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Abstract

A new criterion is established for global asymptotic stability of second order systems modeled by

equations of the type ẋ = σ(Ax), where σ is the saturation function. The derivation is based on the

Bendixon’s theorem on limit cycles and a closer study of the trajectories of the systems. Applications

to stabilization of more general cascade nonlinear systems are also discussed.
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1 Introduction

We deal with the problem of characterizing global asymptotic stability of the origin for systems of the type:

ẋ = ~σ(Ax), (1)

1



with x ∈ IRn, A ∈ IRn×n, and if v ∈ IRn, ~σ(v) := (σ(v1), . . . , σ(vn))T , where σ is the saturation map, i.e.:

σ(x) =


−1 if x ≤ −1

x if −1 < x < 1

1 if x ≥ 1 .

The model (1) is not invariant under a general change of coordinates of the type z = Tx. However,

the dynamics are left unchanged if T is of the form T = PS, where P is a permutation matrix and

S = Diag (ε1, . . . , εn), with εj = ±1, j = 1, ..., n.

The study of systems such as (1) is motivated by the fact that they model classes of analogic circuits,

neural networks, and control systems and in general systems which present symmetrically saturating states

after normalization.

The discrete time counterpart of (1) is

x+ = ~σ(Ax), (2)

where x, A, and ~σ are as above. Recently, systems (2) received a growing amount of attention (see [12]

and the references therein), due to their interest in digital filtering and saturation arithmetic.

The main result of this paper (Theorem 1, Section 3) establishes a new sufficient condition on the

entries of the matrix A to conclude global asymptotic stability of systems (1) for the second order case.

The paper is organized as follows. In Section 2 we give the basic definitions and some preliminary results.

In particular, after a change of coordinates, system (1) will be placed in a form similar to the one of a

Hopfield neural network for which there exists a large literature (see [6, 13, 2, 3, 22, 17, 11, 19] and the

references therein, see also [10] for a different but related model). Section 3 gives sufficient conditions for

asymptotic stability of the second order systems using an application of the Bendixon’s theorem on limit

cycles. In Section 4, we discuss an application of our results to the synthesis of a stabilizing controller for

a system with saturated inputs.

2 Definitions and Preliminaries

First, we recall some basic definitions from stability theory for dynamical systems (see [20, chap. 5] for

more detailed definitions and results). Let Σ be a dynamical system, with an unique equilibrium point x0.

If A is a nonsingular matrix, then this is the case of model (1) where x0 = 0. The equilibrium state x0
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is said to be stable if, for each neighborhood S of x0, there exists a neighborhood W ⊆ S, such that each

trajectory starting in W remains in S, for all t ≥ 0. Moreover, x0 is said to be locally asymptotically stable

if the above holds and, for any initial state in W , the corresponding trajectory converges to x0 = 0, as

t →∞. If x0 is stable and any trajectory converges to it as t →∞, regardless of the initial state, then x0

is said to be globally asymptotically stable.

In order to ascertain the stability properties of an equilibrium point, the direct method of Lyapunov is

the most common tool. There are various versions of this method depending upon what kind of stability

one wants to study. We state here, informally, only the criterion for global asymptotic stability: Assume

there exists a C1 proper function V (·) satisfying V (x0) = 0, V (x) > 0 for x 6= x0, and define V̇ (·) the

derivative of this function, with respect to the time, calculated along the trajectories of the system. If

V̇ (·) < 0 along any non constant trajectory, then x0 is globally asymptotically stable. In this case, the

function V (·) is referred to as a Lyapunov function.

An obvious necessary condition for the local asymptotic stability of x0 = 0 in (1) is the asymptotic

stability of the linear system ẋ = Ax. Therefore we assume:

A is a Hurwitz matrix, (C1)

i.e. all the eigenvalues of A have a negative real part, in particular, A is nonsingular.

