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Outline

Linear methods for classification and regression

Non-linear transformations

Optimal hyperplane and Support Vector Machine (SVM)

SVM for non linearly-separable data
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Linear Models

One of the most important type of models in ML

A linear model is in the form fw,b(x) =
∑m

i=1 wixi + b = w · x + b

Which can also be written as fw(x) =
∑m

i=0 wixi = w · x where x0 = 1
is a an ad-hoc artificial feature (coordinate)

For classification, the sign is returned, that is
h(x) = sign(fw(x)) ∈ {−1,+1}
For regression, the original function can be taken, that is
h(x) = fw(x) ∈ R
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Real Data

16× 16 grey-level images

Standard representation: raw input x = (x1, . . . , x256)

You can use other representations (e.g. intensity, symmetry)
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The Perceptron Algorithm

hw(x) = sign(
n∑

i=0

wixi ) = sign(w · x)

1 Given a training set

{(x1, y1), . . . , (xn, yn)}

2 Pick a misclassified point xi (sign(w · xi ) 6= yi )

3 Update the weight vector w← w + yixi
4 Repeat from step 2 until all points are correctly

classified

If data are linearly
separable, then the

perceptron algorithm
always converges to a

valid solution!
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(Multi-variate) Linear Regression

Example: Given a set of characteristics for a user: age, annual salary,
years in residence, years in job, current debits, etc. Predict the credit
line, that is the amount of credit that can be granted to a customer.

Given TRAIN = {(x1, y1), . . . , (xn, yn)}, in linear regression we look
for a hypothesis hw (a linear space) which minimizes the mean
squared error on the training set, that is 1

n

∑n
i=1(hw(xi )− yi )

2

Fabio Aiolli Introduction to Machine Learning 24 June 2016 6 / 34



Solving the Linear Regression problem

E (w) =
1

n

n∑
i=1

(hw(xi )− yi )
2

=
1

n

n∑
i=1

(w · xi − yi )
2

=
1

n
||Xw − y||2

where X =


. . . x>1 . . .
. . . x>2 . . .

...
. . . x>n . . .

 , y =


y1

y2
...
yn
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By minimizing the residual error

min
w

E (w) ≡ 1

n
||Xw − y||2

∇E (w) =
2

n
X>(Xw − y) = 0

X>Xw = X>y

w = X′y, where X′ = (X>X)−1X>

The matrix X′ is the pseudo-inverse of X

Fabio Aiolli Introduction to Machine Learning 24 June 2016 8 / 34



Non-linear Mapping

(x1, x2)
Φ→ (x2

1 , x
2
2 )

In general, any non-linear transformation x
Φ→ z can be applied to the

data. An hyperplane in the transformed space corresponds to a non-linear
decision surface in the original space!
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Linear separability

Consider the hypothesis space of hyperplanes

Take a set of linearly separable points

We have different separating hyperplanes fitting data

Which is the best?

Two questions:

1 Why the widest possible margin (or optimal) hyperplane is better?

2 To which w, b this corresponds?
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Margin

Given the hyperplane w · x + b = 0, the “distance” of a point x from the
hyperplane can be expressed by the algebraic measure g(x) = w · x + b.

We can write x = xp + r w
||w||

where:

xp is the normal projection
of x onto the hyperplane

r is the desired algebraic
distance (r > 0 if x is on the
positive side of the
hyperplane, otherwise r < 0)

xp

x
w
w

w

+

−

r > 0

Fabio Aiolli Introduction to Machine Learning 24 June 2016 11 / 34



Margin

g(x) = w · x + b and x = xp + r w
||w|| ,

Two facts:

Note that g(xp) = 0 (because xp in on the optimal hyperplane)

Since the absolute distance from any nearest positive example is the
same as the absolute distance from any nearest negative example,
then we can consider hypotheses w, b such that g(x) = 1 when x is in
the (positive side) margin hyperplane and g(x) = −1 when x is in the
(negative side) margin hyperplane.

Take xk in the positive magin hyperplane, then

g(xk) = w · xp + b︸ ︷︷ ︸
=0

+r
w ·w
||w||

= r ||w|| ⇒ r =
g(xk)

||w||
=

1

||w||

and hence the margin will be ρ = 2
||w|| .
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Support Vector Machines: basic idea

Can we apply the Structural Risk Minimization principle to
hyperplanes?

We have seen that a hyperplane in Rm has VC = m + 1.

In fact, if we add further constraints on the hyperplanes we can do
better!
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Margin: Link with SRM

Theorem Let R denote the diameter of the smallest ball containing all the
input points. The set of optimal hyperplanes described by the equation
w · x + b = 0 has a VC-dimension VCopt bounded from above as

VCopt ≤ min{d R2

ρ2 e,m}+ 1

where ρ = 2
||w|| and m is the dimensionality of the input space.

