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Chapter 1

Introduction

In recent years neural networks have become a widely used tool for both modeling and
computational purposes. From plasma control to image or sound processing, from associative
memories to digital control, neural networks techniques have been appreciated for their
effectiveness and their relatively simple implementability. We refer the reader to [16, 17]
(and references therein) for seminal works, and to [26, 9, 32] for more recent reviews on the
subject.

The rigorous analysis of neural networks models has attracted less interest that their
applications, and so it has proceeded at a slower pace. There are, of course, some exceptions.
In the context of associative memories, for instance, a rather sophisticated study can be found
in [31, 10].

The purpose of this work is to present up-to-date results on a dynamical version of
neural networks, namely on Recurrent Neural Networks. Recurrent neural networks are
control dynamical systems that, in continuous time, are described by a system of differential
equations of the form 

ẋ = ~σ(Ax + Bu)

y = Cx
(1)

where x ∈ IRn, u ∈ IRm, y ∈ IRp and A,B, C are matrices of appropriate dimension. The
function ~σ : IRn → IRn is defined by ~σ(x) = (σ(x1), . . . , σ(xn)), where σ is an assigned
nonlinear function. In (1), u represents the input signal, or control, and y represent the
output signal, or observation. Systems of type (1) are commonly used as realizations for
nonlinear input/output behaviors; the entries of the matrices A,B, C, often called weights
of the networks, are determined on the basis of empirical data using some appropriate
best fitting criterion. A brief survey on the use of recurrent neural networks as models for
nonlinear systems can be found in [24]. Models of these types are used in many different
areas; see for example [9, 18] and [21, 26] for signal processing and control applications
respectively.

The system theoretic study of recurrent neural networks was initiated in [30, 6, 7], and
continued in [8, 2]. The purpose of this study is twofold.

• Systems of type (1) provide a class of ”semilinear” systems, whose behavior may be
expected to exhibit some similarity with linear systems, that correspond to the choice
σ = identity. It is therefore natural the attempt of characterizing the standard sys-
tem theoretic properties - observability, controllability, identifiability, detectability,...
- in terms of algebraic equations for the matrices A,B, C, as for linear systems. One
may expect that the nonlinearity introduced by a ”typical” function σ induces some
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2 CHAPTER 1. INTRODUCTION

”chaotic” disorder in the system, whose overall effect can be described in simple terms.
Surprisingly enough, this picture turns out to be correct, under quite reasonable as-
sumptions on the model.

• In modeling nonlinear input/output behaviors by recurrent neural networks, it is de-
sirable to avoid redoudances. More precisely, one would like to work with a recurrent
neural network that is minimal; this means that the same input/output behavior can-
not be produced by a recurrent neural network with lower state space dimension (= n
in (1)). This leads to a classical identifiability problem: characterize minimal recurrent
neural networks in terms of their weights. Moreover, by analogy with linear systems,
questions on relationships between minimality, observability and controllability natu-
rally arise.

There are many other interesting issues related to recurrent neural networks, such as
computability, parameter reconstruction, stability properties, memory capacity, sample com-
plexity for learning and others which will not be addressed in this work. Some references on
these subjects are for example [23, 13, 19, 22, 11, 12].

The analysis of recurrent neural networks, both in discrete and continuous time, is the
subject of Chapter 2. After stating some assumptions on the model (Sections 2.1 and 2.2),
we give necessary and sufficient conditions for a system of type (1) to be observable, i.e.
for the initial state of the system to be determined by the input/output behavior. Such
conditions can be checked by performing a finite number of linear operations on the entries
of the matrices A,C. Moreover, it is shown that observability of the corresponding linear
system (σ = identity) implies observability of the network, while the opposite is false.

In Section 2.4 we turn to the problem of characterizing identifiability and minimality
of recurrent neural networks. These notions are shown to be essentially equivalent to ob-
servability. Moreover, for non-observable systems, it is shown that through an observability
reduction similar to the one for linear systems (see e.g. [27]), one can lower the state-space
dimension without changing the input/output map.

Unlike for linear systems, it may appear that controllability does not play any role in
minimality. However, this is not the case. The above observability and minimality results
are proved under ”genericity” assumptions on the function σ and the control matrix B. In
Section 2.5 we show, for continuous time systems, that these assumptions imply forward
accessibility, which means that by choosing different controls u we can steer the state of
the system to any point of a nonempty open set. Forward accessibility for a discrete-time
recurrent neural network is a more difficult problem, and not completely understood. Known
results on the subject are summarized in Section 2.5.

Systems of type (1), although very flexible, may be not the best choice in some contexts.
In many engineering applications nonlinear systems arise as perturbations of linear ones.
This happens, for instance, when a linear and a nonlinear system are interconnected (see
[27], Chapter 6). There is a natural way of generalizing systems of type (1) to include
interconnections with linear systems. We consider control systems that, in continuous time,
take the form 

ẋ1 = ~σ(A11x1 + A12x2 + B1u)

ẋ2 = A21x1 + A22x2 + B2u

y = C1x1 + C2x2

(2)

where x1 ∈ IRn1 , x2 ∈ IRn2 , u ∈ IRm, y ∈ IRp, and σ is a given nonlinear function. In
Chapter 3 we present a complete analysis of observability, identifiability and minimality for
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such systems, that will be called Mixed Networks. The results on observability can also be
found in [1, 3], while results concerning identifiability and minimality, that are technically
the most demanding, are original contributions of this work.

It is relevant to point out that the main point in understanding minimality of both
systems of type (1) and (2), consists in determining the symmetry group of minimal systems,
i.e. the linear transformations of the state-space that do not affect the type of the system
and its input output behavior. It is well known that the symmetry group of a minimal
linear system of dimension n is GL(n), the group of all invertible linear transformations.
It turns out that minimal recurrent neural networks have a finite symmetry group, while
mixed networks have an infinite symmetry group, but much smaller than GL(n1 +n2). This
reduction of the symmetry group is not surprising, since the nonlinearity of σ prevents linear
symmetries. What is remarkable is that the knowledge of linear symmetries is enough to
understand observability and identifiability.

Chapter 4 presents some open problems related to the properties of recurrent neural
networks and mixed networks discussed in this work.

We are both indebted to Prof. E.Sontag, who has lead us into the subject of recurrent
neural networks, and has contributed to developing many of the techniques used in this
work.
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Chapter 2

Recurrent neural networks

2.1 The model

In this Chapter we consider Recurrent Neural Networks evolving either in discrete or con-
tinuous time. We use the superscript ”+” to denote time shift (discrete time) or time
derivative (continuous time). The basic models we deal with are that in which the dynamics
are assigned by the following difference or differential equation

x+ = ~σ(Ax + Bu)
y = Cx

(3)

with x ∈ IRn, u ∈ IRm, y ∈ IRp, A ∈ IRn×n, B ∈ IRn×m and C ∈ IRp×n. Moreover
~σ(x) = (σ(x1), . . . , σ(xn)), with σ a given odd function from IR to itself. Clearly, if σ is
the identity, the model in (3) is just a standard linear system. If σ is a nonlinear function,
then systems of type (3) are called (single layer) Recurrent Neural Networks (RNN), and the
function σ is referred to as the activation function. For continuous time models, we always
assume that the activation function σ is, at least, locally Lipschitz, and the control map u(·)
is locally essentially bounded, so the differential equation in (3) has an unique local solution.

The system theoretic analysis of RNN’s will be carried on under two basic conditions,
involving the activation function σ and the control matrix B. The first condition is a non-
linearity requirement on σ.

Definition 2.1.1 A function σ : IR → IR is an admissible activation function if, for all
N ∈ IN and all pairs (a1, b1), . . . , (aN , bN ) ∈ IR2 such that bi 6= 0 and (ai, bi) 6= ±(aj , bj)
for all i 6= j, the functions ξ → σ(ai + biξ), i = 1, . . . , N , and the constant 1 are linearly
independent.

Note that no polynomial is an admissible activation function. Sufficient conditions and
example of admissible activation functions will be given in Section 2.2.

Next condition is a controllability-type requirement on the matrix B.

Definition 2.1.2 A matrix B ∈ IRn×m is an admissible control matrix if it has no zero row,
and there are no two rows that are equal or opposite.

The above assumption is equivalent to say that, whatever the matrix A is, and provided
σ is an admissible activation function, the orbit of the control system

x+ = ~σ(Ax + Bu) (4)

is not confined in any subspace of positive codimension. In fact, the following statement is
easy to prove.

5
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Proposition 2.1.3 If σ is an admissible activation function, then B is an admissible con-
trol matrix if and only if span{~σ(Bu) : u ∈ IRm} = IRn or, equivalently, for all x ∈ IRn

span{~σ(x + Bu) : u ∈ IRm} = IRn.

The relation between the admissibility of B and controllability of the system (3) will be
the subject of Section 2.5.

Definition 2.1.4 A system of type (3) is said to be an admissible RNN if both the activation
function σ and the control matrix B are admissible.

2.2 Examples of admissible activation functions

In this Section we state and prove two criteria for verifying admissibility of an activation
function. For the first one see also [5].

Proposition 2.2.1 Suppose σ is a real analytic function, that can be extended to a complex
analytic function on a strip {z ∈ C : |Im(z)| ≤ c} \ {z0, z̄0}, where |z0| = c and z0, z̄0 are
singularities (poles or essential singularities). Then σ is admissible.

Proof. Let (a1, b1), . . . , (aN , bN ) be such that bi 6= 0 and (ai, bi) 6= ±(aj , bj) for all i 6= j.
Suppose |b1| ≥ |b2| ≥ · · · ≥ |bN |, and let c1, . . . , cN ∈ IR be such that

N∑
i=1

ciσ(ai + biξ) = 0 (5)

for all ξ ∈ IR. Since σ is odd, we can assume without loss of generality that bi > 0 for all i.
Note that the identity (5) extends to {ξ ∈ C : |Im(ξ)| ≤ c

b1
} \ { z0−ai

bi
, z̄0−ai

bi
: i = 1, . . . , k}

where k ≤ n and b1 = · · · = bk. Now, let ξn ∈ C be a sequence with |Im(ξn)| < c
b1

, such
that ξn → z0−a1

b1
and |σ(a1 + b1ξn)| → +∞ as n →∞. Note that, for every i > 1

lim
n→∞

σ(ai + biξn) = σ(ai + bi(
z0 − a1

b1
)) ∈ C. (6)

Thus, dividing expression (5) by σ(a1 + b1ξ) and evaluating at ξ = ξn, we get:

c1 +
N∑

i=2

ci
σ(ai + biξn)
σ(a1 + b1ξn)

= 0.

Letting n →∞, we conclude c1 = 0. By repeating the the same argument we get ci = 0 for
all i, which completes the proof.

It is very easy to show that two standard examples of activation functions, namely
σ(x) = tanh(x) and σ(x) = arctan(x), satisfy the assumptions of Proposition 2.2.1, and so
are admissible.

The above criterion is based on the behavior of the activation function near a complex
singularity. There are natural candidates for activation function that are either non-analytic
or entire, so Proposition 2.2.1 does not apply. We give here a further criterion which requires
a suitable behavior of the activation function at infinity.
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Proposition 2.2.2 Let σ be an odd, bounded function such that, for M large enough, its
restriction to [M,+∞) is strictly increasing and has decreasing derivative. Define

f(x) = lim
ξ→∞

σ(ξ)− σ(x), (7)

and assume

lim
x→∞

f(x)
f ′(x)

= 0. (8)

Then σ is an admissible activation function.

Proof. Suppose
N∑

i=1

ciσ(ai + biξ) ≡ 0, (9)

with bi 6= 0 and (ai, bi) 6= ±(aj , bj) for all i 6= j. As before, we may assume bi > 0 for all i.
We order increasingly the pairs (ai, bi) according to the order relation

(a, b) > (a′, b′) if (b > b′) or (b = b′ and a > a′). (10)

So we assume (a1, b1) < · · · < (aN , bN ). Letting ξ → ∞ in (9), we get
∑

i ci = 0. This
implies

N∑
i=1

cif(ai + biξ) ≡ 0. (11)

We now divide the expression in (11) by f(a1 + b1ξ), and let ξ →∞. In this way, if we can
show that

lim
ξ→∞

f(ai + biξ)
f(a1 + b1ξ)

= 0 (12)

for every i ≥ 2, then we get c1 = 0 and, by iterating the argument, ci = 0 for all i’s.

Notice that ai + biξ = a1 + b1ξ + (ai − a1) + (bi − b1)ξ, so for some c > 0, and for ξ
sufficiently large, we have ai + biξ > a1 + b1ξ + c. Thus, to prove (12) it is enough to show
that, for all c > 0,

lim
x→∞

f(x + c)
f(x)

= 0. (13)

By assumption, f ′ is increasing for x large, and so

f(x + c) ≤ f(x) + f ′(x + c)c (14)

for x sufficiently large. Thus

lim
x→∞

f(x)
f(x + c)

≥ lim
x→∞

(
1− f ′(x + c)

f(x + c)
c
)

= +∞ (15)

which completes the proof.

Examples of functions satisfying the criterion in Proposition 2.2.2 are

σ(x) = sgn(x)[1− e−x2
] (16)

and
σ(x) =

∫ x

0
e−t2dt. (17)
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2.3 State observability

In general, let Σ be a given system, with dynamics:

x+ = f(x, u)
y = h(x)

(18)

where x ∈ IRn, u ∈ IRm, y ∈ IRp; again, the superscript ”+” denotes time shift (discrete
time) or time derivative (continuous time). Assume, for continuous time models, that the
map f is, at least, locally Lipschitz. Moreover let x0 ∈ IRn be a fixed initial state, then to
the pair (Σ, x0) we associate an input/output map λΣ,x0 as follows.

• For discrete time models, to any input sequence u1, . . . , uk ∈ IRm, λΣ,x0 associates the
output sequence y0 = h(x0), y1, . . . , yk ∈ IRp generated by solving (18), with controls
ui (i = 1, . . . , k), and initial condition x0.

