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The Rocchio Method (Pro and Cons)

� Advantages
� The method is efficient and easy to implement

� The resulting classifiers are easy interpretable. This does 
not happen for other approaches such as e.g. NNs

� Drawbacks
� The resulting classifier are seldom very effective 

[Cohen&Singer96, Joachims98,Lewis+96,Yang99]

� If the documents in cj occur in disjoint clusters a Rocchio
classifier may be very ineffective: as all linear classifers, it 
partition the space of documents in two linearly separable 
subspaces. But many naturally occurring categories are not 
linearly separable
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Rocchio Vs k-NN
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The Rocchio Method (Enhancements)

� Instead of considering the set of negative training instances 
in its entirely, a set of near-positives might be selected (as 
in RF). This is called the query zoning method

� Near positives are more significant, since they are the most 
difficult to tell apart from the positives. They may be 
identified by issuing a Rocchio query consisting of the 
centroid of the positive training examples against a 
document base consisting of the negative training examples. 
The top-ranked ones can be used as near positives.

� Some claim that, by using query zones plus other 
enhancements, the Rocchio method can achieve levels of 
effectiveness comparable to state-of-the art methods while 
being quicker to train 
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Linear Classifiers

� A linear classifier is a classifier such that classification is 
performed by a dot product between the two vectors 
representing the document and the category, respectively. 
Therefore it consists in a document-like representation of 
the category ci

� Linear classifiers are thus very efficient at classification 
time

� Methods for learning linear classifiers can be partitioned in 
two broad classes
� Incremental methods (IMs) (or on-line) build a classifier soon 

after examining the first document, as incrementally refine it 
as they examine new ones

� Batch methods (BMs) build a classifier by analyzing Tr all at 
once. 
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LCs for Binary Classification

� Consider 2 class problems in VSM
� Deciding between two classes, perhaps, 
sport and not sport

� How do we define (and find) the separating 
surface (hyperplane)?

� How do we test which region a test doc 
is in?
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Separation by Hyperplanes

� A strong high-bias assumption is linear separability:
� in 2 dimensions, can separate classes by a line

� in higher dimensions, need hyperplanes

� Can find separating hyperplane by linear 
programming 
(or can iteratively fit solution via perceptron):

� separator can be expressed as 

ax + by = c
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Linear programming / Perceptron

Find a,b,c, such that

ax + by ≥ c for red points
ax + by ≤ c for green points.
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Linear programming / Perceptron

wt x + b > 0

You can write y ([w b] [x 1]t) > 0

Thus, we want to compute a vector W s.t. 

Yi Wt Xi > 0 

where W=[w b]t and Xi=[xi 1]t

If x belongs to 
Sport (y = +1)

Otherwise (y = -1)wt x + b < 0
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The Perceptron Algorithm

A simple (but powerful) method is the 
perceptron

1. Initialize W=0

2. For all training examples (Xi,yi), i=1,..,n
If (yi Wt · Xi <= 0 ) W = W + yi Xi

3. If no errors have been done in step 2, stop. 
Otherwise repeat step 2.
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Linear classifier: Example

� Class: “interest” (as in interest rate)

� Example features of a linear classifier
� wi ti wi ti

� To classify, find dot product of feature vector and weights
� Score(“rate discount dlrs world”) = .67+.46-.71-.35=0.05 > 0

� Score(“prime dlrs”) = .70-.71=-.01 < 0

• 0.70 prime
• 0.67 rate
• 0.63 interest
• 0.60 rates
• 0.46 discount
• 0.43 bundesbank

• -0.71 dlrs
• -0.35 world
• -0.33 sees
• -0.25 year
• -0.24 group
• -0.24 dlr
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Linear Classifiers
� Many common text classifiers are linear classifiers

� Naïve Bayes
� Perceptron
� Rocchio
� Logistic regression
� Support vector machines (with linear kernel)
� Linear regression
� (Simple) perceptron neural networks

� Despite this similarity, large performance differences
� For separable problems, there is an infinite number of 

separating hyperplanes. Which one do you choose?
� What to do for non-separable problems?
� Different training methods pick different hyperplanes

� Classifiers more powerful than linear often don’t perform 
better. Why?
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High Dimensional Data

� Documents are zero along almost all axes

� Most document pairs are very far apart 
(i.e., not strictly orthogonal, but only 
share very common words and a few 
scattered others)

� In classification terms: virtually all 
document sets are separable, for most 
any classification

� This is part of why linear classifiers are 
quite successful in this domain
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Naive Bayes is a linear classifier

� Two-class Naive Bayes. We compute:

� Decide class C if the odds ratio is greater than 1, i.e., if 
the log odds is greater than 0.

� So decision boundary is hyperplane:
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kNN vs. Linear Classifiers

� Bias/Variance tradeoff
� Variance ≈ Capacity

� kNN has high variance and low bias.
� Infinite memory

� LCs has low variance and high bias.
� Decision surface has to be linear (hyperplane)

� Consider: Is an object a tree? 
� Too much capacity/variance, low bias

� Botanist who memorizes
� Will always say “no” to new object (e.g., # leaves)

� Not enough capacity/variance, high bias
� Lazy botanist
� Says “yes” if the object is green

� Want the middle ground
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Bias vs. variance: 
Choosing the correct model capacity


