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(Hierarchical) Representation Learning

Hierarchical Representation Learning

Recent research has addressed the representation problem by injecting
some reasonable priors (regularization), including:

Smoothness

Multiple explanatory factors

Shared factors across the tasks

Manifolds

Sparsity

Hierarchy of explanatory factors

Hierarchical structure of factors with more abstract concepts/features
higher in the hierarchy
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(Hierarchical) Representation Learning

Deep Neural Networks

Deep architectures

Generate models with several levels of abstraction discovering more
and more complicated structures;

Current state-of-the-art in many different tasks;

For instance, Deep Neural Networks (DNNs).

Some drawbacks:

There is not a clear decoupling between the representation and the
model generation;

They have a high training time (tens of layers are difficult to be
handled);

They converge to a sub-optimal solution because of the local
minima and the vanishing gradient issues.
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Multiple Kernel Learning

Kernels and MKL

We consider the (implicit) representation given by kernels

A kernel can be seen as a scalar product in some Hilbert space, i.e
k(x, z) = φ(x) · φ(z), where φ(x) is the representation for the example x

Multiple Kernel Learning (MKL): Given a family kr (x, z) of kernels such
that

kr (x, z) = φr (x) · φr (z) r = 1, . . . ,R

MKL optimizes the coefficients of a weighted sum of kernels:∑R
r=1 arkr (x, z), ar ≥ 0, hence computing a new implicit representation for

x given by
φ(x) = [

√
a1φ1(x), . . . ,

√
aRφR(x)]T
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Expressiveness of kernel representations

Expressiveness of kernel representations

The expressiveness of a kernel function, that is the number of
dichotomies that can be realized by a linear separator in that feature
space, is captured by the rank of the kernel matrices it produces.

Theorem

Let K ∈ RL×L be a kernel matrix over a set of L examples. Let rank(K) be
the rank of K. Then, there exists at least one subset of examples of size
rank(K) that can be shattered by a linear function.
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Expressiveness of kernel representations

Spectral Ratio

The spectral ratio (SR) for a positive semi-definite matrix K is defined as
the ratio between the 1-norm and the 2-norm of its eigenvalues, or
equivalently:

C(K) =
||K||T
||K||F

. (1)

Note that, compared to the rank of a matrix, it does not require the
decomposition of the matrix.

||K||T =
∑
i

Kii

||K||F =

√∑
i ,j

K2
ij
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Expressiveness of kernel representations

Spectral ratio: properties

The (squared) spectral ratio can be seen as an (efficient) strict
approximation of the rank of a matrix:

1 ≤ C(K) ≤
√

rank(K).

The spectral ratio C(K) has the following additional nice properties:

the identity matrix has the maximal spectral ratio with C(IL) =
√
L

(every possible 2L dichotomies);

the kernel K = 1L1>L , the constant matrix, has the minimal spectral
ratio with C(1L1>L ) = 1 (only 2 dichotomies);

it is invariant to multiplication with a positive scalar as
C(αK) = C(K),∀α > 0.
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Expressiveness of kernel representations

Hierarchical Structure of Kernel Representations

Definition

Let be given ki , kj , two kernel functions. We say that ki is more general
than kj (ki ≥G kj) whenever for any possible dataset X, we have

C(K
(i)
X ) ≤ C(K

(j)
X ) with K

(i)
X the kernel matrix evaluated on data X using

the kernel function ki .
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Expressiveness of kernel representations

The Proposed Framework

Given a hierarchical set of features F ,

Learning over a hierarchy of feature spaces: the algorithm

1 Consider a partition P = {F0, . . . ,FR} of the features and
construct kernels associated to those sets of features, in such
a way to obtain a set of kernels of increasing expressiveness,
that is k0 ≥G k1 ≥G · · · ≥G kR ;

2 Apply a MKL algorithm on kernels {k0, · · · , kR} to learn the
coefficients ηηη ∈ RR+1

+ and define

kMKL(x, z) =
∑R

s=0 ηsks(x, z).
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Expressiveness of kernel representations

The Proposed Framework

Several MKL methods to learn the weight vector ηηη can be used, such as:

based on margin optimization:

SPG-GMKL (Jain et al. 2012) very efficient and scalable to many
base kernels
EasyMKL (Aiolli et al. 2015), very efficient and very scalable to many
base kernels (based on KOMD)
. . .

based on radius-margin ratio optimization:

R-MKL (Do et al. 2009), which optimizes an upper bound of the
radius margin ratio
RM-GD (Lauriola et al. 2017), able to optimize the exact ratio
between the radius and the margin
. . .
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Expressiveness of kernel representations

EasyMKL

EasyMKL (Aiolli and Donini, 2015) is able to combine sets of weak
kernels by solving a simple quadratic optimization problem with

Empirical effectiveness

High scalability with respect to the number of kernels
i.e. it is constant in memory and linear in time

Main idea: EasyMKL finds the coefficients of the MKL combination
maximizing the distance (in feature space) between the convex hulls of
positive and negative examples (margin).

