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Abstract

We consider the problem of determining the unknown parameters of the Hamilto-
nian of a network of spin 1

2 particles. In particular, we study experiments in which
the system is driven by an externally applied electro-magnetic field and the expecta-
tion value of the total magnetization is measured. Under appropriate system theoretic
assumptions, we prove that, if it is possible to prepare the system in a known initial
state, the above experiment allows to identify the parameters of the Hamiltonian. In
the case where the initial state is itself an unknown parameter, we characterize all the
pairs Hamiltonian-Initial State which give the same value of the magnetization, for
every form of the driving electro-magnetic field. The analysis is motivated by recent
results on the isospectrality of Hamiltonians describing magnetic molecules.
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1 Introduction

In recent years, chemists have developed methods to synthesize large organometallic molecules
which contain a core of magnetic transition metal ions interacting via electronic superex-
change interactions [3], [4], [5]. One of the main advantages of this technology is that it
makes it possible to arrange the molecules in regular van der Waals crystals in which the
magnetic interactions among different molecules are negligible. Thus, every cluster of this
kind behaves like an assembly of identical and independent nanosize magnets, each corre-
sponding to one molecule. For this reason, these novel systems are now deemed ideal to
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study fundamental questions concerning magnetism at the molecular level. In fact, even the
simplest of these systems displays several new classical and quantum mechanical phenomena.
One example is macroscopic quantum tunneling of magnetization [7], [8], a fascinating issue
of relevance to a variety of mesoscopic systems and nanostructures. This paper is a mathe-
matical study on the determination of the parameters for Hamiltonians describing magnetic
molecules.

The determination of exchange constants for magnetic molecules has been traditionally
obtained by measuring the temperature-dependent magnetic susceptibility or other thermo-
dynamic properties. This technique relies on the assumption that there is a one to one
correspondence between the spectrum of the Hamiltonian of the system in a static magnetic
field, and its thermodynamic properties as well as the numerical values of the model param-
eters. However, a recent article [13] has shown that quantum Heisenberg spin systems, such
as magnetic molecules, may have different coupling parameters but the same energy spec-
trum and hence the same thermodynamic properties. This raises the question of whether a
dynamic technique could be used to identify the parameters of a spin network. In particular,
as in NMR or EPR experiments, one could try to let the system evolve under the action of a
driving time varying electro-magnetic field, measure the total magnetization and, from the
measured value, infer the value of the parameters of the system. The question of whether
these experiments allow to identify the unknown parameters can be tackled at different levels
according to how much we assume known about the system under investigation; whether,
for example, we assume the system prepared in a known initial state or the initial state itself
a parameter to be identified. The question can also be cast in a more general framework
concerning the application of concepts of systems and control to the problem of modeling
Hamiltonians in quantum physics. From a system theoretic viewpoint, the above described
experiment is an attempt of doing parameter identification [11] for a control system whose
dynamics is governed by the Schrödinger equation with unknown parameters. The input
magnetic field plays the role of the input control variable while the expectation value of the
magnetization is the output. As in identification theory, the control theoretic concepts of
controllability and observability (see e.g. [14]) play an important role in determining whether
two different models may present the same input-output behavior.

In this paper, we restrict ourselves to the important case of networks of spin 1
2

particles
and present a positive answer to the above question. We prove that systems which give the
same input-output behavior for any given state are the same. This shows that, if we can
opportunely prepare an initial state, we can use the above scheme to identify the parameters
of the system exactly. If the initial state of the system is unknown, we prove that there
are only two possibilities (up to permutations of the spins) for two pairs Hamiltonian-Initial
State to give the same input output behavior. They are either the same or the exchange
constants have opposite signs and the initial states are related in a way we shall describe. So,
in this case, the given experiments identify one of two possible systems giving the observed
behavior. These results were announced in the conference paper [2] as an application of
the observability theory for quantum systems [6]. The complete treatment with proofs is
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presented in this paper.

The paper is organized as follows. In the next section, we present some preliminaries
on spin networks, give the basic definitions and state the problem we want to solve in
mathematical terms. In Section 3, we give the two results above described and prove the
first one. This gives us the opportunity to elaborate on the control theoretic concepts of
observability and controllability and their role in the parameter identification problem. The
proof of the second result is much longer and it is given in Sections 4 and 5. Section 6
presents some conclusions and a discussion of the results.

2 Preliminaries and Statement of the Problem

Several elementary particles, such as electrons and nuclides, display a degree of freedom called
‘spin’. Although there is no classical counterpart to the spin of a particle, the operators
describing it obey the same commutation relations as the angular momentum operators.
When measured, the spin can assume one of 2j + 1 values, where j is a positive integer
or half integer which depends on the particle under consideration. In this paper, we shall
restrict ourselves to the case of j = 1

2
. One of the earliest experiments of measurement of

spin is the Stern-Gerlach experiment discussed in several textbook on quantum mechanics
(see e.g. [12]). Interacting particles with spin, where all the other degrees of freedom are
neglected, form a spin network, as for example in a molecule. Magnetic molecules, the
systems which motivated the present research as discussed in the introduction, are examples
of spin networks. The energy of a spin network is the sum of two main contributions one
due to the interaction among the spins and one due to the interaction with an external time
varying magnetic field. The state of a spin network is encoded in a density matrix ρ which
evolves according to the Schrödinger equation

ρ̇(t) = −i[H(t), ρ(t)]. (1)

The Hamiltonian H(t) is the matrix representation of the energy of the network. The solution
of (1) varies as

ρ(t) = X(t)ρ(0)X∗(t), (2)

where X(t) is the unitary evolution operator solution of the Schrödinger equation

Ẋ = −iH(t)X, (3)

with initial condition equal to the identity.
We consider the Heisenberg spin model where H(t) takes the form

H(t) := i(A + Bxux(t) + Byuy(t) + Bzuz(t)). (4)

