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Abstract

We give an algebraic characterization of observability for
a class of models obtained by coupling recurrent neural
networks with linear systems.

1 Introduction

In a recent series of papers [9, 2, 3, 4, 5, 1] some system
theoretic properties of recurrent neural networks have
been analyzed (see [6] for an introduction on neural com-
putation). Recurrent neural networks, that are used in
many applications such as speech processing and learn-
ing, have the mathematically appealing feature of pro-
viding a class of ’semilinear’ models for which one might
expect that the theory is easier and closer to the one of
linear systems than is the case of general nonlinear mod-
els. In particular, for such systems observability has been
shown to be equivalent to a simple algebraic condition on
the parameters of the network.

In this paper we address the problem of determin-
ing observability conditions for discrete-time systems ob-
tained by ”coupling” a recurrent neural network with a
linear system. More precisely, we deal with systems of
the form:

x1(t + 1) = ~σ(A11x1(t) + A12x2(t) + B1u(t))
x2(t + 1) = A21x1(t) + A22x2(t) + B2u(t)

y(t) = Cx(t) = C1x1(t) + C2x2(t)
(1)

where x1 ∈ IRk, x2 ∈ IRn−k, u ∈ IRm, y ∈ IRp and
A11, A12, A21, A22, B1, B2, C1, C2 are matrices of appro-
priate dimensions. Moreover, for v ∈ IRk,

~σ(v) = (σ(v1), . . . , σ(vk))

where σ : IR → IR is some assigned nonlinear function.

These models include interconnections between linear
systems and recurrent neural networks (for the definition
of interconnection of two systems see [8]). As observed
in [7] (Sec. 6.4, where the identification question was
addressed), in many applications it is natural to assume
that some components of the system evolve driven by
linear equations, while the rest of the system is nonlinear,
and modeled by recurrent neural networks. Unlike in [7],
we admit interaction between the linear and the nonlinear
components of the system.

Two states x, z ∈ IRn are said to be indistinguishable
(we write x ∼ z) if, for every input sequence (u(t))t≥0, the
solutions of (1) corresponding to initial conditions x(0) =
x and x(0) = z give rise to the same output sequence
(y(t))t≥0. When the output sequence is the same up to
time t = d we say that x, z are indistinguishable in d-
steps, and we write x ∼d z. A system is said to be
observable if x ∼ z implies x = z.

Our aim in this paper is to characterize observability of
systems of type (1) through simple algebraic conditions
on the matrices of the model. Similarly to [4], this will
be done under nonlinearity assumptions on the function
σ and nodegenericity conditions on the matrix B1.

In section 2 we give the precise assumptions on σ and
B1, and state our main theorem (1), together with some
clarifying examples. Section 3 is devoted to the proof of
this result.

2 Statement of main result

The observability result we give in this paper will be
proved under the following assumptions on the function
σ and the matrix B1.

Definition 2.1 A function σ : IR → IR is said to satisfy
the independence property (IP ) if for every l > 0, any
nonzero real numbers b1, b2, . . . , bl such that bi 6= ±bj for
i 6= j, and any real numbers β1, β2, . . . , βl the functions



of ξ ∈ IR

1 , σ(b1ξ + β1) , . . . , σ(blξ + βl)

are linearly independent.

A criterion for showing that a function satisfies the
IP can be found in [5]. In particular, the main ex-
amples in neural networks, i.e. σ(x) = tanh(x) and
σ(x) = arctan(x), satisfy the IP . In the rest of the pa-
per we denote by S the class of those systems of type (1)
satisfying the following properties:
a) σ satisfies the IP ;
b) B1 ∈ Bk,m, where

Bk,m =
{

M ∈ IRk×m :
M i 6= 0 ∀ i
M i 6= ±M j ∀ i, j, i 6= j

}
(M i denotes the i-th row of M).

Let e(i), i = 1, . . . , k, denote the canonical basis ele-
ments in IRk. A subspace V of IRk will be called a coor-
dinate subspace if V = 0 or V has the form

V = span {e(i1), . . . , e(ij)}.

