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Abstract

We give necessary and sufficient conditions for observability of a class of recurrent neural networks having
a subsystem where the activation function is the identity. An algorithm for computing all pairs of indistin-
guishable states is also given.

1 Introduction

Since the pioneering works of McCulloch and Pitts [10] and Hebb [8], neural networks have attracted the interest
of researchers from many areas of sciences (for a review on the subject see [13] and [9]). In particular, recurrent
neural networks are used as a computational tool in many applications, and their effectiveness and reliability have
been widely recognized. Only recently, however, these models have been studied from a system-theoretic point
of view. Since a recurrent neural network provides a state-space description of a nonlinear input-output map,
questions about identifiability ([3, 4, 7, 6]), observability ([5]) and controllability ([1]) arise naturally. It turns out
that the abovementioned properties can be expressed in terms of simple algebraic conditions on the ”weights” of
the network.

In this paper we continue the study, initiated in [2], of the observability of systems obtained by ”coupling” a
recurrent neural network with a linear system. As observed in [11] (Sec. 6.4, where the identification question
was addressed), in many applications it is natural to assume that some components of the system evolve driven
by linear equations, while the rest of the system is nonlinear, and modeled by recurrent neural networks. Unlike
in [11], we admit interaction between the linear and the nonlinear components of the system. More precisely,
denoting by ”+” the time shift in discrete time and by ”·” the time derivative in continuous time, we deal with
systems of the form

x+
1 ( or ẋ1) = ~σ(A11x1 + A12x2 + B1u)

x+
2 ( or ẋ2) = A21x1 + A22x2 + B2u

y = Cx = C1x1 + C2x2

(1)

where x1 ∈ IRk, x2 ∈ IRn−k, u ∈ IRm, y ∈ IRp and A11, A12, A21, A22, B1, B2, C1, C2 are matrices of appropriate
dimensions. Moreover, for v ∈ IRk,

~σ(v) = (σ(v1), . . . , σ(vk))

where σ : IR → IR is some assigned nonlinear function. For the continuous time case, to have uniqueness and local
existence for the solution of (1), we require σ(·) to be locally Lipschitz, and we only admit input signals (u(t))t≥0

that are measurable and locally essentially bounded.
Two states x, z ∈ IRn are said to be indistinguishable (we write x ∼ z) if, for every input sequence (u(t))t≥0,

the solutions of (1) corresponding to initial conditions x(0) = x and x(0) = z give rise to the same output
sequence (y(t))t≥0. In discrete time, when the output sequence is the same up to time t = d we say that x, z are
indistinguishable in d-steps, and we write x ∼d z. A system is said to be observable if x ∼ z implies x = z.
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The problem of determining whether a system is observable, besides being interesting in itself, is particularly
relevant in the context of neural networks since it is strictly related to identifiability and minimality of the network
(see [6]). Such connection is well established for recurrent neural networks (k = n in (1)), and the extension to
”coupled” systems is presently under investigation.

Our aim in this paper is to characterize observability of systems of type (1) through simple algebraic conditions
on the matrices of the model. Similarly to [5], this will be done under nonlinearity assumptions on the function
σ and nodegenericity conditions on the matrix B1. The main result of this paper has already been proved in [2]
for discrete time systems; the proof given there, which is constructive in the sense that provides an algorithm to
check observability, does not seem to be extendible to continuous time. The proof given here is less constructive,
but works in continuous time as well as in discrete time. Moreover, the observability condition for systems of
type (1) is the same in discrete and continuous time, and so in both cases the algorithm introduced in [2] (see
Section 2) provides all pairs of indistinguishable states (notice the analogy with linear systems).

The paper is organized as follows. In section 2 we give the precise assumptions on σ and B1, and state our main
theorem (Theorem 1), together with an algorithm to check observability (Proposition 2.4) and some clarifying
examples. Section 3 is devoted to the proof of Theorem 1 and in Section 4 we give the proof of Proposition 2.4.

