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Abstract

The global asymptotic stability of the origin for systems described by ẋ = σ̄(Ax),
where σ̄ is the saturation function, is studied. The case x(t) ∈ IR2 is treated in detail
and conditions which are necessary and sufficient are obtained. Examples are presented to
illustrate the ideas developed in the paper.
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1 Introduction and Preliminaries

In this paper, systems of the following form are studied.

ẋ = σ̄(Ax), (1)

where x ∈ IRn, A ∈ IRn×n, and for v ∈ IRn, σ̄(v) = (σ(v1), . . . , σ(vn))T , where σ is the
saturation map:

σ(x) =

 −1, x ≤ −1
x, −1 < x < 1
1, x ≥ 1

We try to find a characterization of the global asymptotic stability of the origin for such systems
in terms of the entries of the matrix A.

Systems such as (1) model classes of analog circuits, neural networks and control systems
with symmetrically saturating states, after normalization. The qualitative analysis of neural
networks and, in particular, the study of their stability and asymptotic stability properties have
received a great deal of attention, see for example [9, 3, 4, 8, 11] and references therein.

Some criteria on the entries of the matrix A for global asymptotic stability of systems (1)
are summarized in the first section. Necessary and sufficient conditions for the general case are
studied initially, summarizing some known results (see [1], [5], [7], [9]). Then in Section 3 a
detailed consideration of the second-order case, n = 2, is presented, and a complete solution is
obtained. The conditions given here require that two particular trajectories converge to zero.
We conjecture, however, that this condition is indeed redundant.

Examples of the various types of instability that may be observed for a Hurwitz matrix A ∈
IR2×2 are also presented, and these are used as a basis in proving our main result (Theorem 9).
A main ingredient of the proof of Theorem 9 is based on the idea of using a Poincaré cut to
analyze the behavior of the system. In principle, this method may be used to deal with higher
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dimensional cases, however, when n ≥ 3, it does not appear that a simple characterization of
stability is possible.

Given a system of differential equations ẋ = f(x), we say that x0 = 0 is locally asymptotically
stable if for each neighborhood V of the origin there exists a neighborhood W ⊆ V such that
each solution trajectory starting in W , remains in V for all t ≥ 0 and converges to zero as t →∞.
Moreover x0 = 0 is said to be globally asymptotically stable if it is locally asymptotically stable
and if all solution trajectories converge to zero as t →∞. The trajectory corresponding to the
initial conditions x(0) = x0 will be denoted by φ(t;x0). Notice that for models as in (1), there
exists a unique solution for every initial condition, and furthermore all solutions are defined for
all t ≥ 0.

2 Conditions for Global Asymptotic Stability

Some results for global asymptotic stability are reviewed. Necessary and sufficient conditions
are treated separately.

2.1 Necessary Conditions

An obvious necessary and sufficient condition for the local asymptotic stability of x0 = 0 in (1) is
the asymptotic stability of the linear system ẋ = Ax. This yields the following straightforward
necessary condition for global stability.
Proposition 1 Given a system of type (2), if x0 = 0 is globally asymptotically stable,
then

A is a Hurwitz matrix, (C1)

i.e. all the eigenvalues of A have a negative real part.

Under (C1), the asymptotic stability of (1) is equivalent to that of the system :

ẋ = Aσ̄(x). (2)

This follows as (C1) implies invertibility of A. Applying the coordinate transformation z = Ax
shows equivalence of the two models. In the sequel we work with the model (2), as it is simpler
to analyze.

Other necessary conditions for global asymptotic stability may be derived by showing that
the trajectories do not remain in the regions of IRn where |xj | ≥ 1, j = 1 . . . n (for the proof we
refer to [1]).
Proposition 2 Given a system(2), if x0 = 0 is globally asymptotically stable, then

min
j

εj

n∑
k=1

εkajk < 0 (C2)

for each combination of ε1, ..., εn = ±1.