From now on V ⊂ IRk, W ⊂ IRn−k denote the maximal
pair of subspaces satisfying the following properties:

P1. V is a coordinate subspace, V ⊂ ker C1, A11V ⊂ V ;

P2. W ⊂ ker C2, A22W ⊂ W ;

P3. A21V ⊂ W ;

P4. A12W ⊂ V .

Notice that since if (V ′,W ′) and (V ′′,W ′′) satisfy P1-P4,
then so do (V ′+ V ′′,W ′+ W ′′), such maximal subspaces
(under the order ”⊂”) exist.

In what follows we let A1 = [A11, A12] ∈ IRk×n and
A2 = [A21, A22] ∈ IR(n−k)×n. The main result of this
paper is the following theorem.

Theorem 1 Let x, z ∈ IRn denote two initial states for
a system Σ ∈ S. Then x ∼ z if and only if

x− z ∈ ker C , A1(x− z) ∈ V , A2(x− z) ∈ W. (2)

In particular Σ is observable if and only if

ker C ∩A−1
1 V ∩A−1

2 W = 0

(”·−1” denotes inverse image).

The observability condition in Theorem 1 becomes ef-
fective as soon as one has an algorithm to compute V and
W . Such an algorithm is given in next Section; it will be
the most convenient for proving the Theorem, but not
necessarily the fastest one.

In order to see Theorem 1 ”at work”, we consider some
special cases.

Example 2.2 Assume k = 0. Thus S is the class of the
(n, m, p)-linear systems. Here there is no V , and W is
the largest A22-invariant subspace of kerC2. The observ-
ability conditions given by Theorem 1 is

ker C2 ∩A−1
22 W = 0

that can be easily shown to be equivalent to

W = 0

which is the usual observability condition for linear sys-
tems.

Example 2.3 Assume k = n. Then S is the class of
recurrent neural networks studied in [4]. In this case there
is no W , and V is the largest A11-invariant coordinate
subspace contained in kerC1. The observability condition
given by Theorem 1 is:

ker C1 ∩A−1
11 V = 0,

which was found in [4].

Example 2.4 Assume that C1 has no zero columns.
Then there is no nonzero coordinate subspace contained
in kerC1; so V = 0. Therefore W is the largest A22-
invariant subspace contained in ker C2 and kerA12.

It follows that x ∼ z if and only if x − z ∈ ker C1 ∩
ker A1, and A2x, A2z are indistinguishable for the linear
systems (A22, C2), and (A22, A12).

3 Proof of Theorem 1

For a given matrix D, we denote by ID the set

ID = { i | the i -th column of D is zero }.

In particular, for a coordinate subspace

V = span { e(i1), . . . , e(ij) },

V ⊆ ker D if and only if all ik ∈ ID. The following
technical fact describes the way the IP of σ will be used
in the rest of the proof.

Lemma 3.1 Assume that D ∈ IRq×k, B1 ∈ Bk,m, σ
satisfies the IP . Then the following two properties are
equivalent for each pair of vectors ξ, η:

1. ξj = ηj for all j 6∈ ID,

2. Dσ(ξ + B1u) = Dσ(η + B1u) for all u ∈ IRm.

The proof of this lemma can be found in [4].
We now construct an increasing sequence of indexes

Jd, and a decreasing sequence of subspaces Vd ⊆ IRk,
Wd ⊆ IRn−k, for d ≥ 1, where Vd is a coordinate subspace.
Let:

J1 = {1, . . . , k } \ IC1 ;
V1 = span {e(j) | j 6∈ J1};
W1 = kerC2;



and, for d > 1, let:

Jd+1 = J1 ∪ {i | ∃ j ∈ Js s. t. (A11)ji 6= 0 }

∪{i | ∃ j, ∃0 ≤ l ≤ d− 1 such that (C2A
l
22A21)ji 6= 0 }

∪ ∪d−1
s=1 {i | ∃ j ∈ Js such that (A12A

d−s−1
22 A21)ji 6= 0 }

Vd+1 = span {e(j) | j 6∈ Jd+1 }

Wd+1 =
{

w

∣∣∣∣ Al
22w ∈ ker C2 for 0 ≤ l ≤ d,

A12A
d−s
22 w ∈ Vs for 1 ≤ s ≤ d

}
.