2 Statement of main result

The observability result we give in this paper will be proved under the following assumptions on the function σ
and the matrix B1.

Definition 2.1 A function σ : IR → IR is said to satisfy the independence property (IP ) if for every l > 0, any
nonzero real numbers b1, b2, . . . , bl such that bi 6= ±bj for i 6= j, and any real numbers β1, β2, . . . , βl the functions
of ξ ∈ IR

1 , σ(b1ξ + β1) , . . . , σ(blξ + βl)

are linearly independent, i.e. if a0 +
∑l

i=1 aiσ(biξ + βi) = 0 for all ξ ∈ IR, then ai = 0 for i = 0, . . . , l.

A criterion for showing that a function satisfies the IP can be found in [7]. In particular, the main examples
in neural networks, i.e. σ(x) = tanh(x) and σ(x) = arctan(x), satisfy the IP . In the rest of the paper we denote
by S the class of those systems of type (1) satisfying the following properties:
a) σ satisfies the IP ;
b) B1 ∈ Bk,m, where

Bk,m =
{

M ∈ IRk×m :
M i 6= 0 ∀ i = 1, . . . , k
M i 6= ±M j ∀ i, j = 1, . . . , k , i 6= j

}
(M i denotes the i-th row of M). Conditions a) and b) are used in the proof of Theorem 1 below. Their rough
meaning is: a) the system is fully nonlinear; b) the control is ’nontrivially’ effecting all components of the network.

Let e(i), i = 1, . . . , k, denote the canonical basis elements in IRk. A subspace V of IRk will be called a coordinate
subspace if V = 0 or V has the form

V = span {e(i1), . . . , e(ij)}.

For a given matrix D, we let ID be the set ID = { i | the i -th column of D is zero }. Notice that, for a coordinate
subspace V = span { e(i1), . . . , e(ij) }, V ⊆ ker D if and only if all ik ∈ ID.

Definition 2.2 We denote by V ⊂ IRk, and W ⊂ IRn−k the maximal pair of subspaces satisfying the following
properties:

P1. V is a coordinate subspace, V ⊂ ker C1, A11V ⊂ V ;

P2. W ⊂ ker C2, A22W ⊂ W ;

P3. A21V ⊂ W ;

P4. A12W ⊂ V .
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Notice that since if (V ′,W ′) and (V ′′,W ′′) satisfy P1-P4, then so do (V ′+V ′′,W ′+W ′′), such maximal subspaces
(under the order ”⊂”) exist. The notation V, W will be kept for the rest of the paper.

In what follows we let A1 = [A11, A12] ∈ IRk×n and A2 = [A21, A22] ∈ IR(n−k)×n. The main result of this
paper is the following theorem.

Theorem 1 Let x, z ∈ IRn denote two initial states for a system Σ ∈ S. Then x ∼ z if and only if

x− z ∈ ker C , A1(x− z) ∈ V , A2(x− z) ∈ W. (2)

In particular Σ is observable if and only if

ker C ∩A−1
1 V ∩A−1

2 W = 0

(”·−1” denotes inverse image).

The observability condition in Theorem 1 is in terms of the two subspaces V and W . The crucial point is that
these subspaces can be determined by an algorithm which consists in solving a finite number of linear algebraic
equations. We now give a description of this algorithm.

We inductively construct an increasing sequence of indexes Jd, and a decreasing sequence of subspaces Vd ⊆
IRk, Wd ⊆ IRn−k, for d ≥ 1, where Vd is a coordinate subspace. Let:

J1 = {1, . . . , k } \ IC1 ;
V1 = span {e(j) | j 6∈ J1};
W1 = kerC2;

and, for d > 1, let:

Jd+1 = J1 ∪ {i | ∃ j ∈ Jd such that (A11)ji 6= 0 }
∪{i | ∃ j,∃0 ≤ l ≤ d− 1 such that (C2A

l
22A21)ji 6= 0 }

∪ ∪d−1
s=1 {i | ∃ j ∈ Js such that (A12A

d−s−1
22 A21)ji 6= 0 }

Vd+1 = span {e(j) | j 6∈ Jd+1 }

Wd+1 = {w |Al
22w ∈ ker C2 for 0 ≤ l ≤ d, A12A

d−s
22 w ∈ Vs for 1 ≤ s ≤ d }.

