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Abstract

In this paper, we study the controllability properties and the Lie algebra structure of
networks of particles with spin immersed in an electro-magnetic field. We relate the Lie
algebra structure to the properties of a graph whose nodes represent the particles and an
edge connects two nodes if and only if the interaction between the two corresponding
particles is active. For networks with different gyromagnetic ratios, we provide a
necessary and sufficient condition of controllability in terms of the properties of the
above mentioned graph and describe the Lie algebra structure in every case. For these
systems all the controllability notions, including the possibility of driving the evolution
operator and/or the state, are equivalent. For general networks (with possibly equal
gyromagnetic ratios), we give a sufficient condition of controllability. A general form of
interaction among the particles is assumed which includes both Ising and Heisenberg
models as special cases.

Assuming Heisenberg interaction we provide an analysis of low dimensional cases
(number of particles less than or equal to three) which includes necessary and sufficient
controllability conditions as well as a study of their Lie algebra structure. This also,
provides an example of quantum mechanical systems where controllability of the state
is verified while controllability of the evolution operator is not.

Keywords: Controllability of Quantum Mechanical Systems, Lie Algebra Structure, Parti-
cles with Spin.
AMS subject classifications. 93B05, 17B45, 17B81.
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1 Introduction

The controllability of multilevel quantum mechanical systems described by bilinear models
can be investigated using results on the controllability of bilinear systems varying on Lie
groups [11], [18]. In particular, general results established in [12] can be applied to this case
leading to the calculation of the Lie algebra generated by the Hamiltonian of the system
and the verification of a rank condition. The determination of this Lie algebra for classes of
quantum systems is a problem of both fundamental and practical importance in the theory
of quantum control. In fact, it gives the set of states that can be obtained by driving the
system opportunely and letting it evolve for an appropriate amount of time. Previous work
in this direction, for various classes of quantum systems, was done in [4], [21].

In this paper, we analyze the Lie algebra structure and give conditions of controllabil-
ity for a network of interacting spin 1

2
particles in a driving electro-magnetic field. Spin

1
2

particles are of great interest because they can be used as elementary pieces of informa-
tion (quantum bits) in quantum information theory [9]. These systems can be driven with
techniques of Nuclear Magnetic Resonance [5]. A study of their controllability properties
gives information on what state transfers can be obtained with a given physical set-up. A
previous study on the controllability of this system was carried out in [14], [23]. Results on
the controllability of systems of one and two spin 1

2
particles can be found in [6], [13].

In the present paper we relate the Lie algebra structure of a network of spin 1
2

particles to
the properties of a graph whose nodes represent the particles and whose edges represent the
interaction between the particles. We analyze first the case of networks with particles with
different gyromagnetic ratios. For these systems, we give a necessary and sufficient condition
of controllability in terms of connectedness of the associated graph and describe the Lie
algebra structure in every case. It will follow from this analysis that all the controllability
conditions are equivalent for this class of systems. In particular it is possible to drive the state
of the system to any configuration if and only if it is possible to drive the evolution operator to
any unitary operator. We consider then systems with possibly equal gyromagnetic ratio and
give a sufficient condition of controllability in this case. Complete results including necessary
and sufficient conditions of various types of controllability are obtained for low dimensional
cases, namely for a number of particles ≤ 3. These cases are the most common in practical
applications. We assume here (for the case number of particles = 3) an Heisenberg model
for the interaction between particles. In this analysis we also display an example of a model
which is controllable in the state but not controllable in the evolution operator.

The paper is organized as follows. In Section 2 we review general notions of controllability
for quantum mechanical systems. We recall some results proved in [2] about the relation
among different notions of controllability as well as some of the results of [11], [12], [18] about
controllability of quantum systems. In Section 3, we describe the general model of systems
of n interacting spin 1

2
particles and define some notations used in the paper. In Section 4

we prove a Lemma which describes a particular subalgebra of the total Lie algebra, that we
call the ‘Control subalgebra’. This will play an important role in the following development.
In Section 5 we study the Lie algebra structure associated to the model described in Section
3 assuming that all the particles have different gyromagnetic ratios. In Section 6, we remove
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this assumption and prove a general sufficient condition of controllability. We study low
dimensional cases in Section 7 and give some conclusions in Section 8.

2 Controllability of Quantum Mechanical Systems

In many physical situations the dynamics of a multilevel quantum system can be described
by Schrödinger equation in the form, [7], [18],

˙|ψ > = H|ψ > = (A+
m∑

i=1

Biui(t))|ψ >, (1)

where |ψ > is the state vector varying on the complex sphere Sn−1

CI defined as the set of n-ples

of complex numbers xj + iyj, j = 1, ..., n, with
∑n

j=1 x
2
j +y2

j = 1. H is called the Hamiltonian
of the system. The matrices A, B1, ..., Bm are in the Lie algebra of skew-Hermitian matrices
of dimension n, u(n). If A and Bi, i = 1, ...,m, have zero trace, they are in the Lie algebra
of skew Hermitian matrices with zero trace su(n)1. The functions ui(t), i = 1, 2, ...,m, are
time varying components of electro-magnetic fields that play the role of controls. They are
assumed to be piecewise continuous, however the considerations in the following would not
change had we considered other classes of controls such as piecewise constant or bang bang
controls.

The solution of (1) at time t, |ψ(t) > with initial condition |ψ0 > is given by

|ψ(t) >= X(t)|ψ0 >, (2)

where X(t) is the solution at time t of the equation

Ẋ(t) = (A+
m∑

i=1

Biui(t))X(t), (3)

with initial condition X(0) = In×n. The solution X(t) varies on the Lie group of unitary
matrices U(n) or the Lie group of special unitary matrices SU(n) if the matrices A and Bi

in (3) have zero trace.

Various notions of controllability can be defined for system (1). In particular, we will
consider the following three.

• System (1) is said to be Operator Controllable if it is possible to drive X in (3) to any
value in U(n) (or SU(n)).

• System (1) is State Controllable if it is possible to drive the state |ψ > to any value on
the complex sphere Sn−1

C , for any given initial condition.

1Since trace of A and Bi, i = 1, 2, ...,m, only introduce a phase factor in the solution of (1), and states
that differ by a phase factor are physically indistinguishable, it is possible to transform the equation (1) into
an equivalent one of the same form where the matrices A and Bi, i = 1, ...,m, are skew-Hermitian and with
zero trace, namely they are in su(n).
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• System (1) is said to be Equivalent State Controllable if it is possible to drive the state
|ψ > to any value on the complex sphere modulo a phase factor eiφ, φ ∈ RI .