Since the sequence (Vd,Wd) is decreasing, than it be-
comes stationary after a finite number of steps. The
proof of Theorem 1 is an immediate consequence of the
following two facts. Recall that with (V,W ) we denote
the maximal pair satisfying the conditions P1-P4 given
in the previous section.

Proposition 3.2 The following identities hold:

V = ∩d≥1Vd, W = ∩d≥1Wd.

Proposition 3.3 The following properties are equiva-
lent:
i) x ∼d z;
ii) x− z ∈ ker C; A1x−A1z ∈ Vd; A2x−A2z ∈ Wd.

Proof of Proposition 3.2
Define:

J∞ = ∩d≥1Jd; V∞ = ∩d≥1Vd; W∞ = ∩d≥1Wd.

Thus V∞ = span {e(j) | j 6∈ J∞}. By using the recursive
definition of Jd, Vd, and Wd and the fact that there exists
d̄ such that Vd = V∞, Wd = W∞ for d ≥ d̄, the following
properties are easily seen:

{ i | ∃ j ∈ J∞ so that (A11)ji 6= 0 } ⊆ J∞. (3)

{i | ∃ j,∃l ≥ 0 so that (C2A
l
22A21)ji 6= 0 } ⊆ J∞. (4)

{i | ∃ j ∈ J∞,∃l ≥ 0 so that (A12A
l
22A21)ji 6= 0 } ⊆ J∞.

(5)

W ⊆
{

w

∣∣∣∣ Al
22w ∈ ker C2 for l ≥ 0,

A12A
l
22w ∈ V∞ for l ≥ 0

}
. (6)

We now prove V∞ ⊆ V and W∞ ⊆ W by showing that
V∞ and W∞ satisfy properties P1-P4 in the definition on
V , W .

P1. The only thing which is not obvious is the A11-
invariance of V∞. So let v ∈ V∞. By (3), we have
vi = 0 if ∃j ∈ J∞ such that (A11)ji 6= 0. Thus, for
j ∈ J∞:

(A11v)j =
k∑

i=1

Aji
11vi = 0

and, therefore, A11v ∈ V∞.

P2. Let w ∈ W∞. We show that A22w ∈ Wd for every
d ≥ 1. The fact that Al

22(A22w) ∈ ker C2 for 0 ≤ l ≤
d follows clearly by (6). Moreover, for 1 ≤ s ≤ d, it
follows from (6) that:

A12A
d−s
22 (A22w) ∈ V∞ ⊆ Vs.

P3. Let v ∈ V∞. We have to show that A21v ∈ Wd for
all d ≥ 1. Using the same argument used to get P1,
it is easy to see that from (4) we get:

C2A
l
22A21v = 0 ∀ l ≥ 0,

and from (5) we have:

A12A
l
22A21v ∈ V∞ ⊆ Vs ∀ s ≥ 1.

This implies that A21v ∈ Wd for all d, as desired.

P4. This is immediate by equation (6).

To complete the proof, we have to show that V ⊆ Vd,
and W ⊆ Wd for all d ≥ 1. We do this by induction. For
d = 1 this is clear.

Now let e(i) ∈ V . We show that e(i) ∈ Vd+1, i.e. i 6∈
Jd+1.

• Suppose i is such that there exists j ∈ Jd with
(A11)ji 6= 0. Then we have

(A11e
(i))j = (A11)ji 6= 0 ⇒ A11e

(i) ∈ Vd.

This is impossible since A11V ⊂ V and, by inductive
assumption, V ⊂ Vd.

• Suppose i is such that there exist j and 0 ≤ l ≤ d−1
with (C2A

l
22A21)ji 6= 0. As before, this implies

C2A
l
22A21e

(i) 6= 0

that is impossible, since A21V ⊂ W and W ⊂
ker (C2A

l
22) for every l ≥ 0.

• Suppose i is such that there exist 0 ≤ s ≤ d− 1 and
j ∈ Js with (A12A

d−s
22 A21)ji 6= 0. This implies

A12A
d−s
22 A21e

(i) 6∈ Vs.

