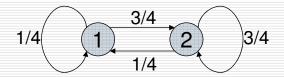
Probability vectors

- \square A probability (row) vector $\mathbf{x} = (x_1, ... x_n)$ tells us where the walk is at any point.
- \square E.g., (000...1...000) means we're in state *i*.

More generally, the vector $\mathbf{x} = (x_1, ... x_n)$ means the walk is in state *i* with probability x_i .

$$\sum_{i} x_{i} = 1$$


Dip. di Matematica Pura ed Applicata F. Aiolli - Sistemi Informativi 2006/2007 21

Change in probability vector

- □ If the probability vector is $\mathbf{x} = (x_1, ... x_n)$ at this step, what is it at the next step?
- □ Recall that row i of the transition prob. Matrix P tells us where we go next from state i.
- \square So from \mathbf{x} , our next state is distributed as \mathbf{xP} .

Steady state example

- \square The steady state looks like a vector of probabilities **a** = $(a_1, ..., a_n)$:
 - \blacksquare a_i is the probability that we are in state *i*.

For this example, $a_1=1/4$ and $a_2=3/4$.

Dip. di Matematica Pura ed Applicata F. Aiolli - Sistemi Informativi 2006/2007 23

How do we compute this vector?

- Let $\mathbf{a} = (a_1, \dots a_n)$ denote the row vector of steady-state probabilities.
- ☐ If our current position is described by **a**, then the next step is distributed as **aP**.
- \square Whenever **a** is the steady state, it should be **a=aP**.
- □ Solving this matrix equation gives us **a**.
 - So a is the (left) eigenvector for P.
 - (Corresponds to the "principal" eigenvector of P with the largest eigenvalue.)
 - Transition probability matrices always have larges eigenvalue 1.

One way of computing a

- □ Recall, regardless of where we start, we eventually reach the steady state **a**.
- \square Start with any distribution (say x=(10...0)).
- \square After one step, we're at $\times P$;
- \square After two steps at $\times P^2$, then $\times P^3$ and so on.
- \square "Eventually" means for "large" k, $\times P^k = a$.
- ☐ Algorithm: multiply x by increasing powers of P until the product looks stable.
- □ Strict convergence is not necessary;
 - [Brin&Page98] reports acceptable convergence on 322M nodes in about 50 iterations

Dip. di Matematica Pura ed Applicata F. Aiolli - Sistemi Informativi 2006/2007 25

Pagerank summary

- □ Preprocessing:
 - Given graph of links, build matrix P.
 - From it compute a.
 - The entry a_i is a number between 0 and 1: the pagerank of page i.
- Query processing:
 - Retrieve pages meeting query.
 - Rank them by their pagerank.
 - Order is query-independent.

Topic Specific Pagerank [Have02]

- Conceptually, we use a random surfer who teleports, with say 10% probability, using the following rule:
 - □ Selects a category (say, one of the 16 top level ODP categories) based on a query & user -specific distribution over the categories
 - ☐ Teleport to a page uniformly at random within the chosen category
- Sounds hard to implement: can't compute PageRank at query time!

Dip. di Matematica Pura ed Applicata F. Aiolli - Sistemi Informativi 2006/2007 27

Topic Specific Pagerank [Have02]

- □ Implementation
 - offline: Compute pagerank distributions wrt to individual categories

Query independent model as before

Each page has multiple pagerank scores - one for each ODP category, with teleportation only to that category

 online: Distribution of weights over categories computed by query context classification

Generate a dynamic pagerank score for each page - weighted sum of category-specific pageranks

Considerations on PageRank

- The ranking returned by PageRank can be used for doing prioritized crawling
- Without the teleporting factor, PageRank would be uncrackable by spammers
- ☐ The (undisclosed) ranking formula used by Google nowadays is a complex recipe (PageRank is the most important ingredient). Other ingredients include:
 - Text in the page
 - Anchor text
 - Query term proximity
 - URL length

Dip. di Matematica Pura ed Applicata F. Aiolli - Sistemi Informativi 2006/2007

29

HITS (Klimberg98]

- HITS may be seen as a modification of InDegree where a companion notion of the authority value (the hub value) is introduced.
- Authority Value a_i of p_i (how authoritative p_i is, 'seminal papers')
- ☐ Hub Value h; of p; (how good p; is helping the user in locating authoritative pages, 'survey papers')
- ☐ They are defined in a mutual recursive manner
 - A page is a good hub when it points to many good authoritative pages h_i = $\sum_{j \in F(i)} a_j$
 - A page is a good authority when it is pointed by many good hubs $a_i = \sum_{j \in B(i)} h_j$

Equations

- Recasting equations in a matrix-vector form, we have
 - h ← W a
 - \blacksquare a \leftarrow W^T h
- Substituting these into one another, we obtain
 - h = W W^T h
 - a = W^T W a
- □ Eigenvectors equations!

Dip. di Matematica Pura ed Applicata F. Aiolli - Sistemi Informativi 2006/2007 31

Considerations

- □ The iterative updates, if scaled by an appropriate eigenvalues, are equivalent to the power iteration method for computing the eigenvectors of WW^T and W^TW respectively
- □ Thus the steady state is determined by the entries in W and hence the structure of the graph
- □ In computing these eigenvectors entries, we are not restricted to use the power iteration method

Problems

□ The problem of HITS is that it is easily spammable: in fact, a spammer wishing to promote a page p_s only needs to set up a page p_t that points to many known authorities and to p_s

Dip. di Matematica Pura ed Applicata F. Aiolli - Sistemi Informativi 2006/2007 33

A variant: HubAvg

- □ A problem with HITS is that h_i monotonically grows not only with the authority, but also with the number |F(i)| of the forward neighbors of p_i;
- Thus, the best hub is the one which points to all pages in BS!
- □ The HubAvg algorithm [Borodin+05] views h_i as the average authority value of the forward neighbors of p_i
 - $\bar{h}_i = (\sum_{j \in F(i)} \dot{a_j}) / |F(i)|$

A variant: HubAvg

- ☐ It can be seen as a hybrid between HITS and PageRank
 - Authority and hubs to every page
 - Subdivides the hub score of a page amongst its forward neighbors
- □ Fairly easy to spam, although slightly more difficult than HITS

Dip. di Matematica Pura ed Applicata F. Aiolli - Sistemi Informativi 2006/2007

35