From a physics point of view, equivalent state controllability is equivalent to state control-
lability since states that differ only by a phase factor are physically indistinguishable.

From the expression (2) for |ψ >, it is clear that state controllability is related to the
possibility of driving X to a subset of SU(n) or U(n) which is transitive on the complex
sphere. Transitivity of transformation groups on spheres was studied in [3], [16], [17], [20]
and the necessary connections for application to quantum mechanical systems where made
in [2]. In the following theorem, we summarize some of the results of [2] that will be used in
the following. Part 2) of the Theorem was proved in [11], [12], [18]. Here and in the following
we will denote by L the Lie algebra generated by A,B1, . . . , Bm in (1).

Theorem 1

1. A quantum mechanical system (1) is state controllable if and only if it is equivalent
state controllable. Both these conditions are implied by operator controllability.

2. The system is operator controllable if and only if the Lie algebra L generated by the
matrices A,B1, ...., Bm is u(n) or su(n).

3. The system is state controllable if and only if L is su(n) or u(n), or, in the case of n
even, isomorphic to sp(n

2
)2.

4. Consider the n× n matrix with i in the position (1, 1) and zero everywhere else. Call
this matrix D. Let D be the subalgebra of L of matrices that commute with D. Then,
the system is state controllable if and only if dimL − dimD = 2n− 2.

5. Assume n even. There is no subalgebra of su(n) which contains properly any subalgebra
isomorphic to sp(n

2
) other than su(n) itself.

Because of the equivalence between state controllability and equivalent state controllability,
in the sequel we will only refer to the two notions of state controllability and operator
controllability. In [2] also controllability notions in a density matrix description of quantum
dynamics were considered.

3 Model of interacting spin 1
2 particles

From this point on, we will denote by n (which in the previous section denoted the dimension
of a general quantum system) the number of spin 1

2
particles in a network. The state

dimension of this system is 2n.

2Recall the Lie algebra of symplectic matrices sp(k) is the Lie algebra of matrices X in su(2k) satisfying

XJ + JXT = 0, with J given by J =
(

0 Ik×k

−Ik×k 0

)
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To define the model we will study, we first need to recall some definitions. The following
three Pauli matrices

σx :=
1

2

(
0 1
1 0

)
, σy :=

1

2

(
0 −i
i 0

)
, σz :=

1

2

(
1 0
0 −1

)
, (4)

satisfy the fundamental commutation relations [19]

[σx, σy] = iσz; [σy, σz] = iσx; [σz, σx] = iσy. (5)

It is known that the matrices iσx, iσy, iσz form a basis in su(2). Moreover, the set of matrices
i(σ1 ⊗ σ2 ⊗ · · · ⊗ σn), where σj, j = 1, ...n, is equal to one of the Pauli matrices or the 2× 2
identity I2×2, without i(I2×2 ⊗ I2×2 ⊗ · · · ⊗ I2×2), forms a basis in su(2n). (Here ⊗ indicates
the Kronecker product for matrices.)

In the following, we will use the notation Ikx for the Kronecker product

Ikx := σ1 ⊗ σ2 ⊗ · · · ⊗ σn, (6)

where all the the elements σj, j = 1, ..., n, are equal to the 2× 2 identity matrix, except the
k−th element which is equal to σx. More in general, we will use the notation Ik1l1,k2l2,...,krlr ,
with 1 ≤ k1 < k2 < ··· < kr ≤ n and lj = x, y or z, j = 1, ..., r, for a Kronecker product of the
form (6) where all the σj are equal to the identity I2×2 except the ones in the kj−th positions
which are equal to the Pauli matrices σlj . The matrices so defined (excluding the identity
matrix), multiplied by i, span su(2n). Some elementary properties of the commutators of
the matrices just defined that will be used in the following are collected in Appendix A.

The Hamiltonian of a general system of n interacting spin 1
2

particles in a driving electro-
magnetic field is given in the form

H = H0 +HI . (7)

Here H0, which denotes the internal (or unperturbed) Hamiltonian, is given by

H0 :=
n∑

k<l

(MklIkx,lx +NklIky,ly + PklIkz,lz), (8)

where Mkl, Nkl, Pkl are the coupling constants between particle k and particle l. This general
model of the interaction between different particles includes as special cases both the Ising
(Mkl = Nkl = 0) and the Heisenberg (Mkl = Nkl = Pkl) model ([15], pg. 46). The term HI ,
Control Hamiltonian, is given by

HI := (
n∑

k=1

γkIkx)ux(t) + (
n∑

k=1

γkIky)uy(t) + (
n∑

k=1

γkIkz)uz(t), (9)

where ux, uy and uz are the x, y and z components of the electro-magnetic field and γj,
j = 1, ..., n is the gyromagnetic ratio of the j-th particle. We always assume γj 6= 0 for
all j = 1, . . . , n. In general, we assume that we are able to vary all the three components
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of the magnetic field for control (cfr. Remark 5.2). In our terminology here and elsewhere
in this paper, we neglect the fact that nuclei with equal gyromagnetic ratios may have
different chemical shielding ([22] p.g. 65) and therefore different resonance frequencies. As a
consequence, the parameters γk in (9) may be different even though the two nuclei have the
same gyromagnetic ratio. In other terms, we incorporate the chemical shift constant ([1] pg.
175) into the constants γk and we still call them ‘gyromagnetic ratios’. Schrödinger equation
(3) for the evolution matrix X has the form,

Ẋ = AX +BxXux +ByXuy +BzXuz, (10)

with

A := −i
n∑

k<l,k,l=1

(MklIkx,lx +NklIky,ly + PklIkz,lz),

and

Bv := −i(
n∑

k=1

γkIkv), with v = x, y, or z.

It is clear that the controllability properties of this class of systems only depends on the
parameters Mkl, Nkl, Pkl and γk. In the next sections, we will characterize the structure
of the Lie algebra L, generated by A and Bx, By, Bz, in terms of these parameters. The
network of spin particles can be represented by a graph whose nodes represent the particles
and are labeled by their gyromagnetic ratios and an edge connects the nodes corresponding
to particles k and l if and only if at least one of the coupling constants Mkl, Nkl, Pkl is
different from zero. In this case, the edge is labeled by the triple {Mkl, Nkl, Pkl}. It is our
goal, in the next sections, to relate the properties of the Lie algebra L, to the properties of
this graph. In the following, we denote this graph by G∇.

