
Kernels and representation
Corso di AA, anno 2017/18, Padova

Fabio Aiolli

18 Dicembre 2017

Fabio Aiolli Kernels and representation 18 Dicembre 2017 1 / 31

Outline

Representation with kernels

Kernel extensions

Kernel learning

Fabio Aiolli Kernels and representation 18 Dicembre 2017 2 / 31

Representation with kernels

We are given a set of objects S = {x1, x2, . . . , xn}. How can they be
represented?

Classical (explicit) representation: ϕ(x)→ F
Kernel (implicit) representation:

K : X × X → R (paired comparisons, symmetric function)
S represented by a symmetric matrix K = [K (xi , xj)]i,j ∈ Rn×n

Fabio Aiolli Kernels and representation 18 Dicembre 2017 3 / 31

Kernel and Gram matrix: definitions

Definition

A kernel function is a function K (·, ·) such that for all x, z ∈ X , satisfies
K (x, z) = ϕ(x) · ϕ(z) where ϕ(x) is a mapping from X to an (inner
product or Hilbert) space H.

Definition

The Gram (or kernel) matrix associated with the kernel function K (·, ·),
evaluated on a finite subset of examples X = {x1, . . . , xn}, xi ∈ X , is the
matrix K ∈ Rn×n such that

Ki ,j = K (xi , xj).

The matrix K is symmetric and positive definite by definition.

Fabio Aiolli Kernels and representation 18 Dicembre 2017 4 / 31

A simple example

A first example:

∀x, z ∈ R2, K (x, z) = (x · z)2

= (x1z1 + x2z2)2

=

 x2
1

x2
2√

2x1x2

 ·
 z2

1

z2
2√

2z1z2

= ϕ(x) · ϕ(z)

where ϕ(x), ϕ(z) ∈ R3

Fabio Aiolli Kernels and representation 18 Dicembre 2017 5 / 31

Advantages of using kernels

Representation with kernel matrices has some advantages:

same algorithm for different typologies of data
modularity of the design of kernel and algorithms
the integration of different views is simpler

The dimensionality of data depends on the number of objects and not
from their vector dimensionality

Comparison between objects can result computationally simpler than
using the explicit object representation: kernel computation vs. dot
product

Fabio Aiolli Kernels and representation 18 Dicembre 2017 6 / 31

Kernel methods

Many kernel methods, including SVM, can be interpreted as solving
the following problem:

arg min
f ∈H

L(f (x1), . . . , f (xn)) + Λ||f ||H

L is a loss (or cost) function associated to the empirical risk

The norm is the “smoothness” of the function. In fact, the meaning
of “smoothness” depends on the considered kernel and feature space.

Λ is a trade-off regularization coefficient

The problem above can be shown to always have a solution of type:

f (x) = w · ϕ(x) =
n∑

i=1

αiK (xi , x)

That is the optimization problem can be formulated with n variables. If
n� d then we get a computational advantage

Fabio Aiolli Kernels and representation 18 Dicembre 2017 7 / 31

Kernel Modularity

Modularity in the design/definition of the kernel (representation) and the
learning algorithm used for model computation (classification, regression,
ranking, etc.)

Fabio Aiolli Kernels and representation 18 Dicembre 2017 8 / 31

The Kernel Trick

Any algorithm for vectorial data which can be expressed in terms of
dot-products can be implicitly executed in the feature space associated to
a kernel, by simply replacing dot-products with kernel evaluations.

Kernelization of popular linear or distance-based methods (e.g.
Perceptron and kNN)

Application of algorithms for vectorial data (SVM, Perceptron, etc.)
to non-vectorial data using ad-hoc kernels (e.g. kernel for structures)

Fabio Aiolli Kernels and representation 18 Dicembre 2017 9 / 31

The Kernel Trick - Distances in feature space

Given two objects, x , z ∈ X , the distance between the two objects in
feature space is computed by:

d(x , z) = ||ϕ(x)− ϕ(z)||

d2(x , z) = ||ϕ(x)− ϕ(z)||2

= ϕ(x) · ϕ(x) + ϕ(z) · ϕ(z)− 2ϕ(x) · ϕ(z)

= K (x , x) + K (z , z)− 2K (x , z)

That is, d(x , z) =
√
K (x , x) + K (z , z)− 2K (x , z).

Note that the values ϕ(x), ϕ(z) are not explicitly used!

