|
Fabio Aiolli |
| Research Area: | Machine Learning |
|
|
|
| University: | Padova |
| Department: | Matematica Pura ed Applicata |
| Address: | Via Belzoni, 7 |
| 35131 Padova | |
|
|
|
| Tel.: | 049 827 5972 |
| Fax: | 049 827 5892 |
| e-mail: | aiolli@math.unipd.it |
| Office: | 06 ground floor, Plesso Paolotti |
| Journals | |
| F. Aiolli, A. Sperduti | Multiclass
Classification with Multi-Prototype Support Vector Machines Journal of Machine Learning Research, 6(May) 2005 - pages 817-850. |
| F. Aiolli, A. Sperduti | A
re-weighting strategy for improving margins AI Journal, 2002 (137) - pages 197-216. |
| Conferences | |
| F. Aiolli | A Preference Model for Structured
Supervised Learning Tasks Proceedings of the ICDM Conference, New Orleans (Louisiana, USA) 2005 |
| F. Aiolli, A. Sperduti | Learning
Preferences for Multiclass Problems Proceedings of the NIPS Conference, Vancouver Canada 2004. |
| F. Aiolli, A. Sperduti | Multi-prototype
Support Vector Machines Proceedings of the IJCAI Conference, Acapulco Mexico 2003. |
| F. Aiolli, F. Portera, A. Sperduti | Speeding
up the solution of multi-label problems with Support Vector Machines Supplementary Proceedings of the ICANN/ICONIP Turkey, 2003. |
| F. Aiolli, A. Sperduti | An
Efficient SMO-like algorithm for Multiclass SVM Proceedings of the NNSP, 2002. |
| F. Aiolli, A. Sperduti | A
simple additive re-weighting scheme for improving margins Proceedings of the IJCAI Conference, Seattle USA 2001. |
Master Thesis
During my master thesis I applied Tangent Distance
based
algorithms to the Paleographic field with very promising results.
Personally, I implemented SPI (A System for Palegraphic
Inspections), an integrated system that applies innovative
segmentation
and supervised learning techniques to the problem of paleographic
document
retrieval.
Last
modified:
Sep 30, 2005.