1, c="g", label="max_depth=2", linewidth=2)
pl.plot(X_test, y_2, c="r", label="max_depth=5", linewidth=2)
pl.xlabel("data")
pl.ylabel("target")
pl.title("Decision Tree Regression")
pl.legend()
pl.show()

2.1. Examples 979

scikit-learn user guide, Release 0.12-git

980 Chapter 2. Example Gallery

CHAPTER

THREE

DEVELOPMENT

3.1 Contributing

This project is a community effort, and everyone is welcome to contribute.

The project is hosted on http://github.com/scikit-learn/scikit-learn

3.1.1 Submitting a bug report

In case you experience issues using this package, do not hesitate to submit a ticket to the Bug Tracker. You are also
welcome to post feature requests or links to pull requests.

3.1.2 Retrieving the latest code

We use Git for version control and GitHub for hosting our main repository.

You can check out the latest sources with the command:

git clone git://github.com/scikit-learn/scikit-learn.git

or if you have write privileges:

git clone git@github.com:scikit-learn/scikit-learn.git

If you run the development version, it is cumbersome to reinstall the package each time you update the sources. It is
thus preferred that you add the scikit-learn directory to your PYTHONPATH and build the extension in place:

python setup.py build_ext --inplace

On Unix-like systems, you can simply type make in the top-level folder to build in-place and launch all the tests. Have
a look at the Makefile for additional utilities.

3.1.3 Contributing code

Note: To avoid duplicating work, it is highly advised that you contact the developers on the mailing list before starting
work on a non-trivial feature.

https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

981

http://github.com/scikit-learn/scikit-learn
http://github.com/scikit-learn/scikit-learn/issues
http://git-scm.com/
http://github.com/
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

scikit-learn user guide, Release 0.12-git

How to contribute

The preferred way to contribute to scikit-learn is to fork the main repository on GitHub:

1. Create an account on GitHub if you do not already have one.

2. Fork the project repository: click on the ‘Fork’ button near the top of the page. This creates a copy of the code
under your account on the GitHub server.

3. Clone this copy to your local disk:

$ git clone git@github.com:YourLogin/scikit-learn.git

4. Create a branch to hold your changes:

$ git checkout -b my-feature

and start making changes. Never work in the master branch!

5. Work on this copy, on your computer, using Git to do the version control. When you’re done editing, do:

$ git add modified_files
$ git commit

to record your changes in Git, then push them to GitHub with:

$ git push -u origin my-feature

Finally, go to the web page of the your fork of the scikit-learn repo, and click ‘Pull request’ to send your changes to
the maintainers for review. request. This will send an email to the committers, but might also send an email to the
mailing list in order to get more visibility.

Note: In the above setup, your origin remote repository points to YourLogin/scikit-learn.git. If you wish to
fetch/merge from the main repository instead of your forked one, you will need to add another remote to use instead
of origin. If we choose the name upstream for it, the command will be:

$ git remote add upstream https://github.com/scikit-learn/scikit-learn.git

(If any of the above seems like magic to you, then look up the Git documentation on the web.)

It is recommended to check that your contribution complies with the following rules before submitting a pull request:

• Follow the coding-guidelines (see below).

• When applicable, use the Validation tools and other code in the sklearn.utils submodule. A list of utility
routines available for developers can be found in the Utilities for Developers page.

• All public methods should have informative docstrings with sample usage presented as doctests when appropri-
ate.

• All other tests pass when everything is rebuilt from scratch. On Unix-like systems, check with (from the toplevel
source folder):

$ make

• When adding additional functionality, provide at least one example script in the examples/ folder. Have
a look at other examples for reference. Examples should demonstrate why the new functionality is useful in
practice and, if possible, compare it to other methods available in scikit-learn.

• At least one paragraph of narrative documentation with links to references in the literature (with PDF links when
possible) and the example.

982 Chapter 3. Development

http://github.com/scikit-learn/scikit-learn/
https://github.com/signup/free
http://github.com/scikit-learn/scikit-learn
http://git-scm.com/documentation

scikit-learn user guide, Release 0.12-git

The documentation should also include expected time and space complexity of the algorithm and scalability,
e.g. “this algorithm can scale to a large number of samples > 100000, but does not scale in dimensionality:
n_features is expected to be lower than 100”.

To build the documentation, see the documentation section below.

You can also check for common programming errors with the following tools:

• Code with a good unittest coverage (at least 80%), check with:

$ pip install nose coverage
$ nosetests --with-coverage path/to/tests_for_package

• No pyflakes warnings, check with:

$ pip install pyflakes
$ pyflakes path/to/module.py

• No PEP8 warnings, check with:

$ pip install pep8
$ pep8 path/to/module.py

• AutoPEP8 can help you fix some of the easy redundant errors:

$ pip install autopep8
$ autopep8 path/to/pep8.py

Bonus points for contributions that include a performance analysis with a benchmark script and profiling output (please
report on the mailing list or on the GitHub wiki).

Also check out the How to optimize for speed guide for more details on profiling and Cython optimizations.

Note: The current state of the scikit-learn code base is not compliant with all of those guidelines, but we expect that
enforcing those constraints on all new contributions will get the overall code base quality in the right direction.

EasyFix Issues

A great way to start contributing to scikit-learn is to pick an item from the list of EasyFix issues in the issue tracker.
Resolving these issues allow you to start contributing to the project without much prior knowledge. Your assistance in
this area will be greatly appreciated by the more experienced developers as it helps free up their time to concentrate
on other issues.

Documentation

We are glad to accept any sort of documentation: function docstrings, reStructuredText documents (like this one),
tutorials, etc. reStructuredText documents live in the source code repository under the doc/ directory.

You can edit the documentation using any text editor, and then generate the HTML output by typing make html from
the doc/ directory. Alternatively, make html-noplot can be used to quickly generate the documentation without
the example gallery. The resulting HTML files will be placed in _build/html/ and are viewable in a web browser. See
the README file in the doc/ directory for more information.

For building the documentation, you will need sphinx and matplotlib.

When you are writing documentation, it is important to keep a good compromise between mathematical and algorith-
mic details, and give intuition to the reader on what the algorithm does. It is best to always start with a small paragraph

3.1. Contributing 983

https://github.com/scikit-learn/scikit-learn/issues?labels=EasyFix
http://sphinx.pocoo.org/
http://matplotlib.sourceforge.net/

scikit-learn user guide, Release 0.12-git

with a hand-waiving explanation of what the method does to the data and a figure (coming from an example) illustrat-
ing it.

Warning: Sphinx version
While we do our best to have the documentation build under as many version of Sphinx as possible, the different
versions tend to behave slightly differently. To get the best results, you should use version 1.0.

Developers web site

More information can be found on the developer’s wiki.

3.1.4 Other ways to contribute

Code is not the only way to contribute to scikit-learn. For instance, documentation is also a very important part of the
project and often doesn’t get as much attention as it deserves. If you find a typo in the documentation, or have made
improvements, do not hesitate to send an email to the mailing list or submit a GitHub pull request. Full documentation
can be found under the doc/ directory.

It also helps us if you spread the word: reference the project from your blog and articles, link to it from your website,
or simply say “I use it”:

3.1.5 Coding guidelines

The following are some guidelines on how new code should be written. Of course, there are special cases and there
will be exceptions to these rules. However, following these rules when submitting new code makes the review easier
so new code can be integrated in less time.

Uniformly formatted code makes it easier to share code ownership. The scikit-learn project tries to closely follow the
official Python guidelines detailed in PEP8 that detail how code should be formatted and indented. Please read it and
follow it.

In addition, we add the following guidelines:

• Use underscores to separate words in non class names: n_samples rather than nsamples.

• Avoid multiple statements on one line. Prefer a line return after a control flow statement (if/for).

• Use relative imports for references inside scikit-learn.

• Please don’t use ‘import *‘ in any case. It is considered harmful by the official Python recommendations. It
makes the code harder to read as the origin of symbols is no longer explicitly referenced, but most important, it
prevents using a static analysis tool like pyflakes to automatically find bugs in scikit-learn.

• Use the numpy docstring standard in all your docstrings.

A good example of code that we like can be found here.

Input validation

The module sklearn.utils contains various functions for doing input validation and conversion. Sometimes,
np.asarray suffices for validation; do not use np.asanyarray or np.atleast_2d, since those let NumPy’s
np.matrix through, which has a different API (e.g., * means dot product on np.matrix, but Hadamard product
on np.ndarray).

984 Chapter 3. Development

https://github.com/scikit-learn/scikit-learn/wiki
http://www.python.org/dev/peps/pep-0008/
http://docs.python.org/howto/doanddont.html#from-module-import
http://www.divmod.org/trac/wiki/DivmodPyflakes
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://svn.enthought.com/enthought/browser/sandbox/docs/coding_standard.py

scikit-learn user guide, Release 0.12-git

In other cases, be sure to call safe_asarray, atleast2d_or_csr, as_float_array or array2d on any
array-like argument passed to a scikit-learn API function. The exact function to use depends mainly on whether
scipy.sparse matrices must be accepted.

For more information, refer to the Utilities for Developers page.

Random Numbers

If your code depends on a random number generator, do not use numpy.random.random() or similar routines.
To ensure repeatability in error checking, the routine should accept a keyword random_state and use this to con-
struct a numpy.random.RandomState object. See sklearn.utils.check_random_state in Utilities
for Developers.

Here’s a simple example of code using some of the above guidelines:

from sklearn.utils import array2d, check_random_state

def choose_random_sample(X, random_state=0):
"""
Choose a random point from X

Parameters

X : array-like, shape = (n_samples, n_features)

array representing the data
random_state : RandomState or an int seed (0 by default)

A random number generator instance to define the state of the
random permutations generator.

Returns

x : numpy array, shape = (n_features,)

A random point selected from X
"""
X = array2d(X)
random_state = check_random_state(random_state)
i = random_state.randint(X.shape[0])
return X[i]

3.1.6 APIs of scikit-learn objects

To have a uniform API, we try to have a common basic API for all the objects. In addition, to avoid the proliferation
of framework code, we try to adopt simple conventions and limit to a minimum the number of methods an object must
implement.

Different objects

The main objects in scikit-learn are (one class can implement multiple interfaces):

Estimator The base object, implements:

estimator = obj.fit(data)

Predictor For supervised learning, or some unsupervised problems, implements:

3.1. Contributing 985

scikit-learn user guide, Release 0.12-git

prediction = obj.predict(data)

Transformer For filtering or modifying the data, in a supervised or unsupervised way, implements:

new_data = obj.transform(data)

When fitting and transforming can be performed much more efficiently together than separately,
implements:

new_data = obj.fit_transform(data)

Model A model that can give a goodness of fit or a likelihood of unseen data, implements (higher is
better):

score = obj.score(data)

Estimators

The API has one predominant object: the estimator. A estimator is an object that fits a model based on some training
data and is capable of inferring some properties on new data. It can be, for instance, a classifier or a regressor. All
estimators implement the fit method:

estimator.fit(X, y)

All built-in estimators also have a set_params method, which sets data-independent parameters (overriding previ-
ous parameter values passed to __init__). This method is not required for an object to be an estimator.

All estimators should inherit from sklearn.base.BaseEstimator.

Instantiation

This concerns the creation of an object. The object’s __init__ method might accept constants as arguments that
determine the estimator’s behavior (like the C constant in SVMs). It should not, however, take the actual training data
as an argument, as this is left to the fit() method:

clf2 = SVC(C=2.3)
clf3 = SVC([[1, 2], [2, 3]], [-1, 1]) # WRONG!

The arguments accepted by __init__ should all be keyword arguments with a default value. In other words, a user
should be able to instantiate an estimator without passing any arguments to it. The arguments should all correspond to
hyperparameters describing the model or the optimisation problem the estimator tries to solve.

In addition, every keyword argument accepted by ‘‘__init__‘‘ should correspond to an attribute on the instance.
Scikit-learn relies on this to find the relevant attributes to set on an estimator when doing model selection.

To summarize, a __init__ should look like:

def __init__(self, param1=1, param2=2):
self.param1 = param1
self.param2 = param2

There should be no logic, and the parameters should not be changed. The corresponding logic should be put where the
parameters are used. The following is wrong:

def __init__(self, param1=1, param2=2, param3=3):
WRONG: parameters should not be modified
if param1 > 1:

986 Chapter 3. Development

scikit-learn user guide, Release 0.12-git

param2 += 1
self.param1 = param1
WRONG: the object’s attributes should have exactly the name of
the argument in the constructor
self.param3 = param2

Scikit-learn relies on this mechanism to introspect objects to set their parameters by cross-validation.

Fitting

The next thing you will probably want to do is to estimate some parameters in the model. This is implemented in the
fit() method.

The fit() method takes the training data as arguments, which can be one array in the case of unsupervised learning,
or two arrays in the case of supervised learning.

Note that the model is fitted using X and y, but the object holds no reference to X and y. There are, however, some
exceptions to this, as in the case of precomputed kernels where this data must be stored for use by the predict method.

Parameters
X array-like, with shape = [N, D], where N is the number of samples and D is the number of features.
y array, with shape = [N], where N is the number of samples.
kwargs optional data-dependent parameters.

X.shape[0] should be the same as y.shape[0]. If this requisite is not met, an exception of type ValueError
should be raised.

y might be ignored in the case of unsupervised learning. However, to make it possible to use the estimator as part of a
pipeline that can mix both supervised and unsupervised transformers, even unsupervised estimators are kindly asked
to accept a y=None keyword argument in the second position that is just ignored by the estimator.

The method should return the object (self). This pattern is useful to be able to implement quick one liners in an
IPython session such as:

y_predicted = SVC(C=100).fit(X_train, y_train).predict(X_test)

Depending on the nature of the algorithm, fit can sometimes also accept additional keywords arguments. However,
any parameter that can have a value assigned prior to having access to the data should be an __init__ keyword
argument. fit parameters should be restricted to directly data dependent variables. For instance a Gram matrix
or an affinity matrix which are precomputed from the data matrix X are data dependent. A tolerance stopping criterion
tol is not directly data dependent (although the optimal value according to some scoring function probably is).

Any attribute that ends with _ is expected to be overridden when you call fit a second time without taking any
previous value into account: fit should be idempotent.

Optional Arguments

In iterative algorithms, the number of iterations should be specified by an integer called n_iter.

Unresolved API issues

Some things are must still be decided:

• what should happen when predict is called before fit() ?

• which exception should be raised when the shape of arrays do not match in fit() ?

3.1. Contributing 987

scikit-learn user guide, Release 0.12-git

Working notes

For unresolved issues, TODOs, and remarks on ongoing work, developers are advised to maintain notes on the GitHub
wiki.

Specific models

In linear models, coefficients are stored in an array called coef_, and the independent term is stored in intercept_.

3.2 How to optimize for speed

The following gives some practical guidelines to help you write efficient code for the scikit-learn project.

Note: While it is always useful to profile your code so as to check performance assumptions, it is also highly
recommended to review the literature to ensure that the implemented algorithm is the state of the art for the task
before investing into costly implementation optimization.

Times and times, hours of efforts invested in optimizing complicated implementation details have been rended irrele-
vant by the late discovery of simple algorithmic tricks, or by using another algorithm altogether that is better suited
to the problem.

The section A sample algorithmic trick: warm restarts for cross validation gives an example of such a trick.

3.2.1 Python, Cython or C/C++?

In general, the scikit-learn project emphasizes the readability of the source code to make it easy for the project users to
dive into the source code so as to understand how the algorithm behaves on their data but also for ease of maintanability
(by the developers).

When implementing a new algorithm is thus recommended to start implementing it in Python using Numpy and
Scipy by taking care of avoiding looping code using the vectorized idioms of those libraries. In practice this means
trying to replace any nested for loops by calls to equivalent Numpy array methods. The goal is to avoid the CPU
wasting time in the Python interpreter rather than crunching numbers to fit your statistical model.

Sometimes however an algorithm cannot be expressed efficiently in simple vectorized Numpy code. In this case, the
recommended strategy is the following:

1. Profile the Python implementation to find the main bottleneck and isolate it in a dedicated module level func-
tion. This function will be reimplemented as a compiled extension module.

2. If there exists a well maintained BSD or MIT C/C++ implementation of the same algorithm that is not
too big, you can write a Cython wrapper for it and include a copy of the source code of the library
in the scikit-learn source tree: this strategy is used for the classes svm.LinearSVC, svm.SVC and
linear_model.LogisticRegression (wrappers for liblinear and libsvm).

3. Otherwise, write an optimized version of your Python function using Cython directly. This strategy is used for
the linear_model.ElasticNet and linear_model.SGDClassifier classes for instance.

4. Move the Python version of the function in the tests and use it to check that the results of the compiled
extension are consistent with the gold standard, easy to debug Python version.

5. Once the code is optimized (not simple bottleneck spottable by profiling), check whether it is possible to have
coarse grained parallelism that is amenable to multi-processing by using the joblib.Parallel class.

988 Chapter 3. Development

https://github.com/scikit-learn/scikit-learn/wiki
https://github.com/scikit-learn/scikit-learn/wiki

scikit-learn user guide, Release 0.12-git

When using Cython, include the generated C source code alongside with the Cython source code. The goal is to make
it possible to install the scikit on any machine with Python, Numpy, Scipy and C/C++ compiler.

3.2.2 Profiling Python code

In order to profile Python code we recommend to write a script that loads and prepare you data and then use the
IPython integrated profiler for interactively exploring the relevant part for the code.

Suppose we want to profile the Non Negative Matrix Factorization module of the scikit. Let us setup a new IPython
session and load the digits dataset and as in the Recognizing hand-written digits example:

In [1]: from sklearn.decomposition import NMF

In [2]: from sklearn.datasets import load_digits

In [3]: X = load_digits().data

Before starting the profiling session and engaging in tentative optimization iterations, it is important to measure the
total execution time of the function we want to optimize without any kind of profiler overhead and save it somewhere
for later reference:

In [4]: %timeit NMF(n_components=16, tol=1e-2).fit(X)
1 loops, best of 3: 1.7 s per loop

To have have a look at the overall performance profile using the %prun magic command:

In [5]: %prun -l nmf.py NMF(n_components=16, tol=1e-2).fit(X)
14496 function calls in 1.682 CPU seconds

Ordered by: internal time
List reduced from 90 to 9 due to restriction <’nmf.py’>

ncalls tottime percall cumtime percall filename:lineno(function)
36 0.609 0.017 1.499 0.042 nmf.py:151(_nls_subproblem)

1263 0.157 0.000 0.157 0.000 nmf.py:18(_pos)
1 0.053 0.053 1.681 1.681 nmf.py:352(fit_transform)

673 0.008 0.000 0.057 0.000 nmf.py:28(norm)
1 0.006 0.006 0.047 0.047 nmf.py:42(_initialize_nmf)

36 0.001 0.000 0.010 0.000 nmf.py:36(_sparseness)
30 0.001 0.000 0.001 0.000 nmf.py:23(_neg)
1 0.000 0.000 0.000 0.000 nmf.py:337(__init__)
1 0.000 0.000 1.681 1.681 nmf.py:461(fit)

The totime columns is the most interesting: it gives to total time spent executing the code of a given function
ignoring the time spent in executing the sub-functions. The real total time (local code + sub-function calls) is given by
the cumtime column.

Note the use of the -l nmf.py that restricts the output to lines that contains the “nmf.py” string. This is useful to
have a quick look at the hotspot of the nmf Python module it-self ignoring anything else.

Here is the begining of the output of the same command without the -l nmf.py filter:

In [5] %prun NMF(n_components=16, tol=1e-2).fit(X)
16159 function calls in 1.840 CPU seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)
2833 0.653 0.000 0.653 0.000 {numpy.core._dotblas.dot}

3.2. How to optimize for speed 989

scikit-learn user guide, Release 0.12-git

46 0.651 0.014 1.636 0.036 nmf.py:151(_nls_subproblem)
1397 0.171 0.000 0.171 0.000 nmf.py:18(_pos)
2780 0.167 0.000 0.167 0.000 {method ’sum’ of ’numpy.ndarray’ objects}

1 0.064 0.064 1.840 1.840 nmf.py:352(fit_transform)
1542 0.043 0.000 0.043 0.000 {method ’flatten’ of ’numpy.ndarray’ objects}
337 0.019 0.000 0.019 0.000 {method ’all’ of ’numpy.ndarray’ objects}

2734 0.011 0.000 0.181 0.000 fromnumeric.py:1185(sum)
2 0.010 0.005 0.010 0.005 {numpy.linalg.lapack_lite.dgesdd}

748 0.009 0.000 0.065 0.000 nmf.py:28(norm)
...

The above results show that the execution is largely dominated by dot products operations (delegated to blas). Hence
there is probably no huge gain to expect by rewriting this code in Cython or C/C++: in this case out of the 1.7s total
execution time, almost 0.7s are spent in compiled code we can consider optimal. By rewriting the rest of the Python
code and assuming we could achieve a 1000% boost on this portion (which is highly unlikely given the shallowness
of the Python loops), we would not gain more than a 2.4x speed-up globally.

Hence major improvements can only be achieved by algorithmic improvements in this particular example (e.g.
trying to find operation that are both costly and useless to avoid computing then rather than trying to optimize their
implementation).

It is however still interesting to check what’s happening inside the _nls_subproblem function which is the hotspot
if we only consider Python code: it takes around 100% of the cumulated time of the module. In order to better
understand the profile of this specific function, let us install line-prof and wire it to IPython:

$ pip install line-profiler

• Under IPython <= 0.10, edit ~/.ipython/ipy_user_conf.py and ensure the following lines are
present:

import IPython.ipapi
ip = IPython.ipapi.get()

Towards the end of the file, define the %lprun magic:

import line_profiler
ip.expose_magic(’lprun’, line_profiler.magic_lprun)

• Under IPython 0.11+, first create a configuration profile:

$ ipython profile create

Then create a file named ~/.ipython/extensions/line_profiler_ext.pywith the following con-
tent:

import line_profiler

def load_ipython_extension(ip):
ip.define_magic(’lprun’, line_profiler.magic_lprun)

Then register it in ~/.ipython/profile_default/ipython_config.py:

c.TerminalIPythonApp.extensions = [
’line_profiler_ext’,

]
c.InteractiveShellApp.extensions = [

’line_profiler_ext’,
]

990 Chapter 3. Development

scikit-learn user guide, Release 0.12-git

This will register the %lprun magic command in the IPython terminal application and the other frontends such
as qtconsole and notebook.