• For continuous time models, to any input map u : [0, T ] → IRm, which is, at least,
locally essentially bounded, we first let x(t) be the solution of the differential equation
in (18) with control u(·) an initial condition x0, and we denote by [0, εu) the maximal
interval on which this solution is defined. Then, to the input map u(·), λΣ,x0 associates
the output function y(t) = h(x(t)), t ∈ [0, εu).

Definition 2.3.1 We say that two states x0, x
′
0 ∈ IRn are indistinguishable for the system

Σ if λΣ,x0 = λΣ,x′0
. The system Σ is said to be observable if no two different states are

indistinguishable.

The above notion is quite standard in system theory. In the case of linear systems,
observability is well understood, and the following Theorem holds.

Theorem 2.3.2 Suppose σ(x) = x in (3). Denote by V the largest subspace of IRn that is A-
invariant (i.e. AV ⊂ V ) and contained in ker C. Then two states x, z are indistinguishable
if and only if x− z ∈ V . In particular, the system is observable if and only if V = {0}.

Among the various equivalent observability conditions for linear systems, the one above
is the most suitable for comparison with the result we will obtain for Recurrent Neural Net-
works. It should be remarked that, for general nonlinear systems, rather weak observability
results are known (see e.g. [15, 20, 4]).

Before stating the main result of this section we introduce a simple notion, that plays a
significant role in this work.

Definition 2.3.3 A subspace V ⊂ IRn is called a coordinate subspace if it is generated by
elements of the canonical basis {e1, . . . , en}.

The relevance of coordinate subspaces in the theory of RNN’s comes essentially from
the fact that they are the only subspaces satisfying the following property, for σ and B
admissible:

x, z ∈ IRn, x− z ∈ V =⇒ ~σ(x + Bu)− ~σ(z + Bu) ∈ V ∀u ∈ IRm. (19)

This ”invariance” property of coordinate subspaces is responsible for some of the linear
theory to survive.
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Theorem 2.3.4 Consider an admissible system of type (3). Let V ⊂ IRn be the largest
subspace such that
i) AV ⊂ V and V ⊂ ker C;
ii) AV is a coordinate subspace.
Then x, z ∈ IRn are indistinguishable if and only if x − z ∈ V . In particular, the system is
observable if and only if V = {0}.

Theorem 2.3.4 is a special case of Theorem 3.2.2, whose proof is given in Section 3.3 (see
also [8]). We devote the rest of this section to comments and examples.

First of all note that the largest subspace satisfying i) and ii) is well defined. Indeed, if
V1, V2 satisfy i) and ii), so does V1 + V2. Moreover, if V̂ is the largest subspace for which i)
holds, then x− z ∈ V if and only if x, z are indistinguishable for the linear system (A,C). It
follows that observability of the linear system (A,C) implies observability of the RNN (3).

We now show that the observabilty condition in Theorem 2.3.4 can be efficiently checked
by a simple algorithm. For a given matrix D let ID denote the set of those indexes i such
that the i-th column of D is zero. Define, recursively, the following sequence of subsets of
{1, 2, . . . , n}:

J0 = {1, 2, . . . , n} \ IC

Jd+1 = J0 ∪ {i : ∃j ∈ Jd such that Aij 6= 0}.
(20)

Note that the sequence Jd is increasing, and stabilizes after at most n steps. Now let

Oc(A,C) = span{ej : j 6∈ J∞} (21)

with J∞ = ∩dJd.

Proposition 2.3.5 The subspace V in Theorem 2.3.4 is given by

V = kerC ∩A−1
(
Oc(A,C)

)
. (22)

In particular, the system is observable if and only if

ker A ∩ ker C = Oc(A,C) = {0}. (23)

Proof. It is not hard to see that Oc(A,C) is the largest coordinate subspace contained in
ker C and A-stable. Thus, the r.h.s. of (22) satisfies conditions i) and ii) of Theorem 2.3.4,
and thus it is contained in V . For the opposite inclusion just observe that, by definition,
AV ⊂ Oc(A,C).

It is worth noting, and quite easy to prove, that x−z ∈ V implies indistinguishability of x
and z, for any system of type (3). Admissibility of the system guarantees that the condition
is also necessary. We illustrate with some examples how that whole picture change if we
drop some admissibility requirements.

Example 2.3.6 Let σ(·) be any periodic smooth function of period τ ; clearly such a function
cannot be admissible. Consider the following system, with n = 2 and p = m = 1:

x+ = ~σ(x + bu)
y = x1 − x2,

(24)

where b is any admissible 2× 1 control matrix.
It is easily checked that the observability conditions in Theorem 2.3.4 are satisfied. How-

ever the system is not observable. Indeed, we consider x̄ = (τ, τ). Then Cx̄ = 0, and,
since σ is periodic of period τ , it is easy to see that both for the discrete-time, and for the
continuous-time cases, x̄ is indistinguishable from 0.
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Example 2.3.7 Assume that σ(x) = x3, which is not admissible. Consider a system of
type (3), with this function σ, n = 2, m = p = 1, and matrices A, B, and C as follows:

A =

(
4 0
0 1

)

B =

(
1
2

)
C = (−8, 1)

(25)

Notice that also this system satisfies the observability conditions in Theorem 2.3.4, but it is
not observable. In fact, let W = {(a, 8a) : a ∈ IR}. It is easy to check that if x ∈ W , then
~σ(Ax + Bu) ∈ W for every u ∈ IR. This implies that W is invariant for the dynamics and,
being contained in ker C, it contains vectors that are indistinguishable from 0.

In next example we show that the implication ”observability of the linear system (A,C)”
⇒ ”observability of the RNN” may fail if B is not admissible, even though σ is admissible.
Note that for linear systems the control matrix B does not influence observability.

Example 2.3.8 Suppose σ is a strictly increasing admissible activation function. Pick any
two nonzero real values x1, x2 in the image of σ such that:

x1σ
−1(x2) 6= x2σ

−1(x1) . (26)

Such values always exist for nonlinear σ. Consider the discrete-time system with n = 2,
p = 1, and B = 0:

A =

 σ−1(x1)
x1

0

0 σ−1(x2)
x2


C = (x2,−x1)

(27)

Given (26) it is easy to see that the pair (A,C) is observable; however the nonlinear sys-
tem is not. In fact, the state x = (x1, x2) is an equilibrium state and Cx = 0, so it is
indistinguishable from zero.

2.4 Identifiability and minimality

Recurrent neural networks possess a very simple group of symmetries. Let us consider a
model Σ of type (3), and suppose we exchange two components of x. Define z = Sx, where
S is the operator that exchange two components. Noting that S = S−1 and ~σ ◦ S = S ◦ ~σ it
is easily seen that the following equations hold:

Σ′ =


z+ = ~σ(A′z + B′u)

y = C ′z
(28)

with A′ = SAS−1, B′ = SB, C ′ = CS−1, as for linear systems. Thus we say that the
system (28) with initial condition z0 = Sx0 is input/output (i/o) equivalent to (3) with
initial condition x0; this means that λΣ,x0 = λΣ′,z0 .

The above argument can be repeated by considering compositions of exchanges, i.e. by
letting S be any permutation operator. Since σ is odd, the same apply to operators S that
change the sign to some components. Permutation and sign changes generate a finite group
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that we denote by Gn. We have thus shown that Gn is a symmetry group for any system
of type (3), i.e. transformation of the state by an element of Gn gives rise to an equivalent
system which is still a RNN.

In what follows a RNN will be identified with the quadruple Σn = (σ,A, B, C), where
the index n denotes the dimension of the state space. Moreover, with (Σn, x0), x0 ∈ IRn, we
will denote the RNN Σn = (σ,A, B, C) together with the initial state x0; and we will call
the pair (Σn, x0) an initialized RNN.

We will write

(Σn, x0) ∼ (Σ′n′ , x
′
0)

to denote that the two initialized RNN’s (Σn, x0), and (Σ′n′ , x
′
0) are input/output equivalent,

i.e. λΣn,x0 = λΣ′
n′ ,x

′
0
.

Definition 2.4.1 Let Σn = (σ,A, B, C) and Σ′n′ = (σ,A′, B′, C ′) be two RNN’s. The two
initialized RNN’s (Σn, x0) and (Σ′n′ , x

′
0) are said to be equivalent if n = n′ and there exists

S ∈ Gn such that A′ = SAS−1, B′ = SB, C ′ = CS−1, and x′0 = Sx0.

Definition 2.4.2 An admissible RNN Σn = (σ,A, B, C) is said to be identifiable if the
following condition holds: for every initial state x0 ∈ IRn, and for every admissible initialized
RNN (Σ′n′ = (σ,A′, B′, C ′), x′0) such that (Σn, x0) and (Σ′n′ , x

′
0) are i/o equivalent, then either

n′ > n or (Σn, x0) and (Σ′n′ , x
′
0) are equivalent.

Note that the notions in Definitions 2.4.1 and 2.4.2 can be given for linear systems (σ
= identity) by replacing Gn with GL(n) = {n × n invertible matrices} (and cutting the
admissibility assumption). We recall the following well known result.

Theorem 2.4.3 A linear system (A,B, C) is identifiable if and only if is observable and
controllable.

We do not insist here on the notion of controllability, that will be discussed in next
section. Remarkably enough, a formally similar result holds for both continuous time and
discrete time RNN’s.

Theorem 2.4.4 An admissible RNN is identifiable if and only if it is observable.

Theorem 2.4.4 is a special case of Theorem 3.4.3, so we do not give its proof here. The “only
if” part is not difficult to see. In fact, if a RNN Σn is not observable, then there exists two
different states x1, x2 which are indistinguishable, thus (Σn, x1) ∼ (Σn, x2). Moreover, since
the matrix B is admissible, the only matrix S ∈ Gn such that B = SB is the identity, thus
the two initialized RNN’s (Σn, x1), (Σn, x2) can not be equivalent.

In comparing Theorems 2.4.3 and 2.4.4 it is seen that no controllability assumption
is required in Theorem 2.4.4. In a certain sense, the role of controllability is played by
admissibility. Actual connections between admissibility and controllability will be studied
in Section 2.5.

We have seen in Section 2.3 that observability of an admissible RNN is equivalent to

ker A ∩ ker C = Oc(A,C) = {0}. (29)
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Suppose Oc(A,C) 6= {0}, and let n1 = dim Oc(A,C). Then, up to a permutation of the
elements of the canonical basis, the system (3) can be rewritten in the form

x+
1 = ~σ(A1x1 + A2x2 + B1u)

x+
2 = ~σ(A3x2 + B2u)

y = C2x2

(30)

with x1 ∈ IRn1 , x2 ∈ IRn−n1 . It follows that the system (Σn = (σ,A, B, C)), with initial
state (x1, x2) ∈ IRn is i/o equivalent to (Σn2 = (σ,A3, B2, C2)) with initial state x2 ∈
IRn−n1 . Thus we have performed a reduction in the dimension of the state space. On the
other hand, if Oc(A,C) = {0}, then it will follow from the proof of Theorem 2.4.4 that
for (Σ′n′ = (σ,A′, B′, C ′), x′0) to be i/o equivalent to (Σn, x0) it must be n′ ≥ n. Moreover
n = n′ if and only if there exists S ∈ Gn such that A′ = SAS−1, B′ = SB, C ′ = CS−1, and
x0, S−1x′0 are indistinguishable for Σn. We summarize these remarks as follows.

Definition 2.4.5 An admissible RNN Σn is said to be minimal if for all x0 ∈ IRn, and for
any admissible initialized RNN (Σ′n′ , x

′
0) such that (Σn, x0) and (Σ′n′ , x

′
0) are i/o equivalent

then it must be n′ ≥ n.

Proposition 2.4.6 An admissible RNN is minimal if and only if Oc(A,C) = {0}.

Notice that clearly if an admissible RNN is identifiable then it is also minimal, while the
converse implication may be false, as shown in the next example.

Example 2.4.7 Let n = 2, and m = p = 1. Consider any RNN Σ2 = (σ,A, B, C) where
σ is any admissible activation function, and B = (b1, b2)T is any admissible control matrix
(i.e. 0 6= |b1| 6= |b2| 6= 0). Moreover, let C = (c1, c2), with ci 6= 0, i = 1, 2, and A be the zero
matrix.

Then, for this model, Oc(A,C) = {0}, since C has all nonzero columns, thus by Propo-
sition 2.4.6, it is minimal. On the other hand, this model is not identifiable, since kerA ∩
ker C 6= 0, and so it is not observable.

2.5 Controllability and forward accessibility

A RNN Σ is said to be controllable if for every two states x1, x2 ∈ IRn there exists a sequence
of controls u1, . . . , uk ∈ IRm, for discrete time models, or a control map u(·) : [0, T ] → IRm,
for continuous time models, which steers x1 to x2. In general, for nonlinear models, the
notion of controllability is very difficult to characterize; thus, the weaker notion of forward
accessibility is often studied. Let x0 ∈ IRn be a state; Σ is said to be forward accessible
from x0, if the set of points that can be reached from x0, using arbitrary controls, contains
an open subset of the state space. A model is said to be forward accessible if it is forward
accessible from any state. Even if much weaker than controllability, forward accessibility is
an important property. In particular, it implies that from any state, the forward orbit does
not lay in a submanifold of the state space with positive codimension.

Unlike the other properties that we have discussed before (observability, identifiability,
and minimality) whose characterization was the same for both dynamics, discrete and contin-
uous time, the characterization of controllability and forward accessibility is quite different
for the two dynamics.
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2.5.1 Controllability and forward accessibility for continuous time RNN’s

Let Σ be a continuous time RNN, i.e. the dynamics are given by the differential equation:

ẋ(t) = ~σ(Ax(t) + Bu(t)), t ∈ IR. (31)

Let Xu be the vector field defined by:

Xu(x) = ~σ(Ax + Bu).