Remark 3 Condition (C2) is equivalent to checking that for each combination ε1, ..., εn = ±1,
there exists a j = 1, ..., n such that

∑n
k=1 εkajk is not zero and is not of the same sign as εj .

2.2 Sufficient Conditions for Asymptotic Stability

The next theorem may be proved via a simple Lyapunov argument, giving a sufficient condition
for the global asymptotic stability of x0 = 0 in (2). This result was first stated in [10], and has
been recently proved for more general models in [5, 7].
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Theorem 4
Consider the system (2) and assume that there exists a positive definite diagonal matrix

D = Diag (d1, . . . , dn), such that

AT D + DA = Q < 0 (3)

Then x0 = 0 is globally asymptotically stable.

Remark 5 To understand how to apply Theorem 4, one needs to know when, for a given
Hurwitz matrix A , there exists a diagonal positive definite D such that equation (3) holds.
This problem is considered in [2], where some necessary and sufficient conditions are presented.
A straightforward sufficient condition is that

AT + A < 0.

This fact holds, for example, when A is symmetric. For two dimensional matrices, it is not
difficult to prove (see [1]), that there exists a diagonal D such that inequality (3) holds if and
only if both diagonal elements of A are negative.

Other sufficient conditions may be derived for Hurwitz matrices which are M-matrices. A
matrix R ∈ IRq×q is called an M-matrix if rij ≤ 0 for all i 6= j, and all the principal minors of
R are positive. The following two corollaries follow from well known results about M-matrices,
see for example [9].
Corollary 6 Let Σ be a system of type (2), and assume that the matrix A is such that:

aii +
∑
k 6=i

|aik| < 0, ∀ i = 1, . . . , n. (4)

Then x0 = 0 is globally asymptotically stable.

Corollary 7 Let Σ be a system of type (2), and assume that the matrix A is such that:

aii +
∑
k 6=i

|aki| < 0, ∀ i = 1, . . . , n. (5)

Then x0 = 0 is globally asymptotically stable.

Remark 8 Corollaries 6 and 7 may also be proved by more direct methods. If (4) holds, then it
may be shown that W := {x : |xj | < 1 j = 1, ..., n} is globally attracting, and thus the system
stability is equivalent to that of the linear system ẋ = Ax. If (5) holds, V (x) =

∑n
j=1 |xj | is a

global Lyapunov function, proving global asymptotic stability.

3 The Second-Order Case

In the case A ∈ IR2×2, the situation is easier to analyze. As the only equilibrium point possible
for a system (2) is x0 = 0, it follows from the Poincarè-Bendixon Theorem, see e.g. [12], that if
A is Hurwitz and the system is not globally asymptotically stable, there must exist at least one
unstable limit cycle which encircles the origin. Furthermore, unstable trajectories lying outside
the region enclosed by the limit cycle will either ultimately remain in one of the sectors where
both components of σ̄(·) are saturating, or circle the origin.

The former case may be easily accounted for by conditions on the coefficients of A, as in
Proposition 2.
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The latter case is more difficult to handle. One technique we will use is to analyze the
system via a Poincaré return map based on the cross section C =

{
(α, 1)T : α > 1

}
. That is, to

consider the map α 7→ α̃, where (α̃, 1)T is the first intersection of the trajectory φ(t,
(
α
1

)
) with

the set C and α � 1 is large enough that the trajectory does not enter the central, linear, region
before coming to (α̃, 1)T . As trajectories outside the central region may be easily integrated,
the return map may be constructed, yielding the sequence of points at which the trajectory
intersects C. Global stability properties of the system may then be concluded from this return
map.