We define an ordering on the n particles so that the first n1 have the same gyromagnetic
ratio γ1, the next n2 particles all have gyromagnetic ratio γ2, with γ2 6= γ1, and so on up
to the r−th set of nr particles with gyromagnetic ratio γr, with γj 6= γk when j 6= k and
n1 + n2 + n3 + · · ·+ nr = n. We shall denote the first set of particles by S1, the second one
by S2, and so on up to the r−th, Sr. We also define, for j = 1, 2, ..., r, v = x, y, z,

Ĩjv :=
∑
h∈Sj

Ihv, (11)

and we have

Bv := −i
r∑

j=1

γj Ĩjv.

For a given system, we shall call the Control Subalgebra of L, the subalgebra generated by
the matrices Bx, By and Bz. We shall denote the control subalgebra by B.
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4 Characterization of the Control Subalgebra

The following lemma shows that the control subalgebra B of a spin system is the direct sum
of r subalgebras isomorphic to su(2).

Lemma 4.1 Assume we are given a model as in (10), and let γ1, . . . , γr be the different
values for the gyromagnetic ratios. Assume that to each value γj correspond nj particles in
the set Sj, j = 1, . . . , r, then the matrices Bx, By and Bz generate the following Lie algebra:

B = Bx ⊕ By ⊕ Bz, (12)

with:
Bx = spanj=1,...,r{iĨjx}, (13)

By = spanj=1,...,r{iĨjy}, (14)

Bz = spanj=1,...,r{iĨjz}. (15)

Moreover, we have:

[Bx,By] = Bz, [By,Bz] = Bx, [Bz,Bx] = By. (16)

Proof. First, notice that Ĩj(x,y,z) satisfy the commutation relations

[Ĩjx, Ĩky] = iδjkĨjz, [Ĩjy, Ĩkz] = iδjkĨjx, [Ĩjz, Ĩkx] = iδjkĨjy, (17)

where we used the Kronecker symbol δjk. We proceed by induction on r ≥ 1. If r = 1, then
we have, for v ∈ {x, y z}:

Bv = −iγ1Ĩ1v,

thus (12)-(16) follow immediately from the basic commutation relations (17).
To prove the inductive step, we first show, again by induction on r ≥ 1 that:

[Bx, By] = −i∑r
j=1 γ

2
j Ĩjz,

[By, Bz] = −i∑r
j=1 γ

2
j Ĩjx,

[Bz, Bx] = −i∑r
j=1 γ

2
j Ĩjy.

(18)

We will prove only the first of the previous equalities, since the other ones may be obtained
in the same way. If r = 1, then

[Bx, By] = −γ2
1 [Ĩ1x, Ĩ1y] = −iγ2

1 Ĩ1z,

where to get the last equality we have used (17). Now let r > 1:

[Bx, By] = −[
r∑

j=1

γj Ĩjx,
r∑

j=1

γj Ĩjy] =
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−

[
r−1∑
j=1

γj Ĩjx,
r−1∑
j=1

γj Ĩjy] +
r−1∑
j=1

[γj Ĩjx, γrĨry] +
r−1∑
j=1

[γrĨrx, γj Ĩjy] + [γrĨrx, γrĨry]

 .

By the inductive assumption, we have:

[
r−1∑
j=1

γj Ĩjx,
r−1∑
j=1

γj Ĩjy] = i
r−1∑
j=1

γ2
j Ĩjz. (19)

Using (17), we obtain, for j < r,

[γj Ĩjx, γrĨry] = 0,

[γrĨrx, γj Ĩjy] = 0,
(20)

and
[γrĨrx, γrĨry] = iγ2

r Ĩrz. (21)

Now, combining equations (19), (20) and (21), we get:

[Bx, By] = −i
r∑

j=1

γ2
j Ĩjz,

as desired. Thus, we have proved (18).
Now notice that, for example, [By, Bz] has the same form as Bx except that the γj’s have

been replaced by γ2
j , therefore, using the same arguments as above one may show that:

[[By, Bz], By] = −i
r∑

j=1

γ3
j Ĩjz. (22)

More in general, considering the Lie bracket between Fx := −i∑r
j=1 γ

k
j Ĩjx, and Gy :=

−i∑r
j=1 γ

l
j Ĩjy, we get S := −i∑r

j=1 γ
k+l
j Ĩjz. Proceeding this way, we obtain all the ma-

trices

i
r∑

j=1

γl
j Ĩjx, (23)

i
r∑

j=1

γl
j Ĩjy, (24)

and

i
r∑

j=1

γl
j Ĩjz, (25)

l = 1, ..., r. The matrices in (23) form a basis in Bx since the Ĩjx do and the linear trans-
formation in (23) is nonsingular. In fact, the corresponding determinant is a Vandermonde
determinant which is different from zero because all the γj’s are different from each other.
The same is true for the elements in (24) and (25) which form a basis in By and Bz, respec-
tively. Finally, the commutation relations (16) follow immediately from (17). 2
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Notice that it follows from (17) and (5) that the subalgebras spanned by Ĩj(x,y,z) are
each isomorphic to su(2) and they commute with each other. For a given j, the Lie group
corresponding to span{Ĩj(x,y,z)} is given by nj copies of SU(2) (where nj denotes the number
of particles with gyromagnetic ratio γj)

3. Therefore it is isomorphic to SO(3) or SU(2)
according to whether nj is even or odd, respectively.

5 Lie Algebra Structure and Controllability with Dif-

ferent Gyromagnetic Ratios

In this section, we shall assume that the gyromagnetic ratios γ1, ..., γn are all different.
Therefore we have r = n and, from Lemma 4.1, we have that the control subalgebra B is
the span of the iIj(x,y,z), j = 1, ..., n. We shall give a necessary and sufficient condition of
controllability and describe the nature of the Lie algebra L, in terms of the properties of the
graph G∇. This graph will, in general, have a number s of connected components. We first
describe the situation when s = 1 and then generalize to the case of arbitrary s.

Theorem 2 Assume we are given a model as in (10), where the values γj, j = 1, . . . , n of
the gyromagnetic ratios are all different. If the graph G∇ is connected, then

L = su(2n). (26)

As a consequence the system is operator and state controllable (see Theorem 1).