Given the vector fields Xu, let Lie {Xu |u ∈ IRm} be the Lie algebra generated by these
vector fields. It is known that if Lie {Xu |u ∈ IRm} has full rank at x then the system is
forward accessible from x (see [29]). This result together with Proposition 2.1.3 (which says
that the span {Xu}u∈IRm has already full dimension at each x ∈ IRn), gives the following:

Theorem 2.5.1 Let Σ be an admissible RNN evolving in continuous time, then Σ is forward
accessible.

Remark 2.5.2 In a recent paper (see [28]) E. Sontag and H. Sussmann proved that if Σ is
an admissible RNN, and the activation function σ satisfies some extra assumptions, then Σ
is indeed controllable. The extra requirement on σ is fulfilled, for example, when σ = tanh.
It is quite surprising that these RNN’s are controllable for any matrix A.

2.5.2 Controllability and forward accessibility for discrete time RNN’s

Let Σ be a discrete time RNN, i.e. the dynamics are given by the difference equation:

x(t + 1) = ~σ(Ax(t) + Bu(t)), t ∈ ZZ. (32)

Unlike in continuous time, characterizing controllability of discrete time models is quite
difficult. We will not give the proofs of the results presented in this section since they are
very long technical, and we refer the reader to [2].

It is not difficult to see that, in this case, the admissibility assumption is not enough to
guarantee forward accessibility. In fact, let p = rank [A,B], and V = [A,B]

(
IRn+m

)
. Then,

except possibly for the initial condition, the reachable set from any point is contained in
~σ (V ). If p < n then, clearly, ~σ (V ) does not contain any open set. So a necessary conditions
for forward accessibility is p = n. The result stated below proves the sufficiency of this
condition provided that the control matrix B and the activation function σ satisfy a new
condition which is, in some sense, stronger than admissibility.

Definition 2.5.3 We say that the activation function σ and the control matrix B are n-
admissible, if they satisfy the following conditions.

1. σ is differentiable and σ′(x) 6= 0 for all x ∈ IR.

2. Denote by bi, i = 1, . . . , n, the rows of the matrix B; then bi 6= 0 for all i.

3. For 1 ≤ k ≤ n let Ok be the set of all the subsets of {1, . . . , n} of cardinality k, and let
a1, . . . , an arbitrary real numbers. Then the functions {fI : I ∈ Ok }, fI : IRm → IR
given by:

fI(u) =
∏
i∈I

σ′(ai + biu),

are linearly independent.
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A RNN Σ is n-admissible if its activation function σ and its control matrix B are n-
admissible.

Remark 2.5.4 Notice that, in the n-admissibility property we do not require that no two
rows of the matrix B are equal or opposite. Moreover the linear independence on the
functions fI ’s is asked only for a fixed n. On the other hand, since the functions fI ’s involve
products of the functions σ′(ai + biu), this third requirement is, indeed, quite strong. Notice
that the special case k = 1 is equivalent to ask that the functions σ(ai + biu)’s and the
constant 1 are linearly independent.

Theorem 2.5.5 Let Σ be a n-admissible RNN evolving in discrete time. Then Σ is forward
accessible if and only if

rank [A,B] = n. (33)

Remark 2.5.6 The n-admissibility property, as stated in Definition 2.5.3, is given as a joint
property of σ(·) and B. This is not, indeed, what is desirable in applications, since usually
σ is a given elementary function. However, it is possible to prove that when σ = tanh then
σ and B are n-admissible for all matrices B in a ”generic” subset of IRn×m, i.e. for B in
the complement of an analytic subset of IRn×m (in particular B may vary in an open dense
subset of IRn×m). For more discussion and precise statements on this subject see [2] (section
C.).

Next Theorem states another sufficient condition for forward accessibility, using a weaker
condition on the map σ but adding a new condition on the pair A, B.

Definition 2.5.7 We say that the activation function σ and the control matrix B are weakly
n-admissible, if they satisfy the following conditions.

1. σ is differentiable and σ′(x) 6= 0 for all x ∈ IR.

2. Denote by bi, i = 1, . . . , n, the rows of the matrix B; then bi 6= 0 for all i.

3. Let a1, . . . , an be arbitrary real numbers, then the functions from IRm to IR (σ′(ai +
biu))−1, for i = 1, . . . , n, are linearly independent.

A RNN Σ is weakly n-admissible if its activation function σ and its control matrix B are
weakly n-admissible.

Remark 2.5.8 Notice that this condition is weaker than the one given in Definition 2.5.3;
in fact the third requirement of Definition 2.5.7 is exactly the third requirement of Definition
2.5.3 for the case k = n− 1. It is not hard to show that if B is an admissible control matrix
then the activation function tanh together with the matrix B are weakly n-admissible.
However the same would be false for the activation function arctan, for n ≥ 4.

Theorem 2.5.9 Let Σ be a weakly n-admissible RNN evolving in discrete time. If there
exists a matrix H ∈ IRm×n such that:

(a) the matrix (A + BH) is invertible,

(b) the rows of the matrix [(A + BH)−1B] are all non-zero,

then Σ is forward accessible.
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It is easy to see that condition (a) of the previous Theorem is equivalent to rank [A,B] = n,
thus (a) is also a necessary condition for forward accessibility. So Theorem 2.5.9 adds a
new condition on A, B (condition (b)), and guarantees forward accessibility with weaker
assumption on σ.

Remark 2.5.10 It is interesting to notice that for the single-input case condition (b) is
independent on H. In fact the following fact holds:

Let h, k ∈ IRn×1 be such that A + bht and A + bkt are invertible. Then

((A + bkt)−1b)i 6= 0 ∀ i ⇐⇒ ((A + bht)−1b)i 6= 0 ∀ i.

It is not restrictive to assume k = 0. Let w = A−1b and v = (A + bht)−1b. To get the claim
it is sufficient to show that there exists λ 6= 0 such that v = λw. Since A + bht is invertible,
we have that htw 6= −1, otherwise (A + bht)w = b− b = 0. Thus we may let:

λ =
1

1 + htw
.

Let v′ = λw; then (A + bht)v′ = λ(Aw + bhtw) = λb(1 + htw) = b. So we may conclude
v′ = v, as desired.
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Chapter 3

Mixed networks

3.1 The model

In this Chapter we consider models obtained by ”coupling” a recurrent neural network with
a linear system; we called these type of systems Mixed Networks. Also for these systems,
we consider both models evolving in discrete and continuous time. Again, the superscript
”+” will denote time shift (discrete time) or time derivative (continuous time). A Mixed
Network (MN) is a system whose dynamics are described by equations of the form:

x+
1 = ~σ(A11x1 + A12x2 + B1u)

x+
2 = A21x1 + A22x2 + B2u

y = C1x1 + C2x2

(34)

with x1 ∈ IRn1 , x2 ∈ IRn2 , u ∈ IRm, y ∈ IRp, and A11, A12, A21, A22, B1, B2, C1, and C2 are
matrices of appropriate dimensions. We let n = n1 + n2, and

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, C =

[
C1, C2

]
.

As for RNN’s, we assume that the activation function σ : IR → IR is an odd map. For
continuous time models, we always assume that the activation function is, at least, locally
Lipschitz, and the control maps are locally essentially bounded; thus local existence and
uniqueness of the solutions of the differential equation in (34) are guaranteed.

As for RNN’s, the system theoretic analysis for MN’s will be carried on for a suitable
subclass.

Definition 3.1.1 A system of type (34) is said to be an admissible MN if both the activation
function σ and the control matrix B1 are admissible.

For the definitions of an admissible activation function and an admissible matrix see Section
2.1. Notice that the admissibility conditions involveonly the first block of equations in (34),
which evolves nonlinearly.

3.2 State observability

In this section we present the state observability result for MN’s. For the definitions of state
observability and coordinate subspace see the corresponding Section 2.3.

17
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Definition 3.2.1 Consider an admissible MN of type (34). Let W ⊆ IRn be the maximal
subspace (maximal with respect to set inclusion) such that:

i) AW ⊆ W , and W ⊆ ker C;

ii) AW = V1 ⊕ V2, where V1 ⊆ IRn1 , V2 ⊆ IRn2 , and V1 is a coordinate subspace.

We called W the unobservable subspace.

It is clear that the unobservable subspace is well-defined, since if W1, and W2 are subspaces
both satisfying the previous i), and ii), then also W1 + W2 does.

Theorem 3.2.2 Let Σ be an admissible MN of type (34), and W ⊆ IRn be its unobservable
subspace. Then x, z ∈ IRn are indistinguishable if and only if x− z ∈ W . In particular, Σ is
observable if and only if W = {0}.

Theorem 3.2.2 will be restated in a different form in Theorem 3.2.5, whose proof is postponed
to Section 3.3.

Remark 3.2.3 Notice that if Σ is a RNN (i.e. n2 = 0), then the previous Theorem yields
the observability result given in Theorem 2.3.4. On the other hand, if Σ is a linear model (i.e.
n1 = 0), then Theorem 3.2.2 gives the usual linear observability result stated in Theorem
2.3.2.

As done for RNN’s, we present a simple algorithm to check efficiently the observability
condition given by Theorem 3.2.2. First we give a useful characterization of the unobservable
subspace W .

Proposition 3.2.4 Consider an admissible MN of type (34). Let V1 ⊆ IRn1 and V2 ⊆ IRn2

be the maximal pair of subspaces (maximal with respect to set inclusion) such that:

P1. V1 is a coordinate subspace, V1 ⊂ ker C1, A11V1 ⊆ V1;

P2. V2 ⊂ ker C2, A22V2 ⊆ V2;

P3. A21V1 ⊆ V2;

P4. A12V2 ⊆ V1.

Then the unobservable subspace W is given by

W = A−1(V1 ⊕ V2) ∩ ker C.

Proof. First we prove that if V1 ⊆ IRn1 and V2 ⊆ IRn2 is any pair of subspaces satisfying
properties P1−P4 then W = A−1(V1⊕V2)∩ker C satisfies properties i) and ii) of Definition
3.2.1.
i) Clearly W ⊆ ker C. To see that AW ⊆ W we argue as follows. AW ⊆ V1 ⊕ V2 ⊆ ker C,
since V1 ⊆ ker C1, and V2 ⊆ ker C2. On the other hand, since A11V1 ⊆ V1, A22V2 ⊆ V2,
and properties P3, P4 hold, one gets that A(V1 ⊕ V2) ⊆ V1 ⊕ V2. Thus, if x ∈ W ⊆
A−1(V1 ⊕ V2), then Ax ∈ V1 ⊕ V2, which implies that A(Ax) ∈ A(V1 ⊕ V2) ⊆ V1 ⊕ V2. So
Ax ∈ A−1(V1 ⊕ V2) ∩ ker C, as desired.
ii) We will prove that AW = V1⊕ V2. We need only to establish that V1⊕ V2 ⊆ AW , being
the other inclusion obvious. Notice that V1 ⊕ V2 ⊆ ker C and, since A(V1 ⊕ V2) ⊆ V1 ⊕ V2,
we get also V1 ⊕ V2 ⊆ A−1(V1 ⊕ V2), and so V1 ⊕ V2 ⊆ AW .
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It is not difficult to see that if W ⊆ IRn is any subspace which satisfies properties i),
and ii) of Definition 3.2.1, then the two subspaces V1 ⊆ IRn1 and V2 ⊆ IRn2 such that
AW = V1 ⊕ V2, satisfy properties P1− P4.

Now, by maximality of both the unobservable subspace W and the pair V1, V2, the
conclusion follows.

If V1 ⊆ IRn1 and V2 ⊆ IRn2 are the two subspaces defined in Proposition 3.2.4, then one
has:

W = 0 ⇔ ker A ∩ ker C = 0, V1 = 0, V2 = 0. (35)

In fact, W = A−1(V1 ⊕ V2) ∩ ker C, thus if W = 0 then kerA ∩ ker C ⊆ W = 0. Moreover,
since V1 ⊕ V2 ⊆ A−1(V1 ⊕ V2) ∩ ker C, we also have that V1 = 0 and V2 = 0. On the other
hand, if V1 = 0 and V2 = 0, then W = A−1(V1 ⊕ V2) ∩ ker C = kerA ∩ ker C = 0.

Using (35), Theorem 3.2.2 can be rewritten as follows.

Theorem 3.2.5 Let Σ be an admissible MN of type (34), and V1 ⊆ IRn1, V2 ⊆ IRn2 be the
two subspaces defined in Proposition 3.2.4. Then x, z ∈ IRn are indistinguishable if and only
if x− z ∈ ker C and A(x− z) ∈ V1 ⊕ V2. In particular, Σ is observable if and only if

ker A ∩ ker C = 0, and V1 = 0, V2 = 0. (36)

Before proving this result, we present an algorithm to compute the subspaces V1 and V2,
which consists in solving a finite number of linear algebraic equations.

Inductively, we define an increasing sequence of indexes Jd, and two decreasing sequences
of subspaces V d

1 ⊆ IRn1 , V d
2 ⊆ IRn2 , for d ≥ 1, where V d

1 is a coordinate subspace. Recall
that for a given matrix D, we denote by ID the set of indexes i such that the i-th column of
D is zero. Let:

J1 = {1, . . . , k } \ IC1 ;
V 1

1 = span {ej | j 6∈ J1};
V 1

2 = ker C2;

and, for d > 1, let:

Jd+1 = J1 ∪ {i | ∃ j ∈ Jd such that A11
ji 6= 0 }

∪{i | ∃ j,∃0 ≤ l ≤ d− 1 such that (C2(A22)lA21)ji 6= 0 }
∪ ∪d−1

s=1 {i | ∃ j ∈ Js such that (A12(A22)d−s−1A21)ji 6= 0 }

V d+1
1 = span {ej | j 6∈ Jd+1 }

V d+1
2 = {w | (A22)lw ∈ ker C2 for 0 ≤ l ≤ d, A12(A22)d−sw ∈ V s

1 for 1 ≤ s ≤ d }.

