Laboratorio di Apprendimento Automatico

Fabio Aiolli Università di Padova

What is clustering?

- Clustering: the process of grouping a set of objects into groups of similar objects
 - The commonest form of unsupervised learning
 - Unsupervised learning = learning from raw data, as opposed to supervised data where a classification of examples is given
 - A common and important task that finds many applications
 - Not only Example Clustering (e.g. feature)

The Clustering Problem

Given:

- A set of examples $D=\{d_1,...d_n\}$
- A similarity measure (or distance metric)
- A partitioning criterion
- A desired number of clusters K

Compute:

- An assignment function $\gamma : D \rightarrow \{1,...,K\}$ s.t.
 - · None of the clusters is empty
 - Satisfies the partitioning criterion w.r.t. the similarity measure

Issues for clustering

- Representation for clustering
 - Representation
 - Vector space? Normalization?
 - Need a notion of similarity/distance
- How many clusters?
 - Fixed a priori?
 - Completely data driven?
 - Avoid "trivial" clusters too large or small
 - In an application, if a cluster's too large, then for navigation purposes you've wasted an extra user click without whittling down the set of documents much.

Objective Functions

- Often, the goal of a clustering algorithm is to optimize an objective function
- In this cases, clustering is a search (optimization) problem
- K^N / K! different clustering available
- Most partitioning algorithms start from a guess and then refine the partition
- Many local minima in the objective function implies that different starting point may lead to very different (and unoptimal) final partitions

What Is A Good Clustering?

- Internal criterion: A good clustering will produce high quality clusters in which:
 - the intra-class (that is, intra-cluster) similarity is high
 - the inter-class similarity is low
 - The measured quality of a clustering depends on both the document representation and the similarity measure used

External criteria for clustering quality

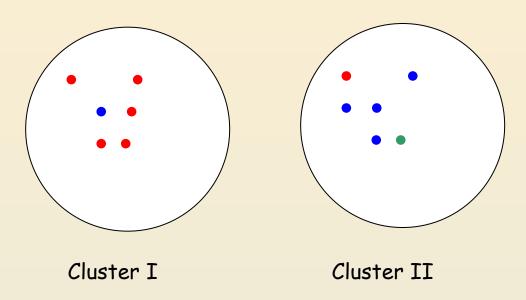
- Quality measured by its ability to discover some or all of the hidden patterns or latent classes in gold standard data
- Assesses a clustering with respect to ground truth
- Assume documents with C gold standard classes, while our clustering algorithms produce K clusters, $\omega_1,...,\omega_k$ with n_i members.

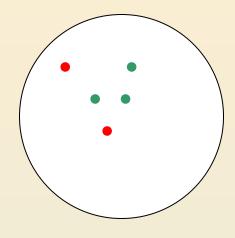
External Evaluation of Cluster Quality

• Simple measure: purity, the ratio between the dominant class in the cluster π_i and the size of cluster ω_i

 Others are entropy of classes in clusters (or mutual information between classes and clusters)

Purity example





Cluster III

Cluster I: Purity = 1/6 (max(5, 1, 0)) = 5/6

Cluster II: Purity = 1/6 (max(1, 4, 1)) = 4/6

Cluster III: Purity = 1/5 (max(2, 0, 3)) = 3/5

Rand Index

Number of points	Same Cluster in clustering	Different Clusters in clustering
Same class in ground truth	A (tp)	C (fn)
Different classes in ground truth	B (fp)	D (tn)

Rand index: symmetric version

$$RI = \frac{A+D}{A+B+C+D}$$

Compare with standard Precision and Recall.

$$P = \frac{A}{A + B}$$

$$R = \frac{A}{A + C}$$

Rand Index example: 0.68

Number of points	Same Cluster in clustering	Different Clusters in clustering
Same class in ground truth	20	24
Different classes in ground truth	20	72

Clustering Algorithms

- Partitional algorithms
 - Usually start with a random (partial) partitioning
 - Refine it iteratively
 - K means clustering
 - · Model based clustering
- Hierarchical algorithms
 - Bottom-up, agglomerative
 - Top-down, divisive

Partitioning Algorithms

- Partitioning method: Construct a partition of n documents into a set of K clusters
- Given: a set of documents and the number K
- Find: a partition of K clusters that optimizes the chosen partitioning criterion
 - Globally optimal: exhaustively enumerate all partitions
 - Effective heuristic methods: K-means and K-medoids algorithms

K-Means

- Assumes documents are real-valued vectors.
- Clusters based on centroids (aka the center of gravity or mean) of points in a cluster, c:

$$\vec{\mu}(c) = \frac{1}{|c|} \sum_{\vec{x} \in c} \vec{x}$$

- Reassignment of instances to clusters is based on distance to the current cluster centroids.
 - (Or one can equivalently phrase it in terms of similarities)

How Many Clusters?

- Number of clusters K is given
 - Partition *n* docs into predetermined number of clusters
- Finding the "right" number of clusters is part of the problem
 - Given a set of examples, partition into an "appropriate" number of subsets.
 - E.g., for query results ideal value of K not known up front though UI may impose limits.

Hierarchical Clustering

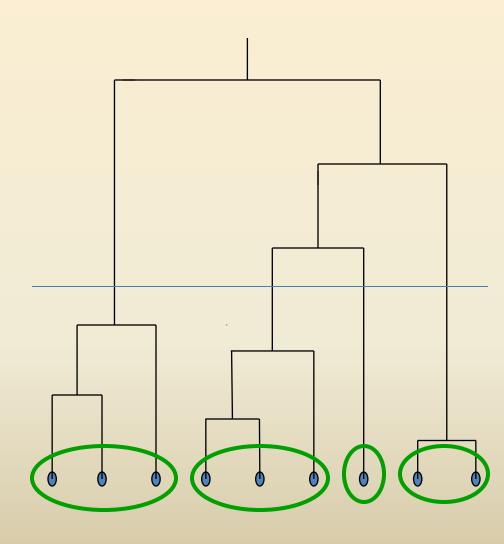
 Build a tree-based hierarchical taxonomy (dendrogram) from a set of documents.

vertebrate invertebrate
fish reptile amphib. mammal worm insect crustacean

 One approach: recursive application of a partitional clustering algorithm

Dendrogram: Hierarchical Clustering

Clustering obtained by cutting the dendrogram at a desired level: each connected component forms a cluster.



The dendrogram

- The y-axis of the dendogram represents the combination similarities, i.e. the similarities of the clusters merged by a the horizontal lines for a particular y
- Assumption: The merge operation is monotonic, i.e. if $s_1,...,s_{k-1}$ are successive combination similarities, then
 - $s_1 > s_2 > ... > s_{k-1}$ must hold

Hierarchical Agglomerative Clustering (HAC)

- Starts with each example in a separate cluster
 - -then repeatedly joins the closest pair of clusters, until there is only one cluster.
- The history of merging forms a binary tree or hierarchy.

Closest pair of clusters

- Many variants to defining closest pair of clusters
- Single-link
 - Similarity of the most cosine-similar (single-link)
- · Complete-link
 - Similarity of the "furthest" points, the least cosine-similar
- · Centroid
 - Clusters whose centroids (centers of gravity) are the most cosine-similar
- · Average-link
 - Average cosine between pairs of elements

Summarizing

Single-link	Max sim of any two points	O(N ²)	Chaining effect
Complete-link	Min sim of any two points	O(N ² logN)	Sensitive to outliers
Centroid	Similarity of centroids	O(N ² logN)	Non monotonic
Group- average	Avg sim of any two points	O(N ² logN)	OK