The effectiveness strongly depends on the pre-defined weak kernels.
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Expressiveness of kernel representations

RM-GD

RM-GD (Lauriola, Polato and Aiolli, 2017) is a MKL algoritm able to
combine kernels in a two-steps optimization process. Advantages w.r.t.
other similar approaches include:

High scalability with respect to the number of kernels
(linear in both memory and time)

Sparsity of the combination weights

Optimization of the exact radius-margin ratio

Main idea: It exploits a gradient descent procedure, where at each step k

It evaluates the current kernel by using the current combination
weights ηηη(k)

It computes the gradient direction ggg (k) and updates the combination
weights ηηη(k+1) ← ηηη(k) − λ · ggg (k)
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Dot-Product Kernels

The case of Dot-Product Kernels

Theorem

A function f : R→ R defines a positive definite kernel
k : B(0, 1)× B(0, 1)→ R as k : (x, z)→ f (x · z) iff f is an analytic
function admitting a Maclaurin expansion with non-negative coefficients,
f (x) =

∑∞
s=0 asx

s , as ≥ 0.

kernel definition DPP s-th coefficient (as)

Polynomial (x>z + c)D
(D
s

)
cD−s

RBF e−γ‖x−z‖2
e−2γ (2γ)2s

s!

Rational Quadratic 1− ‖x−z‖2

‖x−z‖2+c

(
−

2
∏s

j=1 2+(j−1)

(2+c)s+1 +
∏s

j=1 2+(j−1)

(2+c)s

)
1
s!

Cauchy
(

1 + ‖x−z‖2

γ

)−1
s!!

3s+1γs
1
s!

Table: DPP coefficients for some well-known dot-product kernels.
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Dot-Product Kernels

Famous examples: RBF

The DPP weights of the RBF kernels correspond to a parametric gaussian
function. For example:
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Dot-Product Kernels

Homogeneus Polynomial Kernels

x1x4x5x9

x1x4x5 x1x4x9 x1x5x9 x4x5x9

x1x4 x1x5 x1x9 x4x5 x4x9 x5x9

x1 x4 x5 x9

4-degree

3-degree

2-degree

1-degree

Figure: Arrows represent dependencies among features.

Exploiting these dependencies we were able to demonstrate that (when
normalized) ks ≥G ks+1 for any s = 0, . . . ,D − 1
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Dot-Product Kernels

Non-parametric learning of DPK

The goal is to learn the coefficients as directly from data, thus
generating a new dot-product kernel:

k(x , z) =
D∑

s=0

as(x · z)s . (2)

This problem can be easly formulated as a MKL problem where the weak
kernels are HPKs defined as:

ks(x , z) = (x · z)s , s = 0, . . . ,D, (3)

for some fixed D > 0.
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Dot-Product Kernels

Dot-Product Kernels of Boolean vectors

For boolean vectors, similar expressiveness results can be given by using
the conjunctive kernels in place of the homogeneous polynomial kernels.

Given x, z ∈ {0, 1}n, then any HP-kernel can be decomposed as a finite
non-negative linear combination of C-kernels of the form:

κdHP(x, z) =
d∑

s=0

h(s, d) κs∧(x, z), h(s, d) ≥ 0

Given x, z ∈ {0, 1}n such that ‖x‖1 = ‖z‖1 = m , then any DPK can be
decomposed as a finite non-negative linear combination of normalized
C-kernels:

κ(x, z) = f (〈x, z〉) =
m∑
s=0

g(m, s) κ̃s∧(x, z), g(m, s) ≥ 0
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Dot-Product Kernels

Empirical results

Average accuracy and ratio on binary datasets, by using different MKL
algorithms

dataset average EasyMKL RM-GD

audiology 99.99±0.04 99.99±0.04 100.00±0.00

(92,84,c) 6.08±0.33 5.99±0.32 5.38±0.25

primary-tumor 72.55±4.37 72.69±4.30 74.58±4.58

(132,24,c) 15.87±1.30 15.05±0.87 14.31±0.72

house-votes 99.11±0.41 99.10±0.42 99.20±0.41

(232,16,b) 8.90±1.13 8.90±1.17 8.49±1.13

spect 82.01±3.14 82.06±3.02 83.39±3.10

(267,23,b) 18.91±1.32 18.56±1.15 17.53±1.08

tic-tac-toe 98.82±0.46 99.04±0.39 99.74±0.20

(958,27,c) 73.39±1.57 70.93±1.45 60.75±1.49
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Dot-Product Kernels

Sparsity

Figure: Combination weights learned when using 10 conjunctive kernels
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