Remark 3.2.6 It is easy to show that the two sequences V d
1 , and V d

2 for d ≥ 1 are both
decreasing; thus they must become stationary after a finite number of steps. One can
find conditions that guarantee the termination of the previous algorithm. Assume that a
stationary string V s

1 = V s+1
1 = . . . = V s+n1

1 of length n1 + 1 is obtained. Then, using both
the definitions of V d

1 and V d
2 , and applying the Hamilton-Cayley Theorem, one proves that

V d
1 = V s

1 for all d ≥ s and that V d
2 = V s+n2

2 for all d ≥ s + n2. Thus the two sequences V d
1 ,

and V d
2 become stationary after at most (n2 + 1)n1 steps, for n1 ≥ 1, or n steps, for n1 = 0.

The two sequences V d
1 , and V d

2 stabilize exactly at V1, and V2 as stated in Proposition 3.2.8.
Moreover, for MN which evolves in discrete time, the previous subspaces V d

1 , and V d
2 have

a precise meaning, as stated next. For discrete time models, given any x, z ∈ IRn and any
0 < d ∈ IN, we say that x and z are indistinguishable in d-steps if any output sequence from
x or z is the same up to time d.
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Proposition 3.2.7 Let Σ be a discrete time admissible MN. Then the following properties
are equivalent:
i) x and z are indistinguishable in d-steps,
ii) x− z ∈ ker C; A(x− z) ∈ (V d

1 ⊕ V d
2 ).

For the proof of this Proposition we refer to [1].

Proposition 3.2.8 Let V1 ⊆ IRn1, and V2 ⊆ IRn2 be the two subspaces defined in Proposi-
tion 3.2.4, and V d

1 , and V d
2 be the two sequences of subspaces determined by the algorithm

described above. Then the following identities hold:

V1 = ∩d≥1V
d
1 , V2 = ∩d≥1V

d
2 . (37)

Proof. Let:
J∞ = ∩d≥1Jd; V∞1 = ∩d≥1V

d
1 ; V∞2 = ∩d≥1V

d
2 .

Thus V∞1 = span {ej | j 6∈ J∞}. The following four properties can be easily proved by
using the recursive definition of Jd, V d

1 , and V d
2 and the fact that, for some d̄, it holds that

V d
1 = V∞1 , V d

2 = V∞2 for d ≥ d̄.

{ i | ∃ j ∈ J∞ so that A11
ji 6= 0 } ⊆ J∞. (38)

{i | ∃ j,∃l ≥ 0 so that (C2(A22)lA21)ji 6= 0 } ⊆ J∞. (39)

{i | ∃ j ∈ J∞,∃l ≥ 0 so that (A12(A22)lA21)ji 6= 0 } ⊆ J∞. (40)

V∞2 ⊂ {w | (A22)lw ∈ ker C2 for l ≥ 0, A12(A22)lw ∈ V∞1 for l ≥ 0 }. (41)

We first prove that the pair V∞1 and V∞2 satisfies properties P1-P4 of Proposition 3.2.4.

P1. The only non trivial fact is the A11-invariance of V∞1 . Let v ∈ V∞1 . From (38), we get
that vi = 0 for all i such that ∃j ∈ J∞ with A11

ji 6= 0. So, for j ∈ J∞:

(A11v)j =
n1∑
i=1

A11
ji vi = 0

and, therefore, A11v ∈ V∞1 .

P2. Let w ∈ V∞2 . We show that A22w ∈ V d
2 for every d ≥ 1. From (41), we first see that

(A22)l(A22w) ∈ ker C2 for 0 ≤ l ≤ d. Moreover, for 1 ≤ s ≤ d, again from (41), we
have that:

A12(A22)d−s(A22w) ∈ V∞1 ⊆ V s
1 .

P3. Let v ∈ V∞1 . We need to prove that A21v ∈ V d
2 for all d ≥ 1. Using similar arguments

as used to get P1, one can see that (39) yields:

C2(A22)lA21v = 0 ∀ l ≥ 0,

and (40) yields:
A12(A22)lA21v ∈ V∞1 ⊆ V s

1 ∀ s ≥ 1.

This implies that A21v ∈ V d
2 for all d, as desired.
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P4. This is an immediate consequence of (41).

Thus we have that V∞1 ⊆ V1, and V∞2 ⊆ V2. To conclude we need to show that also the
converse inclusions hold. We will prove, by induction, that V1 ⊆ V d

1 , and V2 ⊆ V d
2 for all

d ≥ 1. The case d = 1 is obvious. Now let ei ∈ V1. We show that ei ∈ V d+1
1 , i.e. i 6∈ Jd+1.

• Suppose i is such that there exists j ∈ Jd with A11
ji 6= 0. Then we have

(A11ei)j = A11
ji 6= 0 ⇒ A11ei 6∈ V d

1 .

This is impossible since A11V1 ⊂ V1 and, by inductive assumption, V1 ⊂ V d
1 .

• Suppose i is such that there exist j and 0 ≤ l ≤ d − 1 with (C2(A22)lA21)ji 6= 0. As
before, this implies

C2(A22)lA21ei 6= 0

that is impossible, since A21V1 ⊆ V2 and V2 ⊆ ker(C2(A22)l) for every l ≥ 0.

• Suppose i is such that there exist 0 ≤ s ≤ d−1 and j ∈ Js with (A12(A22)d−sA21)ji 6= 0.
This implies

A12(A22)d−sA21ei 6∈ V s
1 .

This is impossible since (A22)d−sA21V1 ⊆ V1, A12V2 ⊆ V2 and, by inductive assumption,
V1 ⊆ V s

1 .

Thus we have shown that ei ∈ V d+1
1 .

Let now w ∈ V2. We need to prove that w ∈ V d+1
2 .

• Since V2 ⊆ ker C2, and A22V2 ⊆ V2, it holds that (A22)lw ∈ ker C2 for 0 ≤ l ≤ d.

• Since A22V2 ⊆ V2, A12V2 ⊆ V1, and, by inductive assumption, V1 ⊆ V s
1 for all 1 ≤ s ≤

d, it holds that A12(A22)d−sw ⊂ V s
1 , again for 1 ≤ s ≤ d.

We conclude with two examples.

Example 3.2.9 Assume A12 = 0 and A21 = 0. Thus the linear and the nonlinear dynamics
are decoupled (as in [14], Chapter 6). By what observed in Remarks 3.2.3, we get that
observability of the whole system is equivalent to the observability of the RNN characterized
by the matrices A11, B1, and C1 and of the linear models given by the matrices A22, B2, and
C2. The separate observability is clearly necessary for observability of the combined system,
but the sufficiency is not an obvious fact. For instance, if the two components were both
linear, then such ”separation property” would be false, in general.

Example 3.2.10 Assume that C1 has no zero columns. Then there is no nonzero coordinate
subspace contained in ker C1; so V1 = 0. Therefore V2 is the largest A22-invariant subspace
contained in kerC2 and kerA12. It follows that the MN is observable if and only kerC ∩
ker A = 0, and the two linear systems with matrices (A22, C2), and (A22, A12) are observable.
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3.3 Proofs on observability

Throughout this section, even if not specifically stated, all the models of MN’s we will be
dealing with are assumed to be admissible.

A basic ingredient in the proof of the observability result is the following technical fact,
which also explains how the admissibility assumptions on the activation map σ and the
control matrix B1 are used (see also [8]). Recall that, for a given matrix D, ID denotes the
set of index i such that the i-th column of D is zero.

Lemma 3.3.1 Assume that σ is an admissible activation function, B1 ∈ IRl×m is an ad-
missible control matrix, and D ∈ IRq×l is any matrix. Then the following two properties are
equivalent for each ξ, η,∈ IRl, and each α, β ∈ IRq :

1. ξi = ηi for all i 6∈ ID, α = β,

2. D~σ(ξ + B1u) + α = D~σ(η + B1u) + β for all u ∈ IRm.

Proof. We need only to prove that 2. implies 1., being the other implication obvious. Since
B1 is admissible, there exists v̄ ∈ IRm such that bi = (B1v̄)i 6= 0 for all i = 1, . . . , n and
|bi| 6= |bj | if i 6= j. To see this it is enough to notice that the equations (B1u)i = 0 and
(B1u)i = ±(B1u)j define a finite number of hyperplanes in IRm, thus to get v̄, we only have
to avoid their union.

Now, for any t ∈ IR, we consider tv̄ ∈ IRm, and we rewrite (2) as:

n∑
i=1

Dliσ (ξi + bit)−
n∑

i=1

Dliσ (ηi + bit) + (αl − βl) = 0, l = 1, . . . , q, and t ∈ IR. (42)

Assume that 1. is false. If ξi = ηi for all i 6∈ ID, then the first difference in (42) is always
zero. Thus if there exists l̄ such that αl̄ 6= βl̄, (42) does not hold for this l̄, contradicting 2.
On the other hand, if there exists ī 6∈ ID such that ξī 6= ηī, then by definition of ID, there
exists l̄ such that Dl̄̄i 6= 0. Since in (42) all the pairs for which ξi = ηi cancel out, we may
assume without loss of generality that ξi 6= ηi for all i (notice that ξī 6= ηī, thus not all the
pairs cancel). Consider now equation (42) for l = l̄. The pairs (ξi, bi), and (ηi, bi) are all
different, thus admissibility of σ implies that (42) can not hold for all t ∈ IR, contradicting
2.

First, we introduce some useful notations. Given x ∈ IRn and u ∈ IRm, for discrete
time MN’s we denote by x+(u) the state reached from x using the control value u. For
continuous time MN’s, if v(t) is the control function constantly equal to u, we denote by
xu(t) the corresponding trajectory; notice that xu(t) is certainly defined on an interval of
the form [0, εu), and it is differentiable on this interval. When dealing with two trajectories
of this type starting at two different initial states, by [0, εu) we mean the interval in which
both trajectories are defined.

Given two pairs of states (x, z), (x′, z′) ∈ IRn × IRn, we write

(x, z) ; (x′, z′)

if, for discrete time, we can find an input sequence u1, . . . , up, for some p ≥ 0, which steers
the state x (resp., z) to x′ (resp., z′). For continuous time, we require that there exists some
control function u(t) : [0, T ] → IRm, such that, it is possible to solve the differential equation
(34) starting at x (resp z), for the entire interval [0, T ], and at time T the state x′ (resp. z′)
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is reached. Using this terminology, two states (x, z) ∈ IRn × IRn are distinguishable if and
only if there is some pair (x′, z′) ∈ IRn such that (x, z) ; (x′, z′) and Cx′ 6= Cz′.

In what follows, proofs in discrete time will be similar to proofs in continuous time, so
they will only be sketched. To simplify notations, we write:

A1 =
(
A11, A12

)
, A2 =

(
A21, A22

)
.

Lemma 3.3.2 Let H1 ∈ IRq×n1, H2 ∈ IRq×n2, with q ≥ 1, 1 ≤ i ≤ q, and x, z ∈ IRn.

(a) – For continuous time MN’s, if (H1A1xu(t))i = (H1A1zu(t))i for all u ∈ IRm and
all t ∈ [0, εu) then we have:

(H1A12A2x)i = (H1A12A2z)i,
(H1A11)ij = 0 for all j such that (A1x)j 6= (A1z)j .

(43)

– For discrete time MN’s, if (H1A1x+(u))i = (H1A1z+(u))i for all u ∈ IRm, then
the same conclusions hold.

(b) – For continuous time MN’s, if (H2A2xu(t))i = (H2A2zu(t))i for all u ∈ IRm and
all t ∈ [0, εu) then we have:

(H2A22A2x)i = (H2A22A2z)i,
(H2A21)ij = 0 for all j such that (A1x)j 6= (A1z)j .

(44)

– For discrete time MN’s, if (H2A2x+(u))i = (H2A2z+(u))i for all u ∈ IRm, then
the same conclusions hold.

Proof. (a) Suppose we are in the continuous time case, and fix u ∈ IRm. If (H1A1xu(t))i =
(H1A1zu(t))i for all t ∈ [0, εu) then (H1A1ẋu(t))i|t=0 = (H1A1żu(t))i|t=0. This equation
reads: ∑p

j=1(H
1A11)ijσ((A1x)j + (B1u)j) + (H1A12A2x)i =∑p

j=1(H
1A11)ijσ((A1z)j + (B1u)j) + (H1A12A2z)i.

(45)

Since (45) holds for all u ∈ IRm, both equalities in (43) follow directly by applying Lemma
3.3.1.

The proof for the discrete time case is the same since the assumption (H1A1x+(u))i =
(H1A1z+(u))i, for all u ∈ IRm, implies directly equations (45).

(b) This statement is proved similarly. In fact, by the same arguments as in (a), one
easily sees that, for both continuous and discrete time dynamics:∑p

j=1(H
2A21)ijσ((A1x)j + (B1u)j) + (H2A22A2x)i =∑p

j=1(H
2A21)ijσ((A1z)j + (B1u)j) + (H2A22A2z)i,

for all u ∈ IRm. So, again, to conclude it is sufficient to use Lemma 3.3.1.

Lemma 3.3.3 If x, z ∈ IRn are indistinguishable, then C2A2x = C2A2z and (A1x)i =
(A1z)i for all i 6∈ IC1

Proof. If x, z are indistinguishable then, for all u ∈ IRm, we get, for discrete time, Cx+(u) =
Cz+(u), or, for continuous time, Cxu(t) = Czu(t), for t ∈ [0, εu). This implies, in both cases:

C1~σ(A1x + B1u) + C2A2x + C2B2u = C1~σ(A1z + B1u) + C2A2z + C2B2u

for all u ∈ IRm. From Lemma 3.3.1 our conclusions follow.
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Lemma 3.3.4 If x, z ∈ IRn are indistinguishable, then for all q ≥ 0 we have:

1. C2(A22)qA2x = C2(A22)qA2z

2. (C2(A22)qA21)ij = 0 for all i and all j such that (A1x)j 6= (A1z)j.