Fabio Aiolli Kernels and representation 18 Dicembre 2017 10 / 31

Common kernels for vectors

Linear Kernel K (x, z) = x · z
Polynomial Kernel K (x, z) = (x · z + u)p

Exponential K (x, z) = exp(x · z)

Radial Basis Function (RBF) Kernel K (x, z) = exp(−γ||x− y||2)

Fabio Aiolli Kernels and representation 18 Dicembre 2017 11 / 31

Polynomial Kernels

Homogeneous polynomial kernels k(x, z) = 〈x, z〉s can be constructed by
defining an embedding map, indexed by all monomials of degree s:

φi(x) =
n∏

k=1

x ikk

such that i = (i1, . . . , in) and
∑n

k=1 ik = s

Non-homogeneous polynomial kernels k(x, z) = (〈x, z〉+ c)d can be
constructed by defining an embedding map, indexed by all monomials of
degree less or equal to s:

φi(x) =
n∏

k=1

x ikk

such that i = (i1, . . . , in) and
∑n

k=1 ik ≤ d

Fabio Aiolli Kernels and representation 18 Dicembre 2017 12 / 31

SVM with Kernels

Fabio Aiolli Kernels and representation 18 Dicembre 2017 13 / 31

Linear vs. Poly kernel

Fabio Aiolli Kernels and representation 18 Dicembre 2017 14 / 31

RBF kernels

K (x, z) = exp(−γ||x− z||2)

Fabio Aiolli Kernels and representation 18 Dicembre 2017 15 / 31

Closure Properties

Let K1,K2 be kernels defined on X × X . a ∈ R+, φ : X → RN with K3 a
kernel over RN × RN . Then,

K (x, z) = K1(x, z) + K2(x, z) is a kernel

K (x, z) = aK1(x, z) is a kernel

K (x, z) = K1(x, z) · K2(x, z) is a kernel

K (x, z) = K3(φ(x), φ(z)) is a kernel

A kernel can be easily normalized (such to have normalized data in feature
space ||φ(x)|| = 1):

K̃ (x, z) =
K (x, z)√

K (x, x)K (z, z)

Fabio Aiolli Kernels and representation 18 Dicembre 2017 16 / 31

Kernel extensions to other types of inputs

Kernel for strings
Idea: given two strings, compute the number of shared sub-strings
(dynamic programming algorithms exist to make efficient the
computation of these kernels)

Kernel for trees
Idea: given two trees, compute the number of shared sub-trees (also
here dynamic programming algorithms exist to make efficient the
computation of these kernels)

Kernel for graphs
Idea: similar to the ones above, e.g. counting common walks.

Fabio Aiolli Kernels and representation 18 Dicembre 2017 17 / 31

Spectrum kernels for strings

A kernel for strings can be defined by an explicit embedding map from the
space of all finite sequences over an alphabet Σ, that is

φp : (φpu(s))u∈Σp

and Σp the set of strings of size p. The vector length will be |Σ|p.
The associated kernel is defined as:

kp(s, t) = 〈φp(s), φp(t)〉 =
∑
u∈Σp

φpu(s)φpu(t)

Fabio Aiolli Kernels and representation 18 Dicembre 2017 18 / 31

Example: 2-Spectrum kernels for strings

Consider the strings bar, bat, car, cat. The 2-spectra are given by:

So the resulting kernel matrix is:

There exists a recursive method that, for any p, can compute this kernel in
time O(p(|s|+ |t|)) = O(p max(|s|, |t|)).

Fabio Aiolli Kernels and representation 18 Dicembre 2017 19 / 31

Boolean Kernels

Kernels for binary data
Idea: given two binary vectors, compute the number of shared logical
propositions, of a fixed form, over the input binary variables

A generic boolean kernel is a function k : {0, 1}n × {0, 1}n → N such
that k(x, z) = 〈φ(x), φ(z)〉 where φ : {0, 1}n → {0, 1}N maps the
binary input vectors into a space formed by logical formulas

The linear kernel, when applied to binary data, is the simplest boolean
kernel since it computes the number of shared boolean literals
between the input vectors, i.e., the mapping function is the identity.

Fabio Aiolli Kernels and representation 18 Dicembre 2017 20 / 31

Conjunctive Kernel

Given two binary vectors x, z ∈ {0, 1}n, the Conjunctive Kernel
(C-kernel) of degree c computes the number of common conjunctions
of arity c between x and z

The features in the embedding space are all the possible combinations
without repetition of c objects (i.e., input variables) taken from n
(i.e., the dimension of the input space)

The value of these features are computed as the logical AND operator
among the involved variables in the combination

Formally the kernel is computed by

kc∧(x, z) =

(
〈x, z〉
c

)

Fabio Aiolli Kernels and representation 18 Dicembre 2017 21 / 31

Conjunctive Kernel Example

Recall: kc∧(x, z) =
(〈x,z〉

c

)

In the example: k2
∧(x, z) =

(〈x,z〉
2

)
=
(2

2

)
= 1.

