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Abstract

Two quantum control systems that are driven by an external field are said to be
input-output equivalent if, for any control field, the measured value of a given observ-
able is the same. Equivalent models cannot be distinguished by experiments involving
state evolutions and measurements. In this paper, we characterize the equivalent mod-
els of networks of spin 1

2 ’s driven by electro-magnetic fields for which the expectation
value of the total magnetization is measured. Extending previous results and defi-
nitions that only dealt with the case of a single measurement, we describe the class
of equivalent models under a sequence of Von Neumann measurements. The results
are motivated by the problem of parameter identification for Heisenberg spin systems
modeling molecular magnets.
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1 Input-output equivalence of quantum systems

In recent years, there has been a large amount of interest in studying quantum systems from
the point of view of control theory. Quantum control systems are quantum systems whose
dynamics depends on one or more functions of time that can be chosen. Physically these
functions often represent externally applied electro-magnetic fields. They are the inputs or
controls of the system. Measurements performed on the system return the expectation value
of a given observable. They are the outputs of the system. Different types of measurements
modify the state in different ways (see e.g. [6]). In modeling quantum systems, we can ask
the question of whether using experiments involving evolutions and measurements we can
identify the parameters of the model. In this context, two models are said to be input-output
equivalent if, for any choice of the input field, they give the same output at any measurement.
Equivalent models cannot be distinguished.
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Let us restrict ourselves to the case of closed systems under Von Neumann measurements.
The dynamics is described by the Liouville’s equation for the density matrix ρ:

i
d

dt
ρ = [H(u(t)), ρ]. (1)

The Hermitian operator H(u(t)) is the Hamiltonian depending on the control function(s)
u(t). If the operator S represents the measured observable, the output y(t) at time t is given
by

y(t) := Tr (Sρ(t)) . (2)

After a measurement, the state is modified. In the case of Von Neumann measurement, if
Πk is the projection onto the eigenspace corresponding to the eigenvalue λk of the observable
S, then the state is modified as

ρ → P(ρ), (3)

where the map P is defined as
P (F ) :=

∑
k

ΠkFΠk. (4)

This measurement scheme is often referred to as non-selective Von Neumann measure-
ment of the expectation value of S (see e.g. [6]).

Given an initial condition ρ0 and a control u, we denote by ρ(t; u, ρ0), the density matrix
solution of Liouville’s equation (1) with control u and initial condition ρ0. Given a sequence
of times 0 < t1 < · · · < tk and a corresponding sequence of control function uj, defined for
j = 1, . . . , k on [0, tj), we denote by yj(t1, . . . , tj, u1, . . . , uj, ρ0), the corresponding output
after the j-th measurement. Thus we have

y1(t1, u1, ρ0) = Tr (Sρ(t1; u1, ρ0))
y2(t1, t2, u1, u2, ρ0) = Tr (Sρ(t2; u2,P(ρ(t1; u1, ρ0))))

...

yk(t1, .., tk, u1, .., uk, ρ0) = Tr
(
Sρ(tk; uk,P(ρ(tk−1; uk−1,P(· · P(ρ(t1; u1, ρ0)) · ·))))

)
.

(5)

There are various definitions of input-output equivalence of two models that can be given.
We shall adopt the following one in which we assume that the initial state ρ0 as well as the
parameters of the model are unknown and have to be detected by a sequence of evolutions
and measurements. Therefore, if we denote by Σ the (unknown) model, we shall be concerned
with the equivalence of pairs (Σ, ρ0).

Definition 1.1 Consider two pairs model-initial state (Σ, ρ0) and (Σ′, ρ′0). We mark with a
prime ′ all the symbols concerning system Σ′. We say that the two pairs (Σ, ρ0) and (Σ′, ρ′0)
are input-output equivalent and we write

(Σ, ρ0) ∼ (Σ′, ρ′0),
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if for any sequence of times 0 < t1 < · · · < tk and any corresponding sequence of controls
uj, defined on [0, tj), for j = 1, . . . , k, we have

yj(t1, . . . , tj, u
1, . . . , uj, ρ0) = y

′j(t1, . . . , tj, u
1, . . . , uj, ρ′0),

where yj (and y
′j) are defined as in equation (5)

For the trivial case where all the eigenstates of S have the same probability namely
the ensemble is a perfect mix of subsystems in the different states, the density matrix is a
multiple of the identity operator and Tr(Sρ(t)) = Tr(Sρ′(t)) ≡ 1

nTr(S), independently of
the model (n is the dimension of the system). We shall exclude this degenerate case in the
following. From a practical viewpoint the initial state ρ0 may be considered different from
the totally mixed state if ρ0 := 1

nI + ∆ with ∆ $= 0 and the measurement apparatus is able
to detect a signal of the magnitude maxX∈SU(n) Tr(SX∆X∗).