Proof. 1. We prove this statement by induction on q ≥ 0. The case q = 0 is the first
conclusion of Lemma 3.3.3. Assume that 1. holds for q and for all indistinguishable pairs. We
deal first with continuous time models. Notice that since x and z are indistinguishable, then
so are xu(t) and zu(t) for all u ∈ IRm, and all t ∈ [0, εu). So, by the inductive assumption,
we get

C2(A22)qA2xu(t) = C2(A22)qA2zu(t). (46)

Now, by applying Lemma 3.3.2 (part (b), first equality, with H2 = C2(A22)q), we get:

C2(A22)q+1A2x = C2(A22)q+1A2z

as desired. For discrete time MN’s, the proof is the same, after replacing xu(t) and zu(t),
with x+(u) and z+(u).
2. Again we apply Lemma 3.3.2 (part (b), second equality) to equation (46), to conclude

(C2(A22)qA21)ij = 0 for all j such that (A1x)j 6= (A1x)j .

Similarly for discrete time dynamics.

Lemma 3.3.5 Let 1 ≤ i ≤ n1, and x, z ∈ IRn. Assume that for any x′, z′ ∈ IRn such that
(x, z) ; (x′, z′), we have:

(A1x′)i = (A1z′)i. (47)

Then, for all q ≥ 0, we have:

(a) (A12(A22)qA2ξ)i = (A12(A22)qA2ζ)i for all ξ, ζ such that (x, z) ; (ξ, ζ);

(b) (A12(A22)qA21)ij = 0 for all j such that there exists a pair ξ, ζ such that (x, z) ; (ξ, ζ),
and (A1ξ)j 6= (A1ζ)j.

Proof.
(a) By induction on q. Fix any ξ, ζ such that (x, z) ; (ξ, ζ). If q = 0 equation (47) says that,
for continuous time MN’s, (A1ξu(t))i = (A1ζu(t))i, for all u ∈ IRm and for all t ∈ [0, εu); for
discrete time ones we get (A1ξ+(u))i = (A1ζ+(u))i, again for all u ∈ IRm. In any case, we
can apply Lemma 3.3.2 (a) with H1 = I, and we have:

(A12A2ξ)i = (A12A2ζ)i,

as desired. Now, assume the statement true for q. Thus, in particular, we get:

(A12(A22)qA2ξu(t))i = (A12(A22)qA2ζu(t))i for cont. time
(A12(A22)qA2ξ+(u))i = (A12(A22)qA2ζ+(u))i for discr. time,

(48)

and these equations hold for all u ∈ IRm, and for all t ∈ [0, εu). Again, the inductive step
easily follows by applying Lemma 3.3.2 (b) with H2 = A12(A22)q.
(b) Fix any j such that there exists a pair ξ, ζ with (x, z) ; (ξ, ζ), and (A1ξ)j 6= (A1ζ)j .
Notice that for this pair ξ, ζ equation (48) hold. Thus, we apply again Lemma 3.3.2 (b) with
H2 = A12(A22)q, and we get:

(A12(A22)qA21)ij = 0
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as desired.

Next Proposition proves the necessity of the observability conditions stated in Theorem
3.2.5.

Proposition 3.3.6 Let Σ be an admissible MN, and V1 ⊆ IRn1, V2 ⊆ IRn2 be the two
subspaces defined in Proposition 3.2.4. If x, z ∈ IRn are indistinguishable then x− z ∈ ker C,
and A(x− z) ∈ V1 ⊕ V2.

Proof. Since indistinguishability of x, z obviously implies x − z ∈ ker C, we need only to
prove that A1(x− z) ∈ V1 and A2(x− z) ∈ V2. Let:

J := { i | ∃ (x′, z′), with (x, z) ; (x′, z′), and (A1x′)i 6= (A1z′)i }.

Then we define:
V̂1 := span { ei | i ∈ J },

where ei are the vectors of the canonical base in IRn, and

V̂2 := the largest A22-invariant subspace, contained in kerC2, such that A12V̂2 ⊆ V̂1.

Notice that V̂1 is a coordinate subspace. Next we will establish that:

(i) V̂1 is A11-invariant, V̂1 ⊆ ker C1, and A21V̂1 ⊆ V̂2.

(ii) Ṽ2 = { (A22)q(A2x′ −A2z′) | q ≥ 0, (x, z) ; (x′, z′)} ⊆ V̂2.

Our conclusion follows from these statements since:

• A1(x− z) ∈ V̂1, by definition of J ;

• A2(x− z) ∈ V̂2, by (ii);

• V̂1 ⊆ V1, and V̂2 ⊆ V2, by (i).

Now, we prove (i), and (ii).
(i)

• A11-invariance.

Since V̂1 is a coordinate subspace, proving A11 invariance is equivalent to see that
A11

ij = 0 for all i, j such that j ∈ J , and i 6∈ J . Fix j ∈ J and i 6∈ J . Then there
exists (ξ, ζ) such that (x, z) ; (ξ, ζ) and (A1ξ)j 6= (A1ζ)j . Since i 6∈ J we have, for all
u ∈ IRm:

(A1ξu(t))i = (A1ζu(t))i, ∀t ∈ [0, εu)
(A1ξ+(u))i = (A1ζ+(u))i

in continuous and discrete time respectively. Now by applying Lemma 3.3.2 (a) with
H1 = I, we get

A11
iq = 0 ∀ q such that (A1ξ)q 6= (A1ζ)q.

In particular A11
ij = 0 as desired.

• V̂1 ⊂ ker C1.

If the pair x, z is indistinguishable, then so it is any pair x′, z′ such that (x, z) ;

(x′, z′). Thus, the conclusion follows by observing that Lemma 3.3.3 implies J ⊂ IC1 .
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• A21V̂1 ⊂ V̂2.

It is sufficient to prove {
C2(A22)qA21ej = 0
A12(A22)qA21ej ∈ V̂1

for all j ∈ J , q ≥ 0 or, equivalently,{ (
C2(A22)qA21

)
ij = 0 ∀i, ∀j ∈ J,(

A12(A22)qA21
)
ij = 0 ∀i 6∈ J,∀j ∈ J.

(49)

The first equality in (49) is easily obtained by applying part (b) of Lemma 3.3.4. The
second one follows from part (b) of Lemma 3.3.5 after having observed that

I) if i 6∈ J then (A1x′)i = (A1z′)i for all (x′, z′) such that (x, z) ; (x′, z′),

II) if j ∈ J then there exists (x′, z′) such that (x, z) ; (x′, z′) and (A1x′)j 6= (A1z′)j .

(ii). Ṽ2 is by definition A22-invariant. Thus to prove that Ṽ2 ⊂ V̂2 we need to show that
Ṽ2 ⊂ ker C2 and A12Ṽ2 ⊂ V̂1. This amounts to establish the following identities:

C2(A22)qA2x′ = C2(A22)qA2z′ ∀(x′, z′) such that (x, z) ; (x′, z′) (50)

A12(A22)qA2(x′ − z′) ∈ V̂1 ∀(x′, z′) such that (x, z) ; (x′, z′). (51)

Since (x, z) ; (x′, z′) implies that also the pair x′, z′ is indistinguishable, (50) is just part
1. of Lemma 3.3.4. Moreover (51) is equivalent to

(A12(A22)qA2x′)i = (A12(A22)qA2z′)i ∀i 6∈ J

which follows from part (a) of Lemma 3.3.5.

Now we prove Theorem 3.2.5.
Proof of Theorem 3.2.5. Necessity is proved in Proposition 3.3.6, thus we only need to

prove sufficiency.
Assume first that we are dealing with discrete time MN. We will prove that if x, z ∈

IRn satisfy the indistinguishability conditions of Theorem (3.2.5), then, for all u ∈ IRm,
also x+(u), z+(u) satisfy the same conditions. This fact will clearly imply that x, z are
indistinguishable.

First notice that the following implications hold:

A1(x− z) ∈ V1 ⇒ x+
1 (u)− z+

1 (u) ∈ V1

A2(x− z) ∈ V2 ⇒ x+
2 (u)− z+

2 (u) ∈ V2.
(52)

Both implications are easily proved using the properties of V1, and V2, and the fact that
V1 is a coordinate subspace, and so if α ∈ V1 then also ~σ(α) ∈ V1. Since V1 ⊆ ker C1, and
V2 ⊆ ker C2, (52) yields x+(u)− z+(u) ∈ ker C. Moreover, A11-invariance of V1 and the fact
that A12V2 ⊆ V1, implies:

A1(x+(u)− z+(u)) = A11(x+
1 (u)− z+

1 (u)) + A12(x+
2 (u)− z+

2 (u)) ∈ V1,

while, A22-invariance of V2 and the fact that A21V1 ⊆ V2, gives:

A2(x+(u)− z+(u)) = A12(x+
1 (u)− z+

1 (u)) + A22(x+
2 (u)− z+

2 (u)) ∈ V2.
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Thus A(x+(u)− z+(u)) ∈ V1 ⊕ V2, as desired.
Now we deal with continuous time MN. For a fixed but arbitrary input signal (u(t))t≥0,

let x(t) , z(t) denote the corresponding solutions of (34), associated to initial conditions
x(0) , z(0). The pair (x(t), z(t)) solves the differential equation in IR2n(

ẋ
ż

)
= F (x, z) (53)

where

F (x, z) =


~σ(A1x + B1u)

A2x + B2u
~σ(A1z + B1u)

A2z + B2u

 .

Let Z = {(x, z) ∈ IR2n : x − z ∈ ker C,A1(x − z) ∈ V1, A
2(x − z) ∈ V2}. In the proof for

the discrete time case we showed that if (x, z) ∈ Z then F (x, z) ∈ Z. Thus Z is stable for
the flow of (53), i.e. if (x(0), z(0)) ∈ Z then (x(t), z(t)) ∈ Z. Being (u(t))t≥0 arbitrary and,
since (x, z) ∈ Z ⇒ x− z ∈ ker C, the proof is easily completed.

3.4 Identifiability and minimality

As done for RNN’s (see Section 2.4), we identify a MN with the quadruple Σn1,n2 =
(σ,A, B, C), where n1, and n2 are the dimensions of the nonlinear and linear block re-
spectively. As usual we let n = n1 + n2 and:

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, C =

[
C1, C2

]
.

Moreover, with (Σn1,n2 , x0), x0 ∈ IRn, we will denote the MN Σn = (σ,A, B, C) together
with the initial state x0; and we will call the pair (Σn1,n2 , x0) an initialized MN.

Our goal is to determine the group of symmetries which leaves the i/o behavior of the
initialized MN unchanged. In Section 2.4, we have seen that for an admissible RNN this
group of symmetries is finite, and it coincides with the group Gn generated by permutations
and sign changes. For MN’s, since one block of the system behaves linearly, one expects that
this group of symmetries will not be finite. Let Gn be the following set of invertible matrices:

Gn =

{
T ∈ IRn×n

∣∣∣∣∣T =

(
T1 0
0 T2

)
where

T1 ∈ Gn1

T2 ∈ GL(n2)

}
It is easy to see that if T ∈ Gn, and we let

Ã = T−1AT, B̃ = T−1B, C̃ = CT, and x̃0 = T−1x0,

then the two initialized MN’s (Σn1,n2 = (σ,A, B, C), x0), and (Σ̃n1,n2 = (σ, Ã, B̃, C̃), x̃0) have
the same input/output behavior.

It is interesting to notice that this implication holds without any assumption on the two
MN’s, except the fact that the activation function σ is odd. Next we will see that if the
MN’s are admissible, observable, and satisfy a controllability assumption, then there are no
other symmetries. We will write

(Σn1,n2 , x0) ∼ (Σ̃ñ1,ñ2 , x̃0)

to denote that the two initialized MN’s (Σn1,n2 , x0), and (Σ̃ñ1,ñ2 , x̃0) are input/output equiv-
alent, i.e. λΣn1,n2 ,x0 = λΣ̃ñ1,ñ2

,x̃0
(where λΣn1,n2 ,x0 represents the i/o map, see Section 2.3).
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Definition 3.4.1 Let Σn1,n2 = (σ,A, B, C) and Σ̃ñ1,n2 = (σ, Ã, B̃, C̃) be two MN’s. The two
initialized MN’s (Σn1,n2 , x0) and (Σ̃ñ1,n2 , x̃0) are said to be equivalent if n1 = ñ1, n2 = ñ2,
and there exists T ∈ Gn such that Ã = T−1AT , B̃ = T−1B, C̃ = CT , and x̃0 = T−1x0.

Thus, from the above discussion, if two initialized MN’s are equivalent, then they are also
i/o equivalent.

Definition 3.4.2 An admissible MN, Σn1,n2 = (σ,A, B, C) is said to be identifiable if the
following condition holds: for every initial state x0 ∈ IRn, and for every admissible initialized
MN (Σ̃ñ1,ñ2 = (σ, Ã, B̃, C̃), x̃0) such that (Σn1,n2 , x0) and (Σ̃ñ1,ñ2 , x̃0) are i/o equivalent, then
either ñ > n or (Σn1,n2 , x0) and (Σ̃ñ1,ñ2 , x̃0) are equivalent.

Note that these definitions correspond to Definitions 2.4.1 and 2.4.2 given for RNN’s.
Given two matrices M ∈ IRp1×p1 and N ∈ IRp1×p2 , we say that the pair (M,N) is controllable
if it satisfied the linear Kalman controllability condition (i.e. rank [N,MN, . . . , Mp1−1N ] =
p1).

Theorem 3.4.3 Let Σn1,n2 = (σ,A, B, C) be an admissible MN. Then Σn1,n2 is identifiable
if and only if Σn1,n2 is observable, and the pair of matrices

(
A22,

(
B2, A21

))
is controllable.

The proof of this theorem is given in Section 3.5.

Remark 3.4.4 It is clear that if Σn1,n2 is a RNN (i.e. n2 = 0) then the previous Theorem
becomes Theorem 2.4.4, which states the identifiability result for RNN. On the other hand
for n1 = 0, i.e. Σn1,n2 linear, we recover the linear identifiability result stated in Theorem
2.4.3.

Definition 3.4.5 An admissible MN Σn1,n2 is said to be minimal if for every initial state
x0 ∈ IRn, and for every admissible initialized MN, (Σ̃ñ1,ñ2 , x̃0) such that (Σn1,n2 , x0) and
(Σ̃ñ1,ñ2 , x̃0) are i/o equivalent, then it must be ñ ≥ n.