For a network of n spins we have

A := −i
∑n

k<l,k,l=1 Jkl(Ikx,lx + Iky,ly + Ikz,lz),

Bv := −i(
∑n

k=1 γkIkv), for v = x, y, or z.
(5)
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The matrices A and Bxux(t) + Byuy(t) + Bzuz(t) represent, respectively, the energy due to
the interaction among spins and with an external magnetic field of components ux, uy and
uz, which plays the role of control. These controls are assumed to be piecewise continuous
real functions. The real scalar parameter Jkl is the exchange constant between particle k
and particle l and the real scalar parameter γk is the gyromagnetic ratio of particle k. The
parameters Jkl and γk are the object of the identification problem treated in this paper. For
a network of n spin 1

2
particles, the matrix Ik1v1,...,krvr is the Kronecker product of n matrices

equal to the 2×2 identity except in the kj−th (j = 1, ..., r) position(s) occupied by the Pauli
matrix σvj

, vj = x, y, z. Recall (see e.g. [12]) that the Pauli matrices are defined as

σx :=
1

2

(
0 1
1 0

)
, σy :=

1

2

(
0 −i
i 0

)
, σz :=

1

2

(
1 0
0 −1

)
. (6)

We denote by R the set of possible values for the density matrix, i.e. Hermitian, positive
semidefinite matrices with trace one. Let ρ(t, ux, uy, uz, ρ0), the density matrix solution of
the Schrödinger equation (1) corresponding to the controls ux(t), uy(t), uz(t) and initial
condition ρ0. We assume that it is possible to observe the expectation value of the total
magnetization in the x, y, and z direction, namely:

Mv(t) := Mv(t; ρ0, ux, uy, uz) := Tr(STOT
v ρ(t, ux, uy, uz, ρ0)), (7)

where

STOT
v =

n∑
k=1

Ikv, for v = x, y, z.

We study the possibility of distinguishing the parameters by a single measurement of one
of the above outputs. More precisely, we denote by Σ ≡ Σ(n, Jkl, γk) a model described by
the equations (4) and (5), and by (Σ, ρ0) ≡ (Σ(n, Jkl, γk), ρ0) a model with fixed initial state
ρ0. Thus, for given control functions ux, uy, and uz, Mv(t; ρ0, ux, uy, uz), for v = x, y, and z,
are the corresponding output functions. The parameters Jkl and γk along with the number
n of spins (and the value of the initial state ρ0) characterize the model. The question of
parameter identifiability through a single measurement of the magnetization can be posed
by identifying the models (or set of parameters) that give the same input-output behavior.
We have the following definition.

Definition 2.1 Consider two models Σ and Σ′. We mark with a prime ′ all the symbols
concerning system Σ′.

• Σ and Σ′ are equivalent and we write

Σ ∼ Σ′

if and only if n = n′ and for any given common initial condition ρ0 and control functions
ux, uy, uz, we have

Mv(t; ρ0, ux, uy, uz) = M ′
v(t; ρ0, ux, uy, uz), for v = x, y, z.
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• Two pairs model-initial state (Σ, ρ0) and (Σ′, ρ′0) are equivalent and we write

(Σ, ρ0) ∼ (Σ′, ρ′0),

if for all control functions ux, uy, and uz, we have

Mv(t; ρ0, ux, uy, uz) = M ′
v(t; ρ

′
0, ux, uy, uz), for v = x, y, z.

Definition 2.2 A model is controllable if, by varying opportunely the control functions
(ux, uy, uz), it is possible to drive the evolution operator from the identity to any (special)
unitary matrix.

For general quantum systems, controllability can be checked by verifying the so-called
Lie algebra rank condition [10] which means that the matrices A and B’s characterizing
the dynamics (cfr.(4)-(5)) generate the whole Lie Algebra su(ñ) (or u(ñ)) where ñ is the
dimension of the density matrix (2n for the case of networks of spin 1

2
’s). To a network of

spin 1
2

one can associate a graph whose nodes represent the particles and an edge connects
two nodes if and only if the corresponding exchange constant is different from zero. In the
case of spin networks with different gyromagnetic ratios the system is controllable if and only
if the graph associated to the network is connected, and sufficient controllability conditions
can be given for the general case [1].

Definition 2.3 A model is observable if there are no two different states which give the
same output for every set of control functions.

Observability can be checked by verifying that the Observability Space V is equal to su(ñ)
(ñ again is the dimension of the density matrix) [6]. Given the matrix that characterizes the
output, STOT

v in (7) in our case, the observability space V is the vector space spanned by
the matrices, 1

adk1
Bj1

adk2
Bj2

· · · adkr
Bjr

iSTOT
v v = x, y, z, (8)

where jk ∈ {0, 1, 2, 3} and B0 = A, B1 = Bx, B2 = By, and B3 = Bz. The following fact
holds true [6].

Lemma 2.4 Controllability implies observability.

In parametric identification problems, it is reasonable to restrict ourselves to observable
systems since the unobservable dynamics does not contribute to the output which is our tool
to identify the system. Moreover, we want to check that observable systems which give the

1adk
RT := [R, [R, ...[R, T ]]] where the Lie bracket is taken k times.
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same input-output behavior, namely that are equivalent, have the same parameters. We can
state the following two problems.

Problem 1 Characterize the classes of observable equivalent spin models.

Problem 2 Characterize the classes of observable equivalent pairs model-initial state.

We shall see that the equivalence classes in Problem 1 consist of a single element. We shall
solve Problem 2 restricting ourselves to networks that have different gyromagnetic ratios (or
for which the spins can be selectively addressed) and controllable.

3 Main Results

In the following, we shall always denote by ρ(t) and ρ′(t) two trajectories corresponding to
the same controls ux, uy, uz for the models Σ, Σ′, respectively. The following Proposition
whose proof we relegate to Appendix A, will be used in the proof of both our main results.
We notice here that the proof although presented for the case of spin Heisenberg systems
can be adapted to any bilinear finite dimensional quantum control system.

Proposition 3.1 Let (Σ, ρ0) and (Σ′, ρ′0) be the two fixed pairs. Then, the following are
equivalent:

(a) (Σ, ρ0) ∼ (Σ′, ρ′0),

(b) For all control functions ux(t), uy(t), and uz(t), we have:

Tr(Fρ(t)) = Tr(F ′ρ′(t)), (9)

for all F ∈ V and F ′ ∈ V ′, with F ′ constructed as F changing all Bi in B′
i (see (8)).

