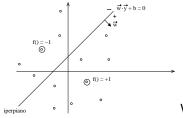
PAC, Generalizzation and SRM Corso di AA, anno 2016/17, Padova

Fabio Aiolli

12 Ottobre 2016

Hyperplanes in \mathbb{R}^2

- Instance space: points in the plane $\mathcal{X} = \{y | y \in \mathbb{R}^2\}$
- Hypothesis space: dichotomies induced by hyperplanes in \mathbb{R}^2 , that is $\mathcal{H} = \{f_{\mathbf{w},b}(y) = \operatorname{sign}(\mathbf{w} \cdot y + b), \mathbf{w} \in \mathbb{R}^2, b \in \mathbb{R}\}$

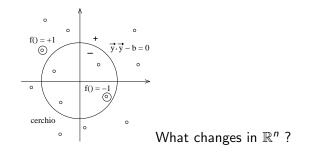


What changes in \mathbb{R}^n ?

Università degli Stud di Padova

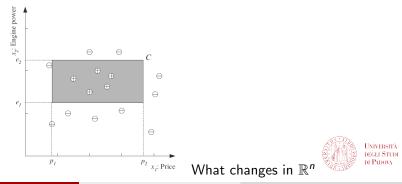
Circles in \mathbb{R}^2

- Instance space: points in the plane $\mathcal{X} = \{y | y \in \mathbb{R}^2\}$
- Hypothesis space: dichotomies induced by circles centered in the origin in \mathbb{R}^2 , that is $\mathcal{H} = \{f_b(y) = \operatorname{sign}(||y||^2 b), b \in \mathbb{R}\}$



Rectangles in \mathbb{R}^2

- Instance space: points in the plane $\mathcal{X} = \{(p,e) | (p,e) \in \mathbb{R}^2\}$
- Hypothesis space: dichotomies induced by rectangles in \mathbb{R}^2 , that is $\mathcal{H} = \{f_{\theta}(y) = [p_1 \leq p \leq p_2 \cap e_1 \leq e \leq e_2], \theta = \{p_1, p_2, e_1, e_2\}\}$ where [z] = +1 if z = True, -1 otherwise.



Conjunction of m positive literals

- Instance space: strings of m bits, $\mathcal{X} = \{s | s \in \{0,1\}^m\}$
- Hypothesis space: all the logic sentences involving positive literals l_1, \ldots, l_m (l_1 is true if the first bit is 1, l_2 is true if the second bit is 1, etc.) and just containing the operator \land (and)

$$\mathcal{H} = \{f_{\{i_1,...,i_j\}}(s) | f_{\{i_1,...,i_j\}}(s) \equiv I_{i_1} \land I_{i_2} \land \cdots \land I_{i_j}, \{i_1,...,i_j\} \subseteq \{1,...,m\}\}$$

E.g. m = 3, $X = \{0, 1\}^3$ Examples of instances: $s_1 = 101$, $s_2 = 001$, $s_3 = 100$, $s_4 = 111$ Examples of hypotheses: $h_1 \equiv l_2$, $h_2 \equiv l_1 \land l_2$, $h_3 \equiv true$, $h_4 \equiv l_1 \land l_3$, $h_5 \equiv l_1 \land l_2 \land l_3$ h_1 , h_2 , and h_5 are false for s_1 , s_2 and s_3 and true for s_4 ; h_3 is true for any instance; h_4 is true for s_1 and s_4 but false for s_2 and s_3

DI PADOVA

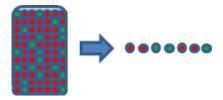
Conjunction of m positive literals

- Question 1: how many and which are the distinct hypotheses for m = 3?
 - Ans.(which): true, l_1 , l_2 , l_3 , $l_1 \wedge l_2$, $l_1 \wedge l_3$, $l_2 \wedge l_3$, $l_1 \wedge l_2 \wedge l_3$
 - Ans.(how many): 8
- Question 2: how many distinct hypotheses there are as a function of *m*?
 - Ans.: 2^m, in fact for each possible bit of the input string the corresponding literal may occur or not in the logic formula, so:

$$\underbrace{2 \cdot 2 \cdot 2 \cdots 2}_{m \text{ times}} = 2^m$$

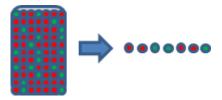
Università degli Stud di Padova

A simple experiment



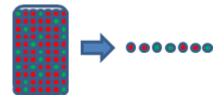
- $P(red) = \pi$
- $P(\text{green}) = 1 \pi$
- π is unknown
- Pick N marbles (the sample) independently from the bin
- $\sigma =$ fraction of red marbles in the sample