Proof. We show that all the matrices of the form iIk1l1,k2l2,...,kmlm can be obtained as repeated
commutators of A, Bx, By, Bz, for every 1 ≤ m ≤ n. Lemma 4.1 gives the result for m = 1.
We first prove that this is true for m = 2 as well, and then proceed by induction on m.
If m = 2, we want to show that we can obtain all the matrices of the form iIkv,lw, k < l,
v, w ∈ {x, y, z}. From our assumption on the connectedness of G∇, there exists a path
joining the node representing the k− th particle and the node representing the l−th particle.
Let us denote by p the length of this path, namely the number of edges between k and l. We
proceed by induction on p. If p = 1, then at least one among Mkl, Nkl and Pkl is different
from zero. If Pkl 6= 0, we have:

[A, iIlx] = i

∑
h<l

(−NhlIhy,lz + PhlIhz,ly) +
∑
h>l

(−NlhIlz,hy + PlhIly,hz),

 (27)

and
[[A, iIlx],−iIky] = −iPklIkxly. (28)

3This is the Lie group of matrices of the form I1 ⊗ L ⊗ I2, where the identity matrix I1 has dimension
2n1+···nj−1 , the identity matrix I2 has dimension 2n−n1−n2−···nj and L has dimension 2nj and is has the form
F ⊗ F ⊗ · · · ⊗ F , with F ∈ SU(2) and the Kronecker product having nj factors.
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Since Pkl 6= 0, from the matrix −iPklIkxly, using (repeated) Lie brackets with elements iIkf

and/or iIlf ′ , with f, f ′ ∈ {x, y, z} one can obtain all of the elements of the form iIkv,lw, with
v, w ∈ {x, y, z}. If Pkl = 0, but Nkl 6= 0, the same can be proved by taking the commutator
with iIlx first and then the commutator with iIkz and analogously, if Nkl = Pkl = 0, by taking
the commutator with iIly first and then with iIkz. Now, assume it is possible to obtain every
iIkv,lw for every k < l whose distance is ≤ p−1. Let k and l have a path with distance p and
let l̄ represent a particle/node in between k and l within the path. Let us also assume just
for notational convenience that k < l̄ < l. From the inductive assumption, we know that
iIkv,l̄w and iIl̄f,lf ′ can be obtained for every v, w, f, f ′ ∈ {x, y, z}. We need to show that
we can also obtain every iIkg,lq for every g, q ∈ {x, y, z}. Using equation (66) in Appendix
A, we get

[iIkx,l̄x,−iIl̄y,ly] = iIkx,l̄z,ly, (29)

and

[iIkx,l̄z,ly, iIl̄z,lx] =
1

4
iIkx,lz, (30)

where we have used the following property of the Pauli matrices

σ2
x = σ2

y = σ2
z =

1

4
I2×2. (31)

As before, we can now take repeated Lie brackets of the matrix obtained in (30) with matrices
of the form iIkf and/or iIlf ′ , with f, f ′ ∈ {x, y, z}, to obtain all of the matrices iIkv,lw, for
v, w ∈ {x, y, z}. This concludes the proof that every Kronecker product with two matrices
different from the identity can be obtained, namely m = 2 in the above notations.

We now show that every matrix iIk1v1,k2v2,...,kmvm can be obtained. Consider the Lie
bracket

[−iIk1v1,k2v2,...,km−1x, iIkm−1y,kmvm ] = iIk1v1,k2v2,...,km−1z,kmvm . (32)

Both elements −iIk1v1,k2v2,...,km−1x and iIkm−1y,kmvm are available because of the inductive
assumption. If vm−1 = z, we have concluded otherwise, the Lie bracket with the matrix
iIkm−1x or iIkm−1y gives the desired result. This concludes the proof of the Theorem. 2

In the general situation, assume that G∇ has s connected components and denote by lj
the number of nodes in the j−th component. Set up an ordering of the particles so that
the first l1 are in the first connected component of the graph, the ones from l1 + 1 up to
l1 + l2 are in the second component and so on. We have l1 + l2 + · · ·+ ls = n. The following
theorem describes the structure of the Lie algebra L in the general case, assuming different
gyromagnetic ratios γi, i = 1, 2, ..., n.

Theorem 3 Assume we are given a model as in (10), where the values γj, j = 1, . . . , n,
of the gyromagnetic ratios are all different. Moreover, assume that the graph G∇ has s
connected components (as described above), then

L = S1 ⊕ S2 ⊕ · · · ⊕ Ss, (33)
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where each Sj, j = 1, 2, ..., s, is the subalgebra spanned by the matrices

iIk1v1,k2v2,...,krvr , (34)

with
l1 + l2 + · · ·+ lj−1 < k1 < k2 < · · · < kr ≤ l1 + l2 + · · ·+ lj. (35)

Proof. First notice that, from equation (64) in Appendix A, it follows immediately:

[Sj,Sk] = 0, if j 6= k. (36)

Since the values γj are all different, from Lemma 4.1 we have that all the elements of the
form iIkv, k = 1, . . . , n, v ∈ {x, y, z}, are in L. We can write the matrix A as

A = −i(∑1≤k<l≤l1(MklIkxlx +NklIkyly + PklIkzlz)+
+

∑
l1<k<l≤l1+l2(MklIkxlx +NklIkyly + PklIkzlz)+

· · · +
∑

l1+l2+···ls−1<k<l≤n(MklIkxlx +NklIkyly + PklIkzlz)),
(37)

using the fact that Mkl = Nkl = Pkl = 0 if k and l are in two different connected components.
Taking the Lie brackets with elements iIkv, v ∈ {x, y, z}, with l1+l2+···lj−1 < k ≤ l1+l2+···lj
(here if j = 1, we put l0 = 0), one may show, as in the proof of Theorem 2, that it is possible
to obtain all the elements in Sj, j = 1, 2, ..., s. Moreover from (36), it follows that these and
their linear combinations are the only matrices that can be generated by A, Bx, By, Bz. 2

Notice that, in the above situation, one may think of the spin system as a parallel
connection of s spin systems of dimension lj, j = 1 . . . , s, controlled in parallel by the same
control. The solution of (10) has the form

X(t) = Φ1(t)Φ2(t) · · · Φs(t), (38)

where Φj(t) is the solution of (10) with

A = −i
∑

lj−1<h<k≤lj

(MhkIhx,kx +NhkIhy,ky + PhkIhz,kz), (39)

and

Bv = −i
lj∑

k=lj−1+1

γkIkv, v ∈ {x, y, z}. (40)

The controls are the same for every subsystem and the matrices Φj in (38) commute due
to (36). The set of states that can be obtained with an appropriate control for system
(10) is given by the Lie group corresponding to the Lie algebra L namely, in this case,
SU(2l1)⊗ SU(2l2)⊗ · · · ⊗ SU(2ls).