We now state the first of our two main results.

Theorem 1 Let Σ(n, Jkl, γk) := {A, Bx, By, Bz} and Σ′(n, J ′
kl, γ

′
k) := {A′, B′

x, B
′
y, B

′
z} be

two equivalent models. Assume one of them is observable. Then A = A′, Bx,y,z = B′
x,y,z.

Proof. From the equivalence of the models and specializing (9) of Proposition 3.1 to a
common initial condition, we obtain

Tr(Fρ0) = Tr(F ′ρ0), (10)

for every ρ0 ∈ R. Therefore F = F ′. From the observability assumption F (and F ′) span
all of su(2n) (n here is the number of spins, which is assumed to be the same). Since F is a
generic element of V , we have [A, F ] = [A′, F ′] = [A′, F ] and therefore

[A− A′, F ] = 0. (11)
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Since F spans all of su(2n), A−A′ must be zero. Analogously one can prove Bx,y,z = B′
x,y,z.

2

Notice that, although presented for the case of spin networks, Theorem 1 holds for any
finite dimensional quantum system and essentially says that two observable models with the
same input-output behavior, for a every state, must be equal. The assumption of observ-
ability can be checked by checking controllability and applying Lemma 2.4. Conditions for
controllability of spin networks are given in [1].

We now consider a more difficult problem since we assume to have much less knowledge
of the model to be identified. We assume not to know its dimension nor the initial condition.
We perform black-box type of experiments on two pairs model-initial state and we obtain
the same results. We investigate what can be said about the two models. We assume that all
the gyromagnetic ratios γk, (γ′k) are different. This fact implies that the (mild) assumption
that the graph associated to the spin network is connected is equivalent to controllability
[1]. We shall assume this. Under this assumption, we can easily rule out the case in which
the responses of the systems are both identically zero. In this case (and only in this case)
the corresponding initial density matrices are scalar matrices and nothing more can be said
about two equivalent models. So we will assume that the two initial states are not scalar
matrices.

Before stating the result, we need to introduce some more notation. We denote by Io (Ie)
the subspace of the Hermitian matrices of dimension 2n generated by Kronecker products
that contain an odd (even) number of Pauli matrices (and the rest 2× 2 identity matrices).
Moreover, if π is a permutation of the set {1, . . . , n}, we denote by Pπ the matrix which
transforms Kronecker products of n 2× 2 matrices according to the permutation π (cfr. [9]
pg. 260), namely for every n−ple of 2× 2 matrices K1, ..., Kn we have

Pπ(K1 ⊗K2 ⊗ · · · ⊗Kn)Pπ = Kπ(1) ⊗Kπ(2) ⊗ · · · ⊗Kπ(n). (12)

Theorem 2 Let (Σ, ρ0) ≡ (Σ(n, Jkl, γk), ρ0) and (Σ′, ρ′0) ≡ (Σ′(n′, J ′
kl, γ

′
k), ρ

′
0) be two fixed

models whose dynamics and output are given by equations (4), (5), and (7). Assume that
both models are controllable, that all the γk and γ′k different from each other, and that ρ0 and
ρ′0 are not scalar matrices. Then the following are equivalent:

(a) (Σ, ρ0) ∼ (Σ′, ρ′0),

(b) n = n′ and there exists a permutation π of the set {1, . . . , n} such that

1. γk = γ′π(k),

2. denoting by π1
lk = min{π(l), π(k)}, and π2

lk = max{π(l), π(k)}, for 1 ≤ l < k ≤ n,
then either: {

Jlk = J ′
π1

lm
π2

lm
∀1 ≤ l < k ≤ n,

Pπρ′0Pπ = ρ0;
(13)
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or {
Jlk = −J ′

π1
lm

π2
lm

∀1 ≤ l < k ≤ n,

ρ1 = ρ′1 and ρ2 = −ρ′2;
(14)

where ρ1 and ρ2 (resp. ρ′1 and ρ′2) are the components of ρ0 (resp. Pπρ′0Pπ) in Io,
Ie, respectively.

Equations (13), (14) say that, up to a permutation of the spins, the exchange constants
are all the same or all opposite. In one case the initial conditions are the same in the other
case the components in Io are the same while the components in Ie are opposite. The next
two sections are devoted to the proof of Theorem 2. We recall that we have two standing
assumptions in all the treatment. The models we are dealing with have different γ’s and are
controllable.

4 Preliminary Results

In order to prove the implication (a) ⇒ (b) we shall need some properties of equivalent pairs.
We present them in this section with all the proofs in Appendix B. The following proposition
says that equivalent pairs (Model-Initial State) must have the same dimension.

Proposition 4.1 Let (Σ, ρ0) and (Σ′, ρ′0) be the two fixed models. If they are equivalent,
then n = n′ and there exists a permutation π of the set {1, . . . , n} such that:

1. γk = γ′π(k) for all k ∈ {1, . . . , n},

2. Tr(Ikvρ(t)) = Tr(Iπ(k)vρ
′(t)) for all t ≥ 0, all k ∈ {1, . . . , n}, all v ∈ {x, y, z}, and all

possible trajectories ρ(t) of (Σ, ρ0) and corresponding ρ′(t) of (Σ′, ρ′0).

The proof of the next lemma is not presented in the Appendix since it is just a notational
modification of the proof of Proposition 3.1.

