Alberi di Decisione (2) Corso di AA, anno 2018/19, Padova

Fabio Aiolli

05 Novembre 2018

Apprendimento di alberi di decisione: Bias induttivo

Come altri algoritmi induttivi, anche ID3 può essere visto come ricerca di una ipotesi che 'fitta' i dati in uno spazio delle ipotesi.

- Lo spazio delle ipotesi è l'insieme dei possibili alberi di decisione.
 Nota che le regole corrispondenti sono un sotto-insieme delle possibili DNF definite sugli attributi delle istanze
- La ricerca è di tipo hill climbing. Si inizia dall'albero vuoto e si procede con alberi via via più elaborati, fermandosi non appena ne troviamo uno consistente con gli esempi. Percui, applicando il principio del guadagno informativo, ne segue che:
 - alberi con un numero minore di nodi sono preferiti rispetto ad alberi più grandi
 - attributi con alto guadagno informativo più vicini alla radice.

Fino ad ora abbiamo considerato solo attributi a valori discreti. Cosa succede se uno o più attributi contengono valori continui?

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	90 (Hot)	High	Weak	No
D2	Sunny	80 (Hot)	High	Strong	No
D3	Overcast	72 (Hot)	High	Weak	Yes
D4	Rain	60 (Mild)	High	Weak	Yes
D5	Rain	40 (Cool)	Normal	Weak	Yes
D6	Rain	48 (Cool)	Normal	Strong	No
D7	Overcast	40 (Cool)	Normal	Strong	Yes
D8	Sunny	60 (Mild)	High	Weak	Yes
D9	Sunny	40 (Cool)	Normal	Weak	Yes

Soluzione: a partire dall'attributo A continuo, creiamo dinamicamente l'attributo (o pseudo-attributo) booleano

$$A_c = \begin{cases} \text{ true } & \text{se } A < c \\ \text{false } & \text{altrimenti} \end{cases}$$

Come selezionare il valore "giusto" per c?

Una possibilità è scegliere il valore c che corrisponde al guadagno informativo massimo!

È stato dimostrato che il valore ottimale (che massimizza il guadagno) si localizza nel valore di mezzo tra due valori con target diverso.

esempi	{D5,D7,D9}	{D6}	{D4,D8}	{D3}	{D2}	{D1}
valore	40	48	60	72	80	90
target	yes	no	yes	yes	no	no
		↑	↑		†	
valore taglio		(44)	(54)	(7	7 6)	

Quindi basta calcolare il guadagno per:

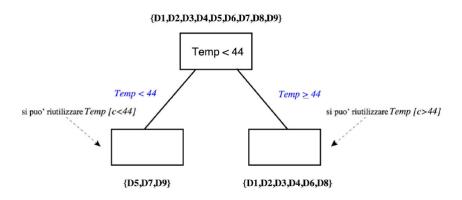
$$c = 44 \quad \underbrace{\{D5, D7, D9\}}_{Temp < 44} \quad \underbrace{\{D1, D2, D3, D4, D6, D8\}}_{Temp \ge 44} \qquad Guadagno \simeq \boxed{\textbf{0.379}}$$

$$c = 54 \quad \underbrace{\{D5, D6, D7, D9\}}_{Temp < 54} \quad \underbrace{\{D1, D2, D3, D4, D8\}}_{Temp \ge 54} \qquad Guadagno \simeq \textbf{0.091}$$

$$c = 76 \quad \underbrace{\{D3, D4, D5, D6, D7, D9\}}_{Temp < 76} \quad \underbrace{\{D1, D2, D8\}}_{Temp > 76} \qquad Guadagno \simeq \textbf{0.093}$$

Viene selezionato il taglio c=44 in quanto corrisponde al taglio di guadagno massimo!

Attenzione! Nel caso di attributi continui, a differenza di quelli discreti, lo stesso attributo potrà essere riutilizzato sullo stesso cammino (in tal caso ovviamente il valore del taglio ottimo cambierà).



Attributi con valori mancanti

Problema: Nelle applicazioni pratiche può succedere che, per alcuni esempi, alcuni attributi non abbiano un valore assegnato (valore mancante).

Esempio: Diagnosi medica

- Per il paziente 38 manca il risultato della TAC:
- Per il paziente 45 mancano gli esami del sangue e la radiografia.

Possibili soluzioni: Sia dato un insieme di esempi Tr, quando per un esempio (x, y) manca il valore di un attributo A:

- a) Utilizzare per A il valore più frequente in $\hat{T}r$;
- b) Come in a) ma considerando solo esempi con target y;
- c) Considerando tutti i valori $v_i \in V(A)$, e la loro probabilità di occorrere $p(v_i|\hat{T}r)$, stimata su $\hat{T}r$. Quindi, sostituire l'esempio (x,y) con |V(A)|"istanze frazionarie", una per ogni valore v_i e peso uguale a $p(v_i|\hat{T}r)$.

