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Which Hyperplane?

In general, lots of possible

solutions for a,b,c.

Find a,b,c, such that

ax + by ≥ c for red points
ax + by ≤ c for green
points.
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The Support Vector Machine

� The support vector machine (SVM) method 
attempts to find, among all the decision surfaces 
h1,h2,..,hn in d-dimensional space, the one hsvm that 
does it by the widest possible margin

� This method applies the so called structural risk 
minimization principle, in contrast to the empirical 
minimization principle

� Learning a SVM is typically a quadratic problem 
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SVM
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The Support Vector Machine

� The maximal margin hyperplane is also 
called optimal hyperplane

� Why it should be the best?
� Keep training data far away from the 
classifier (fairly certain class. decisions)

� The capacity of the model decreases as the 
separator become fatter. N.B. the bias has 
been fixed as we are looking for a linear 
separation in feature space
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The Support Vector Machine

� The (functional) margin of data points is 
often used as a measure of confidence in 
the prediction of a classifier, 

ρi = yi (w xi + b)

� The geometric margin ρ of a classifier is 
the Euclidean distance between the 
hyperplane and the closest point

� It can be shown that ρ = 2/||w||
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The SVM problem

� Find an hyperplane, consistent with the labels of 
the points, that maximizes the geometric margin, 
i.e.

Min 1\2 ||w||2
And for all {(xi,yi), yi(w xi + b) ≥ 1}

� This is a (convex) constrained quadratic problem. 
Thus it guarantees a unique solution!

� Many QP algorithms exists to find the solution of 
this quadratic problem

� In SVM related literature, many algorithms have 
been devised ad hoc for this kind of quadratic 
problem (svmlight, bsvm, SMO, …)
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Solving the optimization problem

� Typically, solving an SVM boils down into solving 
the dual problem where  Lagrange multipliers
αi ≥ 0 are associated with every constraint in the 
primary problem

� The solution turns out to be in the form
� w = ∑i yiαi xi
� b = yk – <w, xk> for any xk s.t. αk > 0

� In the solution most of the αi are zeros. Examples 
associated with non zero multipliers are called 
support vectors

� hSVM(x) = sign(w x + b) = sign(∑i yi αi <xi, x> + b) 

Dip. di Matematica 
Pura ed Applicata

F. Aiolli - Sistemi Informativi 
2006/2007

96

Non-separable Datasets

ξξξξj

ξξξξi
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Soft margin SVM

� Find an hyperplane, consistent with the labels of 
the points, that maximizes the function

Min 1\2 ||w||2 + C ∑i ξi
And for all {(xi,yi), yi(w xi + b) ≥ 1-ξi, ξi≥ 0}

� The parameter C can be seen as a way to control 
overfitting. 

� As C becomes larger it is unactractive to not 
respect the data at the cost of reducing the 
geometric margin. 

� When C is small, larger margin is possible at the 
cost of increasing errors in training data

� Interestingly, the SVM solution is in the same 
form as in the hard margin case!
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Non-separable Datasets

How can we separate these data?
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Non-separable Datasets

Projecting them into a higher 
dimensional space

ΦΦΦΦ : x →→→→ φφφφ(x)
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Solving the optimization problem

� hSVM(x) = sign(w φ(x) + b) 

= sign(∑i yi αi <φ(xi), φ(x)> + b) 

= sign(∑i yi αi K(xi,x) + b)

� Where K(xi,x) is the kernel function such 
that K(xi,x) = <φ(xi), φ(x)>
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Advantages of SVM

� SVMs have important advantages for TC
� The ‘best’ decision surface is determined by only a small set of 

training examples, called the support vector (in the linear case, 
everything can be compacted in one vector only)

� Different kernel functions can be plugged in, corresponding to 
different ways of computing the similarity of document

� The method is applicable also to the case in which the sample is
not separable

� No term selection is usually needed, as SVMs are fairly robust 
to overfitting and can scale up to high dimensionalities

� SVM has been shown among the top performing systems in a 
number of experiments [Dumais+98,Joachims98,Yang&Liu99] 