Lemma 4.2 Let W and W ′ be two Hermitian matrices of dimensions 2n and 2n′
, respec-

tively. If, for every trajectory ρ(t) of (Σ, ρ0) and corresponding trajectory ρ′(t) of (Σ′, ρ′0) we
have

Tr(Wρ(t)) = Tr(W ′ρ′(t)), (15)

then for every F , F := adBj1
adBj2

· · · adBjr
W , and corresponding F ′, F ′ := adB′

j1
adB′

j2
· · ·

adB′
jr

W ′, with r ≥ 0 and j1, ..., jr ∈ {0, 1, 2, 3}, we also have

Tr(Fρ(t)) = Tr(F ′ρ′(t)). (16)

Lemma 4.3 Let W and W ′ be two Hermitian matrices of dimensions 2n and 2n′
, respec-

tively. If, for every trajectory ρ(t) of (Σ, ρ0) and corresponding trajectory ρ′(t) of (Σ′, ρ′0) we
have

Tr(Wρ(t)) = Tr(W ′ρ′(t)), (17)
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then, for every K, K := adBj1
adBj2

· · · adBjr
Bj0 , and corresponding K ′, K ′ := adB′

j1
adB′

j2
·

· · adB′
jr

B′
j0

, with r ≥ 0 and j0, ..., jr ∈ {0, 1, 2, 3}, we also have

Tr([W, K]ρ(t)) = Tr([W ′, K ′]ρ′(t)). (18)

Lemma 4.4 Let (Σ, ρ0) and (Σ′, ρ′0) be two fixed models. Assume that they are equivalent
and let π be the permutation given by Proposition 4.1. If W and W ′ are two given Hermitian
matrices such

Tr(Wρ(t)) = Tr(W ′ρ′(t)), (19)

for every pair of corresponding trajectories ρ(t) and ρ′(t), then it also holds

Tr([W, Ikv]ρ(t)) = Tr([W ′, Iπ(k)v]ρ
′(t)), ∀ k ∈ {1, . . . , n}. (20)

5 Proof of Theorem 2

Let (Σ, ρ0) and (Σ′, ρ′0) be the two given equivalent models. Assume that both models are
controllable and that all the γk and γ′k are different from each other. We already know that
n = n′ and 1 and 2 of Proposition 4.1 hold. To simplify the notations, we assume, without
loss of generality, that we have performed a change of coordinates in the second model so
that the permutation π of Proposition 4.1 is the identity. Thus we can write

γk = γ′k, ∀ k ∈ {1, . . . , n}, (21)

and
Tr(Ikvρ(t)) = Tr(Ikvρ

′(t)) ∀ k ∈ {1, . . . , n}. (22)

Equations (13) and (14) now read as:{
Jlk = J ′

lk ∀1 ≤ l < k ≤ n,
ρ′0 = ρ0;

(23)

or {
Jlk = −J ′

lk ∀1 ≤ l < k ≤ n,
ρ1 = ρ′1 and ρ2 = −ρ′2;

(24)

where ρ1 and ρ2 (resp. ρ′1 and ρ′2) are the components of ρ0 (resp. ρ′0) in Io, Ie, respectively.
We shall need the following two lemmas whose proofs are presented in Appendix C.

Lemma 5.1 Assume that for all t ≥ 0, all possible trajectories ρ(t) of (Σ, ρ0) and corre-
sponding ρ′(t) of (Σ′, ρ′0), for fixed values 1 ≤ k1, . . . , kr ≤ n, and fixed vj ∈ {x, y, z} we
have:

Tr (Ik1v1,...,krvrρ(t)) = Tr (Ik1v1,...,krvrρ
′(t)) , (25)

Then:

1. equation (25) holds for any possible choice of the values of vj ∈ {x, y, z};
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2.

Tr
([[

iIl̄vl̄
, [iIk̄vk̄

, A]
]
, Ik1v1,...,krvr

]
ρ(t)

)
= Tr

([[
iIl̄vl̄

, [iIk̄vk̄
, A]

]
, Ik1v1,...,krvr

]
ρ′(t)

)
,

(26)
for every values 1 ≤ l̄ 6= k̄ ≤ n and every {vl̄ 6= vk̄} ∈ {x, y, z}.

Lemma 5.2 Assume that for all t ≥ 0, all possible trajectories ρ(t) of (Σ, ρ0) and corre-
sponding ρ′(t) of (Σ′, ρ′0), for fixed values 1 ≤ k1, . . . , kr ≤ n, vj ∈ {x, y, z} and for given
constants α and α′, we have:

αTr (Ik1v1,...,krvrρ(t)) = α′Tr (Ik1v1,...,krvrρ
′(t)) , (27)

Then

1. For any pair of indices k̄, l̄ ∈ {1, . . . , n} with k̄ ∈ {k1, ..., kr} and l̄ /∈ {k1, ..., kr},

αJk̄l̄Tr
(
Ik1v1,...,krvr,l̄v̄ρ(t)

)
= α′J ′

k̄l̄Tr
(
Ik1v1,...,krvr,l̄v̄ρ

′(t)
)
, (28)

for any value v̄ ∈ {x, y, z}.

2. For any pair of indices k̄, l̄ both in {k1, ..., kr}, (for example k̄ = k1, l̄ = k2) then

αJk̄l̄Tr (Ik1v1,k3v3,...,krvrρ(t)) = α′J ′
k̄l̄Tr (Ik1v1,k3v3,...,krvrρ

′(t)) . (29)

5.1 (a) ⇒ (b)

Fix any 1 ≤ k1 < k2 ≤ n, then, by applying statement 1. of Lemma 5.2, i.e. equation (28)
with k̄ = k1, l̄ = k2 to equation (22) with k = k1, we have:

Jk1k2Tr (Ik1v1,k2v2ρ(t)) = J ′
k1k2

Tr (Ik1v1,k2v2ρ
′(t)) , ∀ v1, v2 ∈ {x, y, z}. (30)

Now, to the previous equality, we apply statement 2. of Lemma 5.2, i.e. equation (29) with
k̄ = k1 and l̄ = k2 to get:

J2
k1k2

Tr (Ik1v1ρ(t)) = J
′2
k1k2

Tr (Ik1v1ρ
′(t)) ,

which, by equation (22), implies:
J2

k1k2
= J

′2
k1k2

. (31)

Therefore the exchange constants are equal up to the sign. Now we prove, by the way of
contradiction that they are either all equal or all opposite i.e.