Thus, if we consider the hypothesis spaces

Hk = {w · x + b | ||w||2 ≤ ck} where c1 < c2 < c3 < . . .

and linearly separable data, then the empirical error of Hk is 0 for each k
and the bound on the true risk can be minimized by maximizing the
margin of separation (i.e. minimizing the weight norm).
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Separable Case: Quadratic optimization

If we have n linearly separable examples {(xi , yi )}
n

1
, it is possible to find

the optimal hyperplane solving the following constrained quadratic
optimization problem:

minw,b
1
2 ||w||

2

subject to: ∀i ∈ {1, . . . , n} : yi (w · xi + b) ≥ 1

This is a (convex) constrained quadratic problem. Thus it guarantees
a unique solution!

Many QP algorithms exist to find the solution of this quadratic
problem
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Solving the optimization problem

The problem above, called primal problem, can be solved more easily
using the dual formulation.

In the dual problem Lagrange multipliers αi ≥ 0 are associated with
every constraint in the primal problem (one for each example).

The dual formulation is:

maxα
∑n

i=1 αi − 1
2

∑n
i ,j=1 yiyjαiαj(xi · xj)

subject to: ∀i ∈ {1, . . . , n} : αi ≥ 0 e
∑n

i=1 yiαi = 0.

At the solution most of the αi ’s are zeros. Examples associated with
non zero multipliers are called support vectors.
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SVM solution

The primal solution turns out to be:

w =
n∑

i=1

yiαixi

b = yk −w · xk for any xk such that αk > 0

and hence:

h(x) = sign(w · x + b) = sign(
n∑

i=1

yiαi (xi · x) + b)
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SVM for the Non-separable case

If the examples are NOT linearly separable we have to allow that some
constraints are violated. This can be done by

- introducing slack variables ξi ≥ 0, i = 1, . . . , n , one for each
constraint:

yi (w · xi + b) ≥ 1− ξi
- modifying the cost function so to penalize slack variables which are

not 0:
1

2
||w||2 + C

n∑
i=1

ξi

where C (regularization parameter) is a positive constant controlling
the tradeoff between the complexity of the hypothesis space and the
number of margin errors.
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SVM for the Non-separable Case

The dual of this new formulation is very similar to the previous one:

maxα
∑n

i=1 αi − 1
2

∑n
i ,j=1 yiyjαiαj(xi · xj)

subject to: ∀i ∈ {1, . . . , n} : 0 ≤ αi ≤ C e
∑n

i=1 yiαi = 0.

The main difference is due to the fact that the dual variables are upper
bounded by C . The value for b is obtained similarly to the separable case
(with some minor differences...).

support vectors 

w

w

α > 0

α > 0

α = 0

α > 0

α = 0

r = 1

r = 1

r = 1

−ξ
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Analysis of SVM for the non-separable case

The parameter C can be seen as a way to control overfitting

As C becomes larger it is unattractive to not respect the data at the
cost of reducing the geometric margin

When C is small, larger margin is possible at the cost of increasing
errors in training data

Interestingly, the SVM solution is in the same form as in the hard
margin case!

Nevertheless, this formulation is not always satisfactory because of the
limited separation capability of a hyperplane.
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Another approach

How can we separate these data?
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Another approach

Projecting them into a higher dimensional space

x→ ϕ(x)
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Nonseparable case

When the examples are not linearly separable, an alternative approach
based on the following two steps can be used

1 the input vectors (input space) are projected into a larger space
(feature space);

2 the optimal hyperplane in feature space is computed (using the
formulation with slack variables)
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Nonseparable case

Step 1 is justified by Cover’s theorem on separability, which states that
non-linearly separable patterns may be transformed into a new feature
space where the patterns are linearly separable with high probability,
provided that the transformation is nonlinear, and that the dimensionality
of the feature space is high enough.
Step 2 is trivially justified by the fact that the optimal hyperplane (in the
feature space) minimizes the VC-dimension.
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Nonseparable case

We can assume that any of the new feature space coordinate is generated
by a nonlinear function ϕj(·). Thus, we can consider M functions
ϕj(x) with j = 1, . . . ,M. A generic vector x is thus mapped into the
M-dimensional vector

ϕ(x) = [ϕ1(x), . . . , ϕM(x)]

Step 2 asks to find the optimal hyperplane into the M-dimensional feature
space. A hyperplane into the feature space is defined as

M∑
j=1

wjϕj(x) + b = 0

or, equivalently
M∑
j=0

wjϕj(x) = w · ϕ(x) = 0

where we added a coordinate ϕ0(x) = 1 and w0 = b.
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Nonseparable case