The contribution of this paper is a description of the equivalent pairs for the special
but important case of Heisenberg spin 1

2 systems. These systems are a model for molecular
magnets (see e.g. [4], [5], [7]) and the problem of parameter identification is motivated by
the results of [13]. In the latter paper, it was shown that standard thermodynamic methods,
such as measurements of the magnetic susceptibility, may fail to determine the parameters
of the Hamiltonian for these systems. In fact these methods are based on the assumption
that spin systems with different (coupling) parameters will have different spectra which was
proved in [13] not to be always the case. This raises the question of whether by driving
the system with an appropriate field and detecting the value of the total magnetization
it is possible to determine the parameters. This naturally leads to investigate the input-
output equivalence above described. The input-output and control theoretic properties of
Heisenberg spin systems where studied in [2] and [3]. In particular the latter paper contains
the equivalence result for the case of a single measurement. The technical contribution of
the present paper is an extension of this result to the case of multiple measurements.

The rest of the paper is organized as follows. In the next section, we describe Heisenberg
spin networks from the view point of control theory and give the statement of our main result.
In Section 3 we give the proof of our main result which is based on a lemma describing the
properties of the map P in (4). The proof of this lemma is the main technical part of the
present paper and it is given in sub-section 3.1. In Section 4, we present a discussion of the
mathematical results and their practical significance.

2 Input-output equivalence of spin networks; State-
ment of the main result

An Heisenberg spin Hamiltonian, for n spin 1
2 ’s, can be written as

H(u(t)) := (A + Bxux(t) + Byuy(t) + Bzuz(t)), (6)

3



with
A :=

∑n
k<l,k,l=1 Jkl(Ikx,lx + Iky,ly + Ikz,lz),

Bv := (
∑n

k=1 γkIkv), for v = x, y, or z.
(7)

Here the matrix Ikv (Ikv,lv) is the Kronecker product of n matrices equal to the 2×2 identity
except in the k−th (k, l-th) position(s) occupied by the Pauli matrix σv, v = x, y, z. Recall
(see e.g. [12]) that the Pauli matrices are defined as

σx :=
1

2

(
0 1
1 0

)
, σy :=

1

2

(
0 −i
i 0

)
, σz :=

1

2

(
1 0
0 −1

)
. (8)

Jkl is the coupling constant between the k−th and the l−th particle. We assume that it
is possible to observe the expectation value of the total magnetization in the x, y, and z
direction. Thus, we let the three observable matrices Sx, Sy, and Sz be

Sv =
n∑

k=1

Ikv, for v = x, y, z. (9)

The system has three outputs given by Tr(Svρ), v = x, y, z. We study the possibility of
distinguishing the parameters of the Hamiltonian by multiple measurements of these outputs.
Models that are equivalent with respect to these outputs are also equivalent with respect to
any linear combination of them. Therefore, they always give the same total magnetization
along any direction in space.

We can visualize the spin network with a graph whose vertices represent the particles. An
edge in the graph connects the vertices representing the particles k and l if and only if Jkl is
different from zero. If this graph is connected and the particles have different gyromagnetic
ratios the system is controllable [2] namely it is possible to find a control which drives
the unitary propagator to any matrix in the special unitary group SU(2n). Controllability
implies observability of the quantum system [8] in a single measurement. It is reasonable to
assume observability in problems of identification of the initial state since the unobservable
dynamics does not contribute to the output which is our tool to identify the state. In the
following we shall assume that we know a priori that, for the models under consideration,
all the gyromagnetic ratios are different and the associated graph is connected and therefore
we have controllability and observability. While, as mentioned above, the observability
assumption is natural in our context, the assumption of different gyromagnetic ratios is
mostly a technical one which was used in some of the proofs in [3] and that we need here
as we will use the results of [3] (and only for this reason). This assumption is not directly
related to the equivalence of two models as there may be two nonequivalent models and
each of them having (possibly) gyromagnetic ratios with the same value. Alternatively, we
could assume that it is possible to address each spin independently, as it is done in selective
Nuclear Magnetic Resonance, and the arguments in the following will go through.

Before stating our main result, we introduce some useful notations. Given a permutation
π of the set {1, . . . , n}, we denote by Pπ the matrix which transforms Kronecker products of
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n, 2× 2, matrices according to the permutation π (cfr. [9] pg. 260), namely for every n−ple
of 2× 2 matrices K1, ..., Kn we have

Pπ(K1 ⊗K2 ⊗ · · ·⊗Kn)P ∗
π = Kπ(1) ⊗Kπ(2) ⊗ · · ·⊗Kπ(n). (10)

We denote by Io ( Ie) the subspace of Hermitian matrices of dimension 2n generated by
Kronecker products that contain an odd (even) number of Pauli matrices and the rest identity
matrices.

Now we state our main result.

Theorem 1 Let (Σ, ρ0) ≡ (Σ(n, Jkl, γk), ρ0) and (Σ′, ρ′0) ≡ (Σ′(n′, J ′
kl, γ

′
k), ρ

′
0) be two fixed

Heisenberg spin models (equations (6), (7), and (9)). Assume that in both models all the γk

and γ′k are different from each other and that the associated graphs are connected. Then, the
following are equivalent:

(a) (Σ, ρ0) ∼ (Σ′, ρ′0), namely the two pairs are input-output equivalent,

(b) n = n′ and there exists a permutation π of the set {1, . . . , n} such that

1. γk = γ′π(k),

2. denoting by π1
lk = min{π(l), π(k)}, and π2

lk = max{π(l), π(k)}, for 1 ≤ l < k ≤ n,
then either: {

Jlk = J ′
π1

lmπ2
lm

∀1 ≤ l < k ≤ n,

P ∗
πρ′0Pπ = ρ0;

(11)

or {
Jlk = −J ′

π1
lmπ2

lm
∀1 ≤ l < k ≤ n,

ρo = ρ′o and ρe = −ρ′e;
(12)

where ρo and ρe (resp. ρ′o and ρ′e) are the components of ρ0 (resp. P ∗
πρ′0Pπ) in Io,

Ie, respectively.