{Jkl = J ′
kl ∀ 1 ≤ k < l ≤ n} or {Jkl = −J ′

kl ∀ 1 ≤ k < l ≤ n.} (32)

Assume, by contradiction, that (32) does not hold. By the controllability assumption and
the results of [1] we know that the graph associated to the network is connected. From this
fact it is not difficult to see that if (32) is false, there must exist 3 indices l, k1, and k2 (here,
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to simplify notations, we assume 1 ≤ l < k1 < k2 ≤ n, the other cases can be treated using
exactly the same arguments) such that:

Jlk1 = J ′
lk1

, and Jlk2 = −J ′
lk2

. (33)

Using equation (30) we get:

Jlk1Tr(Ilv,k1v1ρ(t)) = J ′
lk1

Tr(Ilv,k1v1ρ
′(t)),

for all v, v1 ∈ {x, y, z} and all corresponding trajectories ρ(t) and ρ′(t). By applying to the
previous equality statement 1. of Lemma 5.2, i.e. equation (28) with k̄ = l and l̄ = k2, we
get:

Jlk1Jlk2Tr(Ilv,k1v1,k2v2ρ(t)) = J ′
lk1

J ′
lk2

Tr(Ilv,k1v1,k2v2ρ
′(t)) (34)

for all v, v1, v2 ∈ {x, y, z} and all corresponding trajectories ρ(t) and ρ′(t). Now we apply to
equation (34) statement 2. of Lemma 5.2, i. e. equation (29) with k̄ = k1 and l̄ = l to get:

J2
lk1

Jlk2Tr(Ik1v1,k2v2ρ(t)) = J
′2
lk1

J ′
lk2

Tr(Ik1v1,k2v2ρ
′(t)). (35)

On the other hand, we can apply to equation (34) again statement 2. of Lemma 5.2, i. e.
equation (29) this time with k̄ = k2 and l̄ = l to get:

Jlk1J
2
lk2

Tr(Ik1v1,k2v2ρ(t)) = J ′
lk1

J
′2
lk2

Tr(Ik1v1,k2v2ρ
′(t)). (36)

Since J2
lk1

Jlk2 = −J
′2
lk1

J ′
lk2

while Jlk1J
2
lk2

= J ′
lk1

J
′2
lk2

(by (33)), equations (35) and (36) imply
Tr(Ik1v1,k2v2ρ(t)) = 0 for all v1, v2 ∈ {x, y, z} and all trajectories ρ(t). This fact contradicts
the controllability assumption, thus equation (32) holds.

If Jkl = J ′
kl for every pair 1 ≤ k < l ≤ n, from the observability of the model, we must

have ρ0 = ρ′0, thus equation (23) holds.
On the other hand, if J ′

kl = −Jkl for every pair 1 ≤ k < l ≤ n, we argue as follows. First,
we prove, by induction on 1 ≤ r ≤ n that:

Tr(Ik1v1,...,krvrρ(t)) = (−1)r−1Tr(Ik1v1,...,krvrρ
′(t)), ∀vj ∈ {x, y, z}, 1 ≤ k1 < . . . < kr ≤ n,

(37)
and for all corresponding trajectories ρ(t) and ρ′(t).

For r = 1 the previous equation is equation (22), thus the result holds for r = 1. Assume
that (37) holds for 1 < r < n, and consider an arbitrary set of indices 1 ≤ k2 < . . . < kr+1.
By the inductive assumption we have:

Tr(Ik1v1,...,krvrρ(t)) = (−1)r−1Tr(Ik1v1,...,krvrρ
′(t)).

Since the graph associated to the network is connected, for each node kj, j = 1, . . . , r, there
exists a path joining the node kj with the node kr+1. Let j̄ be the index for which this
path is the shortest one, and denote by l1, . . . , ld the intermediate nodes. By the way we
have chosen j̄, it is easy to see that {k1, . . . , kr} ∩ {l1, . . . , ld} = ∅. To fix notations, we may
assume without loss of generality (being all the other cases the same) that 1 ≤ k1 < . . . <
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kr < l1 < . . . < ld < kr+1. By applying statement 1. of Lemma 5.2, equation (28) with k̄ = j̄
and l̄ = l1, since Jj̄l1 = −J ′

j̄l1
, we have:

Tr(Ik1v1,...,krvr,l1w1ρ(t)) = (−1)(−1)r−1Tr(Ik1v1,...,krvr,l1w1ρ
′(t)),

for any w1 ∈ {x, y, z}. By applying again statement 1. of Lemma 5.2, equation (28) another
d− 1-times with k̄ = li and l̄ = li+1, i = 1, . . . , d− 1, and then another time with k̄ = ld and
l̄ = kr+1, we end up with:

Tr(Ik1v1,...,krvr,l1w1,...,ldwd,kr+1vr+1ρ(t)) = (−1)d(−1)rTr(Ik1v1,...,krvr,l1w1,...,ldwd,kr+1vr+1ρ
′(t)).

(38)
Now we apply to equation (38), statement 2. of Lemma 5.2, i.e. equation (29) d − 1-times
with k̄ = li+1 and l̄ = li, i = 1, . . . , d− 1, to get:

Tr(Ik1v1,...,krvr,ldwd,kr+1vr+1ρ(t)) = (−1)d−1(−1)d(−1)rTr(Ik1v1,...,krvr,ldwd,kr+1vr+1ρ
′(t)).

Finally, by applying again statement 2. of Lemma 5.2, i.e. equation (29) with k̄ = kr+1 and
l̄ = ld, we end up with:

Tr(Ik1v1,...,krvr,kr+1vr+1ρ(t)) = (−1)rTr(Ik1v1,...,krvr,kr+1vr+1ρ
′(t)),

as desired. Thus equation (37) holds.
Now, denoting by ρ1 and ρ2 (resp. ρ′1 and ρ′2) the components of ρ0 (resp. ρ′0) in Io, Ie,

by using (37), we have:

Tr ((Io(ρ0 − ρ′0)) = 0, T r ((Ie(ρ0 + ρ′0)) = 0, (39)

for all elements I0 ∈ Io and Ie ∈ Ie. Equation (39) implies that the components of ρ0 and
ρ′0 in Io coincide while the components in Ie are opposite to each other. Thus equation (24)
holds.

5.2 (b) ⇒ (a)

Let (Σ, ρ0) and (Σ′, ρ′0) be two models, which are both controllable, with all the γk and γ′k
different from each other.

