

Looking at some data

	<u>Color</u>	<u>Size</u>	Shape	Edible?	
	Yellow	Small	Round	+	
	Yellow	Small	Round	-	
	Green	Small	Irregular	+	
	Green	Large	Irregular	-	
	Yellow	Large	Round	+	
	Yellow	Small	Round	+	
	Yellow	Small	Round	+	
	Yellow	Small	Round	+	
	Green	Small	Round	-	
	Yellow	Large	Round	-	
	Yellow	Large	Round	+	
	Yellow	Large	Round	-	
	Yellow	Large	Round	-	
	Yellow	Large	Round	-	
	Yellow	Small	Irregular	+	
	Yellow	Large	Irregular	+	
Dip. di Matematica Pura ed Applicata	F. Aiolli - Sistemi Informativi 2006/2007				56

Entropy for our data set

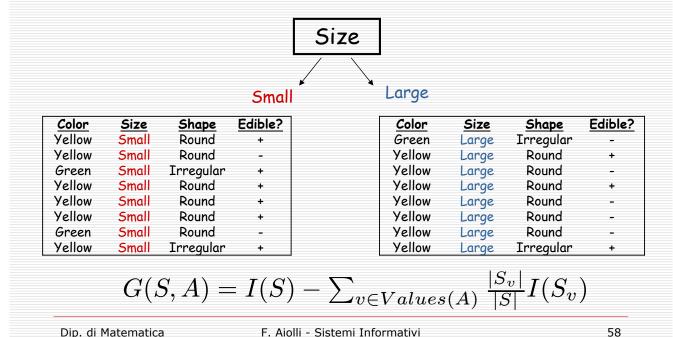
□ 16 instances: 9 positive, 7 negative.

$$I(all_data) = -\left[\left(\frac{9}{16}\right)\log_2\left(\frac{9}{16}\right) + \left(\frac{7}{16}\right)\log_2\left(\frac{7}{16}\right)\right]$$

□ This equals: 0.9836

This makes sense - it's almost a 50/50 split; so, the entropy should be close to 1.

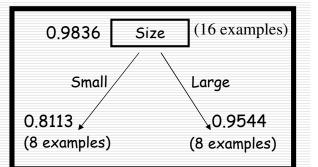
Dip. di Matematica Pura ed Applicata



Dip. di Matematica Pura ed Applicata F. Aiolli - Sistemi Informativi 2006/2007

Visualizing Information Gain

The data set that goes down each branch of the tree has its own entropy value. We can calculate for each possible attribute its **expected entropy**. This is the degree to which the entropy would change if branch on this attribute. You **add** the entropies of the two children, **weighted** by the proportion of examples from the parent node that ended up at that child.



Entropy of left child is <u>0.8113</u> I(size=small) = 0.8113

Entropy of right child is <u>0.9544</u> I(size=large) = 0.9544

$I(S_{Size}) = (8/16)^{*}.8113 - (8/16)^{*}.9544 = .8828$

Dip. di Matematica Pura ed Applicata F. Aiolli - Sistemi Informativi 2006/2007 59

G(attrib) = I(parent) - I(attrib)

We want to calculate the *information gain* (or entropy reduction). This is the reduction in 'uncertainty' when choosing our first branch as 'size'. We will represent information gain as "G."

 $G(size) = I(S) - I(S_{Size})$ G(size) = 0.9836 - 0.8828G(size) = 0.1008

> <u>Entropy</u> of all data at parent node = **I(parent)** = 0.9836 Child's <u>expected entropy</u> for 'size' split = **I(size)** = 0.8828

So, we have gained 0.1008 *bits* of information about the dataset by choosing 'size' as the first branch of our decision tree.