A simple experiment



- Does σ say anything about π ?
- Short answer... NO
- Ans: Sample can be mostly green while bin is mostly red
- Long answer... YES
- Ans: Sample frequency σ is likely close to bin frequency π

What does σ say about π



In a big sample (large N), the value σ is likely close to π (within ϵ) More formally (Hoeffding's Inequality),

$$P(|\sigma - \pi| > \epsilon) \le 2e^{-2\epsilon^2 N}$$

That is, $\sigma = \pi$ is P.A.C. (Probably Approximately Correct)

Università degli Studi di Padova

PAC, Generalizzation and SRM

Connection to Learning

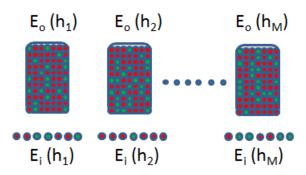
- In the Bin example, the unknown is π
- In the Learning example the unknown is $f: \mathcal{X}
 ightarrow \mathcal{Y}$
- The bin is the input space ${\mathcal X}$
- Green marbles correspond to examples where the hypothesis is right $h(\mathbf{x}) = f(\mathbf{x})$
- Red marbles correspond to examples where the hypothesis is right $h(\mathbf{x}) \neq f(\mathbf{x})$
- So, for this h, σ (empirical error) generalizes to π (ideal error) but... this is verification, not learning!

Connection to Learning

Change of notation

- $\sigma \rightarrow E_i(h)$
- $\pi \to E_o(h)$
- then, $P(|E_i(h) E_o(h)| > \epsilon) \le 2e^{-2\epsilon^2 N}$

Multiple Bins



Hoeffding's inequality does not apply here!

Analogy: Head and Cross

- If you toss a (fair) coin 10 times, which is the probability that you will get 10 heads?
- $(0.5)^{10} = 0.0009765625 \approx 0.1\%$
- If you toss 1000 (fair) coins 10 times each, which is the probability that *some coin* will get 10 heads?
- $(1 (1 0.001)^{1000}) = 0.6323045752290363 \approx 63\%$

Going back to the learning problem

Is the learning feasible?

$$P(|E_i(g) - E_o(g)| > \epsilon) \leq P(|E_i(h_1) - E_o(h_1)| > \epsilon$$

$$or|E_i(h_2) - E_o(h_2)| > \epsilon$$

$$\cdots$$

$$or|E_i(h_M) - E_o(h_M)| > \epsilon)$$

$$\leq \sum_m P(|E_i(h_m) - E_o(h_m)| > \epsilon) \leq 2Me^{-2\epsilon^2N}$$

Going back to the learning problem

- Test: $P(|E_i(g) E_o(g)| > \epsilon) \le 2e^{-2\epsilon^2 N}$
- Train: $P(|E_i(g) E_o(g)| > \epsilon) \le 2Me^{-2\epsilon^2N}$

In fact *M* can be substituted by $m(\mathcal{H}) \leq 2^N$ which is related to the *complexity* of the hypothesis space!

Measuring the complexity of the hypothesis space Shattering

Shattering: Given $S \subset X$, S is shattered by the hypothesis space \mathcal{H} iff

$$\forall S' \subseteq S, \ \exists h \in \mathcal{H}, \ \text{such that} \ \forall x \in S, \ h(x) = 1 \Leftrightarrow x \in S'$$

(\mathcal{H} is able to implement all possible dichotomies of S)

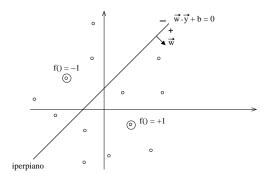
Measuring the complexity of the hypothesis space $\ensuremath{\mathsf{VC}\text{-dimension}}$

VC-dimension: The VC-dimension of a hypothesis space \mathcal{H} defined over an instance space X is the size of the largest finite subset of X shattered by \mathcal{H} :

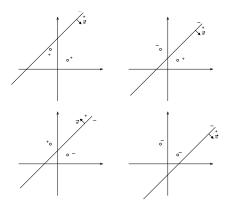
$$\mathcal{VC}(\mathcal{H}) = \max_{S \subseteq X} |S|: \; S \; ext{is shattered by} \; \mathcal{H}$$

If arbitrarily large finite sets of X can be shattered by \mathcal{H} , then $VC(\mathcal{H}) = \infty$.