In the case where equation (23) holds (i.e. same model and same initial condition),
obviously that:

ρ′(t) = ρ(t),

for all t ≥ 0. Thus the two models are equivalent.
Assume now that equation (24) holds. Thus,

A′ = −A, and B′
v = Bv ∀ v ∈ {x, y, z}.

and
ρ1 = ρ′1 and ρ2 = −ρ′2.

12



We have:
ρ̇(t) = [A + Bxux(t) + Byuy(t) + Bzuz(t), ρ(t)] , (40)

while
ρ̇′(t) = [−A + Bxux(t) + Byuy(t) + Bzuz(t), ρ

′(t)] . (41)

It is easily verified (cfr. Lemmas 5.1 and 5.2) that:

[B, Io] ∈ Io, [A, Io] ∈ Ie, ∀Io ∈ Io,
[B, Ie] ∈ Ie, [A, Ie] ∈ Io, ∀Ie ∈ Ie.

(42)

Thus, we can write the differential equations for ρ1(t) and ρ2(t) as:

ρ̇1(t) = [Bxux(t) + Byuy(t) + Bzuz(t), ρ1(t)] + [A, ρ2(t)]
ρ̇2(t) = [A, ρ1(t)] + [Bxux(t) + Byuy(t) + Bzuz(t), ρ2(t)]

(43)

and similarly the differential equation for ρ′1(t) and ρ′2(t) as:

ρ̇′1(t) = [Bxux(t) + Byuy(t) + Bzuz(t), ρ
′
1(t)]− [A, ρ′2(t)]

ρ̇′2(t) = −[A, ρ′1(t)] + [Bxux(t) + Byuy(t) + Bzuz(t), ρ
′
2(t)]

(44)

Combining equations (43) and (44), we obtain a differential equation for ρ1(t) − ρ′1(t) and
for ρ2(t) + ρ′2(t). In particular, we have

ρ̇1(t)− ρ̇′1(t) = [Bxux(t) + Byuy(t) + Bzuz(t), ρ1(t)− ρ′1(t)] + [A, ρ2(t) + ρ′2(t)]
ρ̇2(t) + ρ̇′2(t) = [A, ρ1(t)− ρ′1(t)] + [Bxux(t) + Byuy(t) + Bzuz(t), ρ2(t) + ρ′2(t)]

(45)

From equations (45) it follows that if ρ1(0) = ρ′1(0) and ρ2(0) = −ρ′2(0) then ρ1(t) = ρ′1(t)
and ρ2(t) = −ρ′2(t), for every t and for every controls ux(t), uy(t), and uz(t). In particular,
since Tr(STOT

v ρ(t)) = Tr(STOT
v ρ1(t)) for all v ∈ {x, y, z} and ρ1(t) ≡ ρ′1(t) the two models

are equivalent.

6 Conclusions

In this paper, we have investigated methods of dynamic parameter identification for networks
of spin 1

2
particles. We have shown that by driving the network with an appropriate electro-

magnetic field and measuring the total magnetization in a given (arbitrary) direction it
is possible to identify the parameters. Moreover, if the initial state is not known, it is
possible to obtain combined information about the initial state and the parameter values.
We have assumed that all the gyromagnetic ratios of the spins are different or that it is
possible to address each spin separately. In the opposite case, where all the gyromagnetic
ratios are the same, the unitary evolution X(t), solution of Schrödinger operator equation,
has the form X(t) = eAtΦ(t) where Φ(t) depends only on the controls ux, uy, uz and A is
defined in (4), (5). In this case, we have that A commutes with Φ and STOT

v , v = x, y, z, and
therefore the output Tr(STOT

v eAtΦ(t)ρ0Φ
∗(t)e−At) is equal to Tr(e−AtSTOT

v eAtΦ(t)ρ0Φ
∗(t)) =

13



Tr(STOT
v Φ(t)ρ0Φ

∗(t)). The output is therefore independent of A. This implies that it is not
possible to identify the parameters in A by a reading of the total magnetization.

In our approach, the system theoretic concepts of controllability and observability as
well as previously known results on the controllability of spin networks have played an
important role. This is usually the case in the theory of parameter identification and we
believe this approach will be useful for other classes of quantum systems. Extensions of
the results presented here are possible and will be object of further research. For example,
the hypothesis of controllability of the models can be weakened. If a spin network is not
controllable and has different gyromagnetic ratios the associated graph has several connected
components. The dynamical Lie Algebra associated to the system is the direct sum of
Lie Algebras isomorphic to su(2nj) where nj is the number of nodes (spins) in the j−th
component [1]. Another important research problem is the actual design of control algorithms
for parameter identification for which the research presented here is a preliminary step.
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Appendix A: Proof of Proposition 3.1

Proof. It is clear that (b) implies (a), since iSTOT
v ∈ V (iS ′TOT

v ∈ V ′) for v = x, y, z. We will
prove the converse implication by induction on the depth s =

∑r
i=1 ki in (8) of the matrix

F ∈ V . If s = 0 then F = iSTOT
v for v = x, y or z, thus equation (9) holds by definition of

equivalence. Assume that equation (9) holds for matrices in V of depth ≤ s and let F ∈ V
with depth equal s + 1. Then

F = adBī
G, with G ∈ V ,

and the depth of G is equal to s. Assume, by contradiction, that there exist control functions
ux(·), uy(·), and uz(·), and t̄ ≥ 0 such that equation (9) does not hold, i.e.

Tr(Fρ(t̄)) 6= Tr(F ′ρ′(t̄)). (46)

On the other hand, since by the inductive assumption, equation (9) holds for the matrix G,
we have:

d

dt
Tr(Gρ(t)) =

d

dt
Tr(G′ρ′(t)),

for all t ≥ 0. This implies:

Tr([G, B0]ρ(t)) + Tr([G, B1]ρ(t))ux(t) + Tr([G, B2]ρ(t))uy(t)+

Tr([G, B3]ρ(t))uz(t) = Tr([G′, B′
0]ρ

′(t)) + Tr([G′, B′
1]ρ

′(t))ux(t)+

+Tr([G′, B′
2]ρ

′(t))uy(t) + Tr([G′, B′
3]ρ

′(t))uz(t) (47)
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Define:

u0
v(t) =

{
uv(t) for t < t̄

0 for t ≥ t̄.

