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Hypothesis Space: Example 1

Hyperplanes in R2

Instance space: points in the plane X = {y |y ∈ R2}
Hypothesis space: dichotomies induced by hyperplanes in R2, that is
H = {fw,b(y) = sign(w · y + b),w ∈ R2, b ∈ R}

−
+
w

iperpiano

f() = +1

f() = −1

w  y + b = 0.

What changes in Rn ?
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Hypothesis Space: Example 2

Circles in R2

Instance space: points in the plane X = {y |y ∈ R2}
Hypothesis space: dichotomies induced by circles centered in the
origin in R2, that is H = {fb(y) = sign(||y ||2 − b), b ∈ R}

f() = +1

f() = −1

cerchio

.y  y − b = 0−
+

What changes in Rn ?
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Hypothesis Space: Example 3

Rectangles in R2

Instance space: points in the plane X = {(p, e)|(p, e) ∈ R2}
Hypothesis space: dichotomies induced by rectangles in R2, that is
H = {fθ(y) = [p1 ≤ p ≤ p2 ∩ e1 ≤ e ≤ e2], θ = {p1, p2, e1, e2}}
where [z ] = +1 if z = True, −1 otherwise.

What changes in Rn
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Hypothesis Space: Example 4

Conjunction of m positive literals

Instance space: strings of m bits, X = {s|s ∈ {0, 1}m}
Hypothesis space: all the logic sentences involving positive literals
l1, . . . , lm (l1 is true if the first bit is 1, l2 is true if the second bit is 1,
etc.) and just containing the operator ∧ (and)

H = {f{i1,...,ij}(s)|f{i1,...,ij}(s) ≡ li1 ∧ li2 ∧ · · · ∧ lij , {i1, . . . , ij} ⊆ {1, . . . ,m}}

E.g. m = 3, X = {0, 1}3
Examples of instances: s1 = 101, s2 = 001, s3 = 100, s4 = 111
Examples of hypotheses: h1 ≡ l2, h2 ≡ l1 ∧ l2, h3 ≡ true, h4 ≡ l1 ∧ l3,
h5 ≡ l1 ∧ l2 ∧ l3
h1, h2, and h5 are false for s1, s2 and s3 and true for s4; h3 is true for any
instance; h4 is true for s1 and s4 but false for s2 and s3
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Hypothesis Space: Example 4

Conjunction of m positive literals

Question 1: how many and which are the distinct hypotheses for
m = 3?

Ans.(which): true, l1, l2, l3, l1 ∧ l2, l1 ∧ l3, l2 ∧ l3, l1 ∧ l2 ∧ l3
Ans.(how many): 8

Question 2: how many distinct hypotheses there are as a function of
m?

Ans.: 2m, in fact for each possible bit of the input string the
corresponding literal may occur or not in the logic formula, so:

2 · 2 · 2 · · · 2︸ ︷︷ ︸
m times

= 2m
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A simple experiment

P(red) = π

P(green) = 1− π
π is unknown

Pick N marbles (the sample) independently from the bin

σ = fraction of red marbles in the sample

Fabio Aiolli PAC, Generalizzation and SRM 12 Ottobre 2016 7 / 25



A simple experiment

Does σ say anything about π?

Short answer... NO

Ans: Sample can be mostly green while bin is mostly red

Long answer... YES

Ans: Sample frequency σ is likely close to bin frequency π
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What does σ say about π

In a big sample (large N), the value σ is likely close to π (within ε)
More formally (Hoeffding’s Inequality),

P(|σ − π| > ε) ≤ 2e−2ε
2N

That is, σ = π is P.A.C. (Probably Approximately Correct)
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Connection to Learning

In the Bin example, the unknown is π

In the Learning example the unknown is f : X → Y

The bin is the input space X
Green marbles correspond to examples where the hypothesis is right
h(x) = f (x)

Red marbles correspond to examples where the hypothesis is right
h(x) 6= f (x)

So, for this h, σ (empirical error) generalizes to π (ideal error)
but... this is verification, not learning!
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Connection to Learning

Change of notation

σ → Ei (h)

π → Eo(h)

then, P(|Ei (h)− Eo(h)| > ε) ≤ 2e−2ε
2N

Fabio Aiolli PAC, Generalizzation and SRM 12 Ottobre 2016 11 / 25



Multiple Bins

Hoeffding’s inequality does not apply here!
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Analogy: Head and Cross

If you toss a (fair) coin 10 times, which is the probability that you will
get 10 heads?