Remark 5.1 It is important to notice, and it will be used later, that, in Theorems 2 and 3,
the assumption of different gyromagnetic ratios is used only to derive that the Lie algebra
spanned by iIj(x,y,z) is a subalgebra of L. Thus both statements of Theorems 2 and 3 remain
true if, instead of assuming γi 6= γj for all i 6= j, we assume spanj=1,...,n{iIj(x,y,z)} ⊆ L. This
fact will be used in the following Section.
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In the following Theorem, we answer the question of state controllability for spin systems
with different gyromagnetic ratios. It follows from Theorem 1 that, if L = su(2n), the system
is both operator controllable and state controllable (notice the different meaning of ‘n’, as at
the beginning of Section 3). If L 6= su(2n), we have seen that the set of states reachable for
(10) is SU(2l1)⊗ SU(2l2)⊗ · · · ⊗ SU(2ls). To see that the system is not state controllable,
notice that the corresponding Lie algebra L is not simple (since each of the subalgebras
isomorphic to su(2lj) is actually an ideal in L) and therefore it cannot be isomorphic to
sp(2n−1) as in Theorem 1, part (3). A more direct and geometric proof of the fact that
SU(2l1)⊗SU(2l2)⊗· · ·SU(2ls) is not transitive on the complex sphere is as follows. Assume
for simplicity s = 2 and V1 and V2 two subspaces, of dimension 2l1 and 2l2 such that the
underlying subspace of the overall system is V1 ⊗ V2. Every ‘not entangled’ state, namely a
state of the form |v1 > ⊗|v2 >, with vectors |v1 >∈ V1 and |v2 >∈ V2 can only be transformed
into another not entangled vector (A ⊗ B)(|v1 > ⊗|v2 >) = A|v1 > ⊗B|v2 > and there is
no possibility of transforming |v1 > ⊗|v2 > into an entangled vector namely a vector that
cannot be written as the tensor product of two vectors from V1 and V2. On the other hand,
entangled states always exist for a pair of non trivial vector spaces V1 and V2 (for example,
if |ej >, j = 1, ...,m1, is a basis of V1 and |fk >, k = 1, ...,m2 is a basis of V2, so that
|ej > |fk > is a basis of V1 ⊗ V2, consider 1√

2
|e1 > |f1 > + 1√

2
|em1 > |fm2 >.) We summarize

the results in this section with the following theorem.

Theorem 4 Consider a system of n-spins with different gyromagnetic ratios given by the
model (10). For this system all the controllability notions are equivalent and they are verified
if and only if the associated graph G∇ is connected.

Remark 5.2 In many physical implementations of the control of spin 1
2

particles, the z
component of the control is held constant. The only changes in the previous treatment
occur in the proof of Lemma 4.1. In fact, for this case, one does not have the matrix Bz.
However, by using the first one of equations (18), one obtains −i∑r

j=1 γ
2
j Ĩjz ∈ B. Then,

using this matrix in place of Bz, one gets all the matrices in (23), (24), (25), with only odd
l’s in (23), (24), and even l’s in (25). If we assume |γj| 6= |γk|, when j 6= k, the result
remains unchanged. In fact, the determinant of the matrix referred to at the end of the
proof of Lemma 4.1, is still a non zero Vandermonde determinant. The drift matrix A is
modified by adding a term −i∑n

j=1 γjIjzuz, with uz constant but this does not modify the
resulting Lie algebra L, since −i∑n

j=1 γjIjzuz belongs to the control subalgebra.

6 Systems with Possibly Equal Gyromagnetic Ratios

In this section we analyze the graph G∇ for networks of spins with possibly equal gyromag-
netic ratios and give a sufficient condition of operator controllability for these systems in
terms of the properties of this graph. It will follow from the analysis of special cases con-
sidered in the next section that the equivalence between state controllability and operator
controllability, proved in Theorem 4 for systems with different gyromagnetic ratios, does not
always hold if we allow two particles to have the same gyromagnetic ratio.
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In the following we describe an algorithm on the graph G∇ to conclude operator con-
trollability. The main idea and the physical interpretation go as follows. When all the gyro-
magnetic ratios of the particles are different they ‘react’ in a different way to the common
electro-magnetic field and this ‘asymmetry’ along with connectedness of the spin network
allows us to control all the particles at the same time. However, even if two particles have
equal gyromagnetic ratios they might interact in different ways with a third particle which
has gyromagnetic ratio different from the two, and this will break once again the symmetry
and give controllability.

Let us divide the particles into r sets S1, ..., Sr as it was done in Section 3 and assume that
at least one set is a singleton, namely, there exists at least one particle which has different
γ from all the others. Consider a set S containing all the singleton nodes. Assuming that
there are m of them, let the sets S1,...,Sr−m be of cardinality ≥ 2. Now we illustrate a
‘disintegration’ procedure to divide these sets further.

Algorithm 1

1. Let C be a collection of sets. Set C := {S1, S2, ..., Sr−m}.

2. For each set S̃ in C, consider a particle l̄ in S such that for at least two particles k and
j in S̃

{|Mkl̄|, |Nkl̄|, |Pkl̄|} 6= {|Mjl̄|, |Njl̄|, |Pjl̄|}. (41)

If there is no element in S and no set in C having this property STOP. Divide the set
S̃ into subsets of particles that have the same value for {|Mkl̄|, |Nkl̄|, |Pkl̄|}.

3. Consider the sets obtained in Step 2. Put the elements that are in singleton sets in S.
If all the elements are in S, STOP.

4. Replace the collection C with the remaining non singleton sets and go back to Step 2.

We have the following theorem.

Theorem 5 If Algorithm 1 ends with all the particles in the set S and G∇ is connected,
then the Lie algebra L associated to the spin 1

2
particles system, with n particles, is su(2n).

As a consequence the system is operator controllable. More in general, if Algorithm 1 ends
with all the particles in the set S and G∇ has s connected components of cardinality l1, l2,
..., ls, L is given by (33)-(35) (See Theorem 3).