Then, clearly the trajectories ρ(t) and ρ′(t) corresponding to the two sets of controls uv(·)
and u0

v(·) are equal up to time t̄. Thus evaluating (47) at t = t̄, using controls u0
v, we get:

Tr([G, B0]ρ(t̄)) = Tr([G′, B′
0]ρ

′(t̄)), (48)

which contradicts (46) if ī = 0. Assume ī 6= 0. First notice that, by repeating the same
argument as above for a generic t ≥ 0, the previous equality (48) must hold for all t ≥ 0. To
get a contradiction we use the control functions uī

v given by2:

uī
v(t) =

{
uv(t) for t < t̄
δī,v for t ≥ t̄.

Again the trajectories corresponding to the two set of controls uv(·) and uī
v(·) are equal up

to time t̄, thus evaluating (47) at t = t̄ using controls uī
v we get:

Tr([G, B0]ρ(t̄)) + Tr([G, Bī]ρ(t̄))uī(t̄) = Tr([G′, B′
0]ρ

′(t̄)) + Tr([G′, B′
ī]ρ

′(t̄))uī(t̄)

which, since the first terms are equal as observed before, contradicts (46), and ends the
proof. 2

Appendix B: Proofs of the preliminary results in section

4

Proof of Proposition 4.1

Proof. It is not difficult to see that, for all l ≥ 0, if F l =
∑n

k=1 γl
kIkv ∈ V , then the

corresponding matrix in V ′ is F ′l =
∑n′

k=1 γ′lkIkv. By Proposition 3.1, it holds that:

Tr(F lρ(t)) = Tr(F ′lρ′(t)).

for all t ≥ 0 and all possible trajectories. Thus we have:

n∑
k=1

γl
kTr(Ikvρ(t)) =

n′∑
k=1

γ
′l
k Tr(Ikvρ

′(t)). (49)

Fix v and let αk(t) = Tr(Ikvρ(t)) and α′
k(t) = Tr(Ikvρ

′(t)), then we rewrite equation (49)
as:

n∑
k=1

γl
kαk(t)−

n′∑
k=1

γ′lk α′
k(t) = 0 (50)

2δ1x ≡ δ2y ≡ δ3z ≡ 1, δīv ≡ 0 otherwise.
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The matrix M ∈ R(n+n′)×(n+n′) given by:

M =



1 . . . 1 1 . . . 1
γ1 . . . γn γ′1 . . . γ′n′

γ2
1 . . . γ2

n γ′21 . . . γ′2n′

γn+n′

1 . . . γn+n′
n γ′n+n′

1 . . . γ′n+n′

n′


,

is a Vandermonde type of matrix. Notice that the coefficients γk, k = 1, . . . , n and also γ′k,
k = 1, . . . , n′, are all different. Moreover, the coefficients αk(t) and α′

k(t) are not identically
zero. In fact, if αk(t) was identically zero we would have Tr(Aρ(t)) = 0, for every A ∈ su(2n)
(by the controllability assumption) which would imply ρ0 equal to a multiple of the identity
matrix which we have excluded. Thus, from equation (50), we conclude that there exist two
indices k̄ and π(k̄) such that

γk̄ = γ′π(k̄).

We can rewrite equation (50), as

γl
k̄

(
αk̄(t)− α′

π(k̄)(t)
)

+
n∑

k=1,k 6=k̄

γl
kαk(t)−

n′∑
k=1,k 6=π(k̄)

γ′lk α′
k(t) = 0 (51)

Now we can repeat the same argument and, unless n = 1 or n′ = 1, we will find two more
indices j̄ and π(j̄) whose corresponding values of γj̄ and γ′π(j̄) are equal. We may assume
without loss of generality that n′ ≥ n and repeat this procedure n-times. Thus we find a
permutation π from the set {1, . . . , n} to the set {1, . . . , n′} and we rewrite equation (51) as:

n∑
k=1

γl
k

(
αk(t)− α′

π(k)(t)
)
−

∑
k 6= π(j)
j = 1, . . . , n

γ′lk α′
k(t) = 0. (52)

Now, we can apply again the same argument, using the Vandermonde matrix N constructed
with all the coefficients γk and the coefficients γ′k for those indices that are not in the image
of π. Since the coefficients α′

k(t) are not identically zero, we can conclude that all the
coefficients γ′k, for those indices that are not in the image of π, must be zero. Thus, in
particular n = n′, the map π is a permutation and :

γk = γ′π(k), αk(t)− α′
π(k)(t) = 0, ∀t ≥ 0,

which concludes the proof. 2
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Proof of Lemma 4.3

Proof. We will prove the result by induction on the depth r of K and K ′. If r = 0, the
result follows from Lemma 4.2. Now assume that for every pair K and K ′ of depth r, and
every pair of matrices W and W ′, (17) implies (18). From the inductive assumption we have

Tr([W, K]ρ(t)) = Tr([W ′, K ′]ρ′(t)), (53)

and
Tr([W, Bj]ρ(t)) = Tr([W ′, B′

j]ρ
′(t)). (54)

Applying the inductive assumption with W (W ′) replaced by [W, K] and [W, Bj] ([W ′, K ′]
and [W ′, B′

j]) we obtain

Tr([[W, K], Bj]ρ(t)) = Tr([[W ′, K ′], B′
j]ρ

′(t)), (55)

Tr([[W, Bj], K]ρ(t)) = Tr([[W ′, B′
j], K

′]ρ′(t)). (56)

Combining (55) and (56) using the Jacobi identity, we obtain

Tr([W, [K, Bj]]ρ(t)) = Tr([W ′, [K ′, B′
j]]ρ

′(t)), (57)

which proves the lemma. 2

Proof of Lemma 4.4

Proof. For any l ≥ 0 let Fl :=
∑n

k=1 γl
kIkv ∈ V ; then its corresponding matrix in V ′ is

F ′
l :=

∑n
k=1 γl

π(k)Iπ(k)v. By applying Lemma 4.3, with K = Fl and K ′ = F ′
l , we obtain

n∑
k=1

γl
kTr([Ikv, W ]ρ(t)) =

n∑
k=1

γl
π(k)Tr([Iπ(k)v, W

′]ρ′(t)). (58)

Using the fact that γk = γπ(k), we can rewrite equation (58) as

n∑
k=1

γl
k

(
Tr([Ikv, W ]ρ(t))− Tr([Iπ(k)v, W

′]ρ′(t))
)

= 0.

