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Abstract
The observability of discrete time nonlinear systems is studied. Criteria of observability
are given in terms of codistributions. This leads naturally to decompositions similar to
the ones known in the continuous time case. Some observability properties of invertible
systems are also investigated. In particular, it is shown that, under regularity hypotheses,
the weaker notion of forward-backward observability is equivalent to the one of (forward)
observability, for these systems.
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1 INTRODUCTION

We deal with observability questions for nonlinear discrete-time systems of the form

Σ
x(t + 1) = f(x(t), u(t)), t = 0, 1, 2, . . .
y(t) = h(x(t)).

We consider single input single output systems, since the general case involves only no-
tational changes. In Σ we assume that x(t) ∈ M, y(t) ∈ Y and u(t) ∈ U , with M and Y
connected, second countable, Hausdorff, differentiable manifolds, of dimensions n and 1,
respectively. We also assume that the control space U is an open interval of IR, such that
0 ∈ U . Such a system is said to be of class Ck, if the manifolds M and Y are of class Ck,
and the functions f : M × U → M and h : M → Y , are of class Ck. We shall often use
the abbreviated notation fu(x) := f(x, u).



Definition 1 Two states x1, x2 ∈ M are said to be indistinguishable, and we write x1Ix2,
if for each sequence of controls, u1, ..., uj, with j ≥ 0, we have

h(fuj
◦ · · · ◦ fu1(x1)) = h(fuj

◦ · · · ◦ fu1(x2)).

Analogously x1, x2 are said to be k−indistinguishable, and we write x1I
kx2, if the previous

condition holds for each 0 ≤ j ≤ k.

Definition 2 One state x0 is said to be observable (k-observable), if, for each x1 ∈ M ,
x0Ix1 (x0I

kx1) implies x0 = x1.

Definition 3 One state x0 is said to be locally observable (k-observable), if there exists
a neighborhood Wx0 of x0, such that, for each x1 ∈ Wx0 , x0Ix1 (x0I

kx1) implies x0 = x1.

Definition 4 A system Σ is (locally) (k-) observable, if each state x ∈ M enjoys this
property.

In the following, if we say that xe is an equilibrium point, we always mean that f(xe, 0) =
xe. We say that a subset of M is generic if its complement is contained in a proper analytic
subset of M . Given a set L of C∞ functions, defined on M , we shall denote by dL the
codistribution spanned by all the differentials of these functions. By definition, these are
exact differentials.

A previous study on the observability of discrete time nonlinear systems can be found in
Nijmeijer(1982), where the case of systems without controls is considered. The use of the
differential geometric concepts of invariant distributions and codistributions (see below),
in the discrete time setting, is introduced in Monaco and Normand Cyrot(1986). The
classical paper Hermann and Krener(1977) deals with questions of nonlinear observability
in the continuous time context. A complete treatment of this case is given in the books
Isidori(1989) and Nijmeijer and Van der Schaft(1990).

2 OBSERVABILITY CRITERIA

From now on, assume that a C∞ system Σ is given. Define

Θ = {h(fuj
◦ · · · ◦ fu1(·)) | u1, ..., uj ∈ U j j ≥ 0}. (1)

The previous set of functions will become the main object of our study. The following
result holds:

Theorem 5 If dim dΘ(x0) = n, then x0 is a locally observable state for Σ. Conversely
if Σ is locally observable, then there exists an open subset of M , where this condition is
verified. If in addition the system is analytic and locally observable, then this condition is
verified in a generic subset of M .

Proof. Assume dim dΘ(x0) = n. Then, there exist n functions in Θ, Hi(·) := h(fui
ji
◦ · · · ◦



fui
1
(·)), i = 1, ..., n, whose differentials are linearly independent at x0. By continuity, they

also are independent in a neighborhood Wx0 of x0. Therefore, Hi(·), i = 1, ..., n, define a
smooth mapping from M to Y n, which, restricted to Wx0 , is injective. If, for x1 ∈ Wx0 , it
is x1Ix0, in particular, for all i = 1, ..., n, it must hold Hi(x0) = Hi(x1). By the injectivity
of Hi(·), i = 1, ..., n, it follows that x0 = x1.