Remark 3.4.6 It would be reasonable, in Definition 3.4.2, to replace the inequality “ñ > n”
with the statement “ñ1 ≥ n1, ñ2 ≥ n2, where at least one inequality is strict”. Analogously,
in Definition 3.4.5, “ñ ≥ n” could be replaced by “ñ1 ≥ n1, ñ2 ≥ n2”. These modified
definitions are not logically equivalent to the ones we gave. However, they are indeed equiv-
alent, and this fact will be a byproduct of the proof of Theorem 3.4.3 and Proposition 3.4.7.
This means, for instance, that if Σn1,n2 has the same i/o behavior of Σ̃ñ1,ñ2 and n ≤ ñ, then,
necessarily, n1 ≤ ñ1 and n2 ≤ ñ2 (of course, we always assume the systems to be admissible).

As observed in Section 2.4 for RNN’s, it is obvious that if an admissible MN Σn1,n2 is
identifiable then it is also minimal, while the converse implication may be false, as shown in
Example 2.4.7.

Next Proposition (whose proof will be given in Section 3.5) presents necessary and suf-
ficient conditions for minimality.

Proposition 3.4.7 Let Σn1,n2 = (σ,A, B, C) be an admissible MN, and let V1 ⊆ IRn1 and
V2 ⊆ IRn2 be the two subspaces defined in Proposition 3.2.4. Then Σn1,n2 is minimal if and
only if

V1 ⊕ V2 = 0 and the pair
(
A22,

(
B2, A21

))
is controllable . (54)
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Remark 3.4.8 Proposition 3.4.7 will be proved later; however the necessity of the condi-
tions in (54) is not difficult to establish, as shown next.
(a) Assume that V1 ⊕ V2 6= 0, and let r1 = dim V1, r2 = dim V2, and qi = ni − ri (i = 1, 2).
Without loss of generality, we may assume that that V1 = span {e1, . . . , er1}, where ej ∈ IRn1

are the elements of the canonical basis. Thus, we must have (in what follows, we specify only
the dimensions of some particular matrices, meaning that all the others have the appropriate
dimensions):

A11V1 ⊆ V1 ⇒ A11 =

(
H11 H12

0 H22

)
, with H22 ∈ IRq1×q1 ,

V1 ⊆ ker C1 ⇒ C1 =
(
0, D1

)
, with D1 ∈ IRp×q1 .

Using the linear theory, we also know that there exists a matrix T2 ∈ GL(n2) such that:

T−1
2 A22T2 =

(
L11 0
L21 L22

)
C2T2 =

(
D2, 0

)
,

where L11 ∈ IRq2×q2 , and D2 ∈ IRp×q2 . Moreover, we have:

A21V1 ⊆ V2 ⇒ T−1
2 A21 =

(
0 K12

K21 K22

)
, with K22 ∈ IRq2×q1 ,

A12V2 ⊆ V1 ⇒ A12T2 =

(
M11 0
M21 M22

)
, with M22 ∈ IRq1×q2 .

Now, if we denote, for i = 1, 2, Bi =
(
Bi1, Bi2

)T , with B12 ∈ IRq1×m and B21 ∈ IRq2×m, we
may rewrite the dynamics of Σn1,n2 as:

z+
1 = ~σ

(
H11z1 + H12z2 + M11w1 + M12w2 + B11u

)
z+
2 = ~σ

(
H22z2 + M11w1 + B12u

)
w+

1 = K12z2 + L11w1 + B21u
w+

2 = K21z1 + K22z2 + L21w1 + L22w2 + B22u

y = D1z2 + D2w1

where z2 ∈ IRq1 and w1 ∈ IRq2 . Thus, since the two blocks of variables z1 and w2 do not
effect the other two blocks and the output, it is clear that (Σn1,n2 , (z1, z2, w1, w2)) is i/o
equivalent to (

Σq1+q2 =

(
σ,

(
H22 M11

K22 L11

)
,

(
B12

B21

)(
D1, D2

))
, (z2, w1)

)
.

Thus we have performed a reduction in the dimension of the state space since q1 + q2 < n,
and so Σn1,n2 can not be minimal.
(b) Now, assume that the pair

(
A22,

[
B2, A21

])
is not controllable. Let p1 be the rank of((

B2, A21
)

, A22
(
B2, A21

)
, . . . ,

(
A22

)n2−1 (
B2, A21

))
,

and p2 = n2− p1. Then, by the linear theory, there exists an invertible matrix T 2 ∈ GL(n2)
such that:

(T 2)−1A22T 2 =

(
H1 H2

0 H3

)
, (T 2)−1A21 =

(
K
0

)
, (T 2)−1B2 =

(
M
0

)
,



30 CHAPTER 3. MIXED NETWORKS

where H1 ∈ IRp1×p1 , H2 ∈ IRp1×p2 , H3 ∈ IRp2×p2 , KIRp1×n2 , M ∈ IRp1×m. Now, let
A12 = (N1, N2), and C2 = (L1, L2), where the matrices N1, and L1 represent the first p1

columns. Consider the MN Σ̃n1+p1 given by the matrices:

Ã =

(
A11 N1

K H1

)
, B̃ =

(
B1

M

)
, C̃ =

(
C1, L1

)
.

It is easy to see that (Σn1,n2 , 0) ∼ (Σ̃n1+p1 , 0). Since n1 + p1 < n, again, Σn1,n2 is not
minimal.

3.5 Proofs on identifiability and minimality

Now we introduce some useful notations. In what follows, we assume that two initialized
admissible MN’s, (Σn1,n2 , x0) and (Σ̃ñ1,ñ2 , x̃0), both evolving either in continuous or discrete
time, are given. We let A1 =

(
A11, A12

)
and A2 =

(
A21, A22

)
, similarly for Ã1 and Ã2.

For discrete time models, for any k ≥ 1 and any u1, . . . , uk ∈ IRm, we denote by
xk[u1, . . . , uk] (resp. x̃k[u1, . . . , uk]) the state we reach from x0 (resp. x̃0) using the con-
trol sequence u1, . . . , uk. Moreover we let:

yk[u1, . . . , uk] = Cxk[u1, . . . , uk] and ỹk[u1, . . . , uk] = C̃x̃k[u1, . . . , uk].

For continuous time model, for any w(·) : [0, Tw] → IRm, we let xw(t) and x̃w(t), for
t ∈ [0, εw), be the two trajectories of Σn1,n2 and Σ̃n starting at x0 and x̃0 respectively. Here,
with εw > 0, we denote the maximal constant such that both trajectories xw(t) and x̃w(t)
are defined on the interval [0, εw). Again, by yw(t) and ỹw(t), for t ∈ [0, εw), we denote the
two corresponding output signals (i.e. yw(t) = Cxw(t), and ỹw(t) = C̃x̃w(t)).

For any vector v ∈ IRn, with the superscript 1 (resp. 2) we denote the first n1 (resp. the
second n2) block of coordinates. Similarly for ṽ ∈ IRñ.

We will denote by W ⊆ IRn (resp. W̃ ⊆ IRñ) the unobservable subspace of Σn1,n2 (resp.
Σ̃ñ1,ñ2). Moreover with V1 ⊆ IRn1 and V2 ⊆ IRn2 (resp. Ṽ1 ⊆ IRñ1 and Ṽ2 ⊆ IRñ2) we will
denote the two subspaces defined in Proposition 3.2.4 for Σn1,n2 (resp. Σ̃ñ1,ñ2). Recall that
it holds W = A−1(V1 ⊕ V2) ∩ ker C.

Now we establish some preliminary results. First we state a technical fact, which gives the
idea on how the admissibility assumption is going to be used in the proof of the identifiability
result. For a given matrix D, ID denotes the set of indexes i such that the i-th column of
D is zero, and Ic

D its complement.

Lemma 3.5.1 Assume that the following matrices and vectors are given: B ∈ IRn×m, B̃ ∈
IRñ×m, C ∈ IRp×n, C̃ ∈ IRp×ñ, D, D̃ ∈ IRp×m, a ∈ IRn, ã ∈ IRñ, and e, ẽ ∈ IRp. Moreover,
assume that σ is any admissible activation function, that both B and B̃ are admissible control
matrices, and that for all u ∈ IRm the following equality holds:

C~σ (a + Bu) + Du + e = C̃~σ
(
ã + B̃u

)
+ D̃u + ẽ. (55)

Then we have:

(a) e = ẽ.

(b) D = D̃.

(c) |Ic
C | = |Ic

C̃
|, and for any l ∈ Ic

C there exists π(l) ∈ Ic
C̃

and β(l) = ±1, such that
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(c.1) Bli = β(l)B̃π(l)i for all i ∈ {1, . . . ,m};
(c.2) al = β(l)ãπ(l).

(c.3) Cil = β(l)C̃iπ(l) for all i ∈ {1, . . . , p}.

Moreover the map π is injective.

Proof. Since B and B̃ are admissible control matrices, there exists v̄ ∈ Rm such that:

bi = (Bv̄)i 6= 0 ∀ i = 1, . . . , n, |bi| 6= |bj | for all i 6= j;
b̃i = (B̃v̄)i 6= 0 ∀ i = 1, . . . , n, |b̃i| 6= |b̃j | for all i 6= j.

(56)

Letting Z ⊂ IRm to be the set of all vectors v ∈ IRm for which (56) holds, we have that Z
is a dense subset of IRm. Fix any v̄ ∈ Z, then by rewriting equation (55) for u = xv̄, with
x ∈ IR, and using the notations in (56), we get:

n∑
j=1

Cijσ (aj + bjx) + (Dv̄)ix + ei =
ñ∑

j=1

C̃ijσ
(
ãj + b̃jx

)
+ (D̃v̄)ix + ẽi, (57)

for all x ∈ IR, and all i ∈ 1, . . . , p. Fix any i ∈ {1, . . . , p}. After possibly some cancellation,
equation 57 is of the type:

r∑
j=1

γijσ (αj + βjx) +
(
(Dv̄)i − (D̃v̄)i

)
x + (ei − ẽi) = 0, ∀x ∈ IR.

Since σ is admissible, we immediately get:

ei − ẽi = 0,

(Dv̄)i − (D̃v̄)i = 0.

The first of these equation implies (a), the second implies (b), since it holds for every v̄ ∈ Z,
and Z is dense.

Now, since (a) and (b) have been proved, we may rewrite (57), as:

n∑
j=1

Cijσ (aj + bjx) =
ñ∑

j=1

C̃ijσ
(
ãj + b̃jx

)
. (58)

Fix any l̄ ∈ Ic
C ; then there exists ī ∈ {1, . . . , p}, such that Cīl̄ 6= 0. Consider equation (58)

for this particular ī. The terms for which Cīj = 0 or C̃īj = 0 will cancel (however not all of
them will cancel since Cīl̄ 6= 0); thus will we remain with an equation of the type:

r∑
p=1

Cījp
σ
(
ajp + bjpx

)
−

r̃∑
p=1

C̃ījp
σ
(
ãjp + b̃jpx

)
= 0, ∀x ∈ IR, (59)

for some r ≤ n, and some r̃ ≤ ñ. Since σ is admissible, and the bjp ’s (resp. b̃jp) have different
absolute values, there must exists two indexes jp1 , jπ(p1), and β(p1) = ±1 such that:

(ajp1
, bjp1

) = β(p1)(ãjπ(p1)
, b̃jπ(p1)

).

So we have:(
Cījp1

− β(p1)C̃ījπ(p1)

)
σ(ajp1

+ bjp1
x) +

r∑
p=1,p6=p1

Cījp
σ
(
ajp + bjpx

)
−



32 CHAPTER 3. MIXED NETWORKS

−
r̃∑

p=1p6=π(p1)

C̃ījp
σ
(
ãjp + b̃jpx

)
= 0.

Now, by repeating the same arguments, we will find another index jp2 , a corresponding index
jπ(p2) with π(p2) 6= π(p1), and β(p2) = ±1. Notice that necessarily p2 6= p1, since, otherwise,
|b̃jπ(p1)

| = |b̃jπ(p2)
| would contraddict (56). Thus we will collect together two more terms.

Going on with the same arguments, we must have that r = r̃, and after r steps, we end up
with and equation of the type:

r∑
p=1

(
Cījp

− β(p)C̃ījπ(p)

)
σ
(
ajp + bjpx

)
= 0 ∀x ∈ IR.

Again, by the admissibility of σ, we also have
(
Cījp

− β(p)C̃ījπ(p)

)
= 0.

Thus, in particular, since Cīl̄ 6= 0, we have shown that there exists π(l̄), and β(l̄) such
that:

(al̄, bl̄) = β(l̄)(ãπ(l̄), b̃π(l̄))
Cīl̄ = β(l̄)C̃īπ(l̄).

(60)

Notice that, if given this l̄ ∈ Ic
C , we would have chosen a different index î such that Cîl̄ 6= 0,

then we would have ended up with corresponding π̂(l̄) and β̂(l̄). However, since the (b̃j)’s
have all different absolute values, it must be, π(l̄) = π̂(l̄), and β(l̄) = β̂(l̄) (see (60)). Thus
we have shown that:

∀ l ∈ Ic
C , ∃ π(l) ∈ Ic

C̃
, β(l) = ±1, such that

{
(i) (al, bl) = β(l)(ãπ(l)), b̃π(l)),
(ii) Cil = β(l)Ciπ(l) if Cil 6= 0.

(61)

This implies |Ic
C | ≤ |Ic

C̃
|. By symmetry, we conclude that |Ic

C | = |Ic
C̃
|. From (61) (i), we get

directly that (c.2) holds. Again from (61) (i), we also have:

(Bv̄)l = β(l)
(
B̃v̄
)

π(l)
,

for all v̄ ∈ Z. Since Z is dense, this implies (c.1). Moreover (61) (ii) proves (c.3) for those
Cil different from zero. On the other hand if Cil = 0 then, necessarily C̃iπ(l) has to be zero
also. Otherwise, one repeats the argument above exchanging C with C̃, and finds an index
λ(π(l)) such that

|C̃iπ(l)| = |Ciλ(π(l))|, |b̃π(l)| = |bλ(π(l))|.