Remark 2.3 The sequence (Vd,Wd)d≥1 is decreasing, and so it becomes stationary after a finite number of steps.
It is possible to give a condition for the termination of this algorithm. Suppose that we obtain a stationary string
Vs = Vs+1 = . . . = Vs+n−k of lenght n− k + 1. Then, by using the definition of Vd and Wd, and by applying the
Hamilton-Cayley Theorem, one shows that Vd = Vs for all d ≥ s and that Wd = Ws+n−k for all d ≥ s + n− k. It
follows that the sequence (Vd,Wd)d≥1 becomes stationary after at most (n− k + 1)k steps, for k ≥ 1, or n steps,
for k = 0.

It turns out that the sequence (Vd,Wd) stabilizes exactly at (V,W ), as stated in the following Proposition.

Proposition 2.4 The following identities hold:

V = ∩d≥1Vd, W = ∩d≥1Wd.

The proof of this Proposition can be found in [2]; however, since it presents a constructive way to compute the
subspaces V and W it is also given in this work (Section 4). For discrete-time systems the meaning of the
subspaces Vd,Wd is clarified by the following Proposition.

Proposition 2.5 Let Σ be a discrete time system in S. Then the following properties are equivalent:
i) x ∼d z;
ii) x− z ∈ ker C; A1x−A1z ∈ Vd; A2x−A2z ∈ Wd.

For the proof of this result we refer to [2]. We conclude this Section by showing the application of Theorem 1 to
some special cases.
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Example 2.6 Assume k = 0. Thus S is the class of the (n, m, p)-linear systems. Here there is no V , and W is
the largest A22-invariant subspace of ker C2. The observability condition given by Theorem 1 is

ker C2 ∩A−1
22 W = 0

that can be easily shown to be equivalent to
W = 0

which is the usual observability condition for linear systems.

Example 2.7 Assume k = n. Then S is the class of recurrent neural networks studied in [5]. In this case there
is no W , and V is the largest A11-invariant coordinate subspace contained in kerC1. The observability condition
given by Theorem 1 is:

ker C1 ∩A−1
11 V = 0,

which was found in [5].

Example 2.8 Assume A12 = 0 and A21 = 0. Thus the linear and the nonlinear dynamics are decoupled (as in
[11]). By what observed in the two previous examples, we get that observability of the whole system is equivalent
to the two systems, characterized by (σ,A11, B1, C1) and (A22, B2, C2) respectively, being both observable. The
separate observability is clearly necessary for observability of the combined system, but the sufficiency is not an
obvious fact. For instance, if the two components were both linear, then such ”separation property” would be
false, in general.

Example 2.9 Assume that C1 has no zero columns. Then there is no nonzero coordinate subspace contained in
ker C1; so V = 0. Therefore W is the largest A22-invariant subspace contained in kerC2 and kerA12.

It follows that x ∼ z if and only if x− z ∈ ker C1 ∩ ker A1, and A2x, A2z are indistinguishable for the linear
systems (A22, C2), and (A22, A12).

3 Proof of Theorem 1

The condition Σ ∈ S enters in the proof of Theorem 1 through the following technical fact whose proof can be
found in [5].

Lemma 3.1 Assume that D ∈ IRq×l, B1 ∈ Bl,m, σ satisfies the IP . Then the following two properties are
equivalent for each ξ, η,∈ IRl, and each α, β ∈ IRq :

1. ξj = ηj for all j 6∈ ID, α = β,

2. D~σ(ξ + B1u) + α = D~σ(η + B1u) + β for all u ∈ IRm.

We now introduce some useful notations. Given x ∈ IRn and u ∈ IRm, we first let, for discrete-time models,x+(u)
be the state reached from x using the control value u. For continuous-time models, if v(t) is the control function
constantly equal to u, we denote by xu(t) the corresponding trajectory ; notice that xu(t) is certainly defined on
an interval of the form [0, εu). Sometimes we will deal with two trajectories of this type starting at two different
initial states; in this case by [0, εu) we mean the interval in which both trajectories are defined.