Since the coefficients γk are all different and the previous equality holds for every l ≥ 0,
using a Vandermonde determinant type of argument, we obtain

Tr([Ikv, W ]ρ(t))− Tr([Iπ(k)v, W
′]ρ′(t)) = 0, (59)

as desired. 2
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Appendix C: Proofs of the lemmas in Section 5

Proof of Lemma 5.1

Proof.
1. This fact follows easily by applying Lemma 4.4 with W = W ′ = Ik1v1,...,krvr , since, if

vj 6= wj, it holds: [
Ik1v1,...,krvr , Ikjwj

]
= iIk1v1,...,kj [vjwj ],...,krvr . (60)

Here we have used the notation [vjwj] = v if [σvj
, σwj

] = ±iσv, and agreed to multiply (60)
by −1 if the minus sign appears.

2. By applying Lemma 4.2 to equation (25), we have:

Tr ([A, Ik1v1,...,krvr ] ρ(t)) = Tr ([A′, Ik1v1,...,krvr ] ρ
′(t)) . (61)

Now, we apply Lemma 4.4 to the previous equation to get:

Tr
([

[A, Ik1v1,...,krvr ] , Ik̄vk̄

]
ρ(t)

)
= Tr

([
[A′, Ik1v1,...,krvr ] , Ik̄vk̄

]
ρ′(t)

)
. (62)

Using the Jacobi identity, we have:[
[A, Ik1v1,...,krvr ] , Ik̄vk̄

]
=

[
A,

[
Ik1v1,...,krvr , Ik̄vk̄

]]
+

[
Ik1v1,...,krvr ,

[
A, Ik̄vk̄

]]
(63)

We have

[
Ik1v1,...,krvr , Ik̄vk̄

]
=


0 if k̄ 6∈ {k1, . . . , kr}
0 if ∃j with k̄ = kj and vk̄ = vj

iIk1v1,...,kj [vjvk̄],...,krvr if ∃j with k̄ = kj and vk̄ 6= vj.
(64)

Using the fact that (61) holds for any choice of values vk, and (64) we get:

Tr
([

A,
[
Ik1v1,...,krvr , Ik̄vk̄

]]
ρ(t)

)
= Tr

([
A′,

[
Ik1v1,...,krvr , Ik̄vk̄

]]
ρ′(t)

)
.

Thus combining the previous equality with (62) and (63) we get:

Tr
([[

A, Ik̄vk̄

]
, Ik1v1,...,krvr

]
ρ(t)

)
= Tr

([[
A′, Ik̄vk̄

]
, Ik1v1,...,krvr

]
ρ′(t)

)
. (65)

Notice that equation (65) is of the same type as equation (61); it is enough to replace A with
[A, Ik̄vk̄

] (resp. A′ with [A′, Ik̄vk̄
]). Thus by applying first Lemma 4.4 and then the Jacobi

identity we get:

Tr
([

[A, Ik̄vk̄
],

[
Ik1v1,...,krvr , Il̄vl̄

]]
ρ(t)

)
+ Tr

([
Ik1v1,...,krvr ,

[
[A, Ik̄vk̄

], Il̄vl̄

]]
ρ(t)

)
=

= Tr
([

[A′, Ik̄vk̄
],

[
Ik1v1,...,krvr , Il̄vl̄

]]
ρ′(t)

)
+ Tr

([
Ik1v1,...,krvr ,

[
[A′, Ik̄vk̄

], Il̄vl̄

]]
ρ′(t)

)
. (66)

On the other hand, using (64) and (65), we get:

Tr
([

[A, Ik̄vk̄
],

[
Ik1v1,...,krvr , Il̄vl̄

]]
ρ(t)

)
= Tr

([
[A′, Ik̄vk̄

],
[
Ik1v1,...,krvr , Il̄vl̄

]]
ρ′(t)

)
.

Thus:

Tr
([

Ik1v1,...,krvr ,
[
[A, Ik̄vk̄

], Il̄vl̄

]]
ρ(t)

)
= Tr

([
Ik1v1,...,krvr ,

[
[A′, Ik̄vk̄

], Il̄vl̄

]]
ρ′(t)

)
;

which implies (26), as desired. 2
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Proof of Lemma 5.2

Proof. Both statements are a consequence of Lemma 5.1 (equation (26)). First notice that,
again by Lemma 5.1, it is enough to prove (28) and (29) for a particular choice of {vj} and
v̄. We have, for l̄ > k̄,

[iIl̄z, [iIk̄x, A]] = −Jk̄l̄iIk̄z,l̄x. (67)

1. By applying Lemma 5.1 (equation (26)) to (27) and using (67) we get:

αTr
([
−Jk̄l̄iIk̄z,l̄x, Ik1v1,...,krvr

]
ρ(t)

)
= αTr

([
−J ′

k̄l̄iIk̄z,l̄x, Ik1v1,...,krvr

]
ρ′(t)

)
. (68)

We may assume, without loss of generality, that k̄ = kj and vj = x. In this case we have:

−Jk̄l̄

[
Ik̄z,l̄x, Ik1v1,...,krvr

]
= Jk̄l̄iIk1v1,...,kjy,...,krvr,l̄x.

Combining the previous equality with (68), equation (28) follows easily.
2. Using the same procedure, we end up again with equation (68), but now both indices k̄

and l̄ are in {k1, . . . , kr}. Assume, for example that k1 = k̄ and k2 = l̄, and take vk1 = vk2 = x,
then equation (29) follows since it holds:

[Ik1z,k2x, Ik1x,k2x,...,krvr ] = 1/4Ik1y,k3v3,...,krvr .

2
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