Attributi con valori mancanti (esempio soluzione a)

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	-	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes

Consideriamo l'attributo Outlook e l'esempio D5:

$$D5 \rightarrow ([Sunny, Cool, Normal, Weak], Yes)$$

poiché
$$P(\operatorname{Sunny}|\hat{T}r) = \frac{1}{2}$$
, $P(\operatorname{Overcast}|\hat{T}r) = P(\operatorname{Rain}|\hat{T}r) = \frac{1}{4}$

Fabio Aiolli

Attributi con valori mancanti (esempio soluzione b)

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	-	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes

Consideriamo l'attributo Outlook e l'esempio D5:

$$exttt{D5}
ightarrow exttt{([Overcast, Cool, Normal, Weak],Yes)}$$

poiché
$$P(0|y=Yes,\,\hat{T}r)=\frac{1}{2},\,P(S|y=Yes,\,\hat{T}r)=P(R|y=Yes,\,\hat{T}r)=\frac{1}{4}$$

Alberi di Decisione (2)

Attributi con valori mancanti (esempio soluzione b)

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	-	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes

Consideriamo l'attributo Outlook e l'esempio D5:

$$\text{D5} \rightarrow \left\{ \begin{array}{ll} \text{D5}_{\text{S}} = \text{[Sunny, Cool, Normal, Weak]} & p_S = 1/2 \\ \text{D5}_{0} = \text{[Overcast, Cool, Normal, Weak]} & p_O = 1/4 \\ \text{D5}_{\text{R}} = \text{[Rain, Cool, Normal, Weak]} & p_R = 1/4 \end{array} \right.$$

Attributi con valori mancanti (esempio soluzione c)

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5'	-	Cool	Normal	-	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes

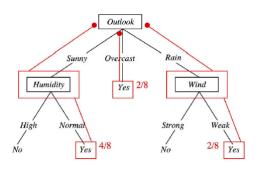
Consideriamo l'attributo Outlook e l'esempio D5':

Se più attributi hanno valori mancanti, si continuano a frazionare gli esempi già frazionati ed il peso associato all'esempio è dato dal prodotto dei pesi ottenuti considerando un solo attributo a turno

Attributi con valori mancanti (esempio soluzione c)

Immaginiamo di dover classificare una nuova istanza con attributi mancanti. In questo caso, per ogni esempio frazionario si esegue la classificazione e per ogni possibile etichetta si sommano i pesi degli esempi che raggiungono foglie corrispondenti a quella etichetta.

Esempio: Classificazione di D5 con soluzione c



$$P(Yes) = 4/8 + 2/8 + 2/8 = 1$$

$$P(No) = 0$$

Attributi con valori mancanti (esempio soluzione c)

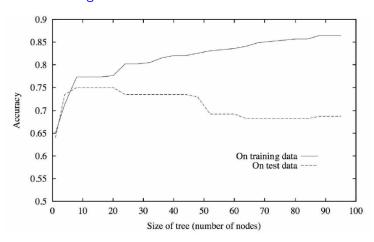
13 / 19

Apprendimento con soluzione c

- Modificare il concetto di cardinalità di un insieme in modo da considerare i pesi frazionari
- Modificare la definizione di Guadagno Informativo conseguentemente

Apprendimento di alberi di decisione: overfitting

Problema: Overfitting



(Parziale) Soluzione: Potatura (o pruning)

Reduced Error Pruning

- Dividere Tr in Tr' e Va (validation set), Tr = Tr' ∪ Va
- Ripetere fino a quando le prestazioni peggiorano:
 - Per ogni nodo (interno) valutare l'accuratezza su Va nel caso il sotto-albero radicato nel nodo venga potato
 - Effettuare la potatura che corrisponde alla miglior performance sul validation set.

In questo caso, effettuare la potatura significa sostituire, al posto di un sotto-albero radicato in un nodo, un nodo foglia etichettato con la etichetta più frequente negli esempi associati a quel nodo.

Rule-Post Pruning

L'idea di base è trasformare l'albero di decisione in un insieme di regole, e poi effettuare la potatura delle regole.

• Si genera una regola R_i per ogni cammino $path(r, f_i)$ dalla radice r alla foglia i-esima f_i . R_i sarà della forma:

$$IF(Att_{i_1} = v_{i_1}) \cap (Att_{i_2} = v_{i_2}) \cap \cdots \cap (Att_{i_k} = v_{i_k})THEN$$
 $label_{f_i}$

- Si effettua la potatura indipendentemente su ogni R_i:
 - ullet Si stimano le prestazioni ottenute usando SOLO R_i come classificatore
 - Si rimuovono le precondizioni (una o più) che conducono ad un aumento della stima delle prestazioni sul validation set, utilizzando un approccio greedy
- Si ordinano le R_i potate in ordine decrescente di prestazione; eventualmente si aggiunge una regola di default che restituisce la classe più frequente

Classificazione con Post-Rule Pruning

La classificazione avviene seguendo l'ordine stabilito dalle regole:

- La prima regola la cui precondizione è soddisfatta dalla istanza viene usata per generare la classificazione
- Se nessuna regola ha le precondizioni soddisfatte, si utilizza la regola di default per classificare l'istanza (si ritorna la classe più frequente nell'insieme di training)

Considerazioni su Post-Rule Pruning

Alcune considerazioni su Post-Rule Pruning:

- La stima delle prestazioni necessaria per effettuare la potatura può essere fatta sia usando un insieme di validazione che utilizzando un test statistico sui dati di apprendimento
- La trasformazione Albero → Regole permette di generare regole dove si possono considerare contesti per un nodo che non necessariamente contengono i nodi antecedenti (e in particolare la radice): stiamo cambiando lo spazio delle ipotesi in effetti!
- Rispetto agli alberi, di solito le regole sono più semplici da comprendere per un umano
- Di solito, Post-Rule Pruning riesce a migliorare le performance rispetto all'albero su cui è applicato e si comporta meglio del Reduced-Error Pruning

Recap

Nozioni

- Bias induttivo degli alberi di decisione
- Alberi di decisione per attributi continui
- Alberi di decisione per valori di attributo mancanti
- Il problema dell'overfitting
- Alberi di decisione e regole

Esercizi proposti

 Confrontare la versione di alberi di decisione utilizzata nel software sklearn con la teoria vista a lezione.