(0.5)10 = 0.0009765625 ≈ 0.1%

If you toss 1000 (fair) coins 10 times each, which is the probability
that some coin will get 10 heads?

(1− (1− 0.001)1000) = 0.6323045752290363 ≈ 63%
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Going back to the learning problem

Is the learning feasible?

P(|Ei (g)− Eo(g)| > ε) ≤ P(|Ei (h1)− Eo(h1)| > ε

or|Ei (h2)− Eo(h2)| > ε

. . .

or|Ei (hM)− Eo(hM)| > ε)

≤
∑
m

P(|Ei (hm)− Eo(hm)| > ε) ≤ 2Me−2ε
2N
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Going back to the learning problem

Test: P(|Ei (g)− Eo(g)| > ε) ≤ 2e−2ε
2N

Train: P(|Ei (g)− Eo(g)| > ε) ≤ 2Me−2ε
2N

In fact M can be substituted by m(H) ≤ 2N which is related to the
complexity of the hypothesis space!
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Measuring the complexity of the hypothesis space
Shattering

Shattering: Given S ⊂ X , S is shattered by the hypothesis space H iff

∀S ′ ⊆ S , ∃h ∈ H, such that ∀x ∈ S , h(x) = 1⇔ x ∈ S ′

(H is able to implement all possible dichotomies of S)
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Measuring the complexity of the hypothesis space
VC-dimension

VC-dimension: The VC-dimension of a hypothesis space H defined over an
instance space X is the size of the largest finite subset of X shattered by
H:

VC (H) = max
S⊆X
|S | : S is shattered by H

If arbitrarily large finite sets of X can be shattered by H, then
VC (H) =∞.
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VC-dimension: Example

What is the VC-dimension of H1 ?
H1 = {f(~w ,b)(~y)|f(~w ,b)(~y) = sign(~w · ~y + b), ~w ∈ R2, b ∈ R}

−
+
w

iperpiano

f() = +1

f() = −1

w  y + b = 0.
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VC-dimension: Example

What is the VC-dimension of H1 ?
VC (H) ≥ 1 trivial. Let consider 2 points:
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VC-dimension: Example

What is the VC-dimension of H1 ?
Thus VC (H) ≥ 2. Let consider 3 points:
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VC-dimension: Example

What is the VC-dimension of H1 ?
Thus VC (H) ≥ 3. What happens with 4 points ?
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VC-dimension: Example

What is the VC-dimension of H1 ?
Thus VC (H) ≥ 3. What happens with 4 points ? It is impossible to shatter 4
points!!
In fact there always exist two pairs of points such that if we connect the two
members by a segment, the two resulting segments will intersect. So, if we label
the points of each pair with a different class, a curve is necessary to separate
them! Thus VC (H) = 3

What if n > 2 ?
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Generalization Error

Consider a binary classification learning problem with:

Training set S = {(x1, y1), . . . , (xn, yn)}
Hypothesis space H = {hθ(x)}
Learning algorithm L, returning the hypothesis g = h∗θ minimizing the
empirical error on S, that is g = arg minh∈H errorS(h).

It is possible to derive an upper bound of the ideal error which is valid with
probability (1− δ), δ being arbitrarily small, of the form:

error(g) ≤ errorS(g) + F

(
VC(H)

n
, δ

)
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Analysis of the bound

Let’s take the two terms of the bound

A = errorS(g)

B = F (VC (H)/n, δ)

The term A depends on the hypothesis returned by the learning
algorithm L.

The term B (often called VC-confidence) does not depend on L. It
only depends on:

the training size n (inversely),
the VC dimension of the hypothesis space VC(H) (proportionally)
the confidence δ (inversely).
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Structural Risk Minimization

Problem: as the VC-dimension grows, the empirical risk (A) decreases, however
the VC confidence (B) increases !

Because of that, Vapnik and Chervonenkis proposed a new inductive principle, i.e.
Structural Risk Minimization (SRM), which aims to minimizing the right hand of
the confidence bound, so to get a tradeoff between A and B:

Consider Hi such that

- H1 ⊆ H2 ⊆ · · · ⊆ Hn

- VC(H1) ≤ · · · ≤ VC(Hn)

- select the hypothesis with the
smallest bound on the true risk

Example: Neural networks with
an increasing number of hidden
units

E
rr

or

HnH3H2H1

VC−dim

Bound on true risk

Empirical error

Bound on VC−confidence
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