Now restart IPython and let us use this new toy:

In [1]: from sklearn.datasets import load_digits

In [2]: from sklearn.decomposition.nmf import _nls_subproblem, NMF

In [3]: X = load_digits().data

In [4]: %lprun -f _nls_subproblem NMF(n_components=16, tol=1e-2).fit(X)
Timer unit: 1e-06 s

File: sklearn/decomposition/nmf.py
Function: _nls_subproblem at line 137
Total time: 1.73153 s

Line # Hits Time Per Hit % Time Line Contents
==

137 def _nls_subproblem(V, W, H_init, tol, max_iter):
138 """Non-negative least square solver
...
170 """
171 48 5863 122.1 0.3 if (H_init < 0).any():
172 raise ValueError("Negative values in H_init passed to NLS solver.")
173
174 48 139 2.9 0.0 H = H_init
175 48 112141 2336.3 5.8 WtV = np.dot(W.T, V)
176 48 16144 336.3 0.8 WtW = np.dot(W.T, W)
177
178 # values justified in the paper
179 48 144 3.0 0.0 alpha = 1
180 48 113 2.4 0.0 beta = 0.1
181 638 1880 2.9 0.1 for n_iter in xrange(1, max_iter + 1):
182 638 195133 305.9 10.2 grad = np.dot(WtW, H) - WtV
183 638 495761 777.1 25.9 proj_gradient = norm(grad[np.logical_or(grad < 0, H > 0)])
184 638 2449 3.8 0.1 if proj_gradient < tol:
185 48 130 2.7 0.0 break
186
187 1474 4474 3.0 0.2 for inner_iter in xrange(1, 20):
188 1474 83833 56.9 4.4 Hn = H - alpha * grad
189 # Hn = np.where(Hn > 0, Hn, 0)
190 1474 194239 131.8 10.1 Hn = _pos(Hn)
191 1474 48858 33.1 2.5 d = Hn - H
192 1474 150407 102.0 7.8 gradd = np.sum(grad * d)
193 1474 515390 349.7 26.9 dQd = np.sum(np.dot(WtW, d) * d)
...

By looking at the top values of the % Time column it is really easy to pin-point the most expensive expressions that
would deserve additional care.

3.2.3 Performance tips for the Cython developer

If profiling of the Python code reveals that the Python interpreter overhead is larger by one order of magnitude or
more than the cost of the actual numerical computation (e.g. for loops over vector components, nested evaluation
of conditional expression, scalar arithmetics...), it is probably adequate to extract the hotspot portion of the code as a

3.2. How to optimize for speed 991

scikit-learn user guide, Release 0.12-git

standalone function in a .pyx file, add static type declarations and then use Cython to generate a C program suitable
to be compiled as a Python extension module.

The official documentation available at http://docs.cython.org/ contains a tutorial and reference guide for developing
such a module. In the following we will just highlight a couple of tricks that we found important in practice on the
existing cython codebase in the scikit-learn project.

TODO: html report, type declarations, bound checks, division by zero checks, memory alignement, direct blas calls...

• http://www.euroscipy.org/file/3696?vid=download

• http://conference.scipy.org/proceedings/SciPy2009/paper_1/

• http://conference.scipy.org/proceedings/SciPy2009/paper_2/

3.2.4 Profiling compiled extensions

When working with compiled extensions (written in C/C++ with a wrapper or directly as Cython extension), the default
Python profiler is useless: we need a dedicated tool to instrospect what’s happening inside the compiled extension it-
self.

In order to profile compiled Python extensions one could use gprof after having recompiled the project with gcc
-pg and using the python-dbg variant of the interpreter on debian / ubuntu: however this approach requires to also
have numpy and scipy recompiled with -pg which is rather complicated to get working.

Fortunately there exist two alternative profilers that don’t require you to recompile everything.

Using google-perftools

TODO

• https://github.com/fabianp/yep

• http://fseoane.net/blog/2011/a-profiler-for-python-extensions/

Note: google-perftools provides a nice ‘line by line’ report mode that can be triggered with the --lines option.
However this does not seem to work correctly at the time of writing. This issue can be tracked on the project issue
tracker.

Using valgrind / callgrind / kcachegrind

TODO

3.2.5 Multi-core parallelism using joblib.Parallel

TODO: give a simple teaser example here.

Checkout the official joblib documentation:

• http://packages.python.org/joblib/

3.2.6 A sample algorithmic trick: warm restarts for cross validation

TODO: demonstrate the warm restart tricks for cross validation of linear regression with Coordinate Descent.

992 Chapter 3. Development

http://docs.cython.org/
http://www.euroscipy.org/file/3696?vid=download
http://conference.scipy.org/proceedings/SciPy2009/paper_1/
http://conference.scipy.org/proceedings/SciPy2009/paper_2/
https://github.com/fabianp/yep
http://fseoane.net/blog/2011/a-profiler-for-python-extensions/
https://code.google.com/p/google-perftools/issues/detail?id=326
https://code.google.com/p/google-perftools/issues/detail?id=326
http://packages.python.org/joblib/

scikit-learn user guide, Release 0.12-git

3.3 Utilities for Developers

Scikit-learn contains a number of utilities to help with development. These are located in sklearn.utils, and
include tools in a number of categories. All the following functions and classes are in the module sklearn.utils.

Warning: These utilities are meant to be used internally within the scikit-learn package. They are not guaran-
teed to be stable between versions of scikit-learn. Backports, in particular, will be removed as the scikit-learn
dependencies evolve.

3.3.1 Validation Tools

These are tools used to check and validate input. When you write a function which accepts arrays, matrices, or sparse
matrices as arguments, the following should be used when applicable.

• assert_all_finite: Throw an error if array contains NaNs or Infs.

• safe_asarray: Convert input to array or sparse matrix. Equivalent to np.asarray, but sparse matrices
are passed through.

• as_float_array: convert input to an array of floats. If a sparse matrix is passed, a sparse matrix will be
returned.

• array2d: equivalent to np.atleast_2d, but the order and dtype of the input are maintained.

• atleast2d_or_csr: equivalent to array2d, but if a sparse matrix is passed, will convert to csr format.
Also calls assert_all_finite.

• check_arrays: check that all input arrays have consistent first dimensions. This will work for an arbitrary
number of arrays.

• warn_if_not_float: Warn if input is not a floating-point value. the input X is assumed to have X.dtype.

If your code relies on a random number generator, it should never use functions like numpy.random.random
or numpy.random.normal. This approach can lead to repeatability issues in unit tests. Instead, a
numpy.random.RandomState object should be used, which is built from a random_state argument passed
to the class or function. The function check_random_state, below, can then be used to create a random number
generator object.

• check_random_state: create a np.random.RandomState object from a parameter random_state.

– If random_state is None or np.random, then a randomly-initialized RandomState object is re-
turned.

– If random_state is an integer, then it is used to seed a new RandomState object.

– If random_state is a RandomState object, then it is passed through.

For example:

>>> from sklearn.utils import check_random_state
>>> random_state = 0
>>> random_state = check_random_state(random_state)
>>> random_state.rand(4)
array([0.5488135 , 0.71518937, 0.60276338, 0.54488318])

3.3. Utilities for Developers 993

scikit-learn user guide, Release 0.12-git

3.3.2 Efficient Linear Algebra & Array Operations

• extmath.randomized_range_finder: construct an orthonormal matrix whose range approximates the
range of the input. This is used in extmath.randomized_svd, below.

• extmath.randomized_svd: compute the k-truncated randomized SVD. This algorithm finds the exact
truncated singular values decomposition using randomization to speed up the computations. It is particularly
fast on large matrices on which you wish to extract only a small number of components.

• arrayfuncs.cholesky_delete: (used in sklearn.linear_model.least_angle.lars_path)
Remove an item from a cholesky factorization.

• arrayfuncs.min_pos: (used in sklearn.linear_model.least_angle) Find the minimum of the
positive values within an array.

• extmath.norm: computes Euclidean (L2) vector norm by directly calling the BLAS nrm2 function. This is
more stable than scipy.linalg.norm. See Fabian’s blog post for a discussion.

• extmath.fast_logdet: efficiently compute the log of the determinant of a matrix.

• extmath.density: efficiently compute the density of a sparse vector

• extmath.safe_sparse_dot: dot product which will correctly handle scipy.sparse inputs. If the
inputs are dense, it is equivalent to numpy.dot.

• extmath.logsumexp: compute the sum of X assuming X is in the log domain. This is equivalent to calling
np.log(np.sum(np.exp(X))), but is robust to overflow/underflow errors. Note that there is similar
functionality in np.logaddexp.reduce, but because of the pairwise nature of this routine, it is slower
for large arrays. Scipy has a similar routine in scipy.misc.logsumexp (In scipy versions < 0.10, this is
found in scipy.maxentropy.logsumexp), but the scipy version does not accept an axis keyword.

• extmath.weighted_mode: an extension of scipy.stats.mode which allows each item to have a real-
valued weight.

• resample: Resample arrays or sparse matrices in a consistent way. used in shuffle, below.

• shuffle: Shuffle arrays or sparse matrices in a consistent way. Used in sklearn.cluster.k_means.

3.3.3 Efficient Routines for Sparse Matrices

The sklearn.utils.sparsefuncs cython module hosts compiled extensions to efficiently process
scipy.sparse data.

• sparsefuncs.mean_variance_axis0: compute the means and variances along axis 0 of a CSR matrix.
Used for normalizing the tolerance stopping criterion in sklearn.cluster.k_means_.KMeans.

• sparsefuncs.inplace_csr_row_normalize_l1 and sparsefuncs.inplace_csr_row_normalize_l2:
can be used to normalize individual sparse samples to unit l1 or l2 norm as done in
sklearn.preprocessing.Normalizer.

• sparsefuncs.inplace_csr_column_scale: can be used to multiply the columns of a CSR ma-
trix by a constant scale (one scale per column). Used for scaling features to unit standard deviation in
sklearn.preprocessing.Scaler.

3.3.4 Graph Routines

• graph.single_source_shortest_path_length: (not currently used in scikit-learn) Return the
shortest path from a single source to all connected nodes on a graph. Code is adapted from networkx.

994 Chapter 3. Development

http://fseoane.net/blog/2011/computing-the-vector-norm/

scikit-learn user guide, Release 0.12-git

If this is ever needed again, it would be far faster to use a single iteration of Dijkstra’s algorithm from
graph_shortest_path.

• graph.graph_laplacian: (used in sklearn.cluster.spectral.spectral_embedding) Re-
turn the Laplacian of a given graph. There is specialized code for both dense and sparse connectivity matrices.

• graph_shortest_path.graph_shortest_path: (used in :class:sklearn.manifold.Isomap)
Return the shortest path between all pairs of connected points on a directed or undirected graph. Both the Floyd-
Warshall algorithm and Dijkstra’s algorithm are available. The algorithm is most efficient when the connectivity
matrix is a scipy.sparse.csr_matrix.

3.3.5 Backports

• fixes.Counter (partial backport of collections.Counter from Python 2.7) Used in
sklearn.feature_extraction.text.

• fixes.unique: (backport of np.unique from numpy 1.4). Find the unique entries in an array. In numpy
versions < 1.4, np.unique is less flexible. Used in sklearn.cross_validation.

• fixes.copysign: (backport of np.copysign from numpy 1.4). Change the sign of x1 to that of x2,
element-wise.

• fixes.in1d: (backport of np.in1d from numpy 1.4). Test whether each element of
an array is in a second array. Used in sklearn.datasets.twenty_newsgroups and
sklearn.feature_extraction.image.

• fixes.savemat (backport of scipy.io.savemat from scipy 0.7.2). Save an array in MATLAB-format.
In earlier versions, the keyword oned_as is not available.

• fixes.count_nonzero (backport of np.count_nonzero from numpy 1.6). Count the nonzero ele-
ments of a matrix. Used in tests of sklearn.linear_model.

• arrayfuncs.solve_triangular (Back-ported from scipy v0.9) Used in
sklearn.linear_model.omp, independent back-ports in sklearn.mixture.gmm and
sklearn.gaussian_process.

• sparsetools.cs_graph_components (backported from scipy.sparse.cs_graph_components
in scipy 0.9). Used in sklearn.cluster.hierarchical, as well as in tests for
sklearn.feature_extraction.

ARPACK

• arpack.eigs (backported from scipy.sparse.linalg.eigs in scipy 0.10) Sparse non-symmetric
eigenvalue decomposition using the Arnoldi method. A limited version of eigs is available in earlier scipy
versions.

• arpack.eigsh (backported from scipy.sparse.linalg.eigsh in scipy 0.10) Sparse non-symmetric
eigenvalue decomposition using the Arnoldi method. A limited version of eigsh is available in earlier scipy
versions.

• arpack.svds (backported from scipy.sparse.linalg.svds in scipy 0.10) Sparse non-symmetric
eigenvalue decomposition using the Arnoldi method. A limited version of svds is available in earlier scipy
versions.

3.3. Utilities for Developers 995

scikit-learn user guide, Release 0.12-git

Benchmarking

• bench.total_seconds (back-ported from timedelta.total_seconds in Python 2.7). Used in
benchmarks/bench_glm.py.

3.3.6 Testing Functions

• testing.assert_in, testing.assert_not_in: Assertions for container membership. Designed for
forward compatibility with Nose 1.0.

• mock_urllib2: Object which mocks the urllib2 module to fake requests of mldata. Used in tests of
sklearn.datasets.

3.3.7 Helper Functions

• gen_even_slices: generator to create n-packs of slices going up to n. Used in
sklearn.decomposition.dict_learning and sklearn.cluster.k_means.

• arraybuilder.ArrayBuilder: Helper class to incrementally build a 1-d numpy.ndarray. Currently used
in sklearn.datasets._svmlight_format.pyx.

• safe_mask: Helper function to convert a mask to the format expected by the numpy array or scipy sparse
matrix on which to use it (sparse matrices support integer indices only while numpy arrays support both boolean
masks and integer indices).

3.3.8 Hash Functions

• murmurhash3_32 provides a python wrapper for the MurmurHash3_x86_32 C++ non cryptographic hash
function. This hash function is suitable for implementing lookup tables, Bloom filters, Count Min Sketch,
feature hashing and implicitly defined sparse random projections:

>>> from sklearn.utils import murmurhash3_32
>>> murmurhash3_32("some feature", seed=0)
-384616559

>>> murmurhash3_32("some feature", seed=0, positive=True)
3910350737L

The sklearn.utils.murmurhash module can also be “cimported” from other cython modules so as to
benefit from the high performance of MurmurHash while skipping the overhead of the Python interpreter.

3.3.9 Warnings and Exceptions

• deprecated: Decorator to mark a function or class as deprecated.

• ConvergenceWarning: Custom warning to catch convergence problems. Used in
sklearn.covariance.graph_lasso.

996 Chapter 3. Development

scikit-learn user guide, Release 0.12-git

3.4 Developers’ Tips for Debugging

3.4.1 Memory errors: debugging Cython with valgrind

While python/numpy’s built-in memory management is relatively robust, it can lead to performance penalties for some
routines. For this reason, much of the high-performance code in scikit-learn in written in cython. This performance
gain comes with a tradeoff, however: it is very easy for memory bugs to crop up in cython code, especially in situations
where that code relies heavily on pointer arithmetic.

Memory errors can manifest themselves a number of ways. The easiest ones to debug are often segmentation faults
and related glibc errors. Uninitialized variables can lead to unexpected behavior that is difficult to track down. A very
useful tool when debugging these sorts of errors is valgrind.

Valgrind is a command-line tool that can trace memory errors in a variety of code. Follow these steps:

1. Install valgrind on your system.

2. Download the python valgrind suppression file: valgrind-python.supp.

3. Follow the directions in the README.valgrind file to customize your python suppressions. If you don’t, you
will have spurious output coming related to the python interpreter instead of your own code.

4. Run valgrind as follows:

$> valgrind -v --suppressions=valgrind-python.supp python my_test_script.py

The result will be a list of all the memory-related errors, which reference lines in the C-code generated by cython
from your .pyx file. If you examine the referenced lines in the .c file, you will see comments which indicate the
corresponding location in your .pyx source file. Hopefully the output will give you clues as to the source of your
memory error.

For more information on valgrind and the array of options it has, see the tutorials and documentation on the valgrind
web site.

3.5 About us

This is a community effort, and as such many people have contributed to it over the years.

3.5.1 History

This project was started in 2007 as a Google Summer of Code project by David Cournapeau. Later that year, Matthieu
Brucher started work on this project as part of his thesis.

In 2010 Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort and Vincent Michel of INRIA took leadership of the
project and made the first public release, February the 1st 2010. Since then, several releases have appeard following a
~3 month cycle, and a striving international community has been leading the development.

3.5.2 People

• David Cournapeau
• Fred Mailhot
• David Cooke
• David Huard
• Dave Morrill

3.4. Developers’ Tips for Debugging 997

http://valgrind.org
http://valgrind.org
http://svn.python.org/projects/python/trunk/Misc/valgrind-python.supp
http://svn.python.org/projects/python/trunk/Misc/README.valgrind
http://valgrind.org
http://valgrind.org

scikit-learn user guide, Release 0.12-git

• Ed Schofield
• Eric Jones
• Jarrod Millman
• Matthieu Brucher
• Travis Oliphant
• Pearu Peterson
• Fabian Pedregosa (maintainer)
• Gael Varoquaux
• Jake VanderPlas
• Alexandre Gramfort
• Olivier Grisel
• Bertrand Thirion
• Vincent Michel
• Chris Filo Gorgolewski
• Angel Soler Gollonet
• Yaroslav Halchenko
• Ron Weiss
• Virgile Fritsch
• Mathieu Blondel
• Peter Prettenhofer
• Vincent Dubourg
• Alexandre Passos
• Vlad Niculae
• Edouard Duchesnay
• Thouis (Ray) Jones
• Lars Buitinck
• Paolo Losi
• Nelle Varoquaux
• Brian Holt
• Robert Layton
• Gilles Louppe
• Andreas Müller
• Satra Ghosh

If I forgot anyone, do not hesitate to send me an email to fabian.pedregosa@inria.fr and I’ll include you in the list.

3.5.3 Citing scikit-learn

If you use scikit-learn in scientific publication, we would appreciate citations to the following paper:

Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.

Bibtex entry:

@article{scikit-learn,
title={{Scikit-learn: Machine Learning in Python }},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.

and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},

journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}

998 Chapter 3. Development

http://matt.eifelle.com/
http://fseoane.net/blog/
http://gael-varoquaux.info/blog/
http://www.astro.washington.edu/users/vanderplas/
http://alexandre.gramfort.net
http://twitter.com/ogrisel
http://webylimonada.com
http://www.onerussian.com/
http://parietal.saclay.inria.fr/Members/virgile-fritsch
http://mblondel.org
http://sites.google.com/site/peterprettenhofer/
http://atpassos.posterous.com
http://vene.ro
http://info.ee.surrey.ac.uk/Personal/B.Holt/
http://www.montefiore.ulg.ac.be/~glouppe
http://www.ais.uni-bonn.de/~amueller/
mailto:fabian.pedregosa@inria.fr
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html

scikit-learn user guide, Release 0.12-git

3.5.4 Funding

INRIA actively supports this project. It has provided funding for Fabian Pedregosa to work on this project full time in
the period 2010-2012. It also hosts coding sprints and other events.

Google sponsored David Cournapeau with a Summer of Code Scholarship in the summer of 2007 and Vlad Niculae
in 2011. If you would like to participate in the next Google Summer of code program, please see this page

The NeuroDebian project providing Debian packaging and contributions is supported by Dr. James V. Haxby (Dart-
mouth College).

3.6 Support

There are several ways to get in touch with the developers.

3.6.1 Mailing List

The main mailing list is scikit-learn-general. There is also a commit list scikit-learn-commits, where updates to the
main repository get notified.

3.6.2 Bug tracker

If you think you’ve encoutered a bug, please report it to the issue tracker:

https://github.com/scikit-learn/scikit-learn/issues

3.6.3 IRC

Some developers like to hang out on channel #scikit-learn on irc.freenode.net.

If you do not have an IRC client or are behind a firewall this web client works fine: http://webchat.freenode.net

3.6.4 Documentation resources

This documentation is relative to 0.12-git. Documentation for other versions can be found here:

• Development version

• 0.10

• 0.9

• 0.8

• 0.7

• 0.6

• 0.5

Printable pdf documentation for all versions can be found here.

3.6. Support 999

http://inria.fr
http://code.google.com/opensource/
http://vene.ro
http://github.com/scikit-learn/scikit-learn/wiki/SummerOfCode
http://neuro.debian.net
http://www.debian.org
http://haxbylab.dartmouth.edu/
http://www.dartmouth.edu/~psych/
http://www.dartmouth.edu/~psych/
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
https://lists.sourceforge.net/lists/listinfo/scikit-learn-commits
https://github.com/scikit-learn/scikit-learn/issues
http://webchat.freenode.net
http://scikit-learn.org/dev/
http://scikit-learn.org/0.10/
http://scikit-learn.org/0.9/
http://scikit-learn.org/0.8/
http://scikit-learn.org/0.7/
http://scikit-learn.org/0.6/
http://scikit-learn.org/0.5/
http://sourceforge.net/projects/scikit-learn/files/documentation/

scikit-learn user guide, Release 0.12-git

3.7 0.12

3.7.1 Changelog

• Added preprocessing.LabelBinarizer, a simple utility class to normalize labels or transform non-
numerical labels, by Mathieu Blondel.

• Added the epsilon-insensitive loss and the ability to make probabilistic predictions with the modified huber loss
in Stochastic Gradient Descent, by Mathieu Blondel.

• Added Multi-dimensional Scaling (MDS), by Nelle Varoquaux

• SVMlight file format loader now detects compressed (gzip/bzip2) files and decompresses them on the fly.

3.7.2 API changes summary

• In hmm objects, like hmm.GaussianHMM, hmm.MultinomialHMM, etc., all parameters must be passed to
the object when initialising it and not through fit. Now fit will only accept the data as an input parameter.

3.8 0.11

3.8.1 Changelog

Highlights

• Gradient boosted regression trees (Gradient Tree Boosting) for classification and regression by Peter Pretten-
hofer and Scott White .

• Simple dict-based feature loader with support for categorical variables
(feature_extraction.DictVectorizer) by Lars Buitinck.

• Added Matthews correlation coefficient (metrics.matthews_corrcoef) and added macro and micro av-
erage options to metrics.precision_score, metrics.recall_score and metrics.f1_score
by Satrajit Ghosh.

• Out of Bag Estimates of generalization error for Ensemble methods by Andreas Müller.

• Randomized sparse models: Randomized sparse linear models for feature selection, by Alexandre Gramfort and
Gael Varoquaux

• Label Propagation for semi-supervised learning, by Clay Woolam. Note the semi-supervised API is still work
in progress, and may change.

• Added BIC/AIC model selection to classical Gaussian mixture models and unified the API with the remainder
of scikit-learn, by Bertrand Thirion

• Added sklearn.cross_validation.StratifiedShuffleSplit, which is a
sklearn.cross_validation.ShuffleSplit with balanced splits, by Yannick Schwartz.

• sklearn.neighbors.NearestCentroid classifier added, along with a shrink_threshold param-
eter, which implements shrunken centroid classification, by Robert Layton.

1000 Chapter 3. Development

http://www.mblondel.org/journal/
http://www.mblondel.org/journal/
http://sites.google.com/site/peterprettenhofer/
http://sites.google.com/site/peterprettenhofer/
http://twitter.com/scottblanc
https://github.com/larsmans
http://www.mit.edu/~satra/
http://www.ais.uni-bonn.de/~amueller/
http://www-sop.inria.fr/members/Alexandre.Gramfort/
http://gael-varoquaux.info
http://parietal.saclay.inria.fr/Members/bertrand-thirion
http://www.twitter.com/robertlayton

scikit-learn user guide, Release 0.12-git

Other changes

• Merged dense and sparse implementations of Stochastic Gradient Descent module and exposed utility extension
types for sequential datasets seq_dataset and weight vectors weight_vector by Peter Prettenhofer.

• Added partial_fit (support for online/minibatch learning) and warm_start to the Stochastic Gradient Descent
module by Mathieu Blondel.

• Dense and sparse implementations of Support Vector Machines classes and
linear_model.LogisticRegression merged by Lars Buitinck.