Proof. From Remark 5.1, all we have to show is that, in the given situation, the Lie algebra
spanj=1,...,n{iIj(x,y,z)} is a subalgebra of L. Rewrite the drift matrix A as

A = −i
∑

k<l,k/∈Sr−m,l /∈Sr−m

(MklIkx,lx +NklIky,ly + PklIkz,lz)

−i
∑

k<l,k∈Sr−m,l∈Sr−m

(MklIkx,lx +NklIky,ly + PklIkz,lz)
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−i
∑

k<l,k∈Sr−m,l /∈Sr−m

(MklIkx,lx +NklIky,ly + PklIkz,lz)

−i
∑

k<l,k/∈Sr−m,l∈Sr−m

(MklIkx,lx +NklIky,ly + PklIkz,lz). (42)

From Lemma 4.1, the matrices iĨjv, v ∈ {x, y z} and j = 1, 2, ..., r, where r is the number of
sets Sj, are available to generate the Lie algebra L. In particular, since we have assumed that
the last m sets are singletons, the matrices iIlv, v ∈ {x, y, z}, l = n1 +n2 + · · ·+nr−m+, ..., n
are ∈ L. Now, assume that in the set Sr−m there are two elements j and k such that
condition (41) is verified for some l̄ ∈ S and assume, for the sake of concreteness, that the
inequality is verified for the P coefficient (minor changes are needed in the other cases). By
taking the Lie bracket of A with iĨ(r−m)x, the first term gives zero, since it does not involve

any term in the set Sr−m (see (64), in Appendix A and the definition of the Ĩ’s in (11)). The
Lie bracket of the second term with iĨ(r−m)x gives a matrix which is a linear combination
of matrices of the form iIkv,pw, k, p ∈ Sr−m and v, w ∈ {x, y, z}. We call this matrix Kr−m.
Thus, we have

[A, iĨ(r−m)x] = Kr−m+

i
(∑

k<l,k∈Sr−m,l /∈Sr−m
(−NklIkz,ly + PklIky,lz) +

∑
k<l,k/∈Sr−m,l∈Sr−m

(−NklIky,lz + PklIkz,ly)
)
.

(43)
By taking the Lie bracket of (43) with iIl̄y, and using Properties 1 and 2 in the Appendix
A, we obtain

[[A, iĨ(r−m)x], iIl̄y] = i
∑

k∈Sr−m

Pkl̄Iky,l̄x. (44)

From this matrix, by taking Lie brackets with iĨ(r−m)v and/or iIl̄v, v ∈ {x, y z}, it is possible
to obtain all the matrices of the form (44) with all the possible combinations of x, y and z
in place of y and x respectively.

Using (63) in Appendix A, it is not difficult to see that

[i
∑

k∈Sr−m

Pkl̄iIky,l̄z, i
∑

k∈Sr−m

Pkl̄iIkx,l̄z] =
1

4
i

∑
k∈Sr−m

P 2
kl̄Ikz. (45)

By taking the Lie bracket of this with −i∑k∈Sr−m
Pkl̄iIkx,l̄z, we obtain i

∑
k∈Sr−m

P 3
kl̄iIky,l̄z

and repeating the calculation as in (45), we obtain

[i
∑

k∈Sr−m

P 3
kl̄iIky,l̄z, i

∑
k∈Sr−m

Pkl̄iIkx,l̄z] =
1

4
i

∑
k∈Sr−m

P 4
kl̄Ikz. (46)

Continuing this way, it is possible to obtain all the matrices of the form

i
∑

k∈Sr−m

P 2p
kl̄
Ikz, p = 0, 1, 2, ..., (47)

and, with minor changes in the choice of the Lie brackets, we can obtain

i
∑

k∈Sr−m

P 2p
kl̄
Ikx, i

∑
k∈Sr−m

P 2p
kl̄
Iky, p = 0, 1, 2, .... (48)
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Now consider for example, the matrices i
∑

k∈Sr−m
P 2p

kl̄
Ikz and assume, without loss of gen-

erality that the elements P 2p
kl̄
Ikz are arranged so that elements that have the same value for

Pkl appear one after the other in the sum. The associated determinant is (cfr. the proof of
Lemma 4.1) a Vandermonde determinant and therefore by appropriate linear combinations
we can obtain all the matrices of the form

∑
k∈T Ikz where T is a generic subset of Sr−m such

that all the values of |Pkl̄| are the same, for all the k ∈ T . In particular, if T contains a
single element then we place that element in the set of singletons S. The other subsets of
Sr−m are arranged in new sets. It is clear that we can repeat this procedure for the other
sets S1, S2, ..., Sr−m−1, and then for the subsets obtained, as described in Algorithm 1. If the
procedure ends with all the elements in S then we have that spanj=1,...,n{iIj(x,y,z)} is in L
and the Theorem follows from Remark 5.1. 2

Remark 6.1 The test proposed in Algorithm 1 has to be compared with the test of magnetic
equivalence in magnetic resonance (see e.g. [1] pg. 480 ff.). In this context, one defines a
group of spins to be equivalent if they have equal gyromagnetic ratios and they have equal
coupling constants with all the other spins in the network. The condition that Algorithm 1
ends with all the spins in the singleton set implies that there are no two equivalent spins. In
fact, if two spins were equivalent they could not be separated at any step of the Algorithm.
However these two conditions are not equivalent. To see this consider the network of two
spins 1 and 2 with gyromagnetic ratio γ1 and M12 = N12 = P12 = 0 and a third spin 3, with
gyromagnetic ratio γ2 6= γ1 and assume M13 = N13 = P13 = −M23 = −N23 = −P23. In this
case, Algorithm 1 does not end with all the particles in the singleton set but there are no
two equivalent spins. This example is also considered in the next Section (in the case (b),
(iii)) where it is shown that this network is not operator controllable.

7 Low dimensional systems

Results on the controllability of spin systems in the cases of n = 1 and n = 2 particles can
be found in [6], [8] and [13]. In this section we consider the model (10) assuming Heisenberg
type of interaction namely

Mkl = Nkl = Pkl := Jkl, (49)

for every pair of particles k and l. For this model, and n ≤ 2, the only noncontrollable case,
L 6= su(2), is when n = 2 and the two particles have the same gyromagnetic ratio. In this
situation, we have

L = span{A} ⊕ span {i (σv ⊗ I2×2 + I2×2 ⊗ σv) , v ∈ {x, y, z}} , (50)

and the matrix A commutes with all the matrices in L. The Lie algebra L is isomorphic to
u(2).

We treat now completely the case of n = 3 interacting spin 1
2

particles. If the three
particles have all different gyromagnetic ratios, then we are in the situation treated in Section
5. There are two more possibilities:
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(a) all the three gyromagnetic ratios are equal (i.e. γ1 = γ2 = γ3),

(b) two gyromagnetic ratios are equal and the third one is different (i.e. γ1 = γ2 and
γ1 6= γ3, according to the notations in Section 3, we have S1 = {1, 2} and S2 = {3}).

• case (a)
This case is particularly simple. In fact, we have:

L = span{A} ⊕ span{iĨ1v, v ∈ {x, y, z}}, (51)

with [
span{A}, span{iĨ1x, iĨ1y, iĨ1z}

]
= 0.