Our main result is the following:

Theorem 9

Let Σ be a system of type (2), with A =
[

a11 a12

a21 a22

]
∈ IR2×2. Then the system is globally

asymptotically stable if and only if the following conditions hold

(i) A is Hurwitz (i.e. det A > 0, and Tr A < 0)

(ii) S1 < 0 or S2 < 0

(iii) D1 < 0 or D2 < 0

(iv) One of the following conditions hold

(a) S1 ≤ 0 and D1 < 0, or S1 < 0 and D1 = 0

(b) S1 > 0, D1 < 0, S2 < 0, D2 > 0, S1D2 ≤ S2D1, C1 > 0, φ(t;
(
1
1

)
) → 0, and

φ(t;
(−1

1

)
) → 0

(c) S2 ≤ 0 and D2 < 0, or S2 < 0 and D2 = 0

(d) S1 < 0, D1 > 0, S2 > 0, D2 < 0, S1D2 ≥ S2D1, C2 > 0, φ(t;
(
1
1

)
) → 0, and

φ(t;
(−1

1

)
) → 0

where S1 = a11 + a12, S2 = a21 + a22, D1 = a11 − a12, D2 = a22 − a21, and

C1 =
D2

D1

(
detA

a2
22

ln
(
−D2

S2

)
− 2

a12

a22

)
−

(
det A

a2
11

ln
(
−S1

D1

)
+ 2

a21

a11

)
,

C2 =
D1

D2

(
detA

a2
11

ln
(
−D1

S1

)
− 2

a21

a11

)
−

(
det A

a2
22

ln
(
−S2

D2

)
+ 2

a12

a22

)
.

In the definitions of C1, and C2, if one of a11 or a22 is zero, the constant takes on the value as
the respective coefficient goes to zero (see equation (10)).

Remark 10 Note that S1D2 − S2D1 = 2(a22a12 − a11a21). This may be used to simplify the
conditions (b) and (d).
Remark 11 It will be clear from the proof of the theorem that, in the two cases (b), and
(d), the condition φ(t;

(
1
1

)
) → 0, and φ(t;

(−1
1

)
) → 0, may be replaced by φ(t;

(
x
1

)
) → 0 for some

x � 1. It is also possible to give a bound, in terms of the entries of the matrix A, on how large
the constant x has to be.

Notice that, even if not easily verified analytically, it is relatively easy to check conditions
(b) and (d) via numerical integration for any given matrix A.

The remainder of this section is devoted to exploring the ideas described above and proving
Theorem 9.
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ẋ = A
(
x1
x2

)
B+0
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Figure 1: Subdivision of IR2.

3.1 Preliminary Results and Discussion

We first set up some notation and then prove some results regarding the characteristics of the
vector field Aσ̄(x). The main points will be illustrated with examples.

An important feature of the dynamical system (2) is that it is piecewise affine. This means
that the plane may be divided into 9 regions in which the system is affine and may be solved
exactly. We denote these regions by Bij , where i, j ∈ {+,−, 0}. These regions are shown in
Figure 1 along with the differential equations giving the flow in each region, we shall denote
these regions sectors, the sector boundaries are given by dashed lines in the figure.

As in the statement of Theorem 9, we use the following notation throughout:

S1 = a11 + a12, D1 = a11 − a12, S2 = a22 + a21 D2 = a22 − a21.

A. Invariant sectors

A sector, B is called invariant if for all initial conditions x0 ∈ B, the solution φ(t;x0) remains
in B for all t > 0.

A first characterization of the flow is found by considering invariance of the sectors described
above. The following results are immediate.
Lemma 12 If B00 is invariant, A is Hurwitz and x0 = 0 is globally asymptotically stable.

Proof. If B00 is invariant, it may be seen that (4) holds, and so, by Corollary 6, A is Hurwitz
and x0 = 0 is globally asymptotically stable.

Lemma 13 If one of the sectors B+0,B−0,B0+,B0− is invariant, then A is not Hurwitz.

5



Figure 2: Periodic Solution and Vector field for A1.

Proof. Without loss of generality, consider that the sector B+0 is invariant. Then S1 ≥ 0,
S2 ≤ 0, D1 ≥ 0 and D2 ≤ 0. It follows that a11 ≥ 0, a22 ≤ 0, |a12| ≤ |a11| and |a21| ≤ |a22|.
Thus −a11a22 ≥ |a12a21|, and so det A ≤ 0. Thus A is not Hurwitz.