• Regressors can now be used as base estimator in the Multiclass and multilabel algorithms module by Mathieu
Blondel.

• Added n_jobs option to metrics.pairwise.pairwise_distances and
metrics.pairwise.pairwise_kernels for parallel computation, by Mathieu Blondel.

• K-means can now be run in parallel, using the n_jobs argument to either K-means or KMeans, by Robert Layton.

• Improved Cross-Validation: evaluating estimator performance and Grid Search: setting estimator parame-
ters documentation and introduced the new cross_validation.train_test_split helper function
by Olivier Grisel

• svm.SVC members coef_ and intercept_ changed sign for consistency with decision_function; for
kernel==linear, coef_ was fixed in the the one-vs-one case, by Andreas Müller.

• Performance improvements to efficient leave-one-out cross-validated Ridge regression, esp. for the
n_samples > n_features case, in linear_model.RidgeCV, by Reuben Fletcher-Costin.

• Refactoring and simplication of the Text feature extraction API and fixed a bug that caused possible negative
IDF, by Olivier Grisel.

• Beam pruning option in _BaseHMM module has been removed since it is difficult to cythonize. If you are
interested in contributing a cython version, you can use the python version in the git history as a reference.

• Classes in Nearest Neighbors now support arbitrary Minkowski metric for nearest neighbors searches. The
metric can be specified by argument p.

3.8.2 API changes summary

• covariance.EllipticEnvelop is now deprecated - Please use covariance.EllipticEnvelope
instead.

• NeighborsClassifier and NeighborsRegressor are gone in the module Nearest Neighbors. Use
the classes KNeighborsClassifier, RadiusNeighborsClassifier, KNeighborsRegressor
and/or RadiusNeighborsRegressor instead.

• Sparse classes in the Stochastic Gradient Descent module are now deprecated.

• In mixture.GMM, mixture.DPGMM and mixture.VBGMM, parameters must be passed to an object when
initialising it and not through fit. Now fit will only accept the data as an input parameter.

• methods rvs and decode in GMM module are now deprecated. sample and score or predict should be used instead.

• attribute _scores and _pvalues in univariate feature selection objects are now deprecated. scores_ or pvalues_
should be used instead.

• In LogisticRegression, LinearSVC, SVC and NuSVC, the class_weight parameter is now an initializa-
tion parameter, not a parameter to fit. This makes grid searches over this parameter possible.

• LFW data is now always shape (n_samples, n_features) to be consistent with the Olivetti faces
dataset. Use images and pairs attribute to access the natural images shapes instead.

3.8. 0.11 1001

http://sites.google.com/site/peterprettenhofer/
http://www.mblondel.org/journal/
https://github.com/larsmans
http://www.mblondel.org/journal/
http://www.mblondel.org/journal/
http://www.mblondel.org/journal/
http://www.twitter.com/robertlayton
http://twitter.com/ogrisel
http://www.ais.uni-bonn.de/~amueller/
http://twitter.com/ogrisel

scikit-learn user guide, Release 0.12-git

• In svm.LinearSVC, the meaning of the multi_class parameter changed. Options now are ‘ovr’ and ‘cram-
mer_singer’, with ‘ovr’ being the default. This does not change the default behavior but hopefully is less
confusing.

• Classs feature_selection.text.Vectorizer is deprecated and replaced by
feature_selection.text.TfidfVectorizer.

• The preprocessor / analyzer nested structure for text feature extraction has been removed. All those features are
now directly passed as flat constructor arguments to feature_selection.text.TfidfVectorizer
and feature_selection.text.CountVectorizer, in particular the following parameters are now
used:

– analyzer can be ‘word’ or ‘char’ to switch the default analysis scheme, or use a specific python callable
(as previously).

– tokenizer and preprocessor have been introduced to make it still possible to customize those steps
with the new API.

– input explicitly control how to interpret the sequence passed to fit and predict: filenames, file
objects or direct (byte or unicode) strings.

– charset decoding is explicit and strict by default.

– the vocabulary, fitted or not is now stored in the vocabulary_ attribute to be consistent with the
project conventions.

• Class feature_selection.text.TfidfVectorizer now derives directly from
feature_selection.text.CountVectorizer to make grid search trivial.

• methods rvs in _BaseHMM module are now deprecated. sample should be used instead.

• Beam pruning option in _BaseHMM module is removed since it is difficult to be Cythonized. If you are inter-
ested, you can look in the history codes by git.

• The SVMlight format loader now supports files with both zero-based and one-based column indices, since both
occur “in the wild”.

• Arguments in class ShuffleSplit are now consistent with StratifiedShuffleSplit. Arguments
test_fraction and train_fraction are deprecated and renamed to test_size and train_size
and can accept both float and int.

• Arguments in class Bootstrap are now consistent with StratifiedShuffleSplit. Arguments
n_test and n_train are deprecated and renamed to test_size and train_size and can accept both
float and int.

• Argument p added to classes in Nearest Neighbors to specify an arbitrary Minkowski metric for nearest neigh-
bors searches.

3.8.3 People

• 282 Andreas Müller

• 239 Peter Prettenhofer

• 198 Gael Varoquaux

• 129 Olivier Grisel

• 114 Mathieu Blondel

• 103 Clay Woolam

• 96 Lars Buitinck

1002 Chapter 3. Development

http://www.ais.uni-bonn.de/~amueller/
http://sites.google.com/site/peterprettenhofer/
http://gael-varoquaux.info
http://twitter.com/ogrisel
http://www.mblondel.org/journal/
https://github.com/larsmans

scikit-learn user guide, Release 0.12-git

• 88 Jaques Grobler

• 82 Alexandre Gramfort

• 50 Bertrand Thirion

• 42 Robert Layton

• 28 flyingimmidev

• 26 Jake Vanderplas

• 26 Shiqiao Du

• 21 Satrajit Ghosh

• 17 David Marek

• 17 Gilles Louppe

• 14 Vlad Niculae

• 11 Yannick Schwartz

• 10 Fabian Pedregosa

• 9 fcostin

• 7 Nick Wilson

• 5 Adrien Gaidon

• 5 Nicolas Pinto

• 4 David Warde-Farley

• 5 Nelle Varoquaux

• 5 Emmanuelle Gouillart

• 3 Joonas Sillanpää

• 3 Paolo Losi

• 2 Charles McCarthy

• 2 Roy Hyunjin Han

• 2 Scott White

• 2 ibayer

• 1 Brandyn White

• 1 Carlos Scheidegger

• 1 Claire Revillet

• 1 Conrad Lee

• 1 Edouard Duchesnay

• 1 Jan Hendrik Metzen

• 1 Meng Xinfan

• 1 Rob Zinkov

• 1 Shiqiao

• 1 Udi Weinsberg

3.8. 0.11 1003

https://github.com/jaquesgrobler/scikit-learn/wiki/Jaques-Grobler
http://www-sop.inria.fr/members/Alexandre.Gramfort/
http://parietal.saclay.inria.fr/Members/bertrand-thirion
http://www.twitter.com/robertlayton
http://www.astro.washington.edu/users/vanderplas/
http://www.mit.edu/~satra/
http://http://www.davidmarek.cz/
http://www.montefiore.ulg.ac.be/~glouppe/
http://vene.ro
http://fseoane.net/blog/
http://pinto.scripts.mit.edu/
http://www-etud.iro.umontreal.ca/~wardefar/

scikit-learn user guide, Release 0.12-git

• 1 Virgile Fritsch

• 1 Xinfan Meng

• 1 Yaroslav Halchenko

• 1 jansoe

• 1 Leon Palafox

3.9 0.10

3.9.1 Changelog

• Python 2.5 compatibility was dropped; the minimum Python version needed to use scikit-learn is now 2.6.

• Sparse inverse covariance estimation using the graph Lasso, with associated cross-validated estimator, by Gael
Varoquaux

• New Tree module by Brian Holt, Peter Prettenhofer, Satrajit Ghosh and Gilles Louppe. The module comes with
complete documentation and examples.

• Fixed a bug in the RFE module by Gilles Louppe (issue #378).

• Fixed a memory leak in in Support Vector Machines module by Brian Holt (issue #367).

• Faster tests by Fabian Pedregosa and others.

• Silhouette Coefficient cluster analysis evaluation metric added as sklearn.metrics.silhouette_score
by Robert Layton.

• Fixed a bug in K-means in the handling of the n_init parameter: the clustering algorithm used to be run
n_init times but the last solution was retained instead of the best solution by Olivier Grisel.

• Minor refactoring in Stochastic Gradient Descent module; consolidated dense and sparse predict methods; En-
hanced test time performance by converting model paramters to fortran-style arrays after fitting (only multi-
class).

• Adjusted Mutual Information metric added as sklearn.metrics.adjusted_mutual_info_score
by Robert Layton.

• Models like SVC/SVR/LinearSVC/LogisticRegression from libsvm/liblinear now support scaling of C regular-
ization parameter by the number of samples by Alexandre Gramfort.

• New Ensemble Methods module by Gilles Louppe and Brian Holt. The module comes with the random forest
algorithm and the extra-trees method, along with documentation and examples.

• Novelty and Outlier Detection: outlier and novelty detection, by Virgile Fritsch.

• Kernel Approximation: a transform implementing kernel approximation for fast SGD on non-linear kernels by
Andreas Müller.

• Fixed a bug due to atom swapping in Orthogonal Matching Pursuit (OMP) by Vlad Niculae.

• Sparse coding with a precomputed dictionary by Vlad Niculae.

• Mini Batch K-Means performance improvements by Olivier Grisel.

• K-means support for sparse matrices by Mathieu Blondel.

• Improved documentation for developers and for the sklearn.utils module, by Jake VanderPlas.

1004 Chapter 3. Development

http://gael-varoquaux.info
http://gael-varoquaux.info
http://info.ee.surrey.ac.uk/Personal/B.Holt/
http://sites.google.com/site/peterprettenhofer/
http://www.mit.edu/~satra/
http://www.montefiore.ulg.ac.be/~glouppe/
http://www.montefiore.ulg.ac.be/~glouppe/
http://info.ee.surrey.ac.uk/Personal/B.Holt/
http://fseoane.net/blog/
http://twitter.com/ogrisel
http://www-sop.inria.fr/members/Alexandre.Gramfort/
http://www.montefiore.ulg.ac.be/~glouppe/
http://info.ee.surrey.ac.uk/Personal/B.Holt/
http://parietal.saclay.inria.fr/Members/virgile-fritsch
http://www.ais.uni-bonn.de/~amueller/
http://vene.ro
http://vene.ro
http://twitter.com/ogrisel
http://www.mblondel.org/journal/
http://www.astro.washington.edu/users/vanderplas/

scikit-learn user guide, Release 0.12-git

• Vectorized 20newsgroups dataset loader (sklearn.datasets.fetch_20newsgroups_vectorized)
by Mathieu Blondel.

• Multiclass and multilabel algorithms by Lars Buitinck.

• Utilities for fast computation of mean and variance for sparse matrices by Mathieu Blondel.

• Make sklearn.preprocessing.scale and sklearn.preprocessing.Scaler work on sparse
matrices by Olivier Grisel

• Feature importances using decision trees and/or forest of trees, by Gilles Louppe.

• Parallel implementation of forests of randomized trees by Gilles Louppe.

• sklearn.cross_validation.ShuffleSplit can subsample the train sets as well as the test sets by
Olivier Grisel.

• Errors in the build of the documentation fixed by Andreas Müller.

3.9.2 API changes summary

Here are the code migration instructions when updgrading from scikit-learn version 0.9:

• Some estimators that may overwrite their inputs to save memory previously had overwrite_ parameters;
these have been replaced with copy_ parameters with exactly the opposite meaning.

This particularly affects some of the estimators in linear_model. The default behavior is still to copy
everything passed in.

• The SVMlight dataset loader sklearn.datasets.load_svmlight_file no longer supports loading
two files at once; use load_svmlight_files instead. Also, the (unused) buffer_mb parameter is gone.

• Sparse estimators in the Stochastic Gradient Descent module use dense parameter vector coef_ instead of
sparse_coef_. This significantly improves test time performance.

• The Covariance estimation module now has a robust estimator of covariance, the Minimum Covariance Deter-
minant estimator.

• Cluster evaluation metrics in metrics.cluster have been refactored but the changes are back-
wards compatible. They have been moved to the metrics.cluster.supervised, along with
metrics.cluster.unsupervised which contains the Silhouette Coefficient.

• The permutation_test_score function now behaves the same way as cross_val_score (i.e. uses
the mean score across the folds.)

• Cross Validation generators now use integer indices (indices=True) by default instead of boolean masks.
This make it more intuitive to use with sparse matrix data.

• The functions used for sparse coding, sparse_encode and sparse_encode_parallel have been com-
bined into sklearn.decomposition.sparse_encode, and the shapes of the arrays have been trans-
posed for consistency with the matrix factorization setting, as opposed to the regression setting.

• Fixed an off-by-one error in the SVMlight/LibSVM file format handling; files generated using
sklearn.datasets.dump_svmlight_file should be re-generated. (They should continue to work,
but accidentally had one extra column of zeros prepended.)

• BaseDictionaryLearning class replaced by SparseCodingMixin.

• sklearn.utils.extmath.fast_svd has been renamed sklearn.utils.extmath.randomized_svd
and the default oversampling is now fixed to 10 additional random vectors instead of doubling the number of
components to extract. The new behavior follows the reference paper.

3.9. 0.10 1005

http://www.mblondel.org/journal/
https://github.com/larsmans
http://www.mblondel.org/journal/
http://twitter.com/ogrisel
http://www.montefiore.ulg.ac.be/~glouppe/
http://www.montefiore.ulg.ac.be/~glouppe/
http://twitter.com/ogrisel
http://www.ais.uni-bonn.de/~amueller/

scikit-learn user guide, Release 0.12-git

3.9.3 People

The following people contributed to scikit-learn since last release:

• 246 Andreas Müller

• 242 Olivier Grisel

• 220 Gilles Louppe

• 183 Brian Holt

• 166 Gael Varoquaux

• 144 Lars Buitinck

• 73 Vlad Niculae

• 65 Peter Prettenhofer

• 64 Fabian Pedregosa

• 60 Robert Layton

• 55 Mathieu Blondel

• 52 Jake Vanderplas

• 44 Noel Dawe

• 38 Alexandre Gramfort

• 24 Virgile Fritsch

• 23 Satrajit Ghosh

• 3 Jan Hendrik Metzen

• 3 Kenneth C. Arnold

• 3 Shiqiao Du

• 3 Tim Sheerman-Chase

• 3 Yaroslav Halchenko

• 2 Bala Subrahmanyam Varanasi

• 2 DraXus

• 2 Michael Eickenberg

• 1 Bogdan Trach

• 1 Félix-Antoine Fortin

• 1 Juan Manuel Caicedo Carvajal

• 1 Nelle Varoquaux

• 1 Nicolas Pinto

• 1 Tiziano Zito

• 1 Xinfan Meng

1006 Chapter 3. Development

http://www.ais.uni-bonn.de/~amueller/
http://twitter.com/ogrisel
http://www.montefiore.ulg.ac.be/~glouppe/
http://info.ee.surrey.ac.uk/Personal/B.Holt/
http://gael-varoquaux.info
https://github.com/larsmans
http://vene.ro
http://sites.google.com/site/peterprettenhofer/
http://fseoane.net/blog/
http://www.mblondel.org/journal/
http://www.astro.washington.edu/users/vanderplas/
http://www-sop.inria.fr/members/Alexandre.Gramfort/
http://parietal.saclay.inria.fr/Members/virgile-fritsch
http://www.mit.edu/~satra/
http://www.onerussian.com/
http://pinto.scripts.mit.edu/

scikit-learn user guide, Release 0.12-git

3.10 0.9

scikit-learn 0.9 was released on September 2011, three months after the 0.8 release and includes the new modules
Manifold learning, The Dirichlet Process as well as several new algorithms and documentation improvements.

This release also includes the dictionary-learning work developed by Vlad Niculae as part of the Google Summer of
Code program.

3.10.1 Changelog

• New Manifold learning module by Jake Vanderplas and Fabian Pedregosa.

• New Dirichlet Process Gaussian Mixture Model by Alexandre Passos

• Nearest Neighbors module refactoring by Jake Vanderplas : general refactoring, support for sparse matrices in
input, speed and documentation improvements. See the next section for a full list of API changes.

• Improvements on the Feature selection module by Gilles Louppe : refactoring of the RFE classes, documenta-
tion rewrite, increased efficiency and minor API changes.

• Sparse Principal Components Analysis (SparsePCA and MiniBatchSparsePCA) by Vlad Niculae, Gael Varo-
quaux and Alexandre Gramfort

• Printing an estimator now behaves independently of architectures and Python version thanks to Jean Kossaifi.

• Loader for libsvm/svmlight format by Mathieu Blondel and Lars Buitinck

• Documentation improvements: thumbnails in example gallery by Fabian Pedregosa.

• Important bugfixes in Support Vector Machines module (segfaults, bad performance) by Fabian Pedregosa.

• Added Multinomial Naive Bayes and Bernoulli Naive Bayes by Lars Buitinck

• Text feature extraction optimizations by Lars Buitinck

• Chi-Square feature selection (feature_selection.univariate_selection.chi2) by Lars Buit-
inck.

• Sample generators module refactoring by Gilles Louppe

• Multiclass and multilabel algorithms by Mathieu Blondel

• Ball tree rewrite by Jake Vanderplas

• Implementation of DBSCAN algorithm by Robert Layton

• Kmeans predict and transform by Robert Layton

• Preprocessing module refactoring by Olivier Grisel

• Faster mean shift by Conrad Lee

3.10. 0.9 1007

http://vene.ro
http://code.google.com/soc/
http://code.google.com/soc/
http://www.astro.washington.edu/users/vanderplas/
http://fseoane.net/blog/
http://www.astro.washington.edu/users/vanderplas/
http://www.montefiore.ulg.ac.be/~glouppe/
http://vene.ro
http://gael-varoquaux.info
http://gael-varoquaux.info
http://www-sop.inria.fr/members/Alexandre.Gramfort/
http://www.mblondel.org/journal/
https://github.com/larsmans
http://fseoane.net/blog/
http://fseoane.net/blog/
https://github.com/larsmans
http://www.montefiore.ulg.ac.be/~glouppe/
http://www.mblondel.org/journal/
http://www.astro.washington.edu/users/vanderplas/
http://twitter.com/ogrisel

scikit-learn user guide, Release 0.12-git

• New Bootstrapping cross-validation, Random permutations cross-validation a.k.a. Shuffle & Split and various
other improvements in cross validation schemes by Olivier Grisel and Gael Varoquaux

• Adjusted Rand index and V-Measure clustering evaluation metrics by Olivier Grisel

• Added Orthogonal Matching Pursuit by Vlad Niculae

• Added 2D-patch extractor utilites in the Feature extraction module by Vlad Niculae

• Implementation of linear_model.LassoLarsCV (cross-validated Lasso solver using the Lars algorithm)
and linear_model.LassoLarsIC (BIC/AIC model selection in Lars) by Gael Varoquaux and Alexandre
Gramfort

• Scalability improvements to metrics.roc_curve by Olivier Hervieu

• Distance helper functions metrics.pairwise.pairwise_distances and
metrics.pairwise.pairwise_kernels by Robert Layton

• Mini-Batch K-Means by Nelle Varoquaux and Peter Prettenhofer.

• Downloading datasets from the mldata.org repository utilities by Pietro Berkes.

• The Olivetti faces dataset by David Warde-Farley.

3.10.2 API changes summary

Here are the code migration instructions when updgrading from scikit-learn version 0.8:

• The scikits.learn package was renamed sklearn. There is still a scikits.learn package alias for
backward compatibility.

Third-party projects with a dependency on scikit-learn 0.9+ should upgrade their codebase. For instance under
Linux / MacOSX just run (make a backup first!):

find -name "*.py" | xargs sed -i ’s/\bscikits.learn\b/sklearn/g’

• Estimators no longer accept model parameters as fit arguments: instead all parameters must be only
be passed as constructor arguments or using the now public set_params method inhereted from
base.BaseEstimator.

Some estimators can still accept keyword arguments on the fit but this is restricted to data-dependent values
(e.g. a Gram matrix or an affinity matrix that are precomputed from the X data matrix.

• The cross_val package has been renamed to cross_validation although there is also a cross_val
package alias in place for backward compatibility.

Third-party projects with a dependency on scikit-learn 0.9+ should upgrade their codebase. For instance under
Linux / MacOSX just run (make a backup first!):

find -name "*.py" | xargs sed -i ’s/\bcross_val\b/cross_validation/g’

• The score_func argument of the sklearn.cross_validation.cross_val_score function is
now expected to accept y_test and y_predicted as only arguments for classification and regression tasks
or X_test for unsupervised estimators.

• gamma parameter for support vector machine algorithms is set to 1 / n_features by default, instead of 1
/ n_samples.

• The sklearn.hmm has been marked as orphaned: it will be removed from scikit-learn in version 0.11 unless
someone steps up to contribute documentation, examples and fix lurking numerical stability issues.

1008 Chapter 3. Development

http://twitter.com/ogrisel
http://gael-varoquaux.info
http://twitter.com/ogrisel
http://vene.ro
http://vene.ro
http://gael-varoquaux.info
http://www-sop.inria.fr/members/Alexandre.Gramfort/
http://www-sop.inria.fr/members/Alexandre.Gramfort/
http://www-etud.iro.umontreal.ca/~wardefar/

scikit-learn user guide, Release 0.12-git

• sklearn.neighbors has been made into a submodule. The two previously available estimators,
NeighborsClassifier and NeighborsRegressor have been marked as deprecated. Their function-
ality has been divided among five new classes: NearestNeighbors for unsupervised neighbors searches,
KNeighborsClassifier & RadiusNeighborsClassifier for supervised classification problems,
and KNeighborsRegressor & RadiusNeighborsRegressor for supervised regression problems.

• sklearn.ball_tree.BallTree has been moved to sklearn.neighbors.BallTree. Using the
former will generate a warning.

• sklearn.linear_model.LARS() and related classes (LassoLARS, LassoLARSCV, etc.) have been re-
named to sklearn.linear_model.Lars().

• All distance metrics and kernels in sklearn.metrics.pairwise now have a Y parameter, which by
default is None. If not given, the result is the distance (or kernel similarity) between each sample in Y. If given,
the result is the pairwise distance (or kernel similarity) between samples in X to Y.

• sklearn.metrics.pairwise.l1_distance is now called manhattan_distance, and by default
returns the pairwise distance. For the component wise distance, set the parameter sum_over_features to
False.

Backward compatibilty package aliases and other deprecated classes and functions will be removed in version 0.11.

3.10.3 People

38 people contributed to this release.