Fabio Aiolli Kernels and representation 18 Dicembre 2017 22 / 31

Disjunctive Kernel

Given two binary vectors x, z ∈ {0, 1}n, the Disjunctive Kernel
(D-kernel) of degree d computes the number of common disjunctions
of arity d between x and z

The features in the embedding space are all the possible combinations
without repetition of d objects (i.e., input variables) taken from n
(i.e., the dimension of the input space)

The value of these features are computed as the logical OR operator
among the involved variables in the combination

Formally the kernel is computed by

kd
∨(x, z) =

(
n

d

)
−
(
n − 〈x, x〉

d

)
−
(
n − 〈z, z〉

d

)
+

(
n − 〈x, x〉 − 〈z, z〉+ 〈x, z〉

d

)

Fabio Aiolli Kernels and representation 18 Dicembre 2017 23 / 31

Disjunctive Kernel Computation

(a)
(
n
d

)
(b) −

(
n−〈x,x〉

d

)

(c) −
(
n−〈z,z〉

d

)
(d)

(
n−〈x,x〉−〈z,z〉+〈x,z〉

d

)
Fabio Aiolli Kernels and representation 18 Dicembre 2017 24 / 31

Disjunctive Kernel Example

Recall: kd∨(x, z) =
(n
d

)
−
(n−〈x,x〉

d

)
−
(n−〈z,z〉

d

)
+
(n−〈x,x〉−〈z,z〉+〈x,z〉

d

)

In the example:
k2
∨(x, z) =

(4
2

)
−
(4−2

2

)
−
(4−3

2

)
+
(4−2−3+2

2

)
= 6− 1− 0 + 0 = 5.

Fabio Aiolli Kernels and representation 18 Dicembre 2017 25 / 31

Normal Form Kernels

Both the C-kernel and the D-kernel are defined as function of
dot-products of the input vectors

We can exploit the kernel trick to build more complex boolean kernels
by composition
DNF-kernel: the feature space is formed by Disjunctive Normal form
formulas of exactly d conjunctive clauses of arity c

kd,c
DNF(x, z) =

((n
c

)
d

)
−
((n

c

)
−

(〈x,x〉
c

)
d

)
−
((n

c

)
−

(〈z,z〉
c

)
d

)
+
((n

c

)
−

(〈x,x〉
c

)
−

(〈z,z〉
c

)
+

(〈x,z〉
c

)
d

)
CNF-kernel: the feature space is formed by Conjunctive Normal form
formulas of exactly c disjunctive clauses of arity d

kd,c
CNF(x, z) =

((n
d

)
−
(
n−〈x,x〉

d

)
−
(
n−〈z,z〉

d

)
+
(
n−〈x,x〉−〈z,z〉+〈x,z〉

d

)
c

)

Fabio Aiolli Kernels and representation 18 Dicembre 2017 26 / 31

Kernel Learning

IDEA: Why not to learn the kernel function (or matrix)?

Parametric methods for kernel learning

Transductive feature extraction with non-linear kernels

Spectral Kernel Learning

Multiple Kernel Learning

In all these cases margin maximization criteria are typically used.

Fabio Aiolli Kernels and representation 18 Dicembre 2017 27 / 31

Parametric methods

Optimization of the parameters of a kernel function (e.g. RBF, Poly)

K (x, z) = exp(−(x− z)>M(x− z))

Particular choices:

M = β0I =

β0 0 0 . . .
0 β0 0 . . .
0 0 β0
...

...
. . .

 RBF kernel

M = diag(β1, . . . , βm) =

β0 0 0 . . .
0 β1 0 . . .
0 0 β2
...

...
. . .

 Anysotropic RBF

Fabio Aiolli Kernels and representation 18 Dicembre 2017 28 / 31

Transductive feature extraction with non-linear kernels

Feature extraction is performed implicitly in feature space.

Kernel Principal Component Analysis (KPCA) which is a
generalization of PCA to kernels is the most popular instance of this
approach. The trick is that the projections onto the eigenvectors
(principal components in feature space) can be implicitly computed
using the kernel trick

Issue: This is a transductive approach since it works on kernel
matrices and cannot be promptly generalized to new data!

Solution: Out-of-sample techniques can be used to approximate the
values of the kernels on new examples

Fabio Aiolli Kernels and representation 18 Dicembre 2017 29 / 31

Spectral Kernel Learning

The kernel matrix (positive definite) can always be written as:

K =
n∑

s=1

λsusu
>
s

where λs and us are the eigenvalues, and corresponding eigenvectors, of
the matrix K

Using a transformation τ(λ) we can act (implicitly) on the mapping.

The idea is to optimize the spectrum of the kernel matrix. This is
also a transductive approach. Hence, it suffers of the same issues as
the previous methods!

Fabio Aiolli Kernels and representation 18 Dicembre 2017 30 / 31

Multiple Kernel Learning

In Multiple Kernel Learning (MKL), given a set of a-priori defined kernels,
these are linearly combined. Hence, the task is to learn the positive
coefficients of the combination:

K (x, z) =
R∑

r=1

ηrKr (x, z)⇒ K =
R∑

r=1

ηrKr

Note that, a positive combination of positive definite matrices is still a
positive definite matrix. Hence, any positive combination of valid kernels is
still a valid kernel!

Fixed methods or heuristic methods: a very simple rule (or a
heuristics) is used to compute the coefficients (e.g. simple kernel
mean, based on the accuracy of individual kernels, etc.)

Optimization methods: the coefficients are included as further
variables to learn in the optimization problem (e.g. SVM formulation)

Fabio Aiolli Kernels and representation 18 Dicembre 2017 31 / 31