In order to deal with the asymptotic stability of the system (1) we will apply the following simple

device. Define the change of coordinates

z = Ax.

We get

ż = Aẋ = A~σ(Ax) = A~σ(z),

thus the global asymptotic stability of system (1) is equivalent to the one of the system

ẋ = A~σ(x). (3)

Systems (3) are simpler to deal with, so, from now on, we assume that a model of type (3) is given and we

will prove our results for this model. Notice also that system (3) looks like a Hopfield neural network [6].

Condition (C1) is by no means sufficient to conclude global asymptotic stability of x0 = 0 for systems

of type (3). In fact, for example, (C1) does not avoid trajectories which remain in the regions of Rn where

|xj | ≥ 1, for some j ∈ {1, ..., n}. The condition stated in the next proposition excludes this possibility.
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Proposition 2.1 Given a system of type (3), if x0 = 0 is globally asymptotically stable, then

minj εj

n∑
k=1

εkajk < 0, (C2)

for each combination of ε1, ..., εn = ±1.

Proof. We prove this statement by contradiction. Assume that, for a given combination ε̄1, ..., ε̄n = ±1,

(C2) is not verified, that is we have

ε̄j

n∑
k=1

ε̄kajk ≥ 0, ∀j = 1, ..., n. (4)

Let x̄ ∈ IRn be such that x̄j ≥ 1 for ε̄j = +1 and x̄j ≤ −1 for ε̄j = −1. Denote by x̄(t) the trajectory of

(3) starting at x̄. Then, ∀ t ≥ 0, x̄j(t) ≥ x̄j ≥ 1 if ε̄j = 1, and x̄j(t) ≤ x̄j ≤ −1, if ε̄j = −1, since, from (4),

we have:

ε̄j ˙̄xj(t) = ε̄j

n∑
k=1

ε̄kajk ≥ 0, j = 1, ..., n. (5)

Therefore |xj(t)| ≥ 1,∀ j = 1, ..., n, and ∀ t ≥ 0.

Remark 2.2 Condition (C2) requires that, for each combination ε1, ..., εn = ±1, there exists a j ∈

{1, ..., n} such that the quantity
∑n

k=1 εkajk is not zero, and it has not the same sign of εj . It consists of

checking 2n conditions for any possible combination of signs in ε1, ..., εn. However only 2n−1 conditions are

significative since it is

εj

n∑
k=1

εkajk = −εj

n∑
k=1

−εkajk.

Next result states an useful sufficient condition for global asymptotic stability of the system (3) or

equivalently (1). It has been first stated, for more general models than this specific one, in [16], and a

complete proof has been given recently in [4, 9].

Proposition 2.3 Let Σ be a model of type (3) (or (1)). Assume that, there exists a positive definite

diagonal matrix D = Diag (k1, . . . , kn), for which the Lyapunov equation

AT D + DA = Q, (6)

holds, with Q negative definite. Then x0 = 0 is a globally asymptotically stable equilibrium point for Σ.

The idea of the proof is to show that the following function:

V (x1, . . . , xn) =
n∑

i=1

ki

∫ xi

0

σ(t)dt.
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is a global Lyapunov function for the model.

To understand when Proposition 2.3 can be applied, one needs to know when, for a given Hurwitz

matrix A, there exists a diagonal positive definite D such that equation (6) holds. Reference [1] deals

with this problem, and presents some necessary and sufficient conditions. An interesting case in which

(6) is verified, is when A is a Hurwitz symmetric matrix, in this case it holds with D = I. A necessary

condition is that every principal submatrix of A satisfies (6). This easily follows from the fact that principal

submatrices of positive definite matrices are positive definite. In particular the diagonal elements of A must

be all negative. For two dimensional matrices, this condition is also sufficient, in fact, the following fact

holds:

Lemma 2.4 Let A ∈ IR2×2. There exists D = Diag (k1, k2), with ki > 0 for i = 1, 2, such that AT D +

DA < 0 if and only if i)A is a Hurwitz matrix, ii) a11 < 0 and a22 < 0.