In particular, λ(π(l)) 6= l, since Cil = 0 and Ciλ(π(l)) 6= 0. But then |bλ(π(l))| = |b̃π(l)| = |bl|,
which is impossible since the bi’s have all different absolute values.

The injectivity of the map π is also a consequence of |bi| 6= |bj | for all i 6= j.

Lemma 3.5.2 Let (Σn1,n2 , x0) and (Σ̃ñ1,ñ2 , x̃0) be two initialized MN’s, H1 ∈ IRq×n1, H2 ∈
IRq×n2, H̃1 ∈ IRq×ñ1, and H̃2 ∈ IRq×ñ2.

• For continuous time models, if for all w : [0, Tw] → IRm, and for all t ∈ [0, εw), we
have:

H1x
1
w(t) + H2x

2
w(t) = H̃1x̃

1
w(t) + H̃2x̃

2
w(t), (62)

then, for all u ∈ IRm:

H1~σ
(
A1xw(t) + B1u

)
+ H2A

2xw(t) + H2B
2u =

H̃1~σ
(
Ã1x̃w(t) + B̃1u

)
+ H̃2A

2x̃w(t) + H̃2B̃
2u.

(63)



3.5. PROOFS ON IDENTIFIABILITY AND MINIMALITY 33

• For discrete time models, if for all r ≥ 0, and for all u1, . . . , ur ∈ IRm, we have:

H1x
1[u1, . . . , ur] + H2x

2[u1, . . . , ur] = H̃1x̃
1[u1, . . . , ur] + H̃2x̃

2[u1, . . . , ur], (64)

(when r = 0, it is meant that the previous equality holds for the two initial states) then,
for all u ∈ IRm:

H1~σ
(
A1x[u1, . . . , ur] + B1u

)
+ H2A

2x[u1, . . . , ur] + H2B
2u =

H̃1~σ
(
Ã1x̃[u1, . . . , ur] + B̃1u

)
+ H̃2A

2x̃[u1, . . . , ur] + H̃2B̃
2u.

(65)

Proof. Being the discrete time case obvious, we just prove the continuous time statement.
Fix any t̄ ∈ [0, εw). For any u ∈ IRm, let wu : [0, t̄ + 1] → IRm be the control map defined
by wu(t) = w(t) if t ∈ [0, t̄], and wu = u if t ∈ [t̄, t̄ + 1]. Then the two trajectories xwu(t)
and x̃wu(t) are defined on an interval of the type [0, t̄ + ε) and are differentiable for any
t ∈ (t̄, t̄ + ε). Since equation (62) holds for all t ∈ (0, t̄ + ε), we have, for all t ∈ (t̄, t̄ + ε),

H1ẋ
1
w(t) + H2ẋ

2
w(t) = H̃1

˙̃x
1
w(t) + H̃2

˙̃x
2
w(t),

Now, by taking the limit as t → t̄+, we get (63), as desired.

Lemma 3.5.3 If (Σn1,n2 , x0) ∼ (Σ̃ñ1,ñ2 , x̃0), then, for all l ≥ 0, we have:

(a) C2(A22)lB2 = C̃2(Ã22)lB̃2;

(b) |Ic
C2(A22)lA21 | = |Ic

C̃2(Ã22)lÃ21 |, and for all i ∈ Ic
C2(A22)lA21 there exists π(i) ∈ Ic

C̃2(Ã22)lÃ21

and β(i) = ±1, such that:(
C2(A22)lA21

)
ji

= β(i)
(
C̃2(Ã22)lÃ21

)
jπ(i)

,

for all j ∈ {1, . . . , p};

(c1) for continuous time models, for all w : [0, Tw] → IRm, and for all t ∈ [0, εw), we have:

C2(A22)lA21x1
w(t) + C2(A22)l+1x2

w(t) = C̃2(Ã22)lÃ21x̃1
w(t) + C̃2(Ã22)l+1x̃2

w(t);

(c2) for discrete time models, for all r ≥ 0, for all u1, . . . , ur ∈ IRm, we have:

C2(A22)lA21x1[u1, . . . , ur] + C2(A22)l+1x2[u1, . . . , ur] =

C̃2(Ã22)lÃ21x̃1[u1, . . . , ur] + C̃2(Ã22)l+1x̃2[u1, . . . , ur].

(When r = 0, it is meant that the previous equality holds for the two initial states.)

Proof. Assume that we are dealing with continuous time MN’s. We first prove, by induction
on l ≥ 0, statements (a) and (c1). Assume l = 0. Since (Σn1,n2 , x0) ∼ (Σ̃ñ1,ñ2 , x̃0), then for
all w : [0, Tw] → IRm, and for all t ∈ [0, εw), we have:

C1x1
w(t) + C2x2

w(t) = ywu(t) = ỹwu(t) = C̃1x̃1
w(t) + C̃2x̃2

w(t).

From Lemma 3.5.2 this implies:

C1~σ
(
A11x1

w(t) + A12x2
w(t) + B1u

)
+ C2A21x1

w(t) + C2A22x2
w(t) + C2B2u =

C̃1~σ
(
Ã11x̃1

w(t) + Ã12x̃2
w(t) + B̃1u

)
+ C̃2Ã21x̃1

w(t) + C̃2Ã22x̃2
w(t) + C̃2B̃2u

(66)
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Now, by (66) and by applying Lemma 3.5.1 (parts (a) and (b)) we immediately get conclu-
sions (a) and (c1) when l = 0. The proof of the inductive step follows the same lines. By
inductive assumption, we have:

C2(A22)lA21x1
w(t) + C2(A22)l+1x2

w(t) = C̃2(Ã22)lÃ21x̃1
w(t) + C̃2(Ã22)l+1x̃2

w(t),

for all t ∈ [0, εw). By applying again Lemma 3.5.2, we get:

C2(A22)lA21~σ
(
A11x1

w(t) + A12x2
w(t) + B1u

)
+ C2(A22)l+1

(
A2xw(t) + B2u

)
=

C̃2(Ã22)lÃ21~σ
(
Ã11x̃1

w(t) + Ã12x̃2
w(t)

)
+ +C̃2(Ã22)l+1

(
Ã2x̃w(t) + B̃2u

)
.

By applying Lemma 3.5.1 (part (a) and (b)), the previous equation gives both (a) and (c1)
for the case l + 1. Moreover, from part (c) of the same Lemma 3.5.1, also (b) must holds.

The proof for the discrete time dynamics is very similar and simpler. The idea is to
establish, again by induction on l ≥ 0, statement (a) and (c2) first. We only sketch the case
l = 0. Since (Σn1,n2 , x0) ∼ (Σ̃ñ1,ñ2 , x̃0), given any sequence u1, . . . , ur, u, we must have:

y[u1, . . . , ur, u] = ỹ[u1, . . . , ur, u],

which is the same as:

C1~σ
(
A1x[u1, . . . , ur] + B1u

)
+ C2A2x[u1, . . . , ur] + C2B2u =

C̃1~σ
(
Ã1x̃[u1, . . . , ur] + B̃1u

)
+ C̃2Ã2x̃[u1, . . . , ur] + C̃2B̃2u

Again, since the previous holds for every u ∈ IRm, Lemma 3.5.1 gives conclusion (a) and
(c2) for the case l = 0.

We omit the proof of the next Lemma, whose conclusions may be established by induc-
tion, using the same arguments as in the previous proof.

Lemma 3.5.4 Assume that (Σn1,n2 , x0) ∼ (Σ̃ñ1,ñ2 , x̃0), and that there exists i ∈ {1, . . . , n1},
β(i) = ±1, and π(i) ∈ {1, . . . , ñ1} such that:

• for the continuous time dynamics, for all w(·) ∈ [0, Tw] → IRm, for all t ∈ [0, εw) the
following holds[

A11x1
w(t) + A12x2

w(t)
]
i
= β(i)

[
Ã11x̃1

w(t) + Ã12x̃2
w(t)

]
π(i)

,

• for discrete time dynamics, for all r ≥ 1, for all u1, . . . , ur ∈ IRm, the following holds:

[
A11x1[u1, . . . , ur] + A12x2[u1, . . . , ur]

]
i
= β(i)

[
Ã11x̃1[u1, . . . , ur] + Ã12x̃2[u1, . . . , ur]

]
π(i)

.

Then, for all l ≥ 0, we have:

(a)
[
A12(A22)lB2

]
ij

= β(i)
[
Ã12(Ã22)lB̃2

]
π(i)j

, j ∈ {1, . . . ,m},

(b1) for continuous time dynamics, for all w(·) ∈ [0, Tw] → IRm, for all t ∈ [0, εw):[
A12(A22)lA21x1

w(t) + A12(A22)l+1x2
w(t)

]
i
=

β(i)
[
Ã12(Ã22)lÃ21x̃1

w(t) + Ã12(Ã22)l+1x̃2
w(t)

]
π(i)

;
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(b2) for discrete time dynamics, for all r ≥ 1, for all u1, . . . , ur ∈ IRm:[
A12(A22)lA21x1[u1, . . . , ur] + A12(A22)l+1x2[u1, . . . , ur]

]
i
=

β(i)
[
Ã12(Ã22)lÃ21x̃1[u1, . . . , ur] + Ã12(Ã22)l+1x̃2[u1, . . . , ur]

]
π(i)

.

Lemma 3.5.5 If (Σn1,n2 , x0) ∼ (Σ̃ñ1,ñ2 , x̃0) and V1 = 0, then n1 ≤ ñ1, and for all i ∈
{1, . . . , n1} there exists π(i) ∈ {1, . . . , ñ1} and β(i) = ±1 such that:

(a) B1
ij = β(i)B̃1

π(i)j for all j ∈ 1, . . . ,m;

(b) C1
ji = β(i)C̃1

jπ(i) for all j ∈ 1, . . . , p;

(c1) for continuous time dynamics, for all w(·) ∈ [0, Tw] → IRm, for all t ∈ [0, εw) the
following holds[

A11x1
w(t) + A12x2

w(t)
]
i
= β(i)

[
Ã11x̃1

w(t) + Ã12x̃2
w(t)

]
π(i)

;

(c2) for discrete time dynamics, for all r ≥ 1, for all u1, . . . , ur ∈ IRm, the following holds:[
A11x1[u1, . . . , ur] + A12x2[u1, . . . , ur]

]
i
=

β(i)
[
Ã11x̃1[u1, . . . , ur] + Ã12x̃2[u1, . . . , ur]

]
π(i)

.

Moreover the map π is injective.

Proof. Assume that we are dealing with continuous time MN’s (the proof for the discrete
time case is very similar and thus omitted). Since V1 = 0, then, letting Jd to denote the
set of indexes defined in Section 3.2, we have that for any i ∈ {1, . . . , n1} there exists d ≥ 1
such that i ∈ Jd. We first prove (a) and (c1) by induction on the first index d ≥ 1 such that
i ∈ Jd.

Assume that d = 1, i.e. i ∈ J1. Thus, by definition, there exists 1 ≤ l ≤ p such
that C1

li 6= 0. Since (Σn1,n2 , x0) ∼ (Σ̃ñ1,ñ2 , x̃0), then for all w : [0, Tw] → IRm, and for all
t ∈ [0, εw), we have:

C1x1
w(t) + C2x2

w(t) = ywu(t) = ỹwu(t) = C̃1x̃1
w(t) + C̃2x̃2

w(t),

from Lemma 3.5.2 this implies:

C1~σ
(
A1xw(t) + B1u

)
+C2A2xw(t)+C2B2u = C̃1~σ

(
Ã1x̃w(t) + B̃1u

)
+C̃2Ã2x̃w(t)+C̃2B̃2u.

(67)
Since C1

li 6= 0, we have i ∈ Ic
C1 , thus, by Lemma 3.5.1, we know that there exist π(i) ∈

{1, . . . , ñ1}, and β(i) = ±1, such that:

B1
ij = β(i)B̃1

π(i)j ,

for all j ∈ 1, . . . ,m, and, for all w(·) ∈ [0, Tw] → IRm, for all t ∈ [0, εw):[
A11x1

w(t) + A12x2
w(t)

]
i
= β(i)

[
Ã11x̃1

w(t) + Ã12x̃2
w(t)

]
π(i)

.

Now suppose that i ∈ Jd+1, for d > 0. If i ∈ J1, then there is nothing to prove; otherwise
we are in one of the following three cases:
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1. there exists j ∈ Jd, and A11
ji 6= 0;

2. there exists 1 ≤ j ≤ p and 0 ≤ l ≤ d− 1 such that
(
C2(A22)lA21

)
ji
6= 0;

3. there exists j ∈ Js, for 1 ≤ s ≤ d− 1 such that
(
A12(A22)d−s−1A21

)
ji
6= 0.

We will prove the three cases separately.
1. Since j ∈ Jd, then, in particular, (c1) holds for this j. Thus we have, for all w(·) ∈
[0, Tw] → IRm, for all t ∈ [0, εw):[

A11x1
w(t) + A12x2

w(t)
]
j

= β(j)
[
Ã11x̃1

w(t) + Ã12x̃2
w(t)

]
π(j)

.

Now, by applying Lemma 3.5.2 to this equation, we get, that for all u ∈ IRm:[
A11~σ

(
A1xw(t) + B1u

)
+ A12A2xw(t) + A12B2u

]
j =

β(j)
[
Ã11~σ

(
Ã1xw(t) + B̃1u

)
+ Ã12Ã2xw(t) + Ã12B̃2u

]
π(j)

.

Now, since A11
ji 6= 0, we have i ∈ Ic

A11 ; by applying Lemma 3.5.1 to the previous equation,
we get that there exists π(i) ∈ {1, . . . , ñ1}, and β(i) = ±1, such that (a) and (c1) holds for
this index i.
2. From Lemma 3.5.3 (c1), we have that for all w : [0, Tw] → IRm, and for all t ∈ [0, εw),
the following equality holds:

C2(A22)lA21x1
w(t) + C2(A22)l+1x2

w(t) = C̃2(Ã22)lÃ21x̃1
w(t) + C̃2(Ã22)l+1x̃2

w(t).