By

w =
n∑

k=1

ykαk ~ϕ(xk)

the equation defining the hyperplane becomes

n∑
k=1

ykαkϕ(xk) · ϕ(x) = 0

where ϕ(xk) · ϕ(x) represents the dot product (in feature space) between
vectors induced by the k-th training instance and the input x.
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Kernel functions

Now, what we need is a function K (·, ·) (called kernel function) such that

K (xk , x) = ϕ(xk)·ϕ(x) =
M∑
j=0

ϕj(xk)ϕj(x) = K (x, xk) (symmetric function)

If we get such a function, we could compute the dot product in feature
space WITHOUT explicitly representing the vectors into the feature space:

n∑
k=1

ykαkK (xk , x)

Functions with this property do actually exist, if some conditions are
satisfied... namely, Mercer’s conditions.
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Kernel functions

Thus, a kernel function satisfying Mercer’s conditions represents a
dot-product between vectors generated by some (non-linear)
transformation.

Examples of popular kernel functions:

polynomial kernel of degree p, K (x, x′) = (x · x′+ u)p

radial-basis function (RBF) kernel, K (x, x′) = exp(−γ‖x− x′‖2)

Fabio Aiolli Introduction to Machine Learning 24 June 2016 28 / 34



Formulation with Kernel

The introduction of a kernel does not modify the problem formulation:

maxα
∑n

i=1 αi − 1
2

∑n
i ,j=1 yiyjαiαjK (xi , xj)

subject to: ∀i ∈ {1, . . . , n} : 0 ≤ αi ≤ C and
∑n

i=1 yiαi = 0.

where the needed kernel values are computed over all pairs of training
vectors (K (xi , xj), with i , j = 1, . . . , n) and arranged into a matrix
K ∈ Rn×n (symmetric and positive definite) known as kernel matrix.
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Formulation with Kernel

E.g., if we use a polynomial kernel with degree p = 3 we obtain
K i ,j = (xi · xj + 1)3 and a new instance x is classified by the following
discriminant function

h(x) = sign(
∑

xk∈SV
ykα

∗
kK (xk , x)) = sign(

∑
xk∈SV

ykα
∗
k(xk · x + 1)3)

where SV is the set of support vectors and α∗k are the optimal values for
the support vectors (the remaining dual variable are 0 ⇒ corresponding
vectors do not contribute to the sum).
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Formulation with Kernel

Using this approach, we can use a nonlinear transformation ϕ(·)
IMPLICITLY, in fact what we need is not the explicit representation of
vectors in feature space, but their dot product into the feature space. This
can be directly computed in the input space via the kernel function.

Examples of decision surfaces generated IN THE INPUT SPACE with or
without kernel (polynomial with degree 3) both for the separable and
nonseparable case:

separable degree 3 poly not separable degree 3 poly

Fabio Aiolli Introduction to Machine Learning 24 June 2016 31 / 34



Example: polynomial kernel

Given two vetors x and z and the following mapping ϕ()

x = (x1, x2);ϕ(x) = (x2
1 , x

2
2 ,
√

2x1x2)

z = (z1, z2);ϕ(z) = (z2
1 , z

2
2 ,
√

2z1z2)

A dot product between ϕ(x) and ϕ(z) corresponds to evaluate the
function K2(x, z) = 〈x , z〉2

〈ϕ(x), ϕ(z)〉 = 〈(x2
1 , x

2
2 ,
√

2x1x2), (z2
1 , z

2
2 ,
√

2z1z2)〉 =

= x2
1 z

2
1 + x2

2 z
2
2 + 2x1z1x2z2 = 〈x , z〉2 = (x1z1 + x2z2)2 = K2(x, z)

K2() is faster to evaluate than 〈ϕ(x), ϕ(z)〉!
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Regression with SVM: Basic idea

When considering a regression problem, the idea is to define an ε-tube:

predictions which differ from the desired value for more that ε in absolute error

are linearly penalized, otherwise they are not considered errors.

x

x

x
x

x

x
xx

x

x
x

x

x

x

+ε−ε

x

ζ+ε

−ε
0

ζ
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Regression with SVM

The ε-tube idea leads to the following formulation

minw,b,ξ,ξ∗
1
2 ||w||

2 + C
∑n

i=1(ξi + ξ∗i )
subject to:
∀i ∈ {1, . . . , n}

yi −w · xi − b ≤ ε+ ξi
w · xi + b − yi ≤ ε+ ξ∗i
ξi , ξ

∗
i ≥ 0

which has the following dual formulation...

maxα,α∗ −ε
∑n

i=1(αi + α∗
i ) +

∑n
i=1 yi (αi − α∗

i )+
− 1

2

∑n
i,j=1(αi − α∗

i )(αj − α∗
j )K (xi , xj)

subject to:∑n
i=1(αi − α∗

i ) = 0
αi , α

∗
i ∈ [0,C ]
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