Proof. The proof simply follows by applying the Sylvester criterion for symmetric negative definite matrix

(see e.g. [7, pg.404]) to AT D + DA.

3 Stability of the Second Order Model

In this section, we deal with second order systems of type (3). By combining Proposition 2.3 and Lemma

2.4, one has:

Corollary 3.1 Let Σ be a second order model of type (3) (or (1)). If the matrix A is Hurwitz, and both

its diagonal elements are negative, then x0 = 0 is a globally asymptotically stable equilibrium point for Σ.

In order to derive a sufficient condition, for global asymptotic stability of second order systems, which

works when the above condition is not verified we state below two definitions and a property. This is done

in the general context of a state space of dimension n.

Definition 3.2 A matrix A ∈ Rn×n is i−row diagonally dominant if

aii +
n∑

j=1
j 6=i

|aij | < 0.

Definition 3.3 A matrix A ∈ Rn×n is row diagonally dominant if it is i−row diagonally dominant, for

any i = 1, ..., n.
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Analogous definitions can be given for column dominance (see [7, pg.349]) but we shall not use them in the

following. Row diagonal dominance has a special significance in terms of the trajectories of system (3), as

described in the following lemma.

Lemma 3.4 Let Σ be a model of type (3). Assume that, for one i ∈ {1, ..., n}, A is i−row diagonally

dominant. Then Wi := {x : |xi| < 1} is a global attractor and a positively invariant set.

Proof. Assume xi(t) ≥ 1, then:

ẋi(t) = aii +
n∑

j=1
j 6=i

aijσ(xj(t)) ≤ aii +
n∑

j=1
j 6=i

|aij | < 0.

Therefore xi(t) ≤ (aii +
∑n

j=1
j 6=i

|aij |)t + xi(0), so there exists t̄ such that xi(t̄) < 1. Similar arguments

show that the same holds for xi(t) ≤ −1. Thus Wi is a global attractor. Moreover, the velocity vector is

transverse to the boundary of Wi, and it is oriented inward to Wi, so Wi is also a positively invariant set.

Notice that if A is row diagonally dominant, then, by Gershgorin theorem [7, pg. 344], it is Hurwitz.

Moreover, since each Wi, i = 1, ..., n is a global attractor and a positively invariant set, the system behaves,

from a certain instant on, as a linear system. So, in this case, we can conclude global asymptotic stability

of x0 = 0 for system (3). Since the diagonal dominance implies, in particular, that aii < 0, for i = 1, . . . , n,

if n = 2, one may also apply Corollary 3.1 to get the same conclusion.

The rest of this section is devoted to show that, for second order systems, i−row diagonal dominance

for one i ∈ {1, 2} and the Hurwitz property of A are sufficient to conclude global asymptotic stability for

(3).

Lemma 3.5 Let Σ be a model of type (3) with n = 2. If A is Hurwitz, and, for i = 1 or 2 it is also i-row

diagonally dominant, then all the trajectories of Σ are bounded.

Proof. Assume i = 1 (same arguments hold for i = 2), and let x(t) be a trajectory of Σ. We already know

by Lemma 3.4 that there exists t1 ≥ 0 such that |x1(t)| < 1, for any t ≥ t1. Assume x2(t1) > 1. Then, by

continuity, x2(t) > 1 for t in a open neighborhood of t1. As long as x2(t) > 1, the equation for Σ are:

ẋ1 = a11x1 + a12

ẋ2 = a21x1 + a22.