The Lie algebra L is isomorphic to u(2) and the model is neither operator controllable nor
state controllable from Theorem 1.

• case (b)
This situation is more involved and it gives rise to interesting examples. First recall that,

from Lemma 4.1, we get, for v = x, y, z,

Bv = span{ −i (σv ⊗ I2×2 + I2×2 ⊗ σv)⊗ I2×2, −i(I2×2 ⊗ I2×2 ⊗ σv)},
B = Bx ⊕ By ⊕ Bz.

(52)

To deal with this case, we need to consider three sub cases:

(i) |J13| 6= |J23|,

(ii) J13 = J23,

(iii) J13 = −J23.

For the case (i) we can apply Theorem 5 and conclude that, if the associated graph is
connected then L = su(8) and the system is operator controllable. For the case (ii), the
model will turn out to be neither operator controllable nor state controllable. Finally, in the
case (iii), the controllability properties of the model will depend on the coefficient J12. In
fact the system will be operator controllable (i.e. L = su(8)) if J12 6= 0, while, if J12 = 0,
then the system will be state controllable but not operator controllable (so, from Theorem
1, in this case L is isomorphic to sp(4)).

• case (ii): J13 = J23

From a physical point of view, in this case the particles one and two feel the same magnetic
field and have the same interaction with the third particle, therefore it is not possible to
manipulate separately these two particles. This internal symmetry of the system results in
lack of controllability both for the evolution operator and the state. If J13 = J23 = 0, we
have:

• if J12 = 0, then L = B,
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• if J12 6= 0, then L = span{A} ⊕ B and the matrix A commutes with all the matrices
in L.

Now we consider the case J13 = J23 6= 0. We first define an operation of ‘symmetrization’ ρ
on the matrices in u(4), as follows:

iρ (σ1 ⊗ σ2) = i
1

2
(σ1 ⊗ σ2 + σ2 ⊗ σ1) , (53)

with σ1, σ2 ∈ {I2×2, σx, σy, σz}, and we extend ρ to all of the matrices of u(4) by linearity.
Let:

Fρ = {X ∈ u(4) | ρ(X) = X} . (54)

Notice that:
X1, X2 ∈ Fρ ⇒ X1X2 ∈ Fρ. (55)

For sake of completeness, we include a proof in Appendix B. Let:

H =

H = F ⊗ σj

∣∣∣∣∣∣∣
F ∈ Fρ,
σj ∈ {I2×2, σx, σy, σz}
H 6= iI8×8

 . (56)

First, we have:
L ⊆ H. (57)

To see this, recall that L is generated by:

A = −iJ12 (σx ⊗ σx ⊗ I2×2 + σy ⊗ σy ⊗ I2×2 + σz ⊗ σz ⊗ I2×2)− iJ13(
(σx ⊗ I2×2 + I2×2 ⊗ σx)⊗ σx + (σy ⊗ I2×2 + I2×2 ⊗ σy)⊗ σy + (σz ⊗ I2×2 + I2×2 ⊗ σz)⊗ σz

)
,

and by the matrices in B (see equation (52)). Thus L ⊆ H follows from the fact that both
A and B are in H, and that H is a Lie algebra because of (55). Now we have:

(i) if J12 6= 0, then L = H, and it has dimension 39;

(ii) if J12 = 0, then L⊂H, where the inclusion is strict and it has dimension 38.

The proof of both the previous statements (i) and (ii) follows from the analysis of the Lie
algebra structure for this model, and it is given in the Appendix C. In both cases L is
not su(8), thus the model is not operator controllable. Moreover, by looking at the two
possible dimensions of L, the model can not be state controllable either. In fact to have
state controllability we would need, see Theorem 1, L = su(8) or L isomorphic to sp(4),
which has dimension 36.

• case (iii): J13 = −J23 6= 0
This case is interesting because it provides a physical example of a system which is state

controllable but not operator controllable. It also shows that for spin systems with some
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gyromagnetic ratios possibly equal to each other the two notions of controllability do not
coincide (cfr. Theorem 4).

Consider the following vector spaces of matrices

M := span{iI1v,3w − iI2v,3w, v, w ∈ {x, y, z}}, (58)

C̃ := span{iI1v + iI2v, iI3w, v, w ∈ {x, y, z}}, (59)

N := span{iI1v,2w,3p + iI1w,2v,3p, v, w, p ∈ {x, y, z}}, (60)

R := span{iI1v,2w − iI1w,2v, v 6= w, v, w ∈ {x, y, z}}. (61)

It can be seen by verifying the commutation relations among these vector spaces that A :=
M⊕ C̃ ⊕ N ⊕ R is a subalgebra. Moreover, using the test in part 4 of Theorem 1, it can
be shown that this Lie algebra is isomorphic to sp(4). It is interesting to notice that the
decomposition A := M⊕ C̃ ⊕ N ⊕ R is underlying a Cartan decomposition of sp(4) [10]
since the following inclusions among the above vector spaces hold:

[C̃ ⊕N , C̃ ⊕N ] ⊆ C̃ ⊕N , [C̃ ⊕N ,M⊕R] ⊆M⊕R, [M⊕R,M⊕R] ⊆ C̃ ⊕N . (62)

To see that A is a subalgebra of L notice that Lemma 4.1 gives a basis for C̃. By taking the
Lie bracket of A with I3x ∈ B and then of the resulting matrix with I3z ∈ B, we obtain a
matrix proportional to i(I1z,3x − I2z,3x) and, from this, taking Lie brackets with elements in
C̃ we can obtain all the elements in the basis of M indicated in (58). Thus, both C̃ and M
are included in L. A basis of N can be obtained by Lie brackets of appropriate elements of
M (possibly adding an element of C̃). Finally, a basis of R can be obtained by Lie brackets
of appropriate elements of M and N . Therefore the Lie algebra A is a subalgebra of L.
The two Lie algebras coincide if J12 = 0. This is the case remarked above of a system that,
according to Theorem 1 is state controllable, since L is isomorphic to sp(4), but not operator
controllable. If J12 6= 0, then the matrix A is not in the Lie algebra A. However, it is still
possible to generate A, which is isomorphic to sp(4) and, applying part 5 of Theorem 1, we
conclude that L = su(8) in this case, and the system is operator controllable.