By applying Lemma 3.5.2 to the previous equation we get:

C2(A22)lA21~σ
(
A1xw(t) + B1u

)
C2(A22)l+1

(
A2xw(t) + B2u

)
=

C̃2(Ã22)lÃ21~σ
(
Ã1x̃w(t) + B̃1u

)
+ C̃2(Ã22)l+1

(
Ã2x̃w(t) + B̃2u

)
.

(68)

Since
(
C2(A22)lA21

)
ji
6= 0, again by applying Lemma 3.5.1, we get that there exist π(i) ∈

{1, . . . , ñ1}, and β(i) = ±1, such that (a) and (c1) holds for this index i.
3. Since j ∈ Js, then, in particular, (c1) holds for this j. Thus we have, for all w(·) ∈
[0, Tw] → IRm, for all t ∈ [0, εw):[

A11x1
w(t) + A12x2

w(t)
]
j

= β(j)
[
Ã11x̃1

w(t) + Ã12x̃2
w(t)

]
π(j)

.

Thus Lemma 3.5.4 applies, and from conclusion (b1) of this Lemma we get, for all l ≥ 0:[
A12(A22)lA21x1

w(t) + A12(A22)l+1x2
w(t)

]
j

=

β(j)
[
Ã12(Ã22)lÃ21x̃1

w(t) + Ã12(Ã22)l+1x̃2
w(t)

]
π(j)

.

Now, letting l = d − s − 1, since
(
A12(A22)lA21

)
ji
6= 0, we may proceed as before and by

applying first lemma 3.5.2, and then Lemma 3.5.1, (a) and (c1) follows also for this index i.
To conclude the proof, we need to establish (b). Using (a) and (c1), we may rewrite, for

each j ∈ {1, . . . , p}, equation (67) as:∑n1
i=1

(
C1

ji − β(i)C̃1
jπ(i)

)
~σ
(
(A1xw(t))i + (B1u)i

)
+ (C2A2xw(t))j =

∑
l 6=π(i) C̃1

jl~σ
(
(Ã1x̃w(t))l + (B̃1u)l

)
+ (C̃2Ã2x̃w(t))j .
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Since σ is admissible, the previous equality implies (b).
Notice that the injectivity of π is an obvious consequence of the injectivity of the corre-

sponding map in Lemma 3.5.1.

Given two matrices M ∈ IRp1×p1 and N ∈ IRp2×p1 , we say that the pair (M,N) is
observable if it satisfied the linear Kalman observability condition, i.e.:

rank


N

NM
...

NMp1−1

 = p1.

Lemma 3.5.6 Let Σn1,n2 = (σ,A, B, C) be an admissible MN. If V2 = 0 then the pair((
C2

A12

)
, A22

)

is observable.

Proof. Assume, by contradiction, that the above pair is not observable. Then there would
exists a non-zero A22-invariant subspace W2 ⊆ IRn2 which is also contained in kerC2, and
in kerA12. Thus, clearly W2 ⊆ V2 contradicting the assumption that V2 = 0.

Now we are ready to prove the identification result.
Proof of Theorem 3.4.3
Let Σn1,n2 = (σ,A, B, C) be an admissible MN.
Necessity We prove this part by contradiction.

First assume that Σn1,n2 is not observable. Then there exist two different states x1, x2 ∈
IRn which give the same input/output behavior, thus the two initialized MN’s (Σn1,n2 , x1),
and (Σn1,n2 , x2) are input/output equivalent. Next we will see that they can’t be equivalent.
Assume that there is a matrix T ∈ Gn (see Definition 3.4.1) such that:

A = T−1AT, B = T−1B, C = CT, and x1 = T−1x2.

Then, since B1 is an admissible control matrix, one has that T must be of the type:

T =

(
I 0
0 T 2

)
.

On the other hand, the matrix T 2, must satisfy:

A12 = T 2A12, C2 = T 2C2, A22 = T−1A22T,

which, by Lemma 3.5.6, implies that also T 2 = I. Thus T = I, and so we must have x1 = x2,
which is a contradiction. So, in this case, Σn1,n2 is not identifiable.

Now, if the pair
(
A22,

[
B2, A21

])
is not controllable, we have already seen in Remark 3.4.8

that the MN Σn1,n2 is not minimal, since it is possible to perform a state space reduction,
and so, in particular, Σn1,n2 is not identifiable.
Sufficiency We prove this part only for continuous time dynamics, the proof in discrete time
being the same after the obvious changes of notations.

Let x0 ∈ IRn; consider another admissible initialized MN (Σ̃ñ1,ñ2 , x̃0), such that

(Σn1,n2 , x0) ∼ (Σ̃ñ1,ñ2 , x̃0).
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Since Σn1,n2 is observable, in particular, V1 = 0, thus, by Lemma 3.5.5, n1 ≤ ñ1, and for all
i ∈ {1, . . . , n1} there exists π(i) ∈ {1, . . . , ñ1} and β(i) = ±1 such that the conclusions (a),
(b) and (c1) of Lemma 3.5.5 hold. Now let λ : {0, . . . , ñ1} → {0, . . . , ñ1} be the permutation
given by λ(i) = π(i), if 1 ≤ i ≤ n1, λ(i) = i otherwise. Notice that the map λ is indeed
a permutation since the map π is injective (see Lemma 3.5.5). Then, let T1 = PD ∈ Gñ1 ,
where P is the permutation matrix representing λ, and D = Diag(β(1), . . . , β(n1), 1, . . . , 1).
Then, (a), (b), and (c1) of Lemma 3.5.5 can be rephrased as:

T1B̃
1 =

(
B1

B̃11

)
(69)

C̃1T1 =
(
C1, C̃11

)
(70)

and, for all w : [0, Tw] → IRm, for all t ∈ [0, εw), we also have:[
A11x1

w(t) + A12x2
w(t)

]
i
=
[
T1Ã

11x̃1
w(t) + T1Ã

12x̃2
w(t)

]
i
, i ∈ {1, . . . , n1}. (71)

Thus, Lemma 3.5.4 applies and we get:[
A12(A22)lB2

]
ij

=
[
T1Ã

12(Ã22)lB̃2
]
ij

, i ∈ {1, . . . , n1}, j ∈ {1, . . . ,m}, (72)

and (
A12(A22)lA21x1

w(t) + A12(A22)l+1x2
w(t)

)
i
=(

T1Ã
12(Ã22)lÃ21x̃1

w(t) + T1Ã
12(Ã22)l+1x̃2

w(t)
)

i

(73)

By applying Lemma 3.5.2, from equation (73), we get:[
A12(A22)lA21~σ

(
A1xw(t) + B1u

)
+ A12(A22)l+1

(
A2xw(t) + B2u

)]
i
=

[
T1Ã

12(Ã22)lÃ21~σ
(
Ã1xw(t) + B̃1u

)
+ T1Ã

12(Ã22)l+1
(
Ã2x̃w(t) + B̃2u

)]
i
=[

T1Ã
12(Ã22)lÃ21T−1

1 ~σ

(
A1xw(t)

(
B1, B̃11

)T
u

)
+ T1Ã

12(Ã22)l+1
(
Ã2x̃w(t) + B̃2u

)]
i
,

where to get this last equality we have used equations (71) and (69). Now, since the function
σ and the matrix B1 are both admissible, by Lemma 3.5.1, we conclude:(

A12(A22)lA21
)

ij
=
(
T1Ã

12(Ã22)lÃ21T−1
1

)
ij

, ∀ i, j ∈ {1, . . . , n1}. (74)

By Lemma 3.5.3, we also get, for all l ≥ 0,:

C2(A22)lB2 = C̃2(Ã22)lB̃2. (75)

and (
C2(A22)lA21

)
ij

=
(
C̃2(Ã22)lÃ21T−1

1

)
ij
∀ i ∈ {1, . . . , p}, ∀ j ∈ {1, . . . , n1}. (76)

Let:
Ã21T−1

1 =
(
M̃21, Ñ21

)
,

where M̃21 ∈ IRñ2×n1 , and

T1Ã
12 =

(
H̃12

K̃12

)
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where H̃12 ∈ IRn1×ñ2 Then equations (72), (74), (75), and (76), say that the two linear
models, ((

C2

A12

)
, A22,

(
B2, A21

))
,

((
C̃2

H̃12

)
, Ã22,

(
B̃2, M̃21

))
, (77)

are input/output equivalent. Since Σn1,n2 is observable, we have V2 = 0. So, by Lemma 3.5.6,

the pair

((
C2

A12

)
, A22

)
is observable. Moreover, the pair

(
A22,

(
B2, A21

))
is controllable,

by assumption, and thus, by the linear theory (see Theorem 2.4.3), we get n2 ≤ ñ2.
So, in conclusion, n = n1 + n2 ≤ ñ1 + ñ2 = ñ.

Remark 3.5.7 Notice that, up to this point we have only used the i/o equivalence of the
two MN’s together with the facts that V1 = 0, V2 = 0, and the pair

(
A22,

(
B2, A21

))
is

controllable.

Now, we must show that, if n = ñ then (Σn1,n2 , x0) is equivalent to (Σ̃ñ1,ñ2 , x̃0). Notice
that, from what we have seen before, necessarily, n1 = ñ1 and n2 = ñ2. Moreover, we must
have:

B̃1 = T−1
1 B1 Ã21T−1

1 = M̃21

C̃1 = C1T1 T1Ã
12 = H̃12.

(78)

On the other hand, by the linear theory (again Theorem 2.4.3), there must exists T2 ∈
GL(n2), such that:(

C̃2

H̃12

)
=

(
C2

A12

)
T 2, Ã22 = T−1

2 A22T2,
(
B̃2M̃21

)
= T−1

2

(
B2A21

)
. (79)

By applying Lemma 3.5.2 to equation (71) , we also have:[
A11~σ

(
A1xw(t) + B1u

)
+ A12

(
A2xw(t) + B2u

)]
i
=[

T1Ã
11T−1

1 ~σ
(
A1xw(t) + B1u

)
+ T1Ã

12
(
Ã2x̃w(t) + B̃2u

)]
i

Clearly this equality implies:
A11 = T1Ã

11T−1
1 . (80)

Now let:

T =

(
T1 0
0 T2

)
.

Clearly T ∈ Gn, and by (78), (79), and (80), we have:

C̃ = CT, Ã = T−1AT, B̃ = T−1B. (81)

So, to complete the proof, we only need to show that x̃0 = T−1x0. Let x1 = T x̃0. Since
(Σn1,n2 , x0) ∼ (Σ̃ñ1,ñ2 , x̃0), and (81) holds, we get that x0 is indistinguishable from x1. On
the other hand, since Σn1,n2 is observable, we conclude T x̃0 = x1 = x0, as desired.

Proof of Proposition 3.4.7
We have already seen in Remark 3.4.8 that the conditions in (54) are necessary for minimality.
On the other hand, the sufficiency follows directly from the previous proof. In fact, as
observed in Remark 3.5.7, to get that ñ ≤ n one needs only the assumptions given by (54).

Remark 3.5.8 It is interesting to notice that the conditions in (54) guarantees, if n = ñ,
the existence of a matrix T ∈ Gn which gives the similarity of the two set of matrices;
however, if we do not have the whole observability condition (i.e. if kerA∩ ker C 6= 0), then
T x̃0 and x0 may be different (see also Example 2.4.7).



40 CHAPTER 3. MIXED NETWORKS



Chapter 4

Some Open Problems

Recurrent Neural Networks have proved to be a quite stimulating object for system theoretic
study. With the results of this work, we may say that minimality in both RNN’s and MN’s
is well understood, under the assumption of admissibility. On the other hand, there are still
many interesting questions concerning system theoretic properties of these networks that
remain open.

1. While admissibility of the activation function is an acceptable assumption, the admis-
sibility requirement on the control matrix appear to be an undesirable constrain. Is
it conceivable, for instance, to be able to reduce the dimension of a RNN by using a
non-admissible control matrix? First of all, by dropping the admissibility assumption
in the control matrix, the symmetry group of a RNN may considerably increase; this
is due to the fact that if B is not admissible then there are non-coordinate subspaces
that are stable for σ ◦B.

It appears (we are presently working on this problem) that observability for a RNN can
be characterized without requiring admissibility of the control matrix. On the other
hand, identifiability seems to be much harder. For identifiability, in fact, we compare
two systems with control matrices B1, B2, so that the maps σ ◦ B1 and σ ◦ B2 may
have different stable subspaces.

2. Dropping the admissibility assumption for the control matrix B would allow to deal
with multiple layer neural networks. A multiple, layer neural network is a cascade of
neural networks such that the output of one network is the input of the successive one.
Thus, a double layer RNN would be a system of the type

x+
1 = ~σ(A1x1 + B1u)

x+
2 = ~σ(A2x2 + B2C1x1)

y = C2x2

that is still a RNN but with the non admissible control matrix

(
B1

0

)
. By anal-

ogy with what is known for feedforward networks (see [25]), we expect that double
layer RNN’s would better approximate certain nonlinear i/o behaviors than admissi-
ble RNN’s. The identifiability and minimality problem is particularly relevant in this
context.

3. As we mentioned earlier, complete controllability for continuous time RNN’s with
suitable activation functions has been recently proved. We believe that the techniques

41
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could be used to deal with MN’s in continuous time. It seems, however, that con-
trollability in discrete time is much harder, and makes a quite challenging theoretical
problem.

4. Forward accessibility in discrete-time has been proved under strong assumptions on
the activation function and the control matrix; these assumptions are hard to check,
even for systems with relatively low dimension. Improvements in this direction are
quite desirable.

5. It appears that some results in this work come from ”linear” properties of ~σ: invariant
subspaces, linear transformations that commute with ~σ, . . . . We believe it is worth-
while to investigate whether similar arguments can be applied to more general vector
fields, that are not produced by scalar functions applied componentwise.
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