For any two pairs of states (x, z), (x′, z′) ∈ IRn × IRn, we write

(x, z) ; (x′, z′)

if, for discrete-time, we can find an input sequence u1, . . . , up, for some p ≥ 0, which steers the state x (resp.,
z) to x′ (resp., z′). For continuous-time, we require that there exists some control function u(t) : [0, T ] → IRm,
such that, it is possible to solve the differential equation (1) starting at x (resp z), for the the entire interval
[0, T ], and at time T the state x′ (resp. z′) is reached. With this terminology, two states (x, z) ∈ IRn × IRn are
distinguishable if and only if there is some pair (x′, z′) ∈ IRn such that (x, z) ; (x′, z′) and Cx′ 6= Cz′.

In what follows the proofs for the discrete-time case are quite similar to the proofs for continuous-time models
and simpler, thus they are only skected.
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Lemma 3.2 Let H1 ∈ IRq×k, H2 ∈ IRq×(n−k), with q ≥ 1, 1 ≤ i ≤ q, and x, z ∈ IRn.

(a) – For continuous-time models, if (H1A1xu(t))i = (H1A1zu(t))i for all u ∈ IRm and all t ∈ [0, εu) then we
have:

(H1A12A2x)i = (H1A12A2z)i,
(H1A11)ij = 0 for all j such that (A1x)j 6= (A1z)j .

(3)

– For discrete-time models, if (H1A1x
+(u))i = (H1A1z

+(u))i for all u ∈ IRm then the same conclusions,
as in equation (3), hold.

(b) – For continuous-time models, if (H2A2xu(t))i = (H2A2zu(t))i for all u ∈ IRm and all t ∈ [0, εu) then we
have:

(H2A22A2x)i = (H2A22A2z)i,
(H2A21)ij = 0 for all j such that (A1x)j 6= (A1z)j .

(4)

– For discrete-time models, if (H2A2x
+(u))i = (H2A2z

+(u))i for all u ∈ IRm then the same conclusions,
as in equation (4), hold.

Proof. (a) Suppose we are in the continuous-time case, and fix u ∈ IRm. If (H1A1xu(t))i = (H1A1zu(t))i for all
t ∈ [0, εu) then (H1A1ẋu(t))i|t=0 = (H1A1żu(t))i|t=0. The previous equation means:∑p

j=1(H1A11)ijσ((A1x)j + (B1u)j) + (H1A12A2x)i =∑p
j=1(H1A11)ijσ((A1z)j + (B1u)j) + (H1A12A2z)i.

(5)

Since this equation holds for all u ∈ IRm, applying Lemma 3.1 our conclusions follow.
The proof for the discrete-time case is the same since (H1A1x

+(u))i = (H1A1z
+(u))i, for all u ∈ IRm, implies

directly that equations (5) hold.
(b) The proof of this statement is similar to the proof of the previous one. In fact, using the same arguments

as in (a), one easily sees that, for both cases, the assumptions imply:∑p
j=1(H2A21)ijσ((A1x)j + (B1u)j) + (H2A22A2x)i =∑p
j=1(H2A21)ijσ((A1z)j + (B1u)j) + (H2A22A2z)i.

Now it is sufficient to use again Lemma 3.1 to conclude.

Lemma 3.3 If x ∼ z, then C2A2x = C2A2z and (A1x)i = (A1z)i for all i 6∈ IC1

Proof. If x ∼ z then, for all u ∈ IRm, we have Cx+(u) = Cz+(u), for discrete-time, or Cxu(t) = Czu(t), for
t ∈ [0, εu), for continuous-time. In both cases, this implies:

C1~σ(A1x + B1u) + C2A2x + C2B2u = C1~σ(A1z + B1u) + C2A2z + C2B2u

for all u ∈ IRm. Applying Lemma 3.1 our conclusions follow.