6



An explicit computation gives

x1(t) = ea11(t−t1)(x1(t1) + a12
a11

)− a12
a11

,

x2(t) = x2(t1) + a21
a11

(x1(t1) + a12
a11

)(ea11(t−t1) − 1) + Det A
a11

(t− t1),
(7)

where the 1-row dominance implies a11 < 0. Since A is Hurwitz, Det A > 0, thus there exists t2 > t1 such

that 0 ≤ x2(t2) ≤ 1. Same arguments give that, if x2(t1) < −1, then, as long as x2(t) < −1, the trajectory

is given by:

x1(t) = ea11(t−t1)(x1(t1)− a12
a11

) + a12
a11

,

x2(t) = x2(t1) + a21
a11

(x1(t1)− a12
a11

)(ea11(t−t1) − 1)− Det A
a11

(t− t1).
(8)

Thus, also in this case, there exists t2 > t1 such that −1 ≤ x2(t2) ≤ 0.

So, in any case, the trajectory x(t) reaches the region W = {(x1, x2) | |x1| ≤ 1, |x2| ≤ 1}. Now, even if

x(t) leaves W for some t > t2, using the explicit form of the trajectory given by equations (7) or (8), we

have:

|x2(t)| < 1 + |a21

a11
|(1 + |a12

a11
|), ∀ t ≥ t2;

thus x(t) is bounded, as desired.

Next lemma, under the same assumptions of Lemma 3.5, excludes the possibility of having noncostant

periodic orbits. We will use the classical Bendixon’s theorem which gives sufficient conditions for the

nonexistence of closed trajectories in a simply connected region of R2 (see [20, pg.31]). However, in the

following proof, we need a slight modification of the original proof of Bendixon, due to the fact that σ(·)

is not continuously differentiable.

Lemma 3.6 Let Σ be a model of type (3) with n = 2. If A is Hurwitz, and, for i = 1 or 2 it is also i-row

diagonally dominant, then Σ has no closed trajectories in the strip Wi.

Proof. Let i = 1 (the case i = 2 can be treated in the same way). Assume there is a closed trajectory Γ

in W1. To make notation simpler, assume that Γ intersects the line x2 = 1 at two points, and it does not

intersect the line x2 = −1. Denote by P1(x1
1, 1) and P2(x2

1, 1), with x1
1 < x2

1, the intersection points. The

treatment of the general case goes in full analogy.

At any point of Γ the velocity vector of (3), that we denote by ~v, is orthogonal to the normal vector to

Γ, which we denote by ~n. Thus we have ∫
Γ

~v · ~ndl = 0. (9)
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Let Γx1
1−x2

1
be the arc of Γ which goes from P1 to P2, and Γx2

1−x1
1

the one from P2 to P1. Denote by

Γ1 = Γx1
1−x2

1
∪ P2P1, and by Γ2 = Γx2

1−x1
1
∪ P1P2 (where PiPj denotes the segment from Pi to Pj). For

i = 1, 2, let Si be the region enclosed by Γi, and ~ni be its outward normal. Since∫
P2P1

~v · ~n1dl = −
∫

P1P2

~v · ~n2dl,

we may rewrite equation (9) as:∫
Γ

x1
1
−x2

1

~v · ~n1dl +
∫

P2P1

~v · ~n1dl +
∫

Γ
x2
1
−x1

1

~v · ~n2dl +
∫

P1P2

~v · ~n2dl = 0,

which is equivalent to ∫
Γ1

~v · ~n1dl +
∫

Γ2

~v · ~n2dl = 0 (10)

Notice that, the closed curves Γ1 and Γ2 are contained in two regions of the plane R2 where the velocity

vector ~v is continuously differentiable. Thus applying the Divergence Theorem (see e.g. [18, pg.754]), we

obtain, ∫
Γ1

~v · ~n1dl +
∫

Γ2

~v · ~n2dl =
∫

S1

∇~vdx +
∫

S2

∇~vdx. (11)

In S1, S2, ∇~v is alternatively a11 or a11 + a22, which, in both cases, is strictly less then zero. This implies

that the right hand side of (11) is strictly less than zero, which contradicts equation (10).