The following lemma is an obvious consequence of Proposition 2.

Lemma 14 If B++, B−+, B+− or B−− is invariant, then the system is not globally stable.

It is interesting to note that the property of the matrix A of being Hurwitz gives information
about the invariance of the sectors B+0,B−0,B0+, and B0−, but it gives no information about
the invariance of the corner sectors B++,B+−,B−−, and B−+. In fact, Lemma 13 implies that
if A is a Hurwitz matrix, then none of the sectors B+0,B−0,B0+, and B0− are invariant. In
contrast, the next example shows that there are cases in which A is Hurwitz, but two of the
corner sectors are invariant. This system is thus not globally asymptotically stable, as implied
by Lemma 14.

Example 15 Consider the flow associated with the Hurwitz matrix A1 =
[

2 1
−8 −3

]
, as

depicted in Figure 2. The sectors B+− and B−+ are invariant, and so the system is only lo-
cally stable. A numerical treatment of the problem yields the unstable periodic solution, xp(t),
shown in Figure 2. The open set encircled by xp(t) is the domain of attraction of the origin,
and outside of xp(t) all trajectories are unbounded.

The next result was proved in [1], and deals with the situation in which at least one of the
strips |x1| ≤ 1 or |x2| ≤ 1 is invariant, i.e. one of the unions B0+∪B00∪B0−, or B+0∪B00∪B−0

is invariant.
Proposition 16 Let Σ be a system as in (2). If the matrix A is Hurwitz and either S1 < 0
and D1 < 0 or S2 < 0 and D2 < 0, then x0 = 0 is globally asymptotically stable.

It is not difficult to see that, by using the same arguments used in [1] to prove the previous
proposition, one may extend this result to the case in which one of the previous quantities is
zero. More precisely, the following proposition holds:
Proposition 17 Let Σ be a system as in (2). If the matrix A is Hurwitz and one of the
following conditions hold:
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Figure 3: Periodic Solution and Vector field for A2.

(i) S1 ≤ 0 and D1 < 0,

(ii) S1 < 0 and D1 ≤ 0,

(iii) S2 ≤ 0 and D2 < 0,

(iv) S2 < 0 and D2 ≤ 0,

then x0 = 0 is globally asymptotically stable.

B. No Invariant sectors

The following example shows that in the case that none of the sectors is invariant and A is
Hurwitz, it is possible that x0 is not globally asymptotically stable.

Example 18 Consider the flow generated by the matrix A2 =
[

2 4
−8 −3

]
. Then A2 is

Hurwitz, and there are no invariant sectors. Nevertheless there exists an unstable periodic
solution and the associated system is only locally stable, as shown in Figure 3

The mechanism for instability is simple to understand in this case. When ||x0|| � 1 we
may disregard what happens in the sectors B+0,B−0,B0+,B0−. Thus, the flow is approximately
given by

ẋ = Asgn(x). (6)

Assuming that the direction of flow is clockwise, i.e. S1 > 0, S2 < 0, D1 < 0, D2 > 0, the
trajectory for the an initial condition

(
α
0

)
may be easily integrated, as in Figure 4, to see that:

α̃ =
(

S1D2

S2D1

)2

α =
(a11 + a12)2

(a22 + a21)2
(a22 − a21)2

(a11 − a12)2
α =: M(A)2α (7)

Thus the flow associated with A is globally asymptotically stable only if M(A) < 1. In the
previous example M(A2) = 15/11 > 1.
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Figure 4: The flow associated with (6).

Remark 19 In performing this calculation we have assumed that the periodic solution encircles
the origin with a clockwise orientation. This is true if and only if

S1 > 0, S2 < 0, D1 < 0, and D2 > 0. (8)

In the sequel we assume that (8) holds. Note that if the periodic solution has an anticlockwise
orientation we can transform to the case (8) via the co-ordinate transformation

(
x1
x2

)
→

(
x2
x1

)
.

