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The (DUAL) Perceptron Algorithm

1. Initialize αi=0, i=1,...,n

2. For all training examples (Xi,yi), i=1,..,n
If (yi ∑i=1,..,n yi αj Xi Xj <= 0 ) αi++

3. If no errors have been done in step 2, stop. 
Otherwise repeat step 2.
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Committees of Classifiers

� Classifier Committee (CCs) is based on applying k 
different classifiers h1, .. , hk to the same task and 
then combining their outcomes

� Usually the classifiers are chosen to be different 
in some respect
� Different indexing approach

� Different learning method applied

� Different types of errors !!

� It must be defined a way to combine them

� Justified only by superior effectiveness
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Combination rules

� Majority Voting: the classification decision that 
reach the majority of votes is taken

� Weighted Linear Combination: a weighted sum of 
the k CSVi’s yields the final CSVi

� Dynamic Classifier Selection: the judgment of the 
classifier ht that yields the best effectiveness on 
the validation examples most similar to dj is 
adopted

� Adaptive Classifier Combination: the judgment of 
all the classifiers are summed together, but their 
individual contribution is weighted by their 
effectiveness on the examples most similar to dj
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Boosting

� Boosting is a CC method whereby the 
classifiers (‘weak hypothesis’) are trained 
sequentially by the same learner (‘weak 
learner’), and are combined into a CC (‘final 
hypothesys’)

� The training of ht is done in such a way to 
try to make the classifier to perform well 
on examples in which h1,..,ht-1 have 
performed worst

� AdaBoost is a popular Boosting algorithm 
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Freund & Schapire’s AdaBoost

At iteration s:

1. Passes a distribution Ds of weights to the weak learner, 
where Ds(dj) measures how effective h1,..,hs-1 have been in 
classifying dj

2. The weak learner returns a new weak hypothesis hs that 
concentrates on documents with the highest Ds values

3. Runs hs on Tr and uses the results to produce an updated 
distribution Ds+1 where

� Correctly classified documents have their weights 
decreased

� Misclassified documents have their weights increased 
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Evaluating TC systems

� Similarly to IR systems, the evaluation of 
TC systems is to be conducted 
experimentally, rather than analytically

� Several criteria of quality:
� Training-Time efficiency
� Classification-Time efficiency
� Effectiveness

� In operational situations, all three criteria 
must be considered, and the right tradeoff 
between them depends on the application
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Types of predictions [Aiolli05]

� Ordering Predictions
� Ordering of classes (or documents) on a 

relevance basis in such a way to be consistent 
with the supervision given as partial orders over 
the classes (or documents)

� Single-label classification, ranking

� Rating Predictions
� Giving ranks from an ordinal scale to examples

� Binary classification, ordinal regression, and 
their multivariate extensions
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Supervision

� Supervision can be described as 
conjunctive sets of preferences of two 
types

� Qualitative Preferences 
� (u(di,yr), u(dj,ys))

� Quantitative Preferences (τ ∈ R)

� (u(d,y), τ)
� (τ, u(d,y))
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Linear Preferences

� Now, consider linear expansion of the 
relevance function
� u(d,y) = w · φ(d,y) 
� where φ(d,y) ∈ Rd is a joint representation of 

document-class pairs and w a weight vector

� Qualitative preferences can be written as
w · (φ(di,yr)- φ(dj,ys)) > 0

� Quantitative preferences δ(u(d,y)-τ) can be 
written as
(w,τ) · (δ φ(d,y),-δ)>0
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Summarizing

� All the problem setting above can be 
seen as homogeneous linear problems in 
an opportune augmented space

� Any algorithm for linear optimization 
(e.g. perceptron, SVMs, or a linear 
programming package) can be used to 
solve them