• 387 Vlad Niculae

• 320 Olivier Grisel

• 192 Lars Buitinck

• 179 Gael Varoquaux

• 168 Fabian Pedregosa (INRIA, Parietal Team)

• 127 Jake Vanderplas

• 120 Mathieu Blondel

• 85 Alexandre Passos

• 67 Alexandre Gramfort

• 57 Peter Prettenhofer

• 56 Gilles Louppe

• 42 Robert Layton

• 38 Nelle Varoquaux

• 32 Jean Kossaifi

• 30 Conrad Lee

• 22 Pietro Berkes

• 18 andy

• 17 David Warde-Farley

• 12 Brian Holt

• 11 Robert

3.10. 0.9 1009

http://vene.ro
http://twitter.com/ogrisel
https://github.com/larsmans
http://gael-varoquaux.info
http://fseoane.net/blog/
http://inria.fr
http://parietal.saclay.inria.fr/
http://www.astro.washington.edu/users/vanderplas/
http://www.mblondel.org/journal/
http://www-sop.inria.fr/members/Alexandre.Gramfort/
http://sites.google.com/site/peterprettenhofer/
http://www.montefiore.ulg.ac.be/~glouppe/

scikit-learn user guide, Release 0.12-git

• 8 Amit Aides

• 8 Virgile Fritsch

• 7 Yaroslav Halchenko

• 6 Salvatore Masecchia

• 5 Paolo Losi

• 4 Vincent Schut

• 3 Alexis Metaireau

• 3 Bryan Silverthorn

• 3 Andreas Müller

• 2 Minwoo Jake Lee

• 1 Emmanuelle Gouillart

• 1 Keith Goodman

• 1 Lucas Wiman

• 1 Nicolas Pinto

• 1 Thouis (Ray) Jones

• 1 Tim Sheerman-Chase

3.11 0.8

scikit-learn 0.8 was released on May 2011, one month after the first “international” scikit-learn coding sprint and is
marked by the inclusion of important modules: Hierarchical clustering, Partial Least Squares, Non-negative matrix
factorization (NMF or NNMF), initial support for Python 3 and by important enhacements and bug fixes.

3.11.1 Changelog

Several new modules where introduced during this release:

• New Hierarchical clustering module by Vincent Michel, Bertrand Thirion, Alexandre Gramfort and Gael Varo-
quaux.

• Kernel PCA implementation by Mathieu Blondel

• The Labeled Faces in the Wild face recognition dataset by Olivier Grisel.

• New Partial Least Squares module by Edouard Duchesnay.

• Non-negative matrix factorization (NMF or NNMF) module Vlad Niculae

• Implementation of the Oracle Approximating Shrinkage algorithm by Virgile Fritsch in the Covariance estima-
tion module.

Some other modules benefited from significant improvements or cleanups.

• Initial support for Python 3: builds and imports cleanly, some modules are usable while others have failing tests
by Fabian Pedregosa.

• decomposition.PCA is now usable from the Pipeline object by Olivier Grisel.

• Guide How to optimize for speed by Olivier Grisel.

1010 Chapter 3. Development

http://parietal.saclay.inria.fr/Members/virgile-fritsch
http://www.onerussian.com/
http://www.ais.uni-bonn.de/~amueller/
http://pinto.scripts.mit.edu/
https://github.com/scikit-learn/scikit-learn/wiki/Upcoming-events
http://parietal.saclay.inria.fr/Members/bertrand-thirion
http://www-sop.inria.fr/members/Alexandre.Gramfort/
http://gael-varoquaux.info
http://gael-varoquaux.info
http://www.mblondel.org/journal/
http://twitter.com/ogrisel
http://www.lnao.fr/spip.php?rubrique30
http://vene.ro
http://parietal.saclay.inria.fr/Members/virgile-fritsch
http://fseoane.net/blog/
http://twitter.com/ogrisel
http://twitter.com/ogrisel

scikit-learn user guide, Release 0.12-git

• Fixes for memory leaks in libsvm bindings, 64-bit safer BallTree by Lars Buitinck.

• bug and style fixing in K-means algorithm by Jan Schlüter.

• Add attribute coverged to Gaussian Mixture Models by Vincent Schut.

• Implement transform, predict_log_proba in lda.LDA by Mathieu Blondel.

• Refactoring in the Support Vector Machines module and bug fixes by Fabian Pedregosa, Gael Varoquaux and
Amit Aides.

• Refactored SGD module (removed code duplication, better variable naming), added interface for sample weight
by Peter Prettenhofer.

• Wrapped BallTree with Cython by Thouis (Ray) Jones.

• Added function svm.l1_min_c by Paolo Losi.

• Typos, doc style, etc. by Yaroslav Halchenko, Gael Varoquaux, Olivier Grisel, Yann Malet, Nicolas Pinto, Lars
Buitinck and Fabian Pedregosa.

3.11.2 People

People that made this release possible preceeded by number of commits:

• 159 Olivier Grisel

• 96 Gael Varoquaux

• 96 Vlad Niculae

• 94 Fabian Pedregosa

• 36 Alexandre Gramfort

• 32 Paolo Losi

• 31 Edouard Duchesnay

• 30 Mathieu Blondel

• 25 Peter Prettenhofer

• 22 Nicolas Pinto

• 11 Virgile Fritsch

• 7 Lars Buitinck

• 6 Vincent Michel

• 5 Bertrand Thirion

• 4 Thouis (Ray) Jones

• 4 Vincent Schut

• 3 Jan Schlüter

• 2 Julien Miotte

• 2 Matthieu Perrot

• 2 Yann Malet

• 2 Yaroslav Halchenko

• 1 Amit Aides

3.11. 0.8 1011

http://www.mblondel.org/journal/
http://fseoane.net/blog/
http://gael-varoquaux.info
http://sites.google.com/site/peterprettenhofer/
http://www.onerussian.com/
http://gael-varoquaux.info
http://twitter.com/ogrisel
http://pinto.scripts.mit.edu/
http://fseoane.net/blog/
http://twitter.com/ogrisel
http://gael-varoquaux.info
http://vene.ro
http://fseoane.net/blog/
http://www-sop.inria.fr/members/Alexandre.Gramfort/
http://www.lnao.fr/spip.php?rubrique30
http://www.mblondel.org/journal/
http://sites.google.com/site/peterprettenhofer/
http://pinto.scripts.mit.edu/
http://parietal.saclay.inria.fr/Members/virgile-fritsch
http://parietal.saclay.inria.fr/Members/bertrand-thirion
http://www.lnao.fr/spip.php?rubrique19
http://www.onerussian.com/

scikit-learn user guide, Release 0.12-git

• 1 Andreas Müller

• 1 Feth Arezki

• 1 Meng Xinfan

3.12 0.7

scikit-learn 0.7 was released in March 2011, roughly three months after the 0.6 release. This release is marked by the
speed improvements in existing algorithms like k-Nearest Neighbors and K-Means algorithm and by the inclusion of
an efficient algorithm for computing the Ridge Generalized Cross Validation solution. Unlike the preceding release,
no new modules where added to this release.

3.12.1 Changelog

• Performance improvements for Gaussian Mixture Model sampling [Jan Schlüter].

• Implementation of efficient leave-one-out cross-validated Ridge in linear_model.RidgeCV [Mathieu
Blondel]

• Better handling of collinearity and early stopping in linear_model.lars_path [Alexandre Gramfort and
Fabian Pedregosa].

• Fixes for liblinear ordering of labels and sign of coefficients [Dan Yamins, Paolo Losi, Mathieu Blondel and
Fabian Pedregosa].

• Performance improvements for Nearest Neighbors algorithm in high-dimensional spaces [Fabian Pedregosa].

• Performance improvements for cluster.KMeans [Gael Varoquaux and James Bergstra].

• Sanity checks for SVM-based classes [Mathieu Blondel].

• Refactoring of neighbors.NeighborsClassifier and neighbors.kneighbors_graph: added
different algorithms for the k-Nearest Neighbor Search and implemented a more stable algorithm for finding
barycenter weigths. Also added some developer documentation for this module, see notes_neighbors for more
information [Fabian Pedregosa].

• Documentation improvements: Added pca.RandomizedPCA and linear_model.LogisticRegression
to the class reference. Also added references of matrices used for clustering and other fixes [Gael Varoquaux,
Fabian Pedregosa, Mathieu Blondel, Olivier Grisel, Virgile Fritsch , Emmanuelle Gouillart]

• Binded decision_function in classes that make use of liblinear, dense and sparse variants, like
svm.LinearSVC or linear_model.LogisticRegression [Fabian Pedregosa].

• Performance and API improvements to metrics.euclidean_distances and to
pca.RandomizedPCA [James Bergstra].

• Fix compilation issues under NetBSD [Kamel Ibn Hassen Derouiche]

• Allow input sequences of different lengths in hmm.GaussianHMM [Ron Weiss].

• Fix bug in affinity propagation caused by incorrect indexing [Xinfan Meng]

3.12.2 People

People that made this release possible preceeded by number of commits:

• 85 Fabian Pedregosa

1012 Chapter 3. Development

http://www.ais.uni-bonn.de/~amueller/
http://www.mblondel.org/journal/
http://www.mblondel.org/journal/
http://www-sop.inria.fr/members/Alexandre.Gramfort/
http://fseoane.net/blog/
http://www.mblondel.org/journal/
http://fseoane.net/blog/
http://fseoane.net/blog/
http://gael-varoquaux.info
http://www-etud.iro.umontreal.ca/~bergstrj/
http://www.mblondel.org/journal/
https://github.com/scikit-learn/scikit-learn/wiki/Neighbors-working-notes
http://fseoane.net/blog/
http://gael-varoquaux.info
http://fseoane.net/blog/
http://www.mblondel.org/journal/
http://twitter.com/ogrisel
http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://fseoane.net/blog/
http://www-etud.iro.umontreal.ca/~bergstrj/
http://www.ee.columbia.edu/~ronw/
http://fseoane.net/blog/

scikit-learn user guide, Release 0.12-git

• 67 Mathieu Blondel

• 20 Alexandre Gramfort

• 19 James Bergstra

• 14 Dan Yamins

• 13 Olivier Grisel

• 12 Gael Varoquaux

• 4 Edouard Duchesnay

• 4 Ron Weiss

• 2 Satrajit Ghosh

• 2 Vincent Dubourg

• 1 Emmanuelle Gouillart

• 1 Kamel Ibn Hassen Derouiche

• 1 Paolo Losi

• 1 VirgileFritsch

• 1 Yaroslav Halchenko

• 1 Xinfan Meng

3.13 0.6

scikit-learn 0.6 was released on december 2010. It is marked by the inclusion of several new modules and a general
renaming of old ones. It is also marked by the inclusion of new example, including applications to real-world datasets.

3.13.1 Changelog

• New stochastic gradient descent module by Peter Prettenhofer. The module comes with complete documentation
and examples.

• Improved svm module: memory consumption has been reduced by 50%, heuristic to automatically set class
weights, possibility to assign weights to samples (see SVM: Weighted samples for an example).

• New Gaussian Processes module by Vincent Dubourg. This module also has great documentation and some
very neat examples. See Gaussian Processes regression: basic introductory example or Gaussian Processes
classification example: exploiting the probabilistic output for a taste of what can be done.

• It is now possible to use liblinear’s Multi-class SVC (option multi_class in svm.LinearSVC)

• New features and performance improvements of text feature extraction.

• Improved sparse matrix support, both in main classes (grid_search.GridSearchCV) as in modules
sklearn.svm.sparse and sklearn.linear_model.sparse.

• Lots of cool new examples and a new section that uses real-world datasets was created. These include: Faces
recognition example using eigenfaces and SVMs, Species distribution modeling, Libsvm GUI, Wikipedia princi-
pal eigenvector and others.

• Faster Least Angle Regression algorithm. It is now 2x faster than the R version on worst case and up to 10x
times faster on some cases.

3.13. 0.6 1013

http://www.mblondel.org/journal/
http://www-sop.inria.fr/members/Alexandre.Gramfort/
http://www-etud.iro.umontreal.ca/~bergstrj/
http://twitter.com/ogrisel
http://gael-varoquaux.info
http://www.ee.columbia.edu/~ronw/
http://www.onerussian.com/
http://scikit-learn.org/stable/modules/sgd.html

scikit-learn user guide, Release 0.12-git

• Faster coordinate descent algorithm. In particular, the full path version of lasso
(linear_model.lasso_path) is more than 200x times faster than before.

• It is now possible to get probability estimates from a linear_model.LogisticRegression model.

• module renaming: the glm module has been renamed to linear_model, the gmm module has been included into
the more general mixture model and the sgd module has been included in linear_model.

• Lots of bug fixes and documentation improvements.

3.13.2 People

People that made this release possible preceeded by number of commits:

• 207 Olivier Grisel

• 167 Fabian Pedregosa

• 97 Peter Prettenhofer

• 68 Alexandre Gramfort

• 59 Mathieu Blondel

• 55 Gael Varoquaux

• 33 Vincent Dubourg

• 21 Ron Weiss

• 9 Bertrand Thirion

• 3 Alexandre Passos

• 3 Anne-Laure Fouque

• 2 Ronan Amicel

• 1 Christian Osendorfer

3.14 0.5

3.14.1 Changelog

3.14.2 New classes

• Support for sparse matrices in some classifiers of modules svm and linear_model (see svm.sparse.SVC,
svm.sparse.SVR, svm.sparse.LinearSVC, linear_model.sparse.Lasso,
linear_model.sparse.ElasticNet)

• New pipeline.Pipeline object to compose different estimators.

• Recursive Feature Elimination routines in module Feature selection.

• Addition of various classes capable of cross validation in the linear_model module
(linear_model.LassoCV, linear_model.ElasticNetCV, etc.).

• New, more efficient LARS algorithm implementation. The Lasso variant of the algorithm is also implemented.
See linear_model.lars_path, linear_model.Lars and linear_model.LassoLars.

1014 Chapter 3. Development

http://twitter.com/ogrisel
http://fseoane.net/blog/
http://sites.google.com/site/peterprettenhofer/
http://www-sop.inria.fr/members/Alexandre.Gramfort/
http://www.mblondel.org/journal/
http://gael-varoquaux.info
http://www.ee.columbia.edu/~ronw/
http://osdf.github.com/

scikit-learn user guide, Release 0.12-git

• New Hidden Markov Models module (see classes hmm.GaussianHMM, hmm.MultinomialHMM,
hmm.GMMHMM)

• New module feature_extraction (see class reference)

• New FastICA algorithm in module sklearn.fastica

3.14.3 Documentation

• Improved documentation for many modules, now separating narrative documentation from the class reference.
As an example, see documentation for the SVM module and the complete class reference.

3.14.4 Fixes

• API changes: adhere variable names to PEP-8, give more meaningful names.

• Fixes for svm module to run on a shared memory context (multiprocessing).

• It is again possible to generate latex (and thus PDF) from the sphinx docs.

3.14.5 Examples

• new examples using some of the mlcomp datasets: Classification of text documents: using a MLComp dataset,
Classification of text documents using sparse features

• Many more examaples. See here the full list of examples.

3.14.6 External dependencies

• Joblib is now a dependencie of this package, although it is shipped with (sklearn.externals.joblib).

3.14.7 Removed modules

• Module ann (Artificial Neural Networks) has been removed from the distribution. Users wanting this sort of
algorithms should take a look into pybrain.

3.14.8 Misc

• New sphinx theme for the web page.

3.14.9 Authors

The following is a list of authors for this release, preceeded by number of commits:

• 262 Fabian Pedregosa

• 240 Gael Varoquaux

• 149 Alexandre Gramfort

• 116 Olivier Grisel

• 40 Vincent Michel

3.14. 0.5 1015

http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/classes.html
http://scikit-learn.org/stable/auto_examples/index.html

scikit-learn user guide, Release 0.12-git

• 38 Ron Weiss

• 23 Matthieu Perrot

• 10 Bertrand Thirion

• 7 Yaroslav Halchenko

• 9 VirgileFritsch

• 6 Edouard Duchesnay

• 4 Mathieu Blondel

• 1 Ariel Rokem

• 1 Matthieu Brucher

3.15 0.4

3.15.1 Changelog

Major changes in this release include:

• Coordinate Descent algorithm (Lasso, ElasticNet) refactoring & speed improvements (roughly 100x times
faster).

• Coordinate Descent Refactoring (and bug fixing) for consistency with R’s package GLMNET.

• New metrics module.

• New GMM module contributed by Ron Weiss.

• Implementation of the LARS algorithm (without Lasso variant for now).

• feature_selection module redesign.

• Migration to GIT as content management system.

• Removal of obsolete attrselect module.

• Rename of private compiled extensions (aded underscore).

• Removal of legacy unmaintained code.

• Documentation improvements (both docstring and rst).

• Improvement of the build system to (optionally) link with MKL. Also, provide a lite BLAS implementation in
case no system-wide BLAS is found.

• Lots of new examples.

• Many, many bug fixes ...

3.15.2 Authors

The committer list for this release is the following (preceded by number of commits):

• 143 Fabian Pedregosa

• 35 Alexandre Gramfort

• 34 Olivier Grisel

1016 Chapter 3. Development

scikit-learn user guide, Release 0.12-git

• 11 Gael Varoquaux

• 5 Yaroslav Halchenko

• 2 Vincent Michel

• 1 Chris Filo Gorgolewski

3.16 Presentations and Tutorials on Scikit-Learn

For written tutorials, see the Tutorial section of the documentation.

3.16.1 Videos

• Introduction to scikit-learn by Gael Varoquaux at ICML 2010

A three minute video from a very early stage of the scikit, explaining the basic idea and approach we
are following.

• Introduction to statistical learning with scikit learn by Gael Varoquaux at SciPy 2011

An extensive tutorial, consisting of four sessions of one hour. The tutorial covers basics of machine
learning, many algorithms and how to apply them using scikit-learn. The material corresponding
is now in the scikit-learn documentation section A tutorial on statistical-learning for scientific data
processing.

• Statistical Learning for Text Classification with scikit-learn and NLTK (and slides) by Olivier Grisel at PyCon
2011

Thirty minute introduction to text classification. Explains how to use NLTK and scikit-learn to solve
real-world text classification tasks and compares against cloud-based solutions.

• Introduction to Interactive Predictive Analytics in Python with scikit-learn by Olivier Grisel at PyCon 2012

3-hours long introduction to prediction tasks using the scikit-learn.

• scikit-learn - Machine Learning in Python by Jake Vanderplas at the 2012 PyData workshop at Google

Interactive demonstration of some scikit-learn features. 75 minutes.

3.16. Presentations and Tutorials on Scikit-Learn 1017

http://videolectures.net/icml2010_varaquaux_scik/
http://gael-varoquaux.info
http://archive.org/search.php?query=scikit-learn
http://gael-varoquaux.info
http://blip.tv/pycon-us-videos-2009-2010-2011/pycon-2011-statistical-machine-learning-for-text-classification-with-scikit-learn-4898362
http://www.slideshare.net/ogrisel/statistical-machine-learning-for-text-classification-with-scikitlearn-and-nltk
http://twitter.com/ogrisel
http://www.youtube.com/watch?v=Zd5dfooZWG4
http://twitter.com/ogrisel
http://marakana.com/s/scikit-learn_machine_learning_in_python,1152/index.html
http://www.astro.washington.edu/users/vanderplas/

scikit-learn user guide, Release 0.12-git

1018 Chapter 3. Development

BIBLIOGRAPHY

[B2001] Leo Breiman, “Random Forests”, Machine Learning, 45(1), 5-32, 2001.

[B1998] Leo Breiman, “Arcing Classifiers”, Annals of Statistics 1998.

[GEW2006] Pierre Geurts, Damien Ernst., and Louis Wehenkel, “Extremely randomized trees”, Machine Learning,
63(1), 3-42, 2006.

[F2001] J. Friedman, “Greedy Function Approximation: A Gradient Boosting Machine”, The Annals of Statistics,
Vol. 29, No. 5, 2001.

[F1999] 10. Friedman, “Stochastic Gradient Boosting”, 1999

[HTF2009] 20. Hastie, R. Tibshirani and J. Friedman, “Elements of Statistical Learning Ed. 2”, Springer, 2009.

[R2007] 7. Ridgeway, “Generalized Boosted Models: A guide to the gbm package”, 2007

[RH2007] V-Measure: A conditional entropy-based external cluster evaluation measure Andrew Rosenberg and Julia
Hirschberg, 2007

[B2011] Identication and Characterization of Events in Social Media, Hila Becker, PhD Thesis.

[Mrl09] “Online Dictionary Learning for Sparse Coding” J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009

[Jen09] “Structured Sparse Principal Component Analysis” R. Jenatton, G. Obozinski, F. Bach, 2009

[RD1999] Rousseeuw, P.J., Van Driessen, K. “A fast algorithm for the minimum covariance determinant estimator”
Technometrics 41(3), 212 (1999)

[R59] 12. Breiman, “Random Forests”, Machine Learning, 45(1), 5-32, 2001.

[R60] 12. Breiman, “Random Forests”, Machine Learning, 45(1), 5-32, 2001.

[R57] P. Geurts, D. Ernst., and L. Wehenkel, “Extremely randomized trees”, Machine Learning, 63(1), 3-42, 2006.

[R58] P. Geurts, D. Ernst., and L. Wehenkel, “Extremely randomized trees”, Machine Learning, 63(1), 3-42, 2006.

[RR2007] “Random features for large-scale kernel machines” Rahimi, A. and Recht, B. - Advances in neural infor-
mation processing 2007,

[LS2010] “Random Fourier approximations for skewed multiplicative histogram kernels” Random Fourier approxi-
mations for skewed multiplicative histogram kernels - Lecture Notes for Computer Sciencd (DAGM)

[VZ2010] “Efficient additive kernels via explicit feature maps” Vedaldi, A. and Zisserman, A. - Computer Vision and
Pattern Recognition 2010

[VVZ2010] “Generalized RBF feature maps for Efficient Detection” Vempati, S. and Vedaldi, A. and Zisserman, A.
and Jawahar, CV - 2010

[Rouseeuw1984] P. J. Rousseeuw. Least median of squares regression. J. Am Stat Ass, 79:871, 1984.

1019

http://acl.ldc.upenn.edu/D/D07/D07-1043.pdf
http://www.cs.columbia.edu/~hila/hila-thesis-distributed.pdf
http://www.di.ens.fr/sierra/pdfs/icml09.pdf
http://webmail.robots.ox.ac.uk/~vgg/rg/papers/randomfeatures.pdf
http://sminchisescu.ins.uni-bonn.de/papers/lis_dagm10.pdf
http://eprints.pascal-network.org/archive/00006964/01/vedaldi10.pdf
http://eprints.pascal-network.org/archive/00007024/01/inproceedings.pdf.8a865c2a5421e40d.537265656b616e7468313047656e6572616c697a65642e706466.pdf

scikit-learn user guide, Release 0.12-git

[Rouseeuw1999] A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical
Association and the American Society for Quality, TECHNOMETRICS

[Butler1993] R. W. Butler, P. L. Davies and M. Jhun, Asymptotics For The Minimum Covariance Determinant Esti-
mator, The Annals of Statistics, 1993, Vol. 21, No. 3, 1385-1400

[R48] I. Guyon, “Design of experiments for the NIPS 2003 variable selection benchmark”, 2003.

[R49] J. Friedman, “Multivariate adaptive regression splines”, The Annals of Statistics 19 (1), pages 1-67, 1991.

[R50] L. Breiman, “Bagging predictors”, Machine Learning 24, pages 123-140, 1996.

[R51] J. Friedman, “Multivariate adaptive regression splines”, The Annals of Statistics 19 (1), pages 1-67, 1991.

[R52] L. Breiman, “Bagging predictors”, Machine Learning 24, pages 123-140, 1996.

[R53] J. Friedman, “Multivariate adaptive regression splines”, The Annals of Statistics 19 (1), pages 1-67, 1991.

[R54] L. Breiman, “Bagging predictors”, Machine Learning 24, pages 123-140, 1996.

[R55] G. Celeux, M. El Anbari, J.-M. Marin, C. P. Robert, “Regularization in regression: comparing Bayesian and
frequentist methods in a poorly informative situation”, 2009.