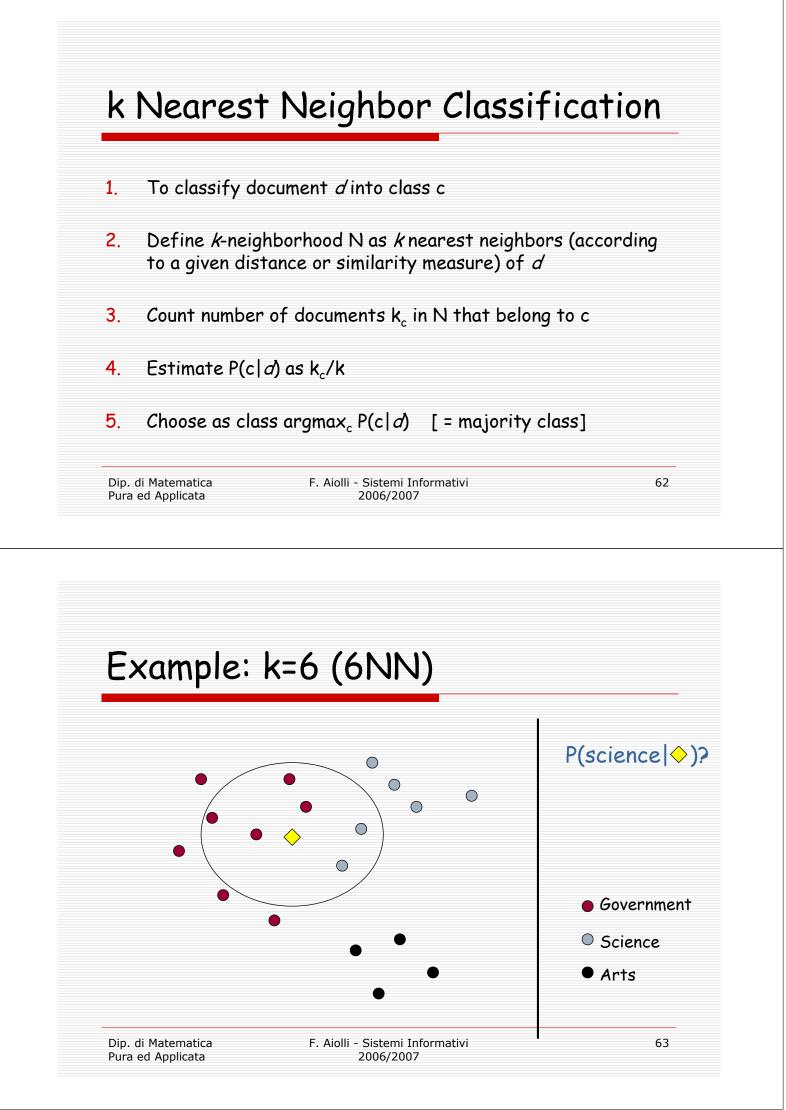
Dip. di Matematica Pura ed Applicata F. Aiolli - Sistemi Informativi 2006/2007