Lemma 3.4 If x ∼ z then for all q ≥ 0 we have:

1. C2A
q
22A2x = C2A

q
22A2z

2. (C2A
q
22A21)ij = 0 for all i and all j such that (A1x)j 6= (A1z)j .

Proof. 1. Induction on q ≥ 0. The case q = 0 is the first conclusion of Lemma 3.3; thus we may assume that 1.
holds for q and for all indistinguishable pairs. First assume we are dealing with continuous-time models. Notice
that if x ∼ z, then xu(t) = zu(t) for all u ∈ IRm and all u ∈ [0, εu). Thus, by the inductive assumption, we have

C2A
q
22A2xu(t) = C2A

q
22A2zu(t). (6)

Now we can apply Lemma 3.2 (part (b), first equality, with H2 = C2A
q
22 ) and we get

C2A
q+1
22 A2x = C2A

q+1
22 A2z
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as desired. The proof in discrete time is the same, with x+(u) and z+(u) replacing xu(t) and zu(t).
2. We again apply Lemma 3.2 (part (b), second equality) to equation (6), and we obtain

(C2A
q
22A21)ij = 0 for all j such that (A1x)j 6= (A1x)j .

Similarly in discrete time.

Lemma 3.5 Let 1 ≤ i ≤ k, and x, z ∈ IRn; assume that for all x′, z′ ∈ IRn such that (x, z) ; (x′, z′) we have:

(A1x
′)i = (Az′)i. (7)

Then, for all q ≥ 0,:

(a) (A12A
q
22A2ξ)i = (A12A

q
22A2ζ)i for all ξ, ζ such that (x, z) ; (ξ, ζ);

(b) (A12A
q
22A21)ij = 0 for all j such that there exists a pair ξ, ζ such that (x, z) ; (ξ, ζ), and (A1ξ)j 6= (A1ζ)j .

Proof.
(a) We will prove this part by induction on q. Let ξ, ζ such that (x, z) ; (ξ, ζ). If q = 0 equation (7) implies that,
for all u ∈ IRm, and for all t ∈ [0, εu), (A1ξu(t))i = (A1ζu(t))i, for continuous-time models, and (A1ξ

+(u))i =
(A1ζ

+(u))i, for discrete-time models. In any case, applying Lemma 3.2 part (a) (with H1 = I), we get:

(A12A2ξ)i = (A12A2ζ)i

as desired. Assume now that the statement is true for q, this in particular implies that:

(A12A
q
22A2ξu(t))i = (A12A

q
22A2ζu(t))i for cont. time

(A12A
q
22A2ξ

+(u))i = (A12A
q
22A2ζ

+(u))i for discr. time, (8)

and these equations hold for all u ∈ IRm, and for all t ∈ [0, εu). From Lemma 3.2 part (b) (with H2 = A12A
q
22),

the inductive step follows.
(b) Fix j such that there exists a pair ξ, ζ such that (x, z) ; (ξ, ζ), and (A1ξ)j 6= (A1ζ)j . Notice that both
equations in (8) hold for this pair ξ, ζ, thus the second conclusion of Lemma 3.2 part (b) gives:

(A12A
q
22A21)ij = 0

as desired.

Since if two states x, z are indinstinguishable it is clear that x − z ∈ ker C, next Proposition shows that the
conditions stated in (2) are necessary for indistinguishability.

Proposition 3.6 If x ∼ z then A1(x− z) ∈ V and A2(x− z) ∈ W .

Proof. Given x ∼ z we let:

J := { i | ∃ (x′, z′), with (x, z) ; (x′, z′), and (A1x
′)i 6= (A1z

′)i }.

Then we define:
V̂ := span { e(i) | i ∈ J },

where e(i) are the vectors of the canonical base in IRn, and

Ŵ := the largest A22-invariant subspace, contained in ker C2, such that A12Ŵ ⊆ V̂ .