For the converse implication, assume that Σ is locally observable and it does not exist an
open subset of M where dim dΘ(x) = n, which is equivalent to say that dim dΘ(x) < n for
all x ∈ M . Let r = maxx∈M dim dΘ(x)(< n), and choose x0 ∈ M , such that dim dΘ(x0) =
r. By continuity, there exists an open neighborhood Wx0 of x0, such that dim dΘ(x) = r,
for all x ∈ Wx0 . Therefore there exist H1(·), ..., Hr(·), in Θ, whose differentials in Wx0 are
linearly independent. We may take these functions, H1(·), ..., Hr(·), along with a set of
complementary independent functions, as partial coordinates in Wx0 . Since every function
in Θ only depends on the first r < n coordinates, points in Wx0 , with the last n − r
coordinates equal, cannot be distinguished. This contradicts the hypothesis of the local
observability of the system, and shows that there exists an open subset in M , such that
dimdΘ(x) = n is true. The last sentence of the theorem follows easily from the fact that,
if the above is true in an open subset of M , and the system is analytic, then, it is true
everywhere except for the set of zeros of an analytic function, namely an analytic set. It
is therefore true in what we have called a generic subset of M .

If dΘ is constant dimensional in a neighborhood of x0, then a stronger result about local
observability can be derived (the result is easily proved by specializing to x0 the proof of
Theorem 5).

Corollary 6 Assume dΘ is constant dimensional in a neighborhood Wx0 of x0. Then, x0

is locally observable if and only if dimdΘ(x0) = n.

Remark 7 Analogous criteria can be given for local k-observability, by considering, in
the previous statements, the following set of functions

Θk = {h(fuj
◦ · · · ◦ fu1(·)) | u1, ..., uj ∈ U j k ≥ j ≥ 0}.

The proofs follow the same lines as above.

Remark 8 In view of Corollary 6, it is of interest to give criteria for the constant di-
mensionality of the codistribution dΘ, in a neighborhood of a given point. This is also
important because, as we will see in the sequel, it is possible, in this situation, to obtain
a local state space decomposition (see Section 3 below). Moreover, under this assump-
tion, it is also possible to prove the equivalence between forward and forward-backward
observability for invertible systems (see Section 4 below). In the continuous-time setting,
the class of functions, used to characterize observability, gives raise to a constant dimen-
sional codistribution if analyticity and accessibility are verified (see Nijmeijer and Van
der Schaft(1990) Proposition 3.38). This is not true in general for dΘ or dΘk, in the
discrete-time case. The following example illustrates this issue and clarifies what we mean
for accessibility in our context. Later, we shall give a sufficient condition for local constant
dimensionality of dΘ (see Proposition 13).



Example 9 We recall (Jakubczyk and Sontag(1990) and Albertini and Sontag(1993))
that a point x0 ∈ M is said to be forward accessible, if it is possible to reach from it an
open subset of M . For the following system, 0 is a forward accessible equilibrium point

x1(t + 1) = x1(t) + x2
2(t) + u2(t)

x2(t + 1) = x1(t)
y(t) = x1(t)

In fact, if x1(0) = 0, and x2(0) = 0, it is x1(2) = u2(0) + u2(1) and x2(2) = u2(0).
Therefore, it is possible to reach, in two steps, any point such that x1 ≥ 0, x2 ≥ 0.
The codistribution dΘ has not constant dimension in a neighborhood of 0. In fact, it is
dh(x) = [1, 0], dh(fu1(x)) = [1, 2x2], and for j ≥ 2, defined H̄(·) := h(fuj

◦ · · · ◦ fu2(·)), it
is

∂h(fuj
◦ · · · ◦ fu1(x))

∂x2

=
∂H̄(fu1(x))

∂x

∂fu1(x)

∂x2

= [
∂H̄(fu1(x))

∂x1

,
∂H̄(fu1(x))

∂x2

][2x2, 0]T =
∂H̄(fu1(x))

∂x1

2x2.

This shows that dΘ has dimension 1 for any point such that x2 = 0, and 2 elsewhere.

3 STATE SPACE DECOMPOSITION

The study of the observability for nonlinear discrete time systems, using standard differ-
ential geometric tools, leads naturally to consider the notion of invariant distribution, as
a natural generalization of the concept of invariant subspace, used in the study of linear
systems. This concept has been widely used in characterizing structural properties of non-
linear continuous time systems and its importance, in the study of the discrete time case,
seems to have been first pointed out in Monaco and Normand Cyrot(1984). We will use
the dual concept of invariant codistribution to perform a state space decomposition, in
a neighborhood of an equilibrium point. The theory very much resembles the continuous
time one presented in Isidori(1989).

Recall that, given a covector field ω and a mapping f(·), on a manifold M , f ∗ω :=
ω(f(·))∂f

∂x
(·). Notice that, in particular, if ω is an exact differential, i.e. ω = dλ, for a

function λ(·), it is f ∗ω = d(λ ◦ f(·)). We have the following definition:

Definition 10 A codistribution Ω is said to be invariant under fu, if

f ∗uΩ ⊆ Ω, for each u ∈ U.