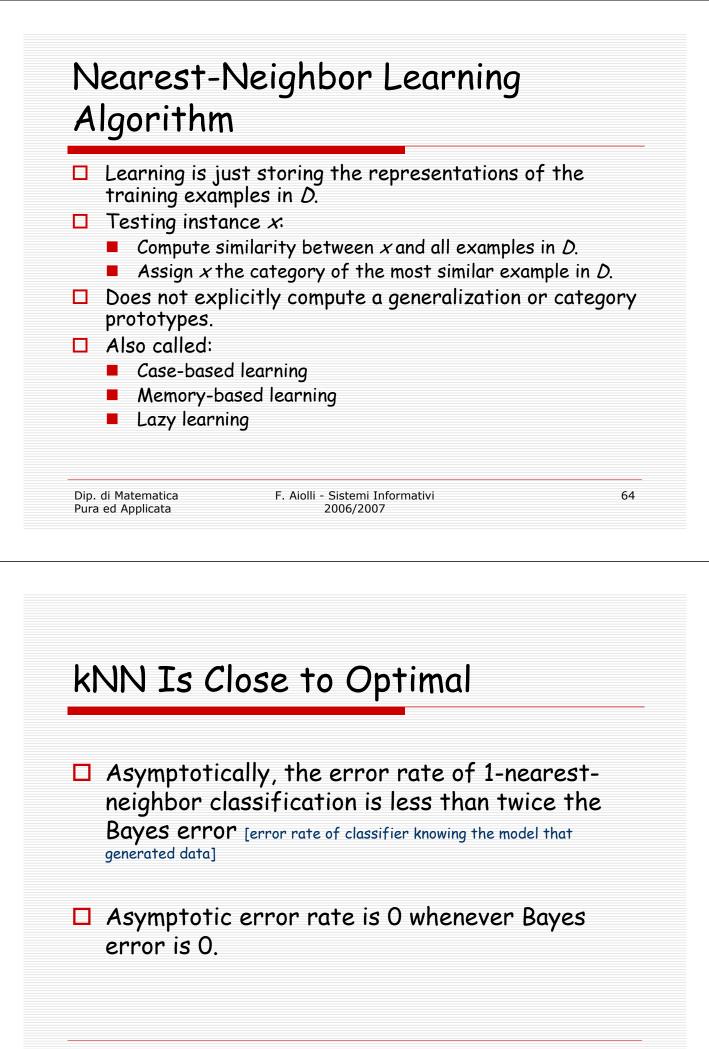
Example-based Classifiers

Example-based classifiers (EBCs) learns from the categories of the training documents similar to the one to be classified

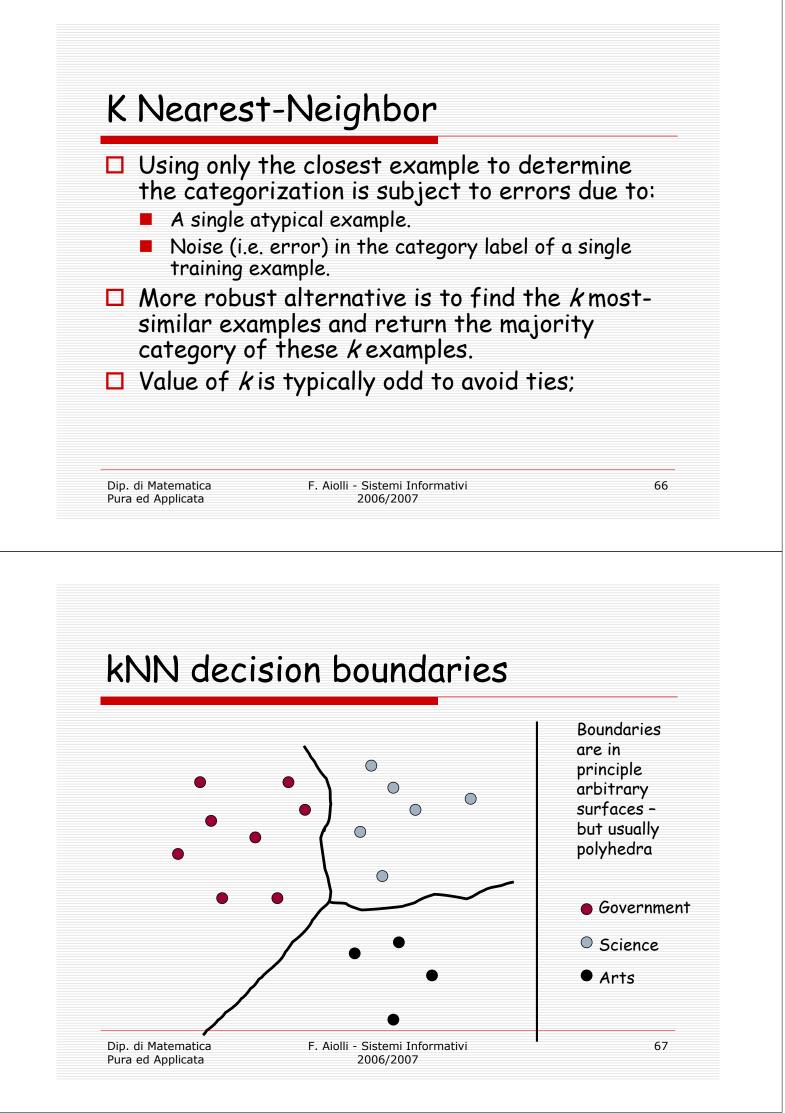
The most frequently used EBC is the k-NN algorithm