We will prove that:

(i) V̂ is A11-invariant, V̂ ⊆ ker C1, and A21V̂ ⊆ Ŵ .

(ii) W̃ = {Aq
22(A2x

′ −A2z
′) | q ≥ 0, (x, z) ; (x′, z′)} ⊆ Ŵ .
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From these facts we get our statement since:

• A1(x− z) ∈ V̂ , by definition,

• A2(x− z) ∈ Ŵ , by (ii),

• V̂ ⊆ V , and Ŵ ⊆ W , by (i).

Thus we need to prove (i), and (ii).
(i)

• A11-invariance.

V̂ is A11 invariant if and only if (A11)ij = 0 for all i, j such that j ∈ J , and i 6∈ J . Now fix j ∈ J and i 6∈ J .
Then there exists (ξ, ζ) such that (x, z) ; (ξ, ζ) and (A1ξ)j 6= (A1ζ)j . Since i 6∈ J we have

(A1ξu(t))i = (A1ζu(t))i

(A1ξ
+(u))i = (A1ζ

+(u))i
∀u ∈ IRm, t ∈ [0, εu)

in continuous and discrete time respectively. Now we apply Lemma 3.2 (part (a), with H1 = I) and we get

(A11)iq = 0 ∀ q such that (A1ξ)q 6= (A1ζ)q.

In particular (A11)ij = 0 as desired.

• V̂ ⊂ ker C1.

If x ∼ z and (x, z) ; (x′, z′) then x′ ∼ z′. Thus, Lemma 3.3 yields J ⊂ IC1 from which the conclusion
follows.

• A21V̂ ⊂ Ŵ .

It is sufficient to prove {
C2A

q
22A21e

(j) = 0
A12A

q
22A21e

(j) ∈ V̂

for all j ∈ J , q ≥ 0 or, equivalently,{
(C2A

q
22A21)ij = 0 ∀j ∈ J,∀i

(A12A
q
22A21)ij = 0 ∀i 6∈ J,∀j ∈ J.

(9)

The first equality in (9) is easily obtained by applying part (b) of Lemma 3.4. The second one follows from
part (b) of Lemma 3.5 after having observed that if i 6∈ J then (A1x

′)i = (A1z
′)i for all (x′, z′) such that

(x, z) ; (x′, z′), and if j ∈ J there exists (x′, z′) such that (x, z) ; (x′, z′) and (A1x
′)j 6= (A1z

′)j .

(ii). W̃ is by definition A22-invariant. Thus to prove that W̃ ⊂ Ŵ we need to show that W̃ ⊂ ker C2 and
A12W̃ ⊂ V̂ . This amounts to establish the following identities:

C2A
q
22A2x

′ = C2A
q
22A2z

′ ∀(x′, z′) such that (x, z) ; (x′, z′) (10)

A12A
q
22A2(x′ − z′) ∈ V̂ ∀(x′, z′) such that (x, z) ; (x′, z′). (11)

Since (x, z) ; (x′, z′) implies x′ ∼ z′, (10) is just part (a) of Lemma 3.4. Moreover (11) is equivalent to

(A12A
q
22A2x

′)i = (A12A
q
22A2z

′)i ∀i 6∈ J

that follows from part (a) of Lemma 3.5.

Now we prove Theorem 1.
Proof of Theorem 1. As observed before, Proposition 3.6 shows that the conditions stated in (2) are necessary

for indistinguishability; thus we only need to prove the sufficiency part.
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Assume first that we are dealing with the discrete-time case. We show that if x, z ∈ IRn satisfy the conditions
in (2) then also x+(u), z+(u) satisfy the same conditions for all u ∈ IRm. This fact clearly implies that x ∼ z.
The following implications hold:

A1(x− z) ∈ V ⇒ x+
1 (u)− z+

1 (u) ∈ V
A2(x− z) ∈ W ⇒ x+

2 (u)− z+
2 (u) ∈ W.

