Which Hyperplane?

Find a,b,c, such that
O | ax + by > c for red points

a-+ b <cfor
points.

In general, lots of possible
solutions for a,b,c.
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The Support Vector Machine

O The support vector machine (SVM) method
attempts to find, among all the decision surfaces
hy,h,,..,h, in d-dimensional space, the one h,,,, that
does it by the widest possible margin

O This method applies the so called structural risk
minimization principle, in contrast to the empirical
minimization principle

Learning a SVM is typically a quadratic problem
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SVM
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The Support Vector Machine

O The maximal margin hyperplane is also
called optimal hyperplane

O Why it should be the best?

B Keep training data far away from the
classifier (fairly certain class. decisions)

B The capacity of the model decreases as the
separator become fatter. N.B. the bias has
been fixed as we are looking for a linear
separation in feature space
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The Support Vector Machine

O The (functional) margin of data points is
often used as a measure of confidence in
the prediction of a classifier,

pi=Yi(wx;+b)
O The geometric margin p of a classifier is

the Euclidean distance between the
hyperplane and the closest point

0 It can be shown thatp =2/||w]|
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The SVM problem

O Find an hyperplane, consistent with the labels of
the points, that maximizes the geometric margin,
ie.

Min 1\2 ||w]|2
And for all {(x;y:), y(w x; + b) > 1}

O This is a (convex) constrained quadratic problem.
Thus it guarantees a unique solution!

Many QP algori‘rhms exists to find the solution of
this quadratic problem

In SVM related literature, many algorithms have
been devised ad hoc for this kind of quadratic
problem (svmlight, bsvm, SMO, ...)
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Solving the optimization problem

O Typically, solving an SVM boils down into solving
the dual problem where Lagrange multipliers
a; > O are associated with every constraint in the

primary problem
O The solution turns out to be in the form
Bow=2 Yo X
B b=-y, -<w, xo forany x,s.t. 0, >0
OO0 In the solution most of the o; are zeros. Examples

associated with non zero multipliers are called
support vectors

O hgym(x) = sign(w x + b) = sign(X; y; o; <x;, x>+ b)
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Non-separable Datasets

1 I
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Soft margin SVM

O Find an hyperplane, consistent with the labels of
the points, that maximizes the function
Min N2 [|w][2+ C 3§
And for all {(x.y). yilw x; + b) > 1-&, £> 0}

The ]Ear'ame’rer' C can be seen as a way to control
overfitting.

As C becomes larger it is unactractive to not
respect the data at the cost of reducing the
geometric margin.

When C is small, larger margin is possible at the
cost of increasing errors in training data

Interestingly, the SVM solution is in the same
form as in The hard margin case!
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Non-separable Datasets

How can we separate these data?
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Non-separable Datasets

Projecting them into a higher
dimensional space

=0 e O O OO
d : x = 0(x)
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Solving the optimization problem

O hgym(x) = sign(w ¢(x) + b)
= sign(X; y; o; <0(x;), 0(x)> + b)
= sign(2; y; o; K(x;,x) + b)

O Where K(x;,x) is the kernel function such
that K(x;,x) = <d(x;), d(x)>
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Advantages of SVM

O SVMs have important advantages for TC

B The 'best’ decision surface is determined by only a small set of
training examples, called the support vector (in the linear case,
everything can be compacted in one vector only)

B Different kernel functions can be plugged in, corresponding to
different ways of computing the similarity of document

B The method is applicable also to the case in which the sample is
not separable

B No term selection is usually needed, as SVMs are fairly robust
to overfitting and can scale up to high dimensionalities
O  SVM has been shown among the top performing systems in a
number of experiments [Dumais+98,Joachims98,Yang&Liu99]
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