[R56] S. Marsland, “Machine Learning: An Algorithmic Perpsective”, Chapter 10, 2009. http://www-
ist.massey.ac.nz/smarsland/Code/10/lle.py

[Halko2009] Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decom-
positions Halko, et al., 2009 (arXiv:909)

[MRT] A randomized algorithm for the decomposition of matrices Per-Gunnar Martinsson, Vladimir Rokhlin and
Mark Tygert

[R59] 12. Breiman, “Random Forests”, Machine Learning, 45(1), 5-32, 2001.

[R60] 12. Breiman, “Random Forests”, Machine Learning, 45(1), 5-32, 2001.

[R57] P. Geurts, D. Ernst., and L. Wehenkel, “Extremely randomized trees”, Machine Learning, 63(1), 3-42, 2006.

[R58] P. Geurts, D. Ernst., and L. Wehenkel, “Extremely randomized trees”, Machine Learning, 63(1), 3-42, 2006.

[Yates2011] R. Baeza-Yates and B. Ribeiro-Neto (2011). Modern Information Retrieval. Addison Wesley, pp. 68–74.

[MSR2008] C.D. Manning, H. Schütze and P. Raghavan (2008). Introduction to Information Retrieval. Cambridge
University Press, pp. 121–125.

[R61] Guyon, I., Weston, J., Barnhill, S., & Vapnik, V., “Gene selection for cancer classification using support vector
machines”, Mach. Learn., 46(1-3), 389–422, 2002.

[R62] Guyon, I., Weston, J., Barnhill, S., & Vapnik, V., “Gene selection for cancer classification using support vector
machines”, Mach. Learn., 46(1-3), 389–422, 2002.

[NLNS2002] H.B. Nielsen, S.N. Lophaven, H. B. Nielsen and J. Sondergaard. DACE - A MATLAB Kriging Toolbox.
(2002) http://www2.imm.dtu.dk/~hbn/dace/dace.pdf

[WBSWM1992] W.J. Welch, R.J. Buck, J. Sacks, H.P. Wynn, T.J. Mitchell, and M.D. Morris (1992). Screening, pre-
dicting, and computer experiments. Technometrics, 34(1) 15–25. http://www.jstor.org/pss/1269548

[R63] Roweis, S. & Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323
(2000).

[R64] Donoho, D. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data.
Proc Natl Acad Sci U S A. 100:5591 (2003).

[R65] Zhang, Z. & Wang, J. MLLE: Modified Locally Linear Embedding Using Multiple Weights.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382

1020 Bibliography

http://www-ist.massey.ac.nz/smarsland/Code/10/lle.py
http://www-ist.massey.ac.nz/smarsland/Code/10/lle.py
http://www2.imm.dtu.dk/~hbn/dace/dace.pdf
http://www.jstor.org/pss/1269548
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382

scikit-learn user guide, Release 0.12-git

[R66] Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment.
Journal of Shanghai Univ. 8:406 (2004)

[R67] Roweis, S. & Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323
(2000).

[R68] Donoho, D. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data.
Proc Natl Acad Sci U S A. 100:5591 (2003).

[R69] Zhang, Z. & Wang, J. MLLE: Modified Locally Linear Embedding Using Multiple Weights.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382

[R70] Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment.
Journal of Shanghai Univ. 8:406 (2004)

[R41] Vinh, Epps, and Bailey, (2010). Information Theoretic Measures for Clusterings
Comparison: Variants, Properties, Normalization and Correction for Chance}, JMLR
http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf

[R42] Wikipedia entry for the Adjusted Mutual Information

[Hubert1985] L. Hubert and P. Arabie, Comparing Partitions, Journal of Classification 1985
http://www.springerlink.com/content/x64124718341j1j0/

[wk] http://en.wikipedia.org/wiki/Rand_index#Adjusted_Rand_index

[Rosenberg2007] V-Measure: A conditional entropy-based external cluster evaluation measure Andrew Rosenberg
and Julia Hirschberg, 2007 http://acl.ldc.upenn.edu/D/D07/D07-1043.pdf

[R73] “Solving multiclass learning problems via error-correcting output codes”, Dietterich T., Bakiri G., Journal of
Artificial Intelligence Research 2, 1995.

[R74] “The error coding method and PICTs”, James G., Hastie T., Journal of Computational and Graphical statistics
7, 1998.

[R75] “The Elements of Statistical Learning”, Hastie T., Tibshirani R., Friedman J., page 606 (second-edition) 2008.

[R76] http://en.wikipedia.org/wiki/Decision_tree_learning

[R77] L. Breiman, J. Friedman, R. Olshen, and C. Stone, “Classification and Regression Trees”, Wadsworth, Belmont,
CA, 1984.

[R78] T. Hastie, R. Tibshirani and J. Friedman. “Elements of Statistical Learning”, Springer, 2009.

[R79] L. Breiman, and A. Cutler, “Random Forests”, http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

[R80] http://en.wikipedia.org/wiki/Decision_tree_learning

[R81] L. Breiman, J. Friedman, R. Olshen, and C. Stone, “Classification and Regression Trees”, Wadsworth, Belmont,
CA, 1984.

[R82] T. Hastie, R. Tibshirani and J. Friedman. “Elements of Statistical Learning”, Springer, 2009.

[R83] L. Breiman, and A. Cutler, “Random Forests”, http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

[R84] P. Geurts, D. Ernst., and L. Wehenkel, “Extremely randomized trees”, Machine Learning, 63(1), 3-42, 2006.

[R85] P. Geurts, D. Ernst., and L. Wehenkel, “Extremely randomized trees”, Machine Learning, 63(1), 3-42, 2006.

Bibliography 1021

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf
http://en.wikipedia.org/wiki/Adjusted_Mutual_Information
http://www.springerlink.com/content/x64124718341j1j0/
http://en.wikipedia.org/wiki/Rand_index#Adjusted_Rand_index
http://acl.ldc.upenn.edu/D/D07/D07-1043.pdf
http://en.wikipedia.org/wiki/Decision_tree_learning
http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
http://en.wikipedia.org/wiki/Decision_tree_learning
http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

scikit-learn user guide, Release 0.12-git

1022 Bibliography

PYTHON MODULE INDEX

s
sklearn.cluster, 227
sklearn.covariance, 245
sklearn.cross_validation, 269
sklearn.datasets, 281
sklearn.decomposition, 303
sklearn.ensemble, 339
sklearn.feature_extraction, 361
sklearn.feature_extraction.image, 364
sklearn.feature_extraction.text, 367
sklearn.feature_selection, 375
sklearn.gaussian_process, 388
sklearn.grid_search, 396
sklearn.hmm, 399
sklearn.kernel_approximation, 412
sklearn.lda, 422
sklearn.linear_model, 424
sklearn.linear_model.sparse, 497
sklearn.manifold, 509
sklearn.metrics, 517
sklearn.metrics.cluster, 526
sklearn.metrics.pairwise, 535
sklearn.mixture, 541
sklearn.multiclass, 553
sklearn.naive_bayes, 559
sklearn.neighbors, 566
sklearn.pipeline, 601
sklearn.pls, 592
sklearn.preprocessing, 603
sklearn.qda, 615
sklearn.semi_supervised, 417
sklearn.svm, 617
sklearn.tree, 644
sklearn.utils, 656

1023

scikit-learn user guide, Release 0.12-git

1024 Python Module Index

PYTHON MODULE INDEX

s
sklearn.cluster, 227
sklearn.covariance, 245
sklearn.cross_validation, 269
sklearn.datasets, 281
sklearn.decomposition, 303
sklearn.ensemble, 339
sklearn.feature_extraction, 361
sklearn.feature_extraction.image, 364
sklearn.feature_extraction.text, 367
sklearn.feature_selection, 375
sklearn.gaussian_process, 388
sklearn.grid_search, 396
sklearn.hmm, 399
sklearn.kernel_approximation, 412
sklearn.lda, 422
sklearn.linear_model, 424
sklearn.linear_model.sparse, 497
sklearn.manifold, 509
sklearn.metrics, 517
sklearn.metrics.cluster, 526
sklearn.metrics.pairwise, 535
sklearn.mixture, 541
sklearn.multiclass, 553
sklearn.naive_bayes, 559
sklearn.neighbors, 566
sklearn.pipeline, 601
sklearn.pls, 592
sklearn.preprocessing, 603
sklearn.qda, 615
sklearn.semi_supervised, 417
sklearn.svm, 617
sklearn.tree, 644
sklearn.utils, 656

1025

scikit-learn user guide, Release 0.12-git

1026 Python Module Index

INDEX

__init__() (sklearn.cluster.AffinityPropagation method),
228

__init__() (sklearn.cluster.DBSCAN method), 229
__init__() (sklearn.cluster.KMeans method), 231
__init__() (sklearn.cluster.MeanShift method), 236
__init__() (sklearn.cluster.MiniBatchKMeans method),

234
__init__() (sklearn.cluster.SpectralClustering method),

237
__init__() (sklearn.cluster.Ward method), 239
__init__() (sklearn.covariance.EllipticEnvelope method),

249
__init__() (sklearn.covariance.EmpiricalCovariance

method), 246
__init__() (sklearn.covariance.GraphLasso method), 252
__init__() (sklearn.covariance.GraphLassoCV method),

254
__init__() (sklearn.covariance.LedoitWolf method), 256
__init__() (sklearn.covariance.MinCovDet method), 259
__init__() (sklearn.covariance.OAS method), 262
__init__() (sklearn.covariance.ShrunkCovariance

method), 264
__init__() (sklearn.cross_validation.Bootstrap method),

270
__init__() (sklearn.cross_validation.KFold method), 271
__init__() (sklearn.cross_validation.LeaveOneLabelOut

method), 272
__init__() (sklearn.cross_validation.LeaveOneOut

method), 273
__init__() (sklearn.cross_validation.LeavePLabelOut

method), 274
__init__() (sklearn.cross_validation.LeavePOut method),

275
__init__() (sklearn.cross_validation.ShuffleSplit method),

277
__init__() (sklearn.cross_validation.StratifiedKFold

method), 275
__init__() (sklearn.cross_validation.StratifiedShuffleSplit

method), 278
__init__() (sklearn.decomposition.DictionaryLearning

method), 330
__init__() (sklearn.decomposition.FastICA method), 317

__init__() (sklearn.decomposition.KernelPCA method),
315

__init__() (sklearn.decomposition.MiniBatchDictionaryLearning
method), 333

__init__() (sklearn.decomposition.MiniBatchSparsePCA
method), 324

__init__() (sklearn.decomposition.NMF method), 320
__init__() (sklearn.decomposition.PCA method), 305
__init__() (sklearn.decomposition.ProbabilisticPCA

method), 307
__init__() (sklearn.decomposition.ProjectedGradientNMF

method), 311
__init__() (sklearn.decomposition.RandomizedPCA

method), 313
__init__() (sklearn.decomposition.SparseCoder method),

327
__init__() (sklearn.decomposition.SparsePCA method),

322
__init__() (sklearn.ensemble.ExtraTreesClassifier

method), 191, 349
__init__() (sklearn.ensemble.ExtraTreesRegressor

method), 195, 353
__init__() (sklearn.ensemble.GradientBoostingClassifier

method), 198, 356
__init__() (sklearn.ensemble.GradientBoostingRegressor

method), 201, 359
__init__() (sklearn.ensemble.RandomForestClassifier

method), 183, 342
__init__() (sklearn.ensemble.RandomForestRegressor

method), 187, 346
__init__() (sklearn.feature_extraction.DictVectorizer

method), 362
__init__() (sklearn.feature_extraction.image.PatchExtractor

method), 366
__init__() (sklearn.feature_extraction.text.CountVectorizer

method), 370
__init__() (sklearn.feature_extraction.text.TfidfTransformer

method), 372
__init__() (sklearn.feature_extraction.text.TfidfVectorizer

method), 373
__init__() (sklearn.feature_selection.RFE method), 383

1027

scikit-learn user guide, Release 0.12-git

__init__() (sklearn.feature_selection.RFECV method),
385

__init__() (sklearn.feature_selection.SelectFdr method),
379

__init__() (sklearn.feature_selection.SelectFpr method),
378

__init__() (sklearn.feature_selection.SelectFwe method),
381

__init__() (sklearn.feature_selection.SelectKBest
method), 377

__init__() (sklearn.feature_selection.SelectPercentile
method), 375

__init__() (sklearn.gaussian_process.GaussianProcess
method), 390

__init__() (sklearn.grid_search.GridSearchCV method),
398

__init__() (sklearn.grid_search.IterGrid method), 399
__init__() (sklearn.hmm.GMMHMM method), 409
__init__() (sklearn.hmm.GaussianHMM method), 402
__init__() (sklearn.hmm.MultinomialHMM method), 406
__init__() (sklearn.kernel_approximation.AdditiveChi2Sampler

method), 414
__init__() (sklearn.kernel_approximation.RBFSampler

method), 413
__init__() (sklearn.kernel_approximation.SkewedChi2Sampler

method), 416
__init__() (sklearn.lda.LDA method), 423
__init__() (sklearn.linear_model.ARDRegression

method), 484
__init__() (sklearn.linear_model.BayesianRidge

method), 481
__init__() (sklearn.linear_model.ElasticNet method), 444
__init__() (sklearn.linear_model.ElasticNetCV method),

176, 447
__init__() (sklearn.linear_model.Lars method), 450
__init__() (sklearn.linear_model.LarsCV method), 167,

455
__init__() (sklearn.linear_model.Lasso method), 437
__init__() (sklearn.linear_model.LassoCV method), 172,

440
__init__() (sklearn.linear_model.LassoLars method), 452
__init__() (sklearn.linear_model.LassoLarsCV method),

170, 457
__init__() (sklearn.linear_model.LassoLarsIC method),

180, 460
__init__() (sklearn.linear_model.LinearRegression

method), 426
__init__() (sklearn.linear_model.LogisticRegression

method), 462, 507
__init__() (sklearn.linear_model.OrthogonalMatchingPursuit

method), 466
__init__() (sklearn.linear_model.Perceptron method),

469

__init__() (sklearn.linear_model.RandomizedLasso
method), 488

__init__() (sklearn.linear_model.RandomizedLogisticRegression
method), 491

__init__() (sklearn.linear_model.Ridge method), 428
__init__() (sklearn.linear_model.RidgeCV method), 163,

435
__init__() (sklearn.linear_model.RidgeClassifier

method), 430
__init__() (sklearn.linear_model.RidgeClassifierCV

method), 165, 432
__init__() (sklearn.linear_model.SGDClassifier method),

473
__init__() (sklearn.linear_model.SGDRegressor method),

478
__init__() (sklearn.linear_model.sparse.ElasticNet

method), 499
__init__() (sklearn.linear_model.sparse.Lasso method),

498
__init__() (sklearn.linear_model.sparse.SGDClassifier

method), 501
__init__() (sklearn.linear_model.sparse.SGDRegressor

method), 504
__init__() (sklearn.manifold.Isomap method), 513
__init__() (sklearn.manifold.LocallyLinearEmbedding

method), 511
__init__() (sklearn.manifold.MDS method), 515
__init__() (sklearn.mixture.DPGMM method), 547
__init__() (sklearn.mixture.GMM method), 543
__init__() (sklearn.mixture.VBGMM method), 551
__init__() (sklearn.multiclass.OneVsOneClassifier

method), 555
__init__() (sklearn.multiclass.OneVsRestClassifier

method), 554
__init__() (sklearn.multiclass.OutputCodeClassifier

method), 557
__init__() (sklearn.naive_bayes.BernoulliNB method),

565
__init__() (sklearn.naive_bayes.GaussianNB method),

560
__init__() (sklearn.naive_bayes.MultinomialNB method),

562
__init__() (sklearn.neighbors.BallTree method), 587
__init__() (sklearn.neighbors.KNeighborsClassifier

method), 572
__init__() (sklearn.neighbors.KNeighborsRegressor

method), 580
__init__() (sklearn.neighbors.NearestCentroid method),

590
__init__() (sklearn.neighbors.NearestNeighbors method),

568
__init__() (sklearn.neighbors.RadiusNeighborsClassifier

method), 576

1028 Index

scikit-learn user guide, Release 0.12-git

__init__() (sklearn.neighbors.RadiusNeighborsRegressor
method), 583

__init__() (sklearn.pipeline.Pipeline method), 603
__init__() (sklearn.pls.CCA method), 599
__init__() (sklearn.pls.PLSCanonical method), 597
__init__() (sklearn.pls.PLSRegression method), 594
__init__() (sklearn.pls.PLSSVD method), 601
__init__() (sklearn.preprocessing.Binarizer method), 608
__init__() (sklearn.preprocessing.KernelCenterer

method), 612
__init__() (sklearn.preprocessing.LabelBinarizer

method), 611
__init__() (sklearn.preprocessing.Normalizer method),

606
__init__() (sklearn.preprocessing.Scaler method), 605
__init__() (sklearn.qda.QDA method), 616
__init__() (sklearn.semi_supervised.LabelPropagation

method), 418
__init__() (sklearn.semi_supervised.LabelSpreading

method), 420
__init__() (sklearn.svm.LinearSVC method), 624
__init__() (sklearn.svm.NuSVC method), 627
__init__() (sklearn.svm.NuSVR method), 635
__init__() (sklearn.svm.OneClassSVM method), 638
__init__() (sklearn.svm.SVC method), 620
__init__() (sklearn.svm.SVR method), 631
__init__() (sklearn.tree.DecisionTreeClassifier method),

645
__init__() (sklearn.tree.DecisionTreeRegressor method),

649
__init__() (sklearn.tree.ExtraTreeClassifier method), 651
__init__() (sklearn.tree.ExtraTreeRegressor method), 654

absolute_exponential() (in module
sklearn.gaussian_process.correlation_models),
392

AdditiveChi2Sampler (class in
sklearn.kernel_approximation), 414

adjusted_mutual_info_score() (in module
sklearn.metrics), 527

adjusted_rand_score() (in module sklearn.metrics), 528
affinity_propagation() (in module sklearn.cluster), 242
AffinityPropagation (class in sklearn.cluster), 227
aic() (sklearn.mixture.DPGMM method), 547
aic() (sklearn.mixture.GMM method), 543
aic() (sklearn.mixture.VBGMM method), 551
algorithm (sklearn.hmm.GaussianHMM attribute), 402
algorithm (sklearn.hmm.GMMHMM attribute), 409
algorithm (sklearn.hmm.MultinomialHMM attribute),

406
ARDRegression (class in sklearn.linear_model), 483
arg_max_reduced_likelihood_function()

(sklearn.gaussian_process.GaussianProcess
method), 390

auc() (in module sklearn.metrics), 519

BallTree (class in sklearn.neighbors), 586
BayesianRidge (class in sklearn.linear_model), 480
BernoulliNB (class in sklearn.naive_bayes), 564
best_estimator (sklearn.grid_search.GridSearchCV at-

tribute), 398
best_score (sklearn.grid_search.GridSearchCV attribute),

398
bic() (sklearn.mixture.DPGMM method), 547
bic() (sklearn.mixture.GMM method), 543
bic() (sklearn.mixture.VBGMM method), 551
binarize() (in module sklearn.preprocessing), 615
Binarizer (class in sklearn.preprocessing), 607
Bootstrap (class in sklearn.cross_validation), 269
build_analyzer() (sklearn.feature_extraction.text.CountVectorizer

method), 370
build_analyzer() (sklearn.feature_extraction.text.TfidfVectorizer

method), 373
build_preprocessor() (sklearn.feature_extraction.text.CountVectorizer

method), 370
build_preprocessor() (sklearn.feature_extraction.text.TfidfVectorizer

method), 374
build_tokenizer() (sklearn.feature_extraction.text.CountVectorizer

method), 370
build_tokenizer() (sklearn.feature_extraction.text.TfidfVectorizer

method), 374

CCA (class in sklearn.pls), 598
check_cv() (in module sklearn.cross_validation), 281
check_random_state() (in module sklearn.utils), 657
chi2() (in module sklearn.feature_selection), 386
class_prior (sklearn.naive_bayes.GaussianNB attribute),

560
classes (sklearn.linear_model.Perceptron attribute), 469
classes (sklearn.linear_model.SGDClassifier attribute),

473
classes (sklearn.linear_model.sparse.SGDClassifier at-

tribute), 501
classification_report() (in module sklearn.metrics), 524
completeness_score() (in module sklearn.metrics), 529
confusion_matrix() (in module sklearn.metrics), 518
constant() (in module sklearn.gaussian_process.regression_models),

395
correct_covariance() (sklearn.covariance.EllipticEnvelope

method), 249
correct_covariance() (sklearn.covariance.MinCovDet

method), 259
CountVectorizer (class in sklearn.feature_extraction.text),

368
covariance_type (sklearn.hmm.GaussianHMM attribute),

402
covariance_type (sklearn.hmm.GMMHMM attribute),

409

Index 1029

scikit-learn user guide, Release 0.12-git

covars_ (sklearn.hmm.GaussianHMM attribute), 402
cross_val_score() (in module sklearn.cross_validation),

279
cross_validation() (in module sklearn.svm.libsvm), 643
cubic() (in module sklearn.gaussian_process.correlation_models),

394

DBSCAN (class in sklearn.cluster), 228
dbscan() (in module sklearn.cluster), 243
decision_function() (in module sklearn.svm.libsvm), 642
decision_function() (sklearn.covariance.EllipticEnvelope

method), 249
decision_function() (sklearn.lda.LDA method), 423
decision_function() (sklearn.linear_model.ARDRegression

method), 484
decision_function() (sklearn.linear_model.BayesianRidge

method), 481
decision_function() (sklearn.linear_model.ElasticNet

method), 444
decision_function() (sklearn.linear_model.ElasticNetCV

method), 176, 447
decision_function() (sklearn.linear_model.Lars method),

450
decision_function() (sklearn.linear_model.LarsCV

method), 167, 455
decision_function() (sklearn.linear_model.Lasso

method), 437
decision_function() (sklearn.linear_model.LassoCV

method), 172, 440
decision_function() (sklearn.linear_model.LassoLars

method), 452
decision_function() (sklearn.linear_model.LassoLarsCV

method), 170, 457
decision_function() (sklearn.linear_model.LassoLarsIC

method), 180, 460
decision_function() (sklearn.linear_model.LinearRegression

method), 426
decision_function() (sklearn.linear_model.LogisticRegression

method), 462, 507
decision_function() (sklearn.linear_model.OrthogonalMatchingPursuit

method), 466
decision_function() (sklearn.linear_model.Perceptron

method), 469
decision_function() (sklearn.linear_model.Ridge

method), 428
decision_function() (sklearn.linear_model.RidgeCV

method), 163, 435
decision_function() (sklearn.linear_model.SGDClassifier

method), 473
decision_function() (sklearn.linear_model.SGDRegressor

method), 478
decision_function() (sklearn.linear_model.sparse.ElasticNet

method), 499

decision_function() (sklearn.linear_model.sparse.Lasso
method), 498

decision_function() (sklearn.linear_model.sparse.SGDClassifier
method), 501

decision_function() (sklearn.linear_model.sparse.SGDRegressor
method), 504

decision_function() (sklearn.pipeline.Pipeline method),
603

decision_function() (sklearn.qda.QDA method), 616
decision_function() (sklearn.svm.LinearSVC method),