This is impossible since Ad−s
22 A21V ⊂ V , A12W ⊂ W

and, by inductive assumption, V ⊂ Vs.

Thus we have shown that e(i) ∈ Vd+1.
Now let w ∈ W . We show that w ∈ Wd+1.

• The condition Al
22w ∈ ker C2 for 0 ≤ l ≤ d follows

from W ⊂ ker C2 and A22W ⊂ W .

• The condition A12A
d−s
22 w ⊂ Vs for 1 ≤ s ≤ d follows

from A22W ⊂ W , A12W ⊂ V and the fact that, by
inductive assumption, V ⊂ Vs.



Proof of Proposition 3.3.
First introduce the following notation; for x ∈ IRn we let

x+(u) =
(

C1σ(A1x + B1u)
C2(A2x + B2u)

)
.

We proceed by induction on d. For d = 1:

x ∼1 z ⇔
{

Cx = Cz
Cx+(u) = Cz+(u) ∀u

⇔

 x− z ∈ ker C
C1σ(A1x + B1u) = C1σ(A1z + B1u)
C2(A2x + B2u) = C2(A2z + B2u).

By Lemma 3.1 this is equivalent to x− z ∈ ker C
(A1x)i = (A1z)i for i 6∈ IC1

A2x−A2z ∈ ker C2

⇔

 x− z ∈ ker C
A1(x− z) ∈ V1

A2(x− z) ∈ W1.

For the inductive step, observe that

x ∼d+1 z ⇔ x+(u) ∼d z+(u) ∀u and Cx = Cz

⇔


x− z ∈ ker C

Cx+(u) = Cz+(u) ∀u
A1x

+(u)−A1z
+(u) ∈ Vd ∀u

A2x
+(u)−A2z

+(u) ∈ Wd ∀u

⇔


x− z ∈ ker C

A1(x− z) ∈ V1

A2(x− z) ∈ W1

A1x
+(u)−A1z

+(u) ∈ Vd ∀u
A2x

+(u)−A2z
+(u) ∈ Wd ∀u.

Thus, it is enough to show that for all u

A1x
+(u)−A1z

+(u) ∈ Vd

A2x
+(u)−A2z

+(u) ∈ Wd
⇔ A1(x− z) ∈ Vd+1

A2(x− z) ∈ Wd+1

(7)
The l.h.s. of (7) means:

• ∀ j ∈ Jd

[A11σ(A1x + B1u) + A12(A2x + B2u)]j =

[A11σ(A1z + B1u) + A12(A2z + B2u)]j .

• ∀ 0 ≤ l ≤ d− 1

C2A
l
22[A21σ(A1x + B1u) + A22(A2x + B2u)] =

= C2A
l
22[A21σ(A1z + B1u) + A22(A2z + B2u)].

• ∀ j ∈ Js, 1 ≤ s ≤ d− 1

[A12A
d−s−1
22 [A21σ(A1x+B1u)+A22(A2x+B2u)]]j =

= [A12A
d−s−1
22 [A21σ(A1z+B1u)+A22(A2z+B2u)]]j .

which is equivalent to, by lemma 3.1,

• (A1x)i = (A1z)i if there exists j ∈ Jd with Aji
11 6= 0;

• A12(A2x−A2z) ∈ Vd;

• (A1x)i = (A1z)i if ∃ j and ∃ 0 ≤ l ≤ d with
(C2A

l
22A21)ji 6= 0;

• C2A
l+1
22 (A2x−A2z) = 0 ∀ 0 ≤ l ≤ d− 1;

• (A1x)i = (A1z)i if ∃ 1 ≤ s ≤ d−1, and ∃ j ∈ Js with
(A12A

d−s−1
22 A21)ji 6= 0;

• A12A
d−s
22 (A2x−A2z) ∈ Vs ∀ 1 ≤ s ≤ d− 1.

These conditions are easily shown to be equivalent to:

A1(x− z) ∈ Vd+1, A2(x− z) ∈ Wd+1.
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