Next theorem provides, for second order models, a new sufficient condition to conclude the global

asymptotic stability of the origin.

Theorem 1 Let Σ be a model of type (3) with n = 2. Assume that A is Hurwitz, and, for one i in {1, 2},

it is i-row diagonally dominant. Then x0 = 0 is a globally asymptotically stable equilibrium point for Σ.

Proof. Let x(t) be any trajectory of Σ. By Lemma 3.4, x(t) is, from a certain instant on, in the strip Wi

and it is bounded by Lemma 3.5. Thus if Ω denotes the positive limit set of x(t), by classical results on

limit sets for 2-dimensional systems (see, for example [5], Theorem 1.3), we know that one of the following

holds:

• Ω is a closed trajectory;

• Ω is an equilibrium point;

• Ω contains some equilibrium points and some trajectories whose positive and negative limit sets are

among these equilibrium points.
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Lemma 3.6 excludes the first possibility. The third situation is also to be excluded, since it would imply

the existence of a trajectory whose negative limit set is zero. This would be in contradiction with the fact

that A is Hurwitz. Thus Ω = {0}, as desired.

As mentioned above, Theorem 1 covers some cases in which the assumptions of Corollary 3.1 fail.

Nevertheless, it is not difficult to find examples of Hurwitz matrices with both diagonal elements negative

which are not i-row diagonally dominant for any i = 1, 2.

4 An Application

We discuss an application of Theorem 1 to a specific design problem. It will appear clear, however, that

the arguments used here work for more general, higher order, systems.

Consider feedback stabilization of the following nonlinear system

ż = −φ(z) + zx2
1

ẋ1 = σ(x2)

ẋ2 = σ(u),

(12)

where the scalar system ż = −φ(z) is globally asymptotically stable and u denotes a scalar input. If we

consider the system as a cascade, we cannot apply classical results on stability of cascade nonlinear systems

([14],[15],[21]) because of the lack of the Lipschitz condition in the term zx2
1, and because the system is

not C1. Moreover, no linear feedback can be chosen so that the subsystem x1, x2 satisfies the condition of

Proposition 2.3, since the corresponding matrix A does not satisfy the necessary condition ii) of Lemma

2.4. However, it is easily seen that the linear feedback

u = −k1x1 − k2x2, (13)

k1 > 0, k2 > k1, gives global asymptotic stability of system (12).

The claim follows from combining Theorem 1 with recently developed results on the stability of nonlinear

cascades [8]. In particular, notice that the matrix of the subsystem

ẋ1 = σ(x2),
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ẋ2 = σ(−k1x1 − k2x2),

is 2- row dominant. Therefore, from Theorem 1, there exists a T ≥ 0 such that, for t ≥ T , this subsystem

behaves as a linear system and |x(t)| ≤ B, with a certain bound B, for t ≤ T .

For t ≤ T , z(t) is also bounded, namely it does not have finite escape time in the interval [0, T ]. In

order to see this, multiply the first equation of (12) by z. We get

zż = −zφ(z) + z2x2
1,

1
2

dz2

dt
≤ z2x2

1 ≤ z2B2, (14)

and integrating (14), we get

z2(t) = z2(0) +
∫ t

0

2z2(s)B2ds, (15)

for t ≤ T . Application of the Bellman-Gronwall Lemma (see e.g. [20][pg. 292]) to (15) gives

z2(t) ≤ z2(0)e
∫ t

0
2B2ds ≤ z2(0)e2B2T .

The above shows that, in an asymptotic analysis, we can consider the cascade (12) with the control (13),

as the cascade of a linear asymptotically stable system with an asymptotically stable nonlinear system.

The global asymptotic stability of the overall system follows directly from application of the main result

of [8].

We conclude noticing that the control (13) is still stabilizing if we multiply it for any positive constant

γ since this does not destroy the dominance and Hurwitz property of the resulting matrix. This controller

has infinite gain margin.
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