624
decision_function() (sklearn.svm.NuSVC method), 627
decision_function() (sklearn.svm.NuSVR method), 635
decision_function() (sklearn.svm.OneClassSVM

method), 638
decision_function() (sklearn.svm.SVC method), 620
decision_function() (sklearn.svm.SVR method), 631
DecisionTreeClassifier (class in sklearn.tree), 644
DecisionTreeRegressor (class in sklearn.tree), 647
decode() (sklearn.feature_extraction.text.CountVectorizer

method), 370
decode() (sklearn.feature_extraction.text.TfidfVectorizer

method), 374
decode() (sklearn.hmm.GaussianHMM method), 402
decode() (sklearn.hmm.GMMHMM method), 410
decode() (sklearn.hmm.MultinomialHMM method), 406
decode() (sklearn.mixture.DPGMM method), 548
decode() (sklearn.mixture.GMM method), 543
decode() (sklearn.mixture.VBGMM method), 551
dict_learning() (in module sklearn.decomposition), 336
dict_learning_online() (in module

sklearn.decomposition), 337
DictionaryLearning (class in sklearn.decomposition), 328
DictVectorizer (class in sklearn.feature_extraction), 361
distance_metrics() (in module sklearn.metrics.pairwise),

538
DPGMM (class in sklearn.mixture), 545

ElasticNet (class in sklearn.linear_model), 442
ElasticNet (class in sklearn.linear_model.sparse), 499
ElasticNetCV (class in sklearn.linear_model), 174, 445
EllipticEnvelope (class in sklearn.covariance), 248
emissionprob_ (sklearn.hmm.MultinomialHMM at-

tribute), 406
empirical_covariance() (in module sklearn.covariance),

266
EmpiricalCovariance (class in sklearn.covariance), 246
error_norm() (sklearn.covariance.EllipticEnvelope

method), 249
error_norm() (sklearn.covariance.EmpiricalCovariance

method), 246
error_norm() (sklearn.covariance.GraphLasso method),

252

1030 Index

scikit-learn user guide, Release 0.12-git

error_norm() (sklearn.covariance.GraphLassoCV
method), 254

error_norm() (sklearn.covariance.LedoitWolf method),
256

error_norm() (sklearn.covariance.MinCovDet method),
259

error_norm() (sklearn.covariance.OAS method), 262
error_norm() (sklearn.covariance.ShrunkCovariance

method), 264
estimate_bandwidth() (in module sklearn.cluster), 240
euclidean_distances() (in module

sklearn.metrics.pairwise), 536
eval() (sklearn.hmm.GaussianHMM method), 402
eval() (sklearn.hmm.GMMHMM method), 410
eval() (sklearn.hmm.MultinomialHMM method), 406
eval() (sklearn.mixture.DPGMM method), 548
eval() (sklearn.mixture.GMM method), 544
eval() (sklearn.mixture.VBGMM method), 551
export_graphviz() (in module sklearn.tree), 656
extract_patches_2d() (in module

sklearn.feature_extraction.image), 365
ExtraTreeClassifier (class in sklearn.tree), 651
ExtraTreeRegressor (class in sklearn.tree), 653
ExtraTreesClassifier (class in sklearn.ensemble), 189, 347
ExtraTreesRegressor (class in sklearn.ensemble), 193,

351

f1_score() (in module sklearn.metrics), 522
f_classif() (in module sklearn.feature_selection), 387
f_regression() (in module sklearn.feature_selection), 387
FastICA (class in sklearn.decomposition), 316
fastica() (in module sklearn.decomposition), 334
fbeta_score() (in module sklearn.metrics), 521
fetch_20newsgroups() (in module sklearn.datasets), 282
fetch_20newsgroups_vectorized() (in module

sklearn.datasets), 282
fetch_lfw_pairs() (in module sklearn.datasets), 286
fetch_lfw_people() (in module sklearn.datasets), 287
fetch_olivetti_faces() (in module sklearn.datasets), 288
fit() (in module sklearn.svm.libsvm), 641
fit() (sklearn.cluster.AffinityPropagation method), 228
fit() (sklearn.cluster.DBSCAN method), 229
fit() (sklearn.cluster.KMeans method), 231
fit() (sklearn.cluster.MeanShift method), 236
fit() (sklearn.cluster.MiniBatchKMeans method), 234
fit() (sklearn.cluster.SpectralClustering method), 237
fit() (sklearn.cluster.Ward method), 239
fit() (sklearn.covariance.EllipticEnvelope method), 250
fit() (sklearn.covariance.EmpiricalCovariance method),

247
fit() (sklearn.covariance.LedoitWolf method), 257
fit() (sklearn.covariance.MinCovDet method), 260
fit() (sklearn.covariance.OAS method), 262
fit() (sklearn.covariance.ShrunkCovariance method), 265

fit() (sklearn.decomposition.DictionaryLearning method),
330

fit() (sklearn.decomposition.KernelPCA method), 315
fit() (sklearn.decomposition.MiniBatchDictionaryLearning

method), 333
fit() (sklearn.decomposition.MiniBatchSparsePCA

method), 324
fit() (sklearn.decomposition.NMF method), 320
fit() (sklearn.decomposition.PCA method), 305
fit() (sklearn.decomposition.ProbabilisticPCA method),

307
fit() (sklearn.decomposition.ProjectedGradientNMF

method), 311
fit() (sklearn.decomposition.RandomizedPCA method),

313
fit() (sklearn.decomposition.SparseCoder method), 327
fit() (sklearn.decomposition.SparsePCA method), 322
fit() (sklearn.ensemble.ExtraTreesClassifier method),

191, 349
fit() (sklearn.ensemble.ExtraTreesRegressor method),

195, 353
fit() (sklearn.ensemble.GradientBoostingClassifier

method), 198, 356
fit() (sklearn.ensemble.GradientBoostingRegressor

method), 201, 359
fit() (sklearn.ensemble.RandomForestClassifier method),

183, 342
fit() (sklearn.ensemble.RandomForestRegressor method),

187, 346
fit() (sklearn.feature_extraction.DictVectorizer method),

362
fit() (sklearn.feature_extraction.image.PatchExtractor

method), 366
fit() (sklearn.feature_extraction.text.CountVectorizer

method), 370
fit() (sklearn.feature_extraction.text.TfidfTransformer

method), 372
fit() (sklearn.feature_extraction.text.TfidfVectorizer

method), 374
fit() (sklearn.feature_selection.RFE method), 383
fit() (sklearn.feature_selection.RFECV method), 385
fit() (sklearn.feature_selection.SelectFdr method), 379
fit() (sklearn.feature_selection.SelectFpr method), 378
fit() (sklearn.feature_selection.SelectFwe method), 381
fit() (sklearn.feature_selection.SelectKBest method), 377
fit() (sklearn.feature_selection.SelectPercentile method),

375
fit() (sklearn.gaussian_process.GaussianProcess method),

390
fit() (sklearn.grid_search.GridSearchCV method), 398
fit() (sklearn.hmm.GaussianHMM method), 403
fit() (sklearn.hmm.GMMHMM method), 410
fit() (sklearn.hmm.MultinomialHMM method), 406

Index 1031

scikit-learn user guide, Release 0.12-git

fit() (sklearn.kernel_approximation.AdditiveChi2Sampler
method), 414

fit() (sklearn.kernel_approximation.RBFSampler
method), 413

fit() (sklearn.kernel_approximation.SkewedChi2Sampler
method), 416

fit() (sklearn.lda.LDA method), 423
fit() (sklearn.linear_model.ARDRegression method), 485
fit() (sklearn.linear_model.BayesianRidge method), 482
fit() (sklearn.linear_model.ElasticNet method), 444
fit() (sklearn.linear_model.ElasticNetCV method), 176,

447
fit() (sklearn.linear_model.Lars method), 450
fit() (sklearn.linear_model.LarsCV method), 167, 455
fit() (sklearn.linear_model.Lasso method), 437
fit() (sklearn.linear_model.LassoCV method), 172, 440
fit() (sklearn.linear_model.LassoLars method), 452
fit() (sklearn.linear_model.LassoLarsCV method), 170,

457
fit() (sklearn.linear_model.LassoLarsIC method), 180,

460
fit() (sklearn.linear_model.LinearRegression method),

426
fit() (sklearn.linear_model.LogisticRegression method),

463, 507
fit() (sklearn.linear_model.OrthogonalMatchingPursuit

method), 466
fit() (sklearn.linear_model.Perceptron method), 469
fit() (sklearn.linear_model.RandomizedLasso method),

488
fit() (sklearn.linear_model.RandomizedLogisticRegression

method), 491
fit() (sklearn.linear_model.Ridge method), 428
fit() (sklearn.linear_model.RidgeClassifier method), 430
fit() (sklearn.linear_model.RidgeClassifierCV method),

165, 432
fit() (sklearn.linear_model.RidgeCV method), 163, 435
fit() (sklearn.linear_model.SGDClassifier method), 474
fit() (sklearn.linear_model.SGDRegressor method), 478
fit() (sklearn.linear_model.sparse.ElasticNet method),

500
fit() (sklearn.linear_model.sparse.Lasso method), 498
fit() (sklearn.linear_model.sparse.SGDClassifier method),

501
fit() (sklearn.linear_model.sparse.SGDRegressor

method), 504
fit() (sklearn.manifold.Isomap method), 513
fit() (sklearn.manifold.LocallyLinearEmbedding

method), 511
fit() (sklearn.manifold.MDS method), 515
fit() (sklearn.mixture.DPGMM method), 548
fit() (sklearn.mixture.GMM method), 544
fit() (sklearn.mixture.VBGMM method), 552

fit() (sklearn.multiclass.OneVsOneClassifier method),
555

fit() (sklearn.multiclass.OneVsRestClassifier method),
554

fit() (sklearn.multiclass.OutputCodeClassifier method),
557

fit() (sklearn.naive_bayes.BernoulliNB method), 565
fit() (sklearn.naive_bayes.GaussianNB method), 560
fit() (sklearn.naive_bayes.MultinomialNB method), 562
fit() (sklearn.neighbors.KNeighborsClassifier method),

572
fit() (sklearn.neighbors.KNeighborsRegressor method),

580
fit() (sklearn.neighbors.NearestCentroid method), 590
fit() (sklearn.neighbors.NearestNeighbors method), 568
fit() (sklearn.neighbors.RadiusNeighborsClassifier

method), 576
fit() (sklearn.neighbors.RadiusNeighborsRegressor

method), 583
fit() (sklearn.pipeline.Pipeline method), 603
fit() (sklearn.preprocessing.Binarizer method), 608
fit() (sklearn.preprocessing.KernelCenterer method), 612
fit() (sklearn.preprocessing.LabelBinarizer method), 611
fit() (sklearn.preprocessing.Normalizer method), 606
fit() (sklearn.preprocessing.Scaler method), 605
fit() (sklearn.qda.QDA method), 616
fit() (sklearn.semi_supervised.LabelPropagation method),

418
fit() (sklearn.semi_supervised.LabelSpreading method),

420
fit() (sklearn.svm.LinearSVC method), 624
fit() (sklearn.svm.NuSVC method), 627
fit() (sklearn.svm.NuSVR method), 635
fit() (sklearn.svm.OneClassSVM method), 638
fit() (sklearn.svm.SVC method), 620
fit() (sklearn.svm.SVR method), 631
fit() (sklearn.tree.DecisionTreeClassifier method), 645
fit() (sklearn.tree.DecisionTreeRegressor method), 649
fit() (sklearn.tree.ExtraTreeClassifier method), 651
fit() (sklearn.tree.ExtraTreeRegressor method), 654
fit_ecoc() (in module sklearn.multiclass), 558
fit_ovo() (in module sklearn.multiclass), 558
fit_ovr() (in module sklearn.multiclass), 558
fit_predict() (sklearn.cluster.KMeans method), 231
fit_predict() (sklearn.cluster.MiniBatchKMeans method),

234
fit_stage() (sklearn.ensemble.GradientBoostingClassifier

method), 198, 357
fit_stage() (sklearn.ensemble.GradientBoostingRegressor

method), 201, 360
fit_transform() (sklearn.decomposition.DictionaryLearning

method), 330
fit_transform() (sklearn.decomposition.KernelPCA

method), 316

1032 Index

scikit-learn user guide, Release 0.12-git

fit_transform() (sklearn.decomposition.MiniBatchDictionaryLearning
method), 333

fit_transform() (sklearn.decomposition.MiniBatchSparsePCA
method), 324

fit_transform() (sklearn.decomposition.NMF method),
320

fit_transform() (sklearn.decomposition.PCA method),
305

fit_transform() (sklearn.decomposition.ProbabilisticPCA
method), 308

fit_transform() (sklearn.decomposition.ProjectedGradientNMF
method), 311

fit_transform() (sklearn.decomposition.RandomizedPCA
method), 313

fit_transform() (sklearn.decomposition.SparseCoder
method), 327

fit_transform() (sklearn.decomposition.SparsePCA
method), 322

fit_transform() (sklearn.ensemble.ExtraTreesClassifier
method), 191, 350

fit_transform() (sklearn.ensemble.ExtraTreesRegressor
method), 195, 354

fit_transform() (sklearn.ensemble.RandomForestClassifier
method), 184, 342

fit_transform() (sklearn.ensemble.RandomForestRegressor
method), 187, 346

fit_transform() (sklearn.feature_extraction.DictVectorizer
method), 362

fit_transform() (sklearn.feature_extraction.text.CountVectorizer
method), 370

fit_transform() (sklearn.feature_extraction.text.TfidfTransformer
method), 372

fit_transform() (sklearn.feature_extraction.text.TfidfVectorizer
method), 374

fit_transform() (sklearn.feature_selection.SelectFdr
method), 379

fit_transform() (sklearn.feature_selection.SelectFpr
method), 378

fit_transform() (sklearn.feature_selection.SelectFwe
method), 381

fit_transform() (sklearn.feature_selection.SelectKBest
method), 377

fit_transform() (sklearn.feature_selection.SelectPercentile
method), 375

fit_transform() (sklearn.kernel_approximation.AdditiveChi2Sampler
method), 415

fit_transform() (sklearn.kernel_approximation.RBFSampler
method), 413

fit_transform() (sklearn.kernel_approximation.SkewedChi2Sampler
method), 416

fit_transform() (sklearn.lda.LDA method), 423
fit_transform() (sklearn.linear_model.LogisticRegression

method), 463, 508

fit_transform() (sklearn.linear_model.Perceptron
method), 469

fit_transform() (sklearn.linear_model.RandomizedLasso
method), 488

fit_transform() (sklearn.linear_model.RandomizedLogisticRegression
method), 491

fit_transform() (sklearn.linear_model.SGDClassifier
method), 474

fit_transform() (sklearn.linear_model.SGDRegressor
method), 478

fit_transform() (sklearn.linear_model.sparse.SGDClassifier
method), 501

fit_transform() (sklearn.linear_model.sparse.SGDRegressor
method), 504

fit_transform() (sklearn.manifold.Isomap method), 513
fit_transform() (sklearn.manifold.LocallyLinearEmbedding

method), 511
fit_transform() (sklearn.manifold.MDS method), 515
fit_transform() (sklearn.pipeline.Pipeline method), 603
fit_transform() (sklearn.preprocessing.Binarizer method),

608
fit_transform() (sklearn.preprocessing.KernelCenterer

method), 613
fit_transform() (sklearn.preprocessing.LabelBinarizer

method), 611
fit_transform() (sklearn.preprocessing.Normalizer

method), 606
fit_transform() (sklearn.preprocessing.Scaler method),

605
fit_transform() (sklearn.svm.LinearSVC method), 624
fit_transform() (sklearn.tree.DecisionTreeClassifier

method), 646
fit_transform() (sklearn.tree.DecisionTreeRegressor

method), 649
fit_transform() (sklearn.tree.ExtraTreeClassifier method),

652
fit_transform() (sklearn.tree.ExtraTreeRegressor

method), 654

GaussianHMM (class in sklearn.hmm), 400
GaussianNB (class in sklearn.naive_bayes), 559
GaussianProcess (class in sklearn.gaussian_process), 388
generalized_exponential() (in module

sklearn.gaussian_process.correlation_models),
393

get_feature_names() (sklearn.feature_extraction.DictVectorizer
method), 362

get_feature_names() (sklearn.feature_extraction.text.CountVectorizer
method), 370

get_feature_names() (sklearn.feature_extraction.text.TfidfVectorizer
method), 374

get_mixing_matrix() (sklearn.decomposition.FastICA
method), 317

Index 1033

scikit-learn user guide, Release 0.12-git

get_params() (sklearn.cluster.AffinityPropagation
method), 228

get_params() (sklearn.cluster.DBSCAN method), 229
get_params() (sklearn.cluster.KMeans method), 231
get_params() (sklearn.cluster.MeanShift method), 236
get_params() (sklearn.cluster.MiniBatchKMeans

method), 234
get_params() (sklearn.cluster.SpectralClustering

method), 238
get_params() (sklearn.cluster.Ward method), 239
get_params() (sklearn.covariance.EllipticEnvelope

method), 250
get_params() (sklearn.covariance.EmpiricalCovariance

method), 247
get_params() (sklearn.covariance.GraphLasso method),

252
get_params() (sklearn.covariance.GraphLassoCV

method), 255
get_params() (sklearn.covariance.LedoitWolf method),

257
get_params() (sklearn.covariance.MinCovDet method),

260
get_params() (sklearn.covariance.OAS method), 263
get_params() (sklearn.covariance.ShrunkCovariance

method), 265
get_params() (sklearn.decomposition.DictionaryLearning

method), 330
get_params() (sklearn.decomposition.FastICA method),

318
get_params() (sklearn.decomposition.KernelPCA

method), 316
get_params() (sklearn.decomposition.MiniBatchDictionaryLearning

method), 333
get_params() (sklearn.decomposition.MiniBatchSparsePCA

method), 325
get_params() (sklearn.decomposition.NMF method), 320
get_params() (sklearn.decomposition.PCA method), 305
get_params() (sklearn.decomposition.ProbabilisticPCA

method), 308
get_params() (sklearn.decomposition.ProjectedGradientNMF

method), 311
get_params() (sklearn.decomposition.RandomizedPCA

method), 313
get_params() (sklearn.decomposition.SparseCoder

method), 327
get_params() (sklearn.decomposition.SparsePCA

method), 322
get_params() (sklearn.ensemble.ExtraTreesClassifier

method), 192, 350
get_params() (sklearn.ensemble.ExtraTreesRegressor

method), 196, 354
get_params() (sklearn.ensemble.GradientBoostingClassifier

method), 198, 357

get_params() (sklearn.ensemble.GradientBoostingRegressor
method), 201, 360

get_params() (sklearn.ensemble.RandomForestClassifier
method), 184, 342

get_params() (sklearn.ensemble.RandomForestRegressor
method), 188, 346

get_params() (sklearn.feature_extraction.DictVectorizer
method), 363

get_params() (sklearn.feature_extraction.image.PatchExtractor
method), 367

get_params() (sklearn.feature_extraction.text.CountVectorizer
method), 370

get_params() (sklearn.feature_extraction.text.TfidfTransformer
method), 372

get_params() (sklearn.feature_extraction.text.TfidfVectorizer
method), 374

get_params() (sklearn.feature_selection.RFE method),
383

get_params() (sklearn.feature_selection.RFECV
method), 385

get_params() (sklearn.feature_selection.SelectFdr
method), 380

get_params() (sklearn.feature_selection.SelectFpr
method), 378

get_params() (sklearn.feature_selection.SelectFwe
method), 381

get_params() (sklearn.feature_selection.SelectKBest
method), 377

get_params() (sklearn.feature_selection.SelectPercentile
method), 376

get_params() (sklearn.gaussian_process.GaussianProcess
method), 391

get_params() (sklearn.grid_search.GridSearchCV
method), 398

get_params() (sklearn.hmm.GaussianHMM method), 403
get_params() (sklearn.hmm.GMMHMM method), 411
get_params() (sklearn.hmm.MultinomialHMM method),

407
get_params() (sklearn.kernel_approximation.AdditiveChi2Sampler

method), 415
get_params() (sklearn.kernel_approximation.RBFSampler

method), 413
get_params() (sklearn.kernel_approximation.SkewedChi2Sampler

method), 416
get_params() (sklearn.lda.LDA method), 423
get_params() (sklearn.linear_model.ARDRegression

method), 485
get_params() (sklearn.linear_model.BayesianRidge

method), 482
get_params() (sklearn.linear_model.ElasticNet method),

444
get_params() (sklearn.linear_model.ElasticNetCV

method), 176, 447
get_params() (sklearn.linear_model.Lars method), 450

1034 Index

scikit-learn user guide, Release 0.12-git

get_params() (sklearn.linear_model.LarsCV method),
167, 455

get_params() (sklearn.linear_model.Lasso method), 438
get_params() (sklearn.linear_model.LassoCV method),

172, 440
get_params() (sklearn.linear_model.LassoLars method),

453
get_params() (sklearn.linear_model.LassoLarsCV

method), 170, 458
get_params() (sklearn.linear_model.LassoLarsIC

method), 180, 460
get_params() (sklearn.linear_model.LinearRegression

method), 426
get_params() (sklearn.linear_model.LogisticRegression

method), 463, 508
get_params() (sklearn.linear_model.OrthogonalMatchingPursuit

method), 466
get_params() (sklearn.linear_model.Perceptron method),

470
get_params() (sklearn.linear_model.RandomizedLasso

method), 488
get_params() (sklearn.linear_model.RandomizedLogisticRegression

method), 491
get_params() (sklearn.linear_model.Ridge method), 429
get_params() (sklearn.linear_model.RidgeClassifier

method), 431
get_params() (sklearn.linear_model.RidgeClassifierCV

method), 165, 433
get_params() (sklearn.linear_model.RidgeCV method),

163, 435
get_params() (sklearn.linear_model.SGDClassifier

method), 474
get_params() (sklearn.linear_model.SGDRegressor

method), 479
get_params() (sklearn.linear_model.sparse.ElasticNet

method), 500
get_params() (sklearn.linear_model.sparse.Lasso

method), 498
get_params() (sklearn.linear_model.sparse.SGDClassifier

method), 502
get_params() (sklearn.linear_model.sparse.SGDRegressor

method), 504
get_params() (sklearn.manifold.Isomap method), 513
get_params() (sklearn.manifold.LocallyLinearEmbedding

method), 511
get_params() (sklearn.manifold.MDS method), 516
get_params() (sklearn.mixture.DPGMM method), 548
get_params() (sklearn.mixture.GMM method), 544
get_params() (sklearn.mixture.VBGMM method), 552
get_params() (sklearn.multiclass.OneVsOneClassifier

method), 555
get_params() (sklearn.multiclass.OneVsRestClassifier

method), 554

get_params() (sklearn.multiclass.OutputCodeClassifier
method), 557

get_params() (sklearn.naive_bayes.BernoulliNB
method), 565

get_params() (sklearn.naive_bayes.GaussianNB method),
560

get_params() (sklearn.naive_bayes.MultinomialNB
method), 563

get_params() (sklearn.neighbors.KNeighborsClassifier
method), 573

get_params() (sklearn.neighbors.KNeighborsRegressor
method), 580

get_params() (sklearn.neighbors.NearestCentroid
method), 590

get_params() (sklearn.neighbors.NearestNeighbors
method), 568

get_params() (sklearn.neighbors.RadiusNeighborsClassifier
method), 576

get_params() (sklearn.neighbors.RadiusNeighborsRegressor
method), 584

get_params() (sklearn.pls.CCA method), 599
get_params() (sklearn.pls.PLSCanonical method), 597
get_params() (sklearn.pls.PLSRegression method), 594
get_params() (sklearn.pls.PLSSVD method), 601
get_params() (sklearn.preprocessing.Binarizer method),