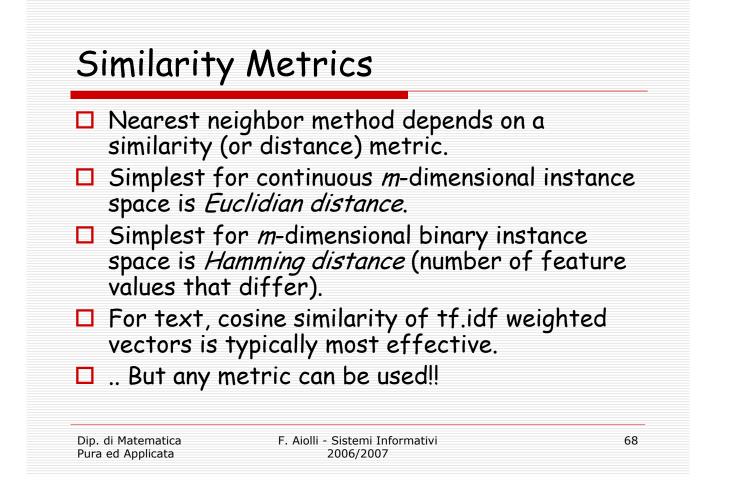
F. Aiolli - Sistemi Informativi 2006/2007 60





Dip. di Matematica Pura ed Applicata F. Aiolli - Sistemi Informativi 2006/2007 65





Nearest Neighbor with Inverted Index

- Naively finding nearest neighbors requires a linear search through |D| documents in collection
- But determining k nearest neighbors is the same as determining the k best retrievals using the test document as a query to a database of training documents.
- Use standard vector space inverted index methods to find the k nearest neighbors.
- **Testing Time:** $O(B/V_t/)$ where B is the average number of training documents in which a test-document word appears.
 - Typically B << |D|</p>

kNN: Discussion

□ No feature selection necessary

□ Scales well with large number of classes

- Don't need to train n classifiers for n classes
- Classes can influence each other
 - Small changes to one class can have ripple effect
- Scores can be hard to convert to probabilities
- □ No training necessary

Dip. di Matematica
Pura ed Applicata

F. Aiolli - Sistemi Informativi 2006/2007 70

The Rocchio Method

The Rocchio Method is an adaptation to TC of Rocchio's formula for relevance feedback. It computes a profile for c_i by means of the formula

$$w_{ki} = \frac{1}{|POS|} \sum_{d_j \in POS} w_{kj} - \delta \frac{1}{|NEG|} \sum_{d_j \in NEG} w_{kj}$$

where POS = {d_j \in Tr| y_j=+1} NEG = {d_j \in Tr| y_j=-1}, and δ may be seen as the ratio between γ and β parameters in RF

In general, Rocchio rewards the similarity of a test document to the centroid of the positive training examples, and its dissimilarity from the centroid of the negative training examples

Typical choices of the control parameter δ are $0 \le \delta \le .25$

Rocchio: a simple case study					
When S =0					
compute a vectors of category. Prototyp Assign tes	category (possibly, more that <i>prototype</i> vector by summi the training documents in e = centroid of members of class t documents to the categor t prototype vector based of	ng the the s y with			
Dip. di Matematica Pura ed Applicata	F. Aiolli - Sistemi Informativi 2006/2007	72			

Rocchio Time Complexity

- Note: The time to add two sparse vectors is proportional to minimum number of non-zero entries in the two vectors.
- **Training Time:** $O(|D|(L_d + |V_d|)) = O(|D| L_d)$ where L_d is the average length of a document in D and V_d is the average vocabulary size for a document in D.
- □ Test Time: $O(L_t + |C|/|V_t|)$ where L_t is the average length of a test document and $|V_t|$ is the average vocabulary size for a test document.
 - Assumes lengths of **centroid** vectors are computed and stored during training, allowing cosSim(\mathbf{d}, \mathbf{c}_i) to be computed in time proportional to the number of non-zero entries in \mathbf{d} (i.e. $/V_t/$)