The following two examples deal with the cases when M(A) < 1 and M(A) = 1.

Example 20 Consider the flow generated by the matrix A3 =
[

2 4
−4 −3

]
. Then A3 is

Hurwitz, there are no invariant sectors, and M(A3) = 3/7, thus one may expect global asymp-
totic stability. From the numerical results it is clear that the flow associated with A3 is indeed
globally stable. See Figure 5 for the vector field and a trajectory in the neighborhood of 0.

Example 21 Now consider the flow generated by the matrix A4 =
[

2 4
−6 −3

]
. Then A3 is

Hurwitz, there are no invariant sectors, and M(A3) = 1. With the analysis performed so far it
is unclear whether the system associated with A4 is globally stable or not, however it appears
that it is indeed globally stable, see Figure 6.

It is thus clear that knowledge of M(A) is not sufficient to conclude global asymptotic
stability of the system. We now calculate the return map exactly.

C. Calculation of the Return Map

Assume that (8) holds, so that trajectories circle the origin in a clockwise fashion. Consider the
trajectory φ(t;

(
α
1

)
), where α � 1 is chosen large enough that φ(t;

(
α
1

)
) does not intersect the
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Figure 5: Stable Solutions and Vector field for A3.

Figure 6: Stable Solution and Vector field for A4.
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region B00 before the next intersection of the local cross section C =
{
(α, 1)T : α > 1

}
. Denote

by t∗ > 0 the first point in time when this occurs, i.e. φ(t∗;
(
α
1

)
) =

(
α∗

1

)
. We now calculate an

expression for α∗ in terms of α and the matrix A which generates the flow.
Due to the symmetry of the system, we only explicitly calculate the maps from

(
α
1

)
to

(
α1
−1

)
and the map from

(
α1
−1

)
to

(
1

α2

)
and then state the final result.

The map r1 : α 7→ α1. In the sector B+0 the differential equations are

ẋ1 = a11 + a12x2, x1(0) = α

ẋ2 = a21 + a22x2, x2(0) = 1

Thus for a22 6= 0:

x2(t) =
(

1 +
a21

a22

)
ea22t − a21

a22

x1(t) = α +
(

a11 −
a21a12

a22

)
t +

(
ea22t − 1

) a12

a22

(
1 +

a21

a22

)
Solving x2(t2) = −1 for t2 and then evaluating α1 = x1(t2) yields

r1(α) = α− 2
a12

a22
+

detA

a2
22

ln
(

a21 − a22

a21 + a22

)
(9)

If a22 = 0 the result is:

x2(t) = 1 + a21t

x1(t) = α + (a11 + a12)t +
a12a21

2
t2

so that

r1(α) = α− 2
a11

a21

It is not difficult to show that:

lim
a22→0

2
a12

a22
− det A

a2
22

ln
(

a21 − a22

a21 + a22

)
= 2

a11

a21
(10)

so without loss of generality we may use the expression (9).

The map r2 : α1 7→ α2. In this case the vector field is constant, and it is straightforward to
see that

r2(α2) = −1 + (α2 − 1)
(a22 − a21)
(a11 − a12)

(11)

The map r : α 7→ α∗. It is important to note that each return map is affine. Additionally,
the αi is only offset when passing through the sectors B+0,B0−,B−0,B0+, and rescaled and
offset when passing through the

sectors B++,B+−,B−−,B−+. The total set of transitions is given by(
α

1

)
r17→

(
α1

−1

)
r27→

(
1
α2

)
r37→

(
−1
α3

)
r47→

(
α4

−1

)
r57→

(
α5

1

)
r67→

(
−1
α6

)
r77→

(
1
α7

)
r87→

(
α∗

1

)
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and
α∗ = r(α) = M(A)2α + c (12)