(12)

The first implication follows from the fact that V is a coordinate subspace (for this type of subspace if α ∈ V then
also ~σ(α) ∈ V ), while the second is easy. Since V ⊆ ker C1, and W ⊆ ker C2, (12) yields x+(u)− z+(u) ∈ ker C.
Moreover V is A11-invariant, and A12W ⊆ V , and so we have:

A1(x+(u)− z+(u)) = A11(x+
1 (u)− z+

1 (u)) + A12(x+
2 (u)− z+

2 (u)) ∈ V.

Finally, A22-invariance of W , and the fact that A21V ⊆ W , gives:

A2(x+(u)− z+(u)) = A12(x+
1 (u)− z+

1 (u)) + A22(x+
2 (u)− z+

2 (u)) ∈ W.

Thus also the pair (x+(u), z+(u)) satifies equation (2), as desired.
Assume now that we are dealing with the continuous-time models. For a fixed but arbitrary input signal

(u(t))t≥0, let x(t) , z(t) denote the corresponding solutions of (1), associated to initial conditions x(0) , z(0). The
pair (x(t), z(t)) solves the differential equation in IR2n(

ẋ
ż

)
= F (x, z) (13)

where

F (x, z) =


~σ(A1x + B1u)

A2x + B2u
~σ(A1z + B1u)

A2z + B2u

 .

Let Z = {(x, z) ∈ IR2n : x − z ∈ ker C,A1(x − z) ∈ V,A2(x − z) ∈ W}. In the proof for the discrete time case
we showed that if (x, z) ∈ Z then F (x, z) ∈ Z. Thus Z is stable for the flow of (13), i.e. if (x(0), z(0)) ∈ Z then
(x(t), z(t)) ∈ Z. Since (u(t))t≥0 is arbitrary and Z ⊂ ker C this completes the proof.

4 Proof of Proposition 2.2

Define:
J∞ = ∩d≥1Jd; V∞ = ∩d≥1Vd; W∞ = ∩d≥1Wd.

Thus V∞ = span {e(j) | j 6∈ J∞}. By using the recursive definition of Jd, Vd, and Wd and the fact that there
exists d̄ such that Vd = V∞, Wd = W∞ for d ≥ d̄, the following properties are easily seen:

{ i | ∃ j ∈ J∞ so that (A11)ji 6= 0 } ⊆ J∞. (14)

{i | ∃ j,∃l ≥ 0 so that (C2A
l
22A21)ji 6= 0 } ⊆ J∞. (15)

{i | ∃ j ∈ J∞,∃l ≥ 0 so that (A12A
l
22A21)ji 6= 0 } ⊆ J∞. (16)

W ⊂ {w |Al
22w ∈ ker C2 for l ≥ 0, A12A

l
22w ∈ V∞ for l ≥ 0 }. (17)

We now prove V∞ ⊆ V and W∞ ⊆ W by showing that V∞ and W∞ satisfy properties P1-P4 in the definition on
V , W .

P1. The only thing which is not obvious is the A11-invariance of V∞. So let v ∈ V∞. By (14), we have vi = 0 if
∃j ∈ J∞ such that (A11)ji 6= 0. Thus, for j ∈ J∞:

(A11v)j =
k∑

i=1

(A11)jivi = 0

and, therefore, A11v ∈ V∞.
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P2. Let w ∈ W∞. We show that A22w ∈ Wd for every d ≥ 1. The fact that Al
22(A22w) ∈ ker C2 for 0 ≤ l ≤ d

follows clearly by (17). Moreover, for 1 ≤ s ≤ d, it follows from (17) that:

A12A
d−s
22 (A22w) ∈ V∞ ⊆ Vs.

P3. Let v ∈ V∞. We have to show that A21v ∈ Wd for all d ≥ 1. Using the same argument used to get P1, it is
easy to see that from (15) we get:

C2A
l
22A21v = 0 ∀ l ≥ 0,

and from (16) we have:
A12A

l
22A21v ∈ V∞ ⊆ Vs ∀ s ≥ 1.