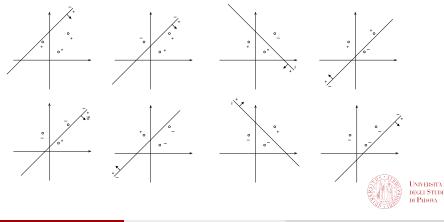
What is the VC-dimension of \mathcal{H}_1 ? $\mathcal{H}_1 = \{f_{(\vec{w},b)}(\vec{y}) | f_{(\vec{w},b)}(\vec{y}) = sign(\vec{w} \cdot \vec{y} + b), \vec{w} \in \mathbb{R}^2, b \in \mathbb{R}\}$



What is the VC-dimension of \mathcal{H}_1 ? $VC(\mathcal{H}) \geq 1$ trivial. Let consider 2 points:



What is the VC-dimension of \mathcal{H}_1 ? Thus $VC(\mathcal{H}) \geq 2$. Let consider 3 points:

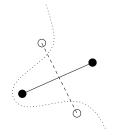


What is the VC-dimension of \mathcal{H}_1 ? Thus $VC(\mathcal{H}) \geq 3$. What happens with 4 points?

What is the VC-dimension of \mathcal{H}_1 ?

Thus $VC(\mathcal{H}) \geq 3$. What happens with 4 points ? It is impossible to shatter 4 points!!

In fact there always exist two pairs of points such that if we connect the two members by a segment, the two resulting segments will intersect. So, if we label the points of each pair with a different class, a curve is necessary to separate them! Thus $VC(\mathcal{H}) = 3$



UNIVERSIT DEGLI STU DI PADOVA

What if n > 2?

Generalization Error

Consider a binary classification learning problem with:

- Training set $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$
- Hypothesis space $\mathcal{H} = \{h_{\theta}(\mathbf{x})\}$
- Learning algorithm *L*, returning the hypothesis *g* = *h*^{*}_θ minimizing the empirical error on *S*, that is *g* = arg min_{*h*∈*H*} error_{*S*}(*h*).

It is possible to derive an upper bound of the ideal error which is valid with probability $(1 - \delta)$, δ being arbitrarily small, of the form:

$$\operatorname{error}(g) \leq \operatorname{error}_{\mathcal{S}}(g) + \mathcal{F}\left(rac{\operatorname{\mathsf{VC}}(\mathcal{H})}{n},\delta
ight)$$

Analysis of the bound

Let's take the two terms of the bound

- $A = \operatorname{error}_{S}(g)$
- $B = F(VC(\mathcal{H})/n, \delta)$
- \bullet The term A depends on the hypothesis returned by the learning algorithm $\mathcal{L}.$
- The term B (often called VC-confidence) does not depend on \mathcal{L} . It only depends on:
 - the training size *n* (inversely),
 - the VC dimension of the hypothesis space VC(\mathcal{H}) (proportionally)
 - the confidence δ (inversely).

Structural Risk Minimization

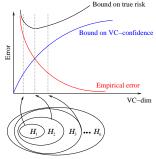
Problem: as the VC-dimension grows, the empirical risk (A) decreases, however the VC confidence (B) increases !

Because of that, Vapnik and Chervonenkis proposed a new inductive principle, i.e. Structural Risk Minimization (SRM), which aims to minimizing the right hand of the confidence bound, so to get a tradeoff between A and B:

Consider \mathcal{H}_i such that

- $\mathcal{H}_1 \subseteq \mathcal{H}_2 \subseteq \cdots \subseteq \mathcal{H}_n$
- $VC(\mathcal{H}_1) \leq \cdots \leq VC(\mathcal{H}_n)$
- select the hypothesis with the smallest bound on the true risk

Example: Neural networks with an increasing number of hidden units



DI PADOVA