Theorem 11 Suppose that there exists a constant dimensional fu- invariant codistribu-
tion of dimension r, containing dh, and spanned by exact differentials, in a neighborhood



of an equilibrium point xe. Then there exists a coordinate change, such that for (x, u) in
a suitable neighborhood W̃xe × U0 of (xe, 0), the system Σ reads as

Σ′
z1(t + 1) = f̂(z1(t), z2(t), u(t)), t = 0, 1, 2, . . . ,

z2(t + 1) = f̂(z2(t), u(t))

y(t) = ĥ(z2(t)),

where z1 and z2 have dimensions n− r and r respectively.

Proof. Under the stated hypotheses, there exist r functions λ1(·), ..., λr(·) on M , such that
dλ1(xe), ..., dλr(xe) form a basis of Ω(xe). These functions, along with a complementary set
of n−r linearly independent functions, give a coordinate change, T (x), in a neighborhood

Wxe of xe. We write ĥ(·), f̂(·), λ̂i(·), for h(·), f(·) and λi(·), i = 1, ..., r, respectively, in these
coordinates. In particular, if z = T (x) denotes the new coordinates, we can as well assume

that λ̂i = zn−r+i, i = 1, ..., r. Notice that, since dh is in Ω, ĥ(·) only depends on the last
r coordinates. By continuity, we can choose a neighborhood W̃xe × U0 of (xe, 0), such
that fu(x) ∈ Wxe , for all pairs (x, u) ∈ W̃xe × U0. Choosing x and u in this way, and
remembering that, by the invariance property, dλi(fu), for i = 1, . . . , r, is still in Ω, we
also have

0 =
∂

∂zj

λ̂i(f̂u(·)) =
∂f̂n−r+i

u

∂zj

(·),

i = 1, ..., r, j = 1, ..., n− r. This shows that the last r components of f̂(·) are independent
of the first n − r components of z. Therefore, locally the system can be written in the
form Σ

′
.

If dΘ is constant dimensional in a neighborhood of xe, it is a good candidate to be
used to perform the change of coordinates described above. dΘ is, in fact, fu-invariant,
it is spanned by exact differentials, and it contains dh. Moreover dΘ is the smallest
codistribution which enjoys these properties. The proof of this fact follows the same
lines of the one given for the observability codistribution in the continuous time case
Isidori(1989). The only modification consists in replacing the definition of invariance,
given in the continuous time context, with the one given here. Notice that the only if part
of Corollary 6 also holds if we consider an arbitrary constant dimensional codistribution
which properly contains dΘ. In view of this fact, in the hypotheses of Theorem 11, since
Ω must contain dΘ, if r < n, xe is not locally observable.

4 PROPERTIES OF INVERTIBLE SYSTEMS

In this section, we will deal with a particular class of discrete time nonlinear systems.

Definition 12 A system Σ is said to be invertible, if for all u ∈ U , the function fu : M →
M , is a diffeomorphism (we denote by f−1

u the inverse function of fu).



Invertible systems arise, for example, when a continuous-time model is controlled under
digital control, via sampling. Further motivations for the study of this class of systems
are given in Jakubczyk and Sontag(1990). For invertible systems, it is possible to define
an inverse system by

Σ− x(t + 1) = f−1(x(t), u(t)), t = 0, 1, 2, . . .
y(t) = h(x(t)).

Using this system one can define backward indistinguishability and observability, following
the same lines of Definitions 1-4. It is also possible to define (see example 9 and Jakubczyk
and Sontag(1990), Albertini and Sontag(1993)) backward accessibility. These definitions
extend to forward-backward indistinguishability, observability and accessibility in an ob-
vious manner. We state now a sufficient condition for the constant dimensionality of the
codistribution dΘ defined in (1)

Proposition 13 Consider an invertible system Σ and an equilibrium point xe. Assume
that the following rank condition is verified

sup
j≥n

rank
∂

∂u

∣∣∣∣∣
u1=...=uj=0

fuj
◦ · · · ◦ fu1(xe)

 = n. (2)

Then, the codistribution dΘ is constant dimensional, in a neighborhood of xe.