608
get_params() (sklearn.preprocessing.KernelCenterer

method), 613
get_params() (sklearn.preprocessing.LabelBinarizer

method), 611
get_params() (sklearn.preprocessing.Normalizer

method), 607
get_params() (sklearn.preprocessing.Scaler method), 605
get_params() (sklearn.qda.QDA method), 616
get_params() (sklearn.semi_supervised.LabelPropagation

method), 419
get_params() (sklearn.semi_supervised.LabelSpreading

method), 421
get_params() (sklearn.svm.LinearSVC method), 624
get_params() (sklearn.svm.NuSVC method), 628
get_params() (sklearn.svm.NuSVR method), 636
get_params() (sklearn.svm.OneClassSVM method), 639
get_params() (sklearn.svm.SVC method), 620
get_params() (sklearn.svm.SVR method), 632
get_params() (sklearn.tree.DecisionTreeClassifier

method), 646
get_params() (sklearn.tree.DecisionTreeRegressor

method), 650
get_params() (sklearn.tree.ExtraTreeClassifier method),

652
get_params() (sklearn.tree.ExtraTreeRegressor method),

655
get_stop_words() (sklearn.feature_extraction.text.CountVectorizer

method), 370

Index 1035

scikit-learn user guide, Release 0.12-git

get_stop_words() (sklearn.feature_extraction.text.TfidfVectorizer
method), 374

get_support() (sklearn.feature_selection.SelectFdr
method), 380

get_support() (sklearn.feature_selection.SelectFpr
method), 378

get_support() (sklearn.feature_selection.SelectFwe
method), 381

get_support() (sklearn.feature_selection.SelectKBest
method), 377

get_support() (sklearn.feature_selection.SelectPercentile
method), 376

get_support() (sklearn.linear_model.RandomizedLasso
method), 488

get_support() (sklearn.linear_model.RandomizedLogisticRegression
method), 491

GMM (class in sklearn.mixture), 541
GMMHMM (class in sklearn.hmm), 408
GradientBoostingClassifier (class in sklearn.ensemble),

197, 355
GradientBoostingRegressor (class in sklearn.ensemble),

199, 358
graph_lasso() (in module sklearn.covariance), 268
GraphLasso (class in sklearn.covariance), 251
GraphLassoCV (class in sklearn.covariance), 253
grid_to_graph() (in module

sklearn.feature_extraction.image), 364
GridSearchCV (class in sklearn.grid_search), 396

hinge_loss() (in module sklearn.metrics), 525
homogeneity_completeness_v_measure() (in module

sklearn.metrics), 530
homogeneity_score() (in module sklearn.metrics), 531

img_to_graph() (in module
sklearn.feature_extraction.image), 364

inverse_transform() (sklearn.decomposition.KernelPCA
method), 316

inverse_transform() (sklearn.decomposition.PCA
method), 305

inverse_transform() (sklearn.decomposition.ProbabilisticPCA
method), 308

inverse_transform() (sklearn.decomposition.RandomizedPCA
method), 314

inverse_transform() (sklearn.feature_extraction.DictVectorizer
method), 363

inverse_transform() (sklearn.feature_extraction.text.CountVectorizer
method), 370

inverse_transform() (sklearn.feature_extraction.text.TfidfVectorizer
method), 374

inverse_transform() (sklearn.feature_selection.SelectFdr
method), 380

inverse_transform() (sklearn.feature_selection.SelectFpr
method), 379

inverse_transform() (sklearn.feature_selection.SelectFwe
method), 381

inverse_transform() (sklearn.feature_selection.SelectKBest
method), 377

inverse_transform() (sklearn.feature_selection.SelectPercentile
method), 376

inverse_transform() (sklearn.linear_model.RandomizedLasso
method), 488

inverse_transform() (sklearn.linear_model.RandomizedLogisticRegression
method), 491

inverse_transform() (sklearn.preprocessing.LabelBinarizer
method), 611

inverse_transform() (sklearn.preprocessing.Scaler
method), 605

Isomap (class in sklearn.manifold), 512
IterGrid (class in sklearn.grid_search), 399

k_means() (in module sklearn.cluster), 240
kernel_metrics() (in module sklearn.metrics.pairwise),

540
KernelCenterer (class in sklearn.preprocessing), 612
KernelPCA (class in sklearn.decomposition), 314
KFold (class in sklearn.cross_validation), 270
KMeans (class in sklearn.cluster), 230
kneighbors() (sklearn.neighbors.KNeighborsClassifier

method), 573
kneighbors() (sklearn.neighbors.KNeighborsRegressor

method), 580
kneighbors() (sklearn.neighbors.NearestNeighbors

method), 568
kneighbors_graph() (in module sklearn.neighbors), 591
kneighbors_graph() (sklearn.neighbors.KNeighborsClassifier

method), 573
kneighbors_graph() (sklearn.neighbors.KNeighborsRegressor

method), 581
kneighbors_graph() (sklearn.neighbors.NearestNeighbors

method), 569
KNeighborsClassifier (class in sklearn.neighbors), 571
KNeighborsRegressor (class in sklearn.neighbors), 578

l1_min_c() (in module sklearn.svm), 640
LabelBinarizer (class in sklearn.preprocessing), 609
LabelPropagation (class in sklearn.semi_supervised), 417
LabelSpreading (class in sklearn.semi_supervised), 419
Lars (class in sklearn.linear_model), 449
lars_path() (in module sklearn.linear_model), 493
LarsCV (class in sklearn.linear_model), 166, 453
Lasso (class in sklearn.linear_model), 436
Lasso (class in sklearn.linear_model.sparse), 497
lasso_path() (in module sklearn.linear_model), 492
lasso_stability_path() (in module sklearn.linear_model),

496
LassoCV (class in sklearn.linear_model), 171, 439
LassoLars (class in sklearn.linear_model), 451

1036 Index

scikit-learn user guide, Release 0.12-git

LassoLarsCV (class in sklearn.linear_model), 168, 456
LassoLarsIC (class in sklearn.linear_model), 178, 458
LDA (class in sklearn.lda), 422
LeaveOneLabelOut (class in sklearn.cross_validation),

271
LeaveOneOut (class in sklearn.cross_validation), 272
LeavePLabelOut (class in sklearn.cross_validation), 273
LeavePOut (class in sklearn.cross_validation), 274
ledoit_wolf() (in module sklearn.covariance), 266
LedoitWolf (class in sklearn.covariance), 255
linear() (in module sklearn.gaussian_process.correlation_models),

395
linear() (in module sklearn.gaussian_process.regression_models),

395
linear_kernel() (in module sklearn.metrics.pairwise), 537
LinearRegression (class in sklearn.linear_model), 425
LinearSVC (class in sklearn.svm), 622
load_20newsgroups() (in module sklearn.datasets), 282
load_boston() (in module sklearn.datasets), 283
load_diabetes() (in module sklearn.datasets), 283
load_digits() (in module sklearn.datasets), 284
load_files() (in module sklearn.datasets), 284
load_iris() (in module sklearn.datasets), 285
load_lfw_pairs() (in module sklearn.datasets), 286
load_lfw_people() (in module sklearn.datasets), 287
load_linnerud() (in module sklearn.datasets), 288
load_sample_image() (in module sklearn.datasets), 289
load_sample_images() (in module sklearn.datasets), 289
load_svmlight_file() (in module sklearn.datasets), 290
locally_linear_embedding() (in module

sklearn.manifold), 516
LocallyLinearEmbedding (class in sklearn.manifold), 509
LogisticRegression (class in sklearn.linear_model), 461,

506
lower_bound() (sklearn.mixture.DPGMM method), 548
lower_bound() (sklearn.mixture.VBGMM method), 552

mahalanobis() (sklearn.covariance.EllipticEnvelope
method), 250

mahalanobis() (sklearn.covariance.EmpiricalCovariance
method), 247

mahalanobis() (sklearn.covariance.GraphLasso method),
252

mahalanobis() (sklearn.covariance.GraphLassoCV
method), 255

mahalanobis() (sklearn.covariance.LedoitWolf method),
257

mahalanobis() (sklearn.covariance.MinCovDet method),
260

mahalanobis() (sklearn.covariance.OAS method), 263
mahalanobis() (sklearn.covariance.ShrunkCovariance

method), 265
make_blobs() (in module sklearn.datasets), 291
make_circles() (in module sklearn.datasets), 294

make_classification() (in module sklearn.datasets), 292
make_friedman1() (in module sklearn.datasets), 294
make_friedman2() (in module sklearn.datasets), 295
make_friedman3() (in module sklearn.datasets), 296
make_hastie_10_2() (in module sklearn.datasets), 296
make_low_rank_matrix() (in module sklearn.datasets),

297
make_moons() (in module sklearn.datasets), 298
make_multilabel_classification() (in module

sklearn.datasets), 298
make_regression() (in module sklearn.datasets), 299
make_s_curve() (in module sklearn.datasets), 300
make_sparse_coded_signal() (in module

sklearn.datasets), 300
make_sparse_spd_matrix() (in module sklearn.datasets),

301
make_sparse_uncorrelated() (in module sklearn.datasets),

302
make_spd_matrix() (in module sklearn.datasets), 302
make_swiss_roll() (in module sklearn.datasets), 303
manhattan_distances() (in module

sklearn.metrics.pairwise), 537
MDS (class in sklearn.manifold), 514
mean_shift() (in module sklearn.cluster), 243
mean_squared_error() (in module sklearn.metrics), 526
means_ (sklearn.hmm.GaussianHMM attribute), 403
MeanShift (class in sklearn.cluster), 235
MinCovDet (class in sklearn.covariance), 258
MiniBatchDictionaryLearning (class in

sklearn.decomposition), 331
MiniBatchKMeans (class in sklearn.cluster), 232
MiniBatchSparsePCA (class in sklearn.decomposition),

323
multilabel_ (sklearn.multiclass.OneVsRestClassifier at-

tribute), 554
MultinomialHMM (class in sklearn.hmm), 404
MultinomialNB (class in sklearn.naive_bayes), 561
mutual_info_score() (in module sklearn.metrics), 532

NearestCentroid (class in sklearn.neighbors), 589
NearestNeighbors (class in sklearn.neighbors), 566
NMF (class in sklearn.decomposition), 318
normalize() (in module sklearn.preprocessing), 614
normalized_mutual_info_score() (in module

sklearn.metrics), 532
Normalizer (class in sklearn.preprocessing), 606
NuSVC (class in sklearn.svm), 625
NuSVR (class in sklearn.svm), 633

OAS (class in sklearn.covariance), 261
oas() (in module sklearn.covariance), 267
OneClassSVM (class in sklearn.svm), 637
OneVsOneClassifier (class in sklearn.multiclass), 555
OneVsRestClassifier (class in sklearn.multiclass), 553

Index 1037

scikit-learn user guide, Release 0.12-git

orthogonal_mp() (in module sklearn.linear_model), 494
orthogonal_mp_gram() (in module

sklearn.linear_model), 495
OrthogonalMatchingPursuit (class in

sklearn.linear_model), 465
OutputCodeClassifier (class in sklearn.multiclass), 556

pairwise_distances() (in module
sklearn.metrics.pairwise), 539

pairwise_kernels() (in module sklearn.metrics.pairwise),
540

partial_fit() (sklearn.cluster.MiniBatchKMeans method),
234

partial_fit() (sklearn.decomposition.MiniBatchDictionaryLearning
method), 333

partial_fit() (sklearn.linear_model.Perceptron method),
470

partial_fit() (sklearn.linear_model.SGDClassifier
method), 474

partial_fit() (sklearn.linear_model.SGDRegressor
method), 479

partial_fit() (sklearn.linear_model.sparse.SGDClassifier
method), 502

partial_fit() (sklearn.linear_model.sparse.SGDRegressor
method), 504

PatchExtractor (class in
sklearn.feature_extraction.image), 366

path() (sklearn.linear_model.ElasticNetCV static
method), 176, 447

path() (sklearn.linear_model.LassoCV static method),
173, 440

PCA (class in sklearn.decomposition), 304
Perceptron (class in sklearn.linear_model), 467
permutation_test_score() (in module

sklearn.cross_validation), 280
Pipeline (class in sklearn.pipeline), 602
PLSCanonical (class in sklearn.pls), 595
PLSRegression (class in sklearn.pls), 593
PLSSVD (class in sklearn.pls), 600
polynomial_kernel() (in module

sklearn.metrics.pairwise), 538
precision_recall_curve() (in module sklearn.metrics), 524
precision_recall_fscore_support() (in module

sklearn.metrics), 523
precision_score() (in module sklearn.metrics), 519
predict() (in module sklearn.svm.libsvm), 642
predict() (sklearn.cluster.KMeans method), 232
predict() (sklearn.cluster.MiniBatchKMeans method),

234
predict() (sklearn.covariance.EllipticEnvelope method),

250
predict() (sklearn.ensemble.ExtraTreesClassifier

method), 192, 350

predict() (sklearn.ensemble.ExtraTreesRegressor
method), 196, 354

predict() (sklearn.ensemble.GradientBoostingClassifier
method), 199, 357

predict() (sklearn.ensemble.GradientBoostingRegressor
method), 202, 360

predict() (sklearn.ensemble.RandomForestClassifier
method), 184, 342

predict() (sklearn.ensemble.RandomForestRegressor
method), 188, 346

predict() (sklearn.feature_selection.RFE method), 383
predict() (sklearn.feature_selection.RFECV method), 386
predict() (sklearn.gaussian_process.GaussianProcess

method), 391
predict() (sklearn.hmm.GaussianHMM method), 403
predict() (sklearn.hmm.GMMHMM method), 411
predict() (sklearn.hmm.MultinomialHMM method), 407
predict() (sklearn.lda.LDA method), 424
predict() (sklearn.linear_model.ARDRegression method),

485
predict() (sklearn.linear_model.BayesianRidge method),

482
predict() (sklearn.linear_model.ElasticNet method), 444
predict() (sklearn.linear_model.ElasticNetCV method),

178, 448
predict() (sklearn.linear_model.Lars method), 450
predict() (sklearn.linear_model.LarsCV method), 168,

455
predict() (sklearn.linear_model.Lasso method), 438
predict() (sklearn.linear_model.LassoCV method), 174,

442
predict() (sklearn.linear_model.LassoLars method), 453
predict() (sklearn.linear_model.LassoLarsCV method),

170, 458
predict() (sklearn.linear_model.LassoLarsIC method),

180, 460
predict() (sklearn.linear_model.LinearRegression

method), 426
predict() (sklearn.linear_model.LogisticRegression

method), 463, 508
predict() (sklearn.linear_model.OrthogonalMatchingPursuit

method), 466
predict() (sklearn.linear_model.Perceptron method), 470
predict() (sklearn.linear_model.Ridge method), 429
predict() (sklearn.linear_model.RidgeClassifier method),

431
predict() (sklearn.linear_model.RidgeClassifierCV

method), 165, 433
predict() (sklearn.linear_model.RidgeCV method), 163,

435
predict() (sklearn.linear_model.SGDClassifier method),

475
predict() (sklearn.linear_model.SGDRegressor method),

479

1038 Index

scikit-learn user guide, Release 0.12-git

predict() (sklearn.linear_model.sparse.ElasticNet
method), 500

predict() (sklearn.linear_model.sparse.Lasso method),
498

predict() (sklearn.linear_model.sparse.SGDClassifier
method), 502

predict() (sklearn.linear_model.sparse.SGDRegressor
method), 505

predict() (sklearn.mixture.DPGMM method), 548
predict() (sklearn.mixture.GMM method), 544
predict() (sklearn.mixture.VBGMM method), 552
predict() (sklearn.multiclass.OneVsOneClassifier

method), 556
predict() (sklearn.multiclass.OneVsRestClassifier

method), 554
predict() (sklearn.multiclass.OutputCodeClassifier

method), 557
predict() (sklearn.naive_bayes.BernoulliNB method), 565
predict() (sklearn.naive_bayes.GaussianNB method), 560
predict() (sklearn.naive_bayes.MultinomialNB method),

563
predict() (sklearn.neighbors.KNeighborsClassifier

method), 574
predict() (sklearn.neighbors.KNeighborsRegressor

method), 581
predict() (sklearn.neighbors.NearestCentroid method),

590
predict() (sklearn.neighbors.RadiusNeighborsClassifier

method), 576
predict() (sklearn.neighbors.RadiusNeighborsRegressor

method), 584
predict() (sklearn.pipeline.Pipeline method), 603
predict() (sklearn.pls.CCA method), 600
predict() (sklearn.pls.PLSCanonical method), 597
predict() (sklearn.pls.PLSRegression method), 594
predict() (sklearn.qda.QDA method), 617
predict() (sklearn.semi_supervised.LabelPropagation

method), 419
predict() (sklearn.semi_supervised.LabelSpreading

method), 421
predict() (sklearn.svm.LinearSVC method), 625
predict() (sklearn.svm.NuSVC method), 628
predict() (sklearn.svm.NuSVR method), 636
predict() (sklearn.svm.OneClassSVM method), 639
predict() (sklearn.svm.SVC method), 620
predict() (sklearn.svm.SVR method), 632
predict() (sklearn.tree.DecisionTreeClassifier method),

646
predict() (sklearn.tree.DecisionTreeRegressor method),

650
predict() (sklearn.tree.ExtraTreeClassifier method), 652
predict() (sklearn.tree.ExtraTreeRegressor method), 655
predict_ecoc() (in module sklearn.multiclass), 559

predict_log_proba() (sklearn.ensemble.ExtraTreesClassifier
method), 192, 350

predict_log_proba() (sklearn.ensemble.RandomForestClassifier
method), 184, 343

predict_log_proba() (sklearn.lda.LDA method), 424
predict_log_proba() (sklearn.linear_model.LogisticRegression

method), 463, 508
predict_log_proba() (sklearn.naive_bayes.BernoulliNB

method), 565
predict_log_proba() (sklearn.naive_bayes.GaussianNB

method), 560
predict_log_proba() (sklearn.naive_bayes.MultinomialNB

method), 563
predict_log_proba() (sklearn.qda.QDA method), 617
predict_log_proba() (sklearn.svm.NuSVC method), 628
predict_log_proba() (sklearn.svm.NuSVR method), 636
predict_log_proba() (sklearn.svm.OneClassSVM

method), 639
predict_log_proba() (sklearn.svm.SVC method), 621
predict_log_proba() (sklearn.svm.SVR method), 632
predict_log_proba() (sklearn.tree.DecisionTreeClassifier

method), 646
predict_log_proba() (sklearn.tree.ExtraTreeClassifier

method), 652
predict_ovo() (in module sklearn.multiclass), 558
predict_ovr() (in module sklearn.multiclass), 558
predict_proba() (in module sklearn.svm.libsvm), 643
predict_proba() (sklearn.ensemble.ExtraTreesClassifier

method), 192, 350
predict_proba() (sklearn.ensemble.GradientBoostingClassifier

method), 199, 357
predict_proba() (sklearn.ensemble.RandomForestClassifier

method), 184, 343
predict_proba() (sklearn.hmm.GaussianHMM method),

403
predict_proba() (sklearn.hmm.GMMHMM method), 411
predict_proba() (sklearn.hmm.MultinomialHMM

method), 407
predict_proba() (sklearn.lda.LDA method), 424
predict_proba() (sklearn.linear_model.LogisticRegression

method), 464, 508
predict_proba() (sklearn.linear_model.Perceptron

method), 470
predict_proba() (sklearn.linear_model.SGDClassifier

method), 475
predict_proba() (sklearn.linear_model.sparse.SGDClassifier

method), 502
predict_proba() (sklearn.mixture.DPGMM method), 549
predict_proba() (sklearn.mixture.GMM method), 544
predict_proba() (sklearn.mixture.VBGMM method), 552
predict_proba() (sklearn.naive_bayes.BernoulliNB

method), 565
predict_proba() (sklearn.naive_bayes.GaussianNB

method), 561

Index 1039

scikit-learn user guide, Release 0.12-git

predict_proba() (sklearn.naive_bayes.MultinomialNB
method), 563

predict_proba() (sklearn.pipeline.Pipeline method), 603
predict_proba() (sklearn.qda.QDA method), 617
predict_proba() (sklearn.semi_supervised.LabelPropagation

method), 419
predict_proba() (sklearn.semi_supervised.LabelSpreading

method), 421
predict_proba() (sklearn.svm.NuSVC method), 628
predict_proba() (sklearn.svm.NuSVR method), 636
predict_proba() (sklearn.svm.OneClassSVM method),

639
predict_proba() (sklearn.svm.SVC method), 621
predict_proba() (sklearn.svm.SVR method), 632
predict_proba() (sklearn.tree.DecisionTreeClassifier

method), 647
predict_proba() (sklearn.tree.ExtraTreeClassifier

method), 652
ProbabilisticPCA (class in sklearn.decomposition), 306
ProjectedGradientNMF (class in sklearn.decomposition),

309
pure_nugget() (in module

sklearn.gaussian_process.correlation_models),
394

QDA (class in sklearn.qda), 615
quadratic() (in module

sklearn.gaussian_process.regression_models),
396

query() (sklearn.neighbors.BallTree method), 587
query_radius() (sklearn.neighbors.BallTree method), 588

r2_score() (in module sklearn.metrics), 526
radius_neighbors() (sklearn.neighbors.NearestNeighbors

method), 569
radius_neighbors() (sklearn.neighbors.RadiusNeighborsClassifier

method), 577
radius_neighbors() (sklearn.neighbors.RadiusNeighborsRegressor

method), 584
radius_neighbors_graph() (in module sklearn.neighbors),

592
radius_neighbors_graph()

(sklearn.neighbors.NearestNeighbors method),
570

radius_neighbors_graph()
(sklearn.neighbors.RadiusNeighborsClassifier
method), 577

radius_neighbors_graph()
(sklearn.neighbors.RadiusNeighborsRegressor
method), 585

RadiusNeighborsClassifier (class in sklearn.neighbors),
575

RadiusNeighborsRegressor (class in sklearn.neighbors),
582

RandomForestClassifier (class in sklearn.ensemble), 181,
340

RandomForestRegressor (class in sklearn.ensemble), 185,
344

RandomizedLasso (class in sklearn.linear_model), 486
RandomizedLogisticRegression (class in

sklearn.linear_model), 489
RandomizedPCA (class in sklearn.decomposition), 311
rbf_kernel() (in module sklearn.metrics.pairwise), 538
RBFSampler (class in sklearn.kernel_approximation),

412
recall_score() (in module sklearn.metrics), 520
reconstruct_from_patches_2d() (in module

sklearn.feature_extraction.image), 366
reconstruction_error() (sklearn.manifold.Isomap

method), 513
reduced_likelihood_function()

(sklearn.gaussian_process.GaussianProcess
method), 391

reduced_likelihood_function_value
(sklearn.gaussian_process.GaussianProcess
attribute), 392

resample() (in module sklearn.utils), 657
restrict() (sklearn.feature_extraction.DictVectorizer

method), 363
reweight_covariance() (sklearn.covariance.EllipticEnvelope

method), 250
reweight_covariance() (sklearn.covariance.MinCovDet

method), 260
RFE (class in sklearn.feature_selection), 382
RFECV (class in sklearn.feature_selection), 384
Ridge (class in sklearn.linear_model), 427
RidgeClassifier (class in sklearn.linear_model), 429
RidgeClassifierCV (class in sklearn.linear_model), 164,