The results of this section and Section 6 remain true even if we set uz = constant in the
model (10) if we assume that there exist no two values for the gyromagnetic ratios γi and γj

such that γi = −γj (cfr. Remark 5.2)

8 Conclusions

We have presented an analysis of the Lie algebra structure associated to a system of n spin 1
2

particles with different gyromagnetic ratios and inferred its controllability properties. These
only depend on the properties of a graph obtained by connecting two nodes representing two
particles if one of the coupling constants between the two particles is different from zero.
Controllability of the state and of the unitary evolution operator are equivalent for this class
of systems. If the system is not controllable then it is a parallel connection of a number of
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controllable systems equal to the connected components of the associated graph. The latter
result can be easily generalized to the case where the connected components do not represent
controllable subsystems, which is a case that might occur if some of the gyromagnetic ratios
are equal.

We have given a complete description of the low dimensional cases (up to a number of
particles equal to three) with Heisenberg interaction and possibly equal gyromagnetic ratios.
This analysis is of interest since, in many physical situations, a small number of particles is
controlled. These results also provide an example of a quantum system which is controllable
in the state but not in its unitary evolution operator. Thus, the equivalence of the two notions
of controllability, proved for spin systems in the case of different gyromagnetic ratios, is no
longer true if some of the gyromagnetic ratios are equal.

This paper also presented a general sufficient condition of controllability for spin systems
in terms of the associated graph.
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Appendix A: Some properties of the matrices Ik1l1,k2l2,...,krlr

We collect in this appendix some properties of the matrices Ik1l1,k2l2,...,krlr , in particular
involving the commutators of these matrices. These relations can be easily proven by using
the fundamental property:

[A⊗B,C ⊗D] = [A,C]⊗BD + CA⊗ [B,D], (63)
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where A and B are square matrices of the same dimensions and B and D are square matrices
of the same dimensions as well.

Property 1: If {k1, k2, ..., kr} ∩ {k̄1, k̄2, ..., k̄s} = ∅ then

[Ik1l1,k2l2,...,krlr , Ik̄1m1,k̄2m2,...,k̄sms
] = 0, (64)

for every possible combination of lj’s and mj’s.

Property 2: Assume that k̄ ∈ {k1, k2, ..., kr}, and, in particular, k̄ = kj.

(a) If lj = m, then
[Ik1l1,k2l2,...,krlr , Ik̄,m] = 0, (65)

(b) if [σlj , σm] = αστ , with α = ±i, then:

[Ik1l1,k2l2,...,krlr , Ik̄,m] = α Ik1l1,...,kjτ,...,krlr . (66)

Appendix B: Proof of property (55)

In order to see (55), we write any element X of u(4) as follows (we use the definition
σ0 := I2×2 and the ordering 0 < x < y < z)

X =
∑

j,k=0,x,y,z

αjkiσj ⊗ σk =
∑

j=0,x,y,z

αjjiσj ⊗ σj+

+
∑
j<k

αjk + αkj

2
(σj ⊗ σk + σk ⊗ σj) +

∑
j<k

αjk − αkj

2
(−σk ⊗ σj + σj ⊗ σk).

From this expression, it is immediate to see that X ∈ Fρ if and only the terms in the last
sum are all zero. Therefore a basis of Fρ is given by the matrices of the form

i (σl ⊗ σv + σv ⊗ σl) , (67)

with l, v = 0, x, y, z. In view of this fact, it is sufficient to verify (55) on all the matrices of
the form (67). This last fact is only a straightforward calculation.

Appendix C: Structure of the Lie algebra L in the case

n = 3, J13 = J23 6= 0 (γ1 = γ2 6= γ3)

We look at the following vector subspaces of H (H is the vector space defined in (56).

C̃ := span i{I1v + I2v, I3w v, w = x, y, z} (68)

M := span i{I1v,3w + I2v,3w v, w = x, y, z} (69)

N := span i{I1v,2w,3p + I1w,2v,3p v, p, w = x, y, z} (70)

Q := span i{I1v,2w + I1w,2v v 6= w = x, y, z} (71)

R := span i{I1x,2x − I1y,2y, I1x,2x − I1z,2z} (72)
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The following commutation relations are easily verified

[C̃, C̃] ⊆ C̃, [C̃,M] ⊆M, [C̃,N ] ⊆ N , [C̃,Q] ⊆ N ⊕R, [C̃,R] ⊆ Q; (73)

[M,M] ⊆ C̃ ⊕M⊕N , [M,N ] ⊆M⊕Q⊕R, [M,Q] ⊆ N [M,R] ⊆ N ; (74)

[N ,N ] ⊆ C̃ ⊕ N , [N ,Q] ⊆ C̃ ⊕M, [N ,R] ⊆M; (75)

[Q,Q] ⊆ C̃, [Q,R] ⊆ C̃; (76)

[R,R] = 0. (77)

A basis of C̃ is generated by the matrices Bx, By, Bz according to Lemma 4.1, while a
basis in M can be obtained calculating the Lie bracket of A with I3x ∈ C then taking the
Lie bracket with I3z so as to obtain I1z,3x + I2z,3x. From this, taking the Lie bracket with
elements in C, we can obtain all the elements in the basis of M in (74). A basis of N is
obtained by Lie brackets of elements in M. In particular, to obtain elements of the form
iI1v,2v,3w, we calculate [iI1v,3l+iI2v,3l,−iI1v,3p−iI2v,3p]− 1

2
iI3w, with p 6= l v, p, l ∈ {x, y, z} and

iσw = [σl, σp]. To obtain elements of the form iI1v,2w,3p + iI1w,2v,3p, v 6= w, v, w, p ∈ {x, y, z},
we can calculate Lie brackets of elements of the form iI1m,3m + iI2m,3m, with elements of
the form iI1n,3n + iI2n,3n, with n 6= m and, possibly, calculate the Lie bracket with an
element of the form iI3l, l,m, n ∈ {x, y, z}. A basis of Q can be obtained by Lie brackets
between elements of the form iI1v,2v,3x ∈ N with elements of the form iI1w,3x + iI2w,3x ∈M,
v 6= w, v, w ∈ {x, y, z}. A basis of R can be obtained by the Lie bracket of elements
iI1v,2w,3x + iI1w,2v,3x ∈ N with elements iI1p,3x + iI2p,3x, with p 6= v 6= w, p, v, w ∈ {x, y, z}.

Notice that if J12 = 0, then A is an element of the Lie algebra above described C̃ ⊕M⊕
N ⊕ Q ⊕ R, while if J12 6= 0 we have C̃ ⊕ M ⊕ N ⊕ Q ⊕ R = H/span{A}, and the Lie
algebra L, in this case, coincides with H.
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