Proof. Using the rank condition (2), it is easy to show that there exist an open subset of
M , F (xe), which contains xe, and such that each point of F (xe) can be reached by xe. Also
it can be shown that there exists an open subset B(xe), which contains xe, and such that
from any point in it, it is possible to reach xe. (The proof of these facts follows from the one
of the accessibility criterion given in Proposition 2.3 of Jakubczyk and Sontag(1990).) We
consider the set L(xe) = B(xe) ∩ F (xe). L(xe) is an open set and contains xe. Moreover,
for a point x1 in L(xe), there exist two sequences of controls such that

x1 = fuF
jF
◦ · · · ◦ fuF

1
(xe), and xe = fuB

jB
◦ · · · ◦ fuB

1
(x1). (3)

Consider now kF functions, hi(·), i = 1, ..., kF , such that dhi(x1), i = 1, ..., kF , form a
basis for dΘ(x1). The functions hi(fuF

jF
◦ · · · ◦ fuF

1
(·)), i = 1, ..., kF are in Θ; moreover,

using (3) (left hand side),

dhi(fuF
jF
◦ · · · ◦ fuF

1
(xe)) = dhi(x1)

∂fuF
jF
◦ · · · ◦ fuF

1
(xe)

∂x
.

By the invertibility of fuF
jF
◦ · · · ◦ fuF

1
(·),

∂f
uF

jF
◦···◦f

uF
1

(xe)

∂x
is nonsingular, so, by the linear

independence of dhi(x1), we have that dhi(fuF
jF
◦···◦fuF

1
)(xe) also are linearly independent.

Therefore they can be included in a basis of dΘ(xe), and this shows that

dimdΘ(x1) ≤ dimdΘ(xe). (4)



Analogously, if we choose a set of functions hi(·), i = 1, ..., kB, such that dhi(xe) form a
basis for dΘ(xe), we have that hi(fuB

jB
◦ · · · ◦ fuB

1
(·)), i = 1, ..., kB, is still in Θ. By the

invertibility of fuB
jB
◦ · · · ◦ fuB

1
(·) and using (3) (right hand side), we have, as above,

dimdΘ(xe) ≤ dimdΘ(x1). (5)

Combining (4) and (5), we have that Θ is constant dimensional in L(xe).

We conclude showing that, under regularity hypotheses, locally forward observability
(l.f.o) and locally forward-backward observability (l.f.b.o) are equivalent for equilibrium
points of invertible systems.

Theorem 14 Let Σ be an analytic invertible system, and xe ∈ M be an equilibrium point.
Assume that dΘ has constant dimension in a neighborhood Wxe of xe. Then, xe is l.f.o.
if and only if it is l.f.b.o.

Proof. It is obvious that if xe is l.f.o. it is also l.f.b.o. Conversely, assume that xe is not l.f.o.
Under the stated hypotheses and using Corollary 6, we know that dimdΘ(x) = r < n, in a
neighborhood Wxe of xe. We can therefore perform a change of coordinates as in Theorem
11. System Σ reads as Σ

′
, as long as, x is in a suitable neighborhood W̃xe ⊆ Wxe and u

is in a suitable neighborhood U0 of 0. It is straightforward to verify that also the inverse
system Σ− can be put in a triangular form, again for x ∈ W̃xe , and u ∈ U0.

Assume, by contradiction, that xe is l.f.b.o, and let Vxe ⊆ W̃xe , be a neighborhood of
xe, where the l.f.b.o. holds. Then choose any x̄ ∈ Vxe such that, in the z-coordinate, the
last r components of xe and of x̄ are equal. Since x̄ ∈ Vxe , there exists k, ũ1, . . . , ũk ∈ U ,
ε1, . . . , εk, with εi = ±1, i = 1, ..., k, such that:

h(f εk
ũk
◦ · · · ◦ f ε1

ũ1
(xe)) 6= h(f εk

ũk
◦ · · · ◦ f ε1

ũ1
(x̄)). (6)

By continuity, there exists Ũ0 ⊆ U0 neighborhood of 0 such that, for i = 1, . . . , k:

u1, . . . , ui ∈ Ũ0 ⇒ f εi
ui
◦ · · · ◦ f ε1

u1
(xe) ∈ W̃xe , and f εi

ui
◦ · · · ◦ f ε1

u1
(x̄) ∈ W̃xe . (7)

From (6), and by analyticity, there exists ū1, . . . , ūk, with ūi ∈ Ũ0, such that

h(f εk
ūk
◦ · · · ◦ f ε1

ū1
(xe)) 6= h(f εk

ūk
◦ · · · ◦ f ε1

ū1
(x̄)). (8)

However, since ūi ∈ Ũ0, equation (7) implies that, ∀ i = 1, ..., k, f εi
ūi
◦ · · · ◦ f ε1

ū1
(xe) =

xi
e ∈ W̃xe and also f εi

ūi
◦ · · · ◦ f ε1

ū1
(x̄) = x̄i ∈ W̃xe . Thus, by the triangular form, in the

z-coordinate, the last r components of xi
e and of x̄i are equal. So, also h(xk

e) = h(x̄k),
which contradicts equation (8).
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