where

c = −
(

D2S1

D1S2
+ 1

) [
D2S1

D1S2
− 1− D2S1

D1S2

(
det A

a2
22

ln
(
−D2

S2

)
− 2

a12

a22

)
+

S1

S2

(
detA

a2
11

ln
(
−S1

D1

)
+ 2

a21

a11

)]
We make the convention that, if a22 = 0, then the quantity

(
det A
a2
22

ln
(
−D2
S2

)
− 2a12

a22

)
is sub-

stituted with its limit as a22 → 0, which is 2a11/a21, and, if a11 = 0, then the quantity(
det A
a2
11

ln
(
−S1
D1

)
+ 2a21

a11

)
is substituted with its limit as a11 → 0 which is −2a22/a12.

If M(A) > 1 then the system will be unstable, as r(α) > α for sufficiently large α. Thus,
when (8) holds, the condition

M(A) ≤ 1,

is necessary for global asymptotic stability. In this case there will exist an α∗ for which r(α∗) =
α∗. If α∗ ≥ 1, then this means that there will exist a limit cycle passing through (α∗, 1). To
avoid this problem, we need to ensure that α∗ < 1. It is straightforward to see that α∗ < 1 iff
c− 1 + M(A)2 < 0. Now

c− 1 + M(A)2 = −
(

D2S1

D1S2
+ 1

)
S1
S2

[
−D2

D1

(
detA

a2
22

ln
(
−D2

S2

)
− 2

a12

a22

)
+

detA

a2
11

ln
(
−S1

D1

)
+ 2

a21

a11

]
Since D2S1

D1S2
> 0, and S1

S2
< 0, it is easy to see that c− 1 + M(A) < 0 iff

D2

D1

(
detA

a2
22

ln
(
−D2

S2

)
− 2

a12

a22

)
−

(
det A

a2
11

ln
(
−S1

D1

)
+ 2

a21

a11

)
> 0. (13)

If the system is globally asymptotically stable, there will be no limit cycle, and so (13) gives
another necessary condition. However, this does not preclude the existence of a limit cycle for
which α∗ = 1− ε, where 0 < ε � 1. The following example demonstrates such a limit cycle.

Example 22 Now consider the flow generated by the matrix A5 =
[

1 3.7
−6 −1.2

]
, as depicted

in Figure 7. There exists a periodic solution which enters and leaves B00 on each of its faces.
This demonstrates the possibility that a limit cycle exists for which α∗ < 1, and which would
not be detected by the condition (13). However a simple calculation shows that in this case
M(A)2 = 1.347, so existence of a limit cycle was expected.

Thus it remains to be proven that in the case that M(A) ≤ 1 and c − 1 + M(A)2 < 0, all
trajectories intersecting B00 converge to x∗ = 0. This will require a further condition on two
special trajectories of the system, however, see Conjecture 2 in the Conclusions.
Lemma 23 Assume that A is a Hurwitz matrix, and that S1 > 0, S2 < 0, D1 < 0 and
D2 > 0. Then the system is globally asymptotically stable iff M(A) ≤ 1, c − 1 + M(A)2 < 0,
φ(t;

(
1
1

)
) → 0, and φ(t;

(−1
1

)
) → 0.

Proof. As S1 > 0, S2 < 0, D1 < 0 and D2 > 0, trajectories circle the origin in a clockwise
sense, and we may construct the return map as detailed in this section.

Since M(A) ≤ 1 and c − 1 + M(A)2 < 0, we have that any trajectory is bounded. Let
x(t) be a fixed trajectory, and Ω be its positive limit set. By classical results for second-order
systems (see, for example [6], Theorem 1.3), we know that one of the following holds:
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Figure 7: Periodic Solution and Vector field for A5.

(a) Ω is an equilibrium point;

(b) Ω is a periodic orbit;

(c) Ω contains some equilibrium points together with some trajectories that have among these
equilibrium points their positive and negative limit sets.