431
RidgeCV (class in sklearn.linear_model), 161, 433
roc_curve() (in module sklearn.metrics), 518
rvs() (sklearn.hmm.GaussianHMM method), 403
rvs() (sklearn.hmm.GMMHMM method), 411
rvs() (sklearn.hmm.MultinomialHMM method), 407
rvs() (sklearn.mixture.DPGMM method), 549
rvs() (sklearn.mixture.GMM method), 545
rvs() (sklearn.mixture.VBGMM method), 552

sample() (sklearn.hmm.GaussianHMM method), 403
sample() (sklearn.hmm.GMMHMM method), 411
sample() (sklearn.hmm.MultinomialHMM method), 407
sample() (sklearn.mixture.DPGMM method), 549
sample() (sklearn.mixture.GMM method), 545
sample() (sklearn.mixture.VBGMM method), 552
scale() (in module sklearn.preprocessing), 613
Scaler (class in sklearn.preprocessing), 604
score() (sklearn.cluster.KMeans method), 232
score() (sklearn.cluster.MiniBatchKMeans method), 235

1040 Index

scikit-learn user guide, Release 0.12-git

score() (sklearn.covariance.EllipticEnvelope method),
251

score() (sklearn.covariance.EmpiricalCovariance
method), 247

score() (sklearn.covariance.GraphLasso method), 253
score() (sklearn.covariance.GraphLassoCV method), 255
score() (sklearn.covariance.LedoitWolf method), 257
score() (sklearn.covariance.MinCovDet method), 261
score() (sklearn.covariance.OAS method), 263
score() (sklearn.covariance.ShrunkCovariance method),

265
score() (sklearn.decomposition.ProbabilisticPCA

method), 308
score() (sklearn.ensemble.ExtraTreesClassifier method),

192, 351
score() (sklearn.ensemble.ExtraTreesRegressor method),

196, 354
score() (sklearn.ensemble.GradientBoostingClassifier

method), 199, 357
score() (sklearn.ensemble.GradientBoostingRegressor

method), 202, 360
score() (sklearn.ensemble.RandomForestClassifier

method), 185, 343
score() (sklearn.ensemble.RandomForestRegressor

method), 188, 347
score() (sklearn.feature_selection.RFE method), 383
score() (sklearn.feature_selection.RFECV method), 386
score() (sklearn.gaussian_process.GaussianProcess

method), 392
score() (sklearn.hmm.GaussianHMM method), 404
score() (sklearn.hmm.GMMHMM method), 411
score() (sklearn.hmm.MultinomialHMM method), 408
score() (sklearn.lda.LDA method), 424
score() (sklearn.linear_model.ARDRegression method),

485
score() (sklearn.linear_model.BayesianRidge method),

482
score() (sklearn.linear_model.ElasticNet method), 444
score() (sklearn.linear_model.ElasticNetCV method),

178, 448
score() (sklearn.linear_model.Lars method), 451
score() (sklearn.linear_model.LarsCV method), 168, 455
score() (sklearn.linear_model.Lasso method), 438
score() (sklearn.linear_model.LassoCV method), 174,

442
score() (sklearn.linear_model.LassoLars method), 453
score() (sklearn.linear_model.LassoLarsCV method),

170, 458
score() (sklearn.linear_model.LassoLarsIC method), 180,

460
score() (sklearn.linear_model.LinearRegression method),

426
score() (sklearn.linear_model.LogisticRegression

method), 464, 508

score() (sklearn.linear_model.OrthogonalMatchingPursuit
method), 467

score() (sklearn.linear_model.Perceptron method), 470
score() (sklearn.linear_model.Ridge method), 429
score() (sklearn.linear_model.RidgeClassifier method),

431
score() (sklearn.linear_model.RidgeClassifierCV

method), 165, 433
score() (sklearn.linear_model.RidgeCV method), 163,

435
score() (sklearn.linear_model.SGDClassifier method),

475
score() (sklearn.linear_model.SGDRegressor method),

479
score() (sklearn.linear_model.sparse.ElasticNet method),

500
score() (sklearn.linear_model.sparse.Lasso method), 498
score() (sklearn.linear_model.sparse.SGDClassifier

method), 502
score() (sklearn.linear_model.sparse.SGDRegressor

method), 505
score() (sklearn.mixture.DPGMM method), 549
score() (sklearn.mixture.GMM method), 545
score() (sklearn.mixture.VBGMM method), 553
score() (sklearn.multiclass.OneVsOneClassifier method),

556
score() (sklearn.multiclass.OutputCodeClassifier

method), 557
score() (sklearn.naive_bayes.BernoulliNB method), 566
score() (sklearn.naive_bayes.GaussianNB method), 561
score() (sklearn.naive_bayes.MultinomialNB method),

563
score() (sklearn.neighbors.KNeighborsClassifier

method), 574
score() (sklearn.neighbors.KNeighborsRegressor

method), 582
score() (sklearn.neighbors.NearestCentroid method), 591
score() (sklearn.neighbors.RadiusNeighborsClassifier

method), 578
score() (sklearn.neighbors.RadiusNeighborsRegressor

method), 585
score() (sklearn.pipeline.Pipeline method), 603
score() (sklearn.qda.QDA method), 617
score() (sklearn.semi_supervised.LabelPropagation

method), 419
score() (sklearn.semi_supervised.LabelSpreading

method), 421
score() (sklearn.svm.LinearSVC method), 625
score() (sklearn.svm.NuSVC method), 629
score() (sklearn.svm.NuSVR method), 637
score() (sklearn.svm.SVC method), 621
score() (sklearn.svm.SVR method), 633
score() (sklearn.tree.DecisionTreeClassifier method), 647

Index 1041

scikit-learn user guide, Release 0.12-git

score() (sklearn.tree.DecisionTreeRegressor method),
650

score() (sklearn.tree.ExtraTreeClassifier method), 653
score() (sklearn.tree.ExtraTreeRegressor method), 655
SelectFdr (class in sklearn.feature_selection), 379
SelectFpr (class in sklearn.feature_selection), 378
SelectFwe (class in sklearn.feature_selection), 380
SelectKBest (class in sklearn.feature_selection), 376
SelectPercentile (class in sklearn.feature_selection), 375
set_params() (sklearn.cluster.AffinityPropagation

method), 228
set_params() (sklearn.cluster.DBSCAN method), 230
set_params() (sklearn.cluster.KMeans method), 232
set_params() (sklearn.cluster.MeanShift method), 236
set_params() (sklearn.cluster.MiniBatchKMeans

method), 235
set_params() (sklearn.cluster.SpectralClustering method),

238
set_params() (sklearn.cluster.Ward method), 239
set_params() (sklearn.covariance.EllipticEnvelope

method), 251
set_params() (sklearn.covariance.EmpiricalCovariance

method), 247
set_params() (sklearn.covariance.GraphLasso method),

253
set_params() (sklearn.covariance.GraphLassoCV

method), 255
set_params() (sklearn.covariance.LedoitWolf method),

258
set_params() (sklearn.covariance.MinCovDet method),

261
set_params() (sklearn.covariance.OAS method), 263
set_params() (sklearn.covariance.ShrunkCovariance

method), 266
set_params() (sklearn.decomposition.DictionaryLearning

method), 330
set_params() (sklearn.decomposition.FastICA method),

318
set_params() (sklearn.decomposition.KernelPCA

method), 316
set_params() (sklearn.decomposition.MiniBatchDictionaryLearning

method), 334
set_params() (sklearn.decomposition.MiniBatchSparsePCA

method), 325
set_params() (sklearn.decomposition.NMF method), 320
set_params() (sklearn.decomposition.PCA method), 306
set_params() (sklearn.decomposition.ProbabilisticPCA

method), 308
set_params() (sklearn.decomposition.ProjectedGradientNMF

method), 311
set_params() (sklearn.decomposition.RandomizedPCA

method), 314
set_params() (sklearn.decomposition.SparseCoder

method), 327

set_params() (sklearn.decomposition.SparsePCA
method), 323

set_params() (sklearn.ensemble.ExtraTreesClassifier
method), 192, 351

set_params() (sklearn.ensemble.ExtraTreesRegressor
method), 196, 354

set_params() (sklearn.ensemble.GradientBoostingClassifier
method), 199, 357

set_params() (sklearn.ensemble.GradientBoostingRegressor
method), 202, 360

set_params() (sklearn.ensemble.RandomForestClassifier
method), 185, 343

set_params() (sklearn.ensemble.RandomForestRegressor
method), 188, 347

set_params() (sklearn.feature_extraction.DictVectorizer
method), 363

set_params() (sklearn.feature_extraction.image.PatchExtractor
method), 367

set_params() (sklearn.feature_extraction.text.CountVectorizer
method), 371

set_params() (sklearn.feature_extraction.text.TfidfTransformer
method), 372

set_params() (sklearn.feature_extraction.text.TfidfVectorizer
method), 374

set_params() (sklearn.feature_selection.RFE method),
383

set_params() (sklearn.feature_selection.RFECV method),
386

set_params() (sklearn.feature_selection.SelectFdr
method), 380

set_params() (sklearn.feature_selection.SelectFpr
method), 379

set_params() (sklearn.feature_selection.SelectFwe
method), 381

set_params() (sklearn.feature_selection.SelectKBest
method), 377

set_params() (sklearn.feature_selection.SelectPercentile
method), 376

set_params() (sklearn.gaussian_process.GaussianProcess
method), 392

set_params() (sklearn.grid_search.GridSearchCV
method), 399

set_params() (sklearn.hmm.GaussianHMM method), 404
set_params() (sklearn.hmm.GMMHMM method), 412
set_params() (sklearn.hmm.MultinomialHMM method),

408
set_params() (sklearn.kernel_approximation.AdditiveChi2Sampler

method), 415
set_params() (sklearn.kernel_approximation.RBFSampler

method), 413
set_params() (sklearn.kernel_approximation.SkewedChi2Sampler

method), 417
set_params() (sklearn.lda.LDA method), 424

1042 Index

scikit-learn user guide, Release 0.12-git

set_params() (sklearn.linear_model.ARDRegression
method), 485

set_params() (sklearn.linear_model.BayesianRidge
method), 482

set_params() (sklearn.linear_model.ElasticNet method),
445

set_params() (sklearn.linear_model.ElasticNetCV
method), 178, 448

set_params() (sklearn.linear_model.Lars method), 451
set_params() (sklearn.linear_model.LarsCV method),

168, 455
set_params() (sklearn.linear_model.Lasso method), 438
set_params() (sklearn.linear_model.LassoCV method),

174, 442
set_params() (sklearn.linear_model.LassoLars method),

453
set_params() (sklearn.linear_model.LassoLarsCV

method), 170, 458
set_params() (sklearn.linear_model.LassoLarsIC

method), 181, 461
set_params() (sklearn.linear_model.LinearRegression

method), 427
set_params() (sklearn.linear_model.LogisticRegression

method), 464, 509
set_params() (sklearn.linear_model.OrthogonalMatchingPursuit

method), 467
set_params() (sklearn.linear_model.Perceptron method),

471
set_params() (sklearn.linear_model.RandomizedLasso

method), 489
set_params() (sklearn.linear_model.RandomizedLogisticRegression

method), 492
set_params() (sklearn.linear_model.Ridge method), 429
set_params() (sklearn.linear_model.RidgeClassifier

method), 431
set_params() (sklearn.linear_model.RidgeClassifierCV

method), 166, 433
set_params() (sklearn.linear_model.RidgeCV method),

164, 435
set_params() (sklearn.linear_model.SGDClassifier

method), 475
set_params() (sklearn.linear_model.SGDRegressor

method), 479
set_params() (sklearn.linear_model.sparse.ElasticNet

method), 500
set_params() (sklearn.linear_model.sparse.Lasso

method), 499
set_params() (sklearn.linear_model.sparse.SGDClassifier

method), 503
set_params() (sklearn.linear_model.sparse.SGDRegressor

method), 505
set_params() (sklearn.manifold.Isomap method), 514
set_params() (sklearn.manifold.LocallyLinearEmbedding

method), 511

set_params() (sklearn.manifold.MDS method), 516
set_params() (sklearn.mixture.DPGMM method), 549
set_params() (sklearn.mixture.GMM method), 545
set_params() (sklearn.mixture.VBGMM method), 553
set_params() (sklearn.multiclass.OneVsOneClassifier

method), 556
set_params() (sklearn.multiclass.OneVsRestClassifier

method), 554
set_params() (sklearn.multiclass.OutputCodeClassifier

method), 558
set_params() (sklearn.naive_bayes.BernoulliNB method),

566
set_params() (sklearn.naive_bayes.GaussianNB method),

561
set_params() (sklearn.naive_bayes.MultinomialNB

method), 563
set_params() (sklearn.neighbors.KNeighborsClassifier

method), 574
set_params() (sklearn.neighbors.KNeighborsRegressor

method), 582
set_params() (sklearn.neighbors.NearestCentroid

method), 591
set_params() (sklearn.neighbors.NearestNeighbors

method), 571
set_params() (sklearn.neighbors.RadiusNeighborsClassifier

method), 578
set_params() (sklearn.neighbors.RadiusNeighborsRegressor

method), 585
set_params() (sklearn.pipeline.Pipeline method), 603
set_params() (sklearn.pls.CCA method), 600
set_params() (sklearn.pls.PLSCanonical method), 597
set_params() (sklearn.pls.PLSRegression method), 595
set_params() (sklearn.pls.PLSSVD method), 601
set_params() (sklearn.preprocessing.Binarizer method),

608
set_params() (sklearn.preprocessing.KernelCenterer

method), 613
set_params() (sklearn.preprocessing.LabelBinarizer

method), 612
set_params() (sklearn.preprocessing.Normalizer method),

607
set_params() (sklearn.preprocessing.Scaler method), 605
set_params() (sklearn.qda.QDA method), 617
set_params() (sklearn.semi_supervised.LabelPropagation

method), 419
set_params() (sklearn.semi_supervised.LabelSpreading

method), 421
set_params() (sklearn.svm.LinearSVC method), 625
set_params() (sklearn.svm.NuSVC method), 629
set_params() (sklearn.svm.NuSVR method), 637
set_params() (sklearn.svm.OneClassSVM method), 640
set_params() (sklearn.svm.SVC method), 621
set_params() (sklearn.svm.SVR method), 633

Index 1043

scikit-learn user guide, Release 0.12-git

set_params() (sklearn.tree.DecisionTreeClassifier
method), 647

set_params() (sklearn.tree.DecisionTreeRegressor
method), 650

set_params() (sklearn.tree.ExtraTreeClassifier method),
653

set_params() (sklearn.tree.ExtraTreeRegressor method),
655

SGDClassifier (class in sklearn.linear_model), 471
SGDClassifier (class in sklearn.linear_model.sparse), 500
SGDRegressor (class in sklearn.linear_model), 476
SGDRegressor (class in sklearn.linear_model.sparse),

503
shrunk_covariance() (in module sklearn.covariance), 267
ShrunkCovariance (class in sklearn.covariance), 264
shuffle() (in module sklearn.utils), 658
ShuffleSplit (class in sklearn.cross_validation), 276
sigma (sklearn.naive_bayes.GaussianNB attribute), 561
silhouette_score() (in module sklearn.metrics), 533
SkewedChi2Sampler (class in

sklearn.kernel_approximation), 415
sklearn.cluster (module), 227
sklearn.covariance (module), 245
sklearn.cross_validation (module), 269
sklearn.datasets (module), 281
sklearn.decomposition (module), 303
sklearn.ensemble (module), 339
sklearn.feature_extraction (module), 361
sklearn.feature_extraction.image (module), 364
sklearn.feature_extraction.text (module), 367
sklearn.feature_selection (module), 375
sklearn.gaussian_process (module), 388
sklearn.grid_search (module), 396
sklearn.hmm (module), 399
sklearn.kernel_approximation (module), 412
sklearn.lda (module), 422
sklearn.linear_model (module), 424
sklearn.linear_model.sparse (module), 497
sklearn.manifold (module), 509
sklearn.metrics (module), 517
sklearn.metrics.cluster (module), 526
sklearn.metrics.pairwise (module), 535
sklearn.mixture (module), 541
sklearn.multiclass (module), 553
sklearn.naive_bayes (module), 559
sklearn.neighbors (module), 566
sklearn.pipeline (module), 601
sklearn.pls (module), 592
sklearn.preprocessing (module), 603
sklearn.qda (module), 615
sklearn.semi_supervised (module), 417
sklearn.svm (module), 617
sklearn.tree (module), 644
sklearn.utils (module), 656

sparse_encode() (in module sklearn.decomposition), 338
SparseCoder (class in sklearn.decomposition), 326
SparsePCA (class in sklearn.decomposition), 321
spectral_clustering() (in module sklearn.cluster), 244
SpectralClustering (class in sklearn.cluster), 237
squared_exponential() (in module

sklearn.gaussian_process.correlation_models),
393

staged_decision_function()
(sklearn.ensemble.GradientBoostingClassifier
method), 199, 357

staged_decision_function()
(sklearn.ensemble.GradientBoostingRegressor
method), 202, 360

staged_predict() (sklearn.ensemble.GradientBoostingRegressor
method), 202, 361

startprob_ (sklearn.hmm.GaussianHMM attribute), 404
startprob_ (sklearn.hmm.GMMHMM attribute), 412
startprob_ (sklearn.hmm.MultinomialHMM attribute),

408
StratifiedKFold (class in sklearn.cross_validation), 275
StratifiedShuffleSplit (class in sklearn.cross_validation),

277
SVC (class in sklearn.svm), 618
SVR (class in sklearn.svm), 629

TfidfTransformer (class in
sklearn.feature_extraction.text), 371

TfidfVectorizer (class in sklearn.feature_extraction.text),
373

theta (sklearn.gaussian_process.GaussianProcess at-
tribute), 392

theta (sklearn.naive_bayes.GaussianNB attribute), 561
train_test_split() (in module sklearn.cross_validation),

278
transform() (sklearn.cluster.KMeans method), 232
transform() (sklearn.cluster.MiniBatchKMeans method),

235
transform() (sklearn.decomposition.DictionaryLearning

method), 330
transform() (sklearn.decomposition.FastICA method),

318
transform() (sklearn.decomposition.KernelPCA method),

316
transform() (sklearn.decomposition.MiniBatchDictionaryLearning

method), 334
transform() (sklearn.decomposition.MiniBatchSparsePCA

method), 325
transform() (sklearn.decomposition.NMF method), 320
transform() (sklearn.decomposition.PCA method), 306
transform() (sklearn.decomposition.ProbabilisticPCA

method), 308
transform() (sklearn.decomposition.ProjectedGradientNMF

method), 311

1044 Index

scikit-learn user guide, Release 0.12-git

transform() (sklearn.decomposition.RandomizedPCA
method), 314

transform() (sklearn.decomposition.SparseCoder
method), 327

transform() (sklearn.decomposition.SparsePCA method),
323

transform() (sklearn.ensemble.ExtraTreesClassifier
method), 193, 351

transform() (sklearn.ensemble.ExtraTreesRegressor
method), 196, 355

transform() (sklearn.ensemble.RandomForestClassifier
method), 185, 343

transform() (sklearn.ensemble.RandomForestRegressor
method), 189, 347

transform() (sklearn.feature_extraction.DictVectorizer
method), 363

transform() (sklearn.feature_extraction.image.PatchExtractor
method), 367

transform() (sklearn.feature_extraction.text.CountVectorizer
method), 371

transform() (sklearn.feature_extraction.text.TfidfTransformer
method), 372

transform() (sklearn.feature_extraction.text.TfidfVectorizer
method), 374

transform() (sklearn.feature_selection.RFE method), 384
transform() (sklearn.feature_selection.RFECV method),

386
transform() (sklearn.feature_selection.SelectFdr method),

380
transform() (sklearn.feature_selection.SelectFpr method),

379
transform() (sklearn.feature_selection.SelectFwe

method), 381
transform() (sklearn.feature_selection.SelectKBest

method), 377
transform() (sklearn.feature_selection.SelectPercentile

method), 376
transform() (sklearn.kernel_approximation.AdditiveChi2Sampler

method), 415
transform() (sklearn.kernel_approximation.RBFSampler

method), 414
transform() (sklearn.kernel_approximation.SkewedChi2Sampler

method), 417
transform() (sklearn.lda.LDA method), 424
transform() (sklearn.linear_model.LogisticRegression

method), 464, 509
transform() (sklearn.linear_model.Perceptron method),

471
transform() (sklearn.linear_model.RandomizedLasso

method), 489
transform() (sklearn.linear_model.RandomizedLogisticRegression

method), 492
transform() (sklearn.linear_model.SGDClassifier

method), 475

transform() (sklearn.linear_model.SGDRegressor
method), 479

transform() (sklearn.linear_model.sparse.SGDClassifier
method), 503

transform() (sklearn.linear_model.sparse.SGDRegressor
method), 505

transform() (sklearn.manifold.Isomap method), 514
transform() (sklearn.manifold.LocallyLinearEmbedding

method), 511
transform() (sklearn.pipeline.Pipeline method), 603
transform() (sklearn.pls.CCA method), 600
transform() (sklearn.pls.PLSCanonical method), 598
transform() (sklearn.pls.PLSRegression method), 595
transform() (sklearn.pls.PLSSVD method), 601
transform() (sklearn.preprocessing.Binarizer method),

609
transform() (sklearn.preprocessing.KernelCenterer

method), 613
transform() (sklearn.preprocessing.LabelBinarizer

method), 612
transform() (sklearn.preprocessing.Normalizer method),

607
transform() (sklearn.preprocessing.Scaler method), 605
transform() (sklearn.svm.LinearSVC method), 625
transform() (sklearn.tree.DecisionTreeClassifier method),

647
transform() (sklearn.tree.DecisionTreeRegressor

method), 650
transform() (sklearn.tree.ExtraTreeClassifier method),

653
transform() (sklearn.tree.ExtraTreeRegressor method),

655
transmat_ (sklearn.hmm.GaussianHMM attribute), 404
transmat_ (sklearn.hmm.GMMHMM attribute), 412
transmat_ (sklearn.hmm.MultinomialHMM attribute),

408

unmixing_matrix_ (sklearn.decomposition.FastICA at-
tribute), 318

v_measure_score() (in module sklearn.metrics), 534
VBGMM (class in sklearn.mixture), 549

Ward (class in sklearn.cluster), 238
ward_tree() (in module sklearn.cluster), 241

zero_one() (in module sklearn.metrics), 525
zero_one_score() (in module sklearn.metrics), 525

Index 1045

	User Guide
	Installing scikit-learn
	Tutorials: From the bottom up with scikit-learn
	Supervised learning
	Unsupervised learning
	Model Selection
	Dataset transformations
	Dataset loading utilities
	Reference

	Example Gallery
	Examples

	Development
	Contributing
	How to optimize for speed
	Utilities for Developers
	Developers' Tips for Debugging
	About us
	Support
	0.12
	0.11
	0.10
	0.9
	0.8
	0.7
	0.6
	0.5
	0.4
	Presentations and Tutorials on Scikit-Learn

	Bibliography
	Python Module Index
	Python Module Index
	Index