This implies that A21v ∈ Wd for all d, as desired.

P4. This is immediate by equation (17).

To complete the proof, we have to show that V ⊆ Vd, and W ⊆ Wd for all d ≥ 1. We do this by induction. For
d = 1 this is clear.

Now let e(i) ∈ V . We show that e(i) ∈ Vd+1, i.e. i 6∈ Jd+1.

• Suppose i is such that there exists j ∈ Jd with (A11)ji 6= 0. Then we have

(A11e
(i))j = (A11)ji 6= 0 ⇒ A11e

(i) ∈ Vd.

This is impossible since A11V ⊂ V and, by inductive assumption, V ⊂ Vd.

• Suppose i is such that there exist j and 0 ≤ l ≤ d− 1 with (C2A
l
22A21)ji 6= 0. As before, this implies

C2A
l
22A21e

(i) 6= 0

that is impossible, since A21V ⊂ W and W ⊂ ker (C2A
l
22) for every l ≥ 0.

• Suppose i is such that there exist 0 ≤ s ≤ d− 1 and j ∈ Js with (A12A
d−s
22 A21)ji 6= 0. This implies

A12A
d−s
22 A21e

(i) 6∈ Vs.

This is impossible since Ad−s
22 A21V ⊂ V , A12W ⊂ W and, by inductive assumption, V ⊂ Vs.

Thus we have shown that e(i) ∈ Vd+1.
Now let w ∈ W . We show that w ∈ Wd+1.

• The condition Al
22w ∈ ker C2 for 0 ≤ l ≤ d follows from W ⊂ ker C2 and A22W ⊂ W .

• The condition A12A
d−s
22 w ⊂ Vs for 1 ≤ s ≤ d follows from A22W ⊂ W , A12W ⊂ V and the fact that, by

inductive assumption, V ⊂ Vs.

References

[1] Albertini F., and Dai Pra P., ”Forward accessibility for recurrent neural networks” submitted for pubblication.
[2] Albertini F., and Dai Pra P., “Observability for discrete time recurrent neural networks coupled with linear

systems”, submitted for ECC ’95.
[3] Albertini, F., and E.D. Sontag, “For neural networks, function determines form,” Neural Networks, 6

(1993):975-990.
[4] Albertini, F., and E.D. Sontag, “Identifiability of discrete-time neural networks” Proc. European Control

Conference, Groningen, July, 1993:460-465.
[5] Albertini, F., and E.D. Sontag, “State observability in recurrent neural networks” System and Control Letters,

22, No. 4, 1994.

9



[6] Albertini, F., and E.D. Sontag, ”Uniqueness of weights for Recurrent Nets,” Proc. Mathematical Theory of
Networks and Systems, Regensburg, August, 1993, to appear.

[7] Albertini, F., E.D. Sontag, and V. Maillot, “Uniqueness of weights for neural networks,” Artificial Neural
Networks with Applications in Speech and Vision, R. Mammone ed., Chapman and Hall, London, 1993:
115-125.

[8] Hebb, D.O., The organization of behavior, Wiley, New York, 1949.
[9] Hertz, J., A. Krogh, and R.G. Palmer, Introduction to the Theory of Neural Computation, Addison-Wesley,

Redwood City, 1991.
[10] McCulloch, W.S., and W. Pitts, “A logical calculus of the ideas immanent in nervous activity”,

Bull.Math.Biophys. 5 (1943): 115-133.
[11] Koplon, R.B., Linear systems with constrained outputs and transitions, Ph.D. Thesis, Rutgers University,

1994.
[12] Sontag, E.D., Mathematical Control Theory: Deterministic Finite Dimensional Systems, Springer, New York,

1990.
[13] Sontag, E.D., Some topics in neural networks and control, Siemens Corporate Research, Inc., Report LS93-02,

1993.
[14] Sussmann, H.J., “Uniqueness of the weights for minimal feedforward nets with a given input-output map,”

Neural Networks 5(1992): 589-593.

10