Since A is Hurwitz, zero is the only equilibrium point, and it is locally asymptotically stable.
Thus we may exclude case (c), as otherwise there would exist a trajectory whose negative limit
set is zero, contradicting stability of the origin.

Assuming that the model is not globally asymptotically stable, then according to (b), there
must exist a limit cycle. Since M(A) ≤ 1 and c−1+M(A)2 < 0, this limit cycle has to intersect
the sector B00. Moreover, this cycle determines two regions in the plane, one compact region
inside the cycle and one outside. It is easy to see that necessarily at least one of the points

(
1
1

)
or

(−1
1

)
lies in the unbounded region. Since its trajectory goes to zero, it must intersect the

periodic orbit, yielding a contradiction. Thus there can not exist a limit cycle, and the system
must be globally asymptotically stable.

The converse statement is obvious.

3.2 Proof of Theorem 9

With the results of the previous sections, we are in a position to prove Theorem 9.

Necessity Suppose that the system is globally asymptotically stable. Then it is also locally
asymptotically stable, so A must be Hurwitz. Thus (i) is necessary.

Necessity of (ii) and (iii) follow from Lemma 14.
Now we consider the signs of S1, S2, D1, and D2. By (ii), we know that S1 or S2 is negative,

without loss of generality, we may assume that S2 < 0. If D2 ≤ 0, then we are in the case (c),
thus (iv) holds. If D2 > 0, then, by (iii), we know that D1 < 0. If S1 ≤ 0, then we are in the
case (a), so, again, (iv) holds. If S1 > 0, then the sign of these four quantities are as in (b) of
(iv). Now, from Lemma 23, we have that (b) of (iv) must hold since M(A) ≤ 1 is equivalent to
S1D2 ≤ S2D1, and c−1+M(A)2 < 0 is equivalent to C1 > 0. Thus condition (iv) is necessary.
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Sufficiency To prove sufficiency of the conditions (i)–(iv), consider that (i)–(iii) hold, and
then consider the cases (a), (b), (c) and (d) separately. If (a) or (c) holds, then we can conclude
global asymptotic stability by Proposition 17. If we are in the case (b), then global asymptotic
stability holds by Lemma 23. Case (d) is the dual of case (b), so also in this case we conclude
that the model is global asymptotically stable. Thus the conditions of the theorem are also
sufficient.

4 Conclusions

In this paper we have presented necessary conditions and sufficient conditions for the global
asymptotic stability of the system ẋ = Aσ(x). Our main contribution deals with the second-
order case, that is for A ∈ IR2×2, where necessary and sufficient conditions are presented.
Theorem 9 gives our main result, but we expect that it may be simplified. Specifically we
suspect that the following conjectures hold, which would lead to a simplification of conditions
(iv)(b) and (iv)(d) of the theorem.

Conjecture 1 Suppose that A is Hurwitz and that S1 > 0, S2 < 0, D1 < 0 and D2 > 0. Then
if S1D2 ≤ S2D1, then C1 > 0.
(equivalently, if S1 < 0, S2 > 0, D1 > 0 and D2 < 0; then if S1D2 ≥ S2D1, then C2 > 0)

Conjecture 2 Suppose that A is Hurwitz and that S1 > 0, S2 < 0, D1 < 0 and D2 > 0. Then
if S1D2 ≤ S2D1, then φ(t;

(
1
1

)
) → 0, and φ(t;

(−1
1

)
) → 0 as t →∞.

(equivalently if S1 < 0, S2 > 0, D1 > 0 and D2 < 0; then if S1D2 ≥ S2D1 then φ(t;
(
1
1

)
) → 0,

and φ(t;
(−1

1

)
) → 0 as t →∞.)

Conjecture 1 is a nonlinear constrained optimization problem and has been numerically
“proven”, but no analytical proof has been found yet. Conjecture 2 has held in all examples
we have constructed, but is still unproved.
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