Theorem 1 reads as the main result in [3] (see also next section, equation (13)). This
is due to the fact that the classes of equivalent models do not vary by allowing more than
one measurement. The difference between the two results is in the different definition of
equivalent pairs. Theorem 1 implies, in particular, that models that have the same input
output behavior after one measurement will have the same input-output behavior even if we
allow several Von Neumann measurements.

3 Proof of Theorem 1

In this section we give the proof of Theorem 1. First, we state precisely the equivalence
result when we allow only a single measurement. This result is proved in [3]. We need to
define equivalence in a weaker sense (by allowing only one measurement).
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Definition 3.1 We say that the two pairs (Σ, ρ0) and (Σ′, ρ′0) are 1-input-output equivalent
and we write

(Σ, ρ0)∼1 (Σ′, ρ′0),

if for any t > 0 and any control u, defined on [0, t], we have

y1(t, u, ρ0) = y
′1(t, u, ρ′0),

where y1 (and y
′1) are defined as in equation (5)

Notice that if two models are equivalent then they are also 1-equivalent. But, in general,
since after one measurement the state is modified, equivalence is stronger than 1-equivalence.
However, for Heisenberg spin networks, Theorem 1 says that the two notions are indeed
equivalent, since both of them are equivalent to condition (b) of Theorem 1. The equivalence
result for 1−equivalence is a weaker version of Theorem 1. It can be stated as [3]:

(Σ, ρ0)∼1 (Σ′, ρ′0) ⇔ (b) of Theorem 1 holds . (13)

Now we begin to prove Theorem 1.

• (a) ⇒ (b).

As observed before, models that have the same input-output behavior with several mea-
surements have the same input-output behavior for one measurement, i.e. equivalent models
are also 1-equivalent. Therefore this implication simply follows from (13).

• (b) ⇒ (a).

Assume that condition (b) holds. To make notations simpler, we assume, without loss of
generality, that we have already performed a change of coordinates in the second model so
that the permutation π in (b) is the identity. Thus statement 1. of (b) becomes:

γk = γ′k, ∀ k ∈ {1, . . . , n}, (14)

and equations (11) and (12) now read as:{
Jlk = J ′

lk ∀1 ≤ l < k ≤ n,
ρ′0 = ρ0;

(15)

or {
Jlk = −J ′

lk ∀1 ≤ l < k ≤ n,
ρo = ρ′o and ρe = −ρ′e;

(16)

where ρo and ρe (resp. ρ′o and ρ′e) are the components of ρ0 (resp. ρ′0) in Io, Ie, respectively.
It is clear that, if equation (15) holds, than the two models, together with their initial

states, are the same, and so they are obviously equivalent.
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Thus we assume that (16) holds. We need to show that, for every sequence of controls, the
outputs (see (5)) of the two models are always the same. Notice that we allow measurements
of possibly different quantities Tr(Svρ), v = x, y, z at each step. Accordingly, the state will
be modified (see (4)) by an automorphism Pv, v = x, y, z, as ρ → Pv(ρ) corresponding to
the output Tr(Svρ). By (13), we know that the two pairs give the same outputs at the first
measurement (at time t1). Moreover, if we let ρo(t) and ρe(t) (resp. ρ′o(t) and ρ′e(t)) the
components of ρ(t; u1, ρ0) (resp. ρ′(t; u1, ρ′0)) in Io, Ie, under the action of the first control
u1, it is proved in [3] that if (b) holds then, for all 0 ≤ t ≤ t1, we have:{

ρo(t) = ρ
′
o(t)

ρe(t) = −ρ
′
e(t).

(17)

After the first measurement, the state is modified according to equation (4). More pre-
cisely, we have that ρ(t; u1, ρ0) (resp. ρ′(t; u1, ρ′0)) is changed into Pv(ρ(t; u1, ρ′0)) (resp.
Pv(ρ′(t; u1, ρ0))). Now if we are able to prove that Pv(Io) ⊆ Io and Pv(Ie) ⊆ Ie, then
the components of the state ρ(t) in Io and Ie after the measurement will be Pv(ρo(t)) and
Pv(ρe(t)), respectively. The components of the state ρ′(t) in Io and Ie after the measurement
will be Pv(ρ′o(t)) and Pv(ρ′e(t)), respectively. Therefore, if (17) holds before the measurement
it also holds after the measurement. Thus we can apply again (13), with the initial condition
equal to the state after the first measurement, and conclude that the second measurement
will give the same value for any control. It is clear now that we can use the same argument
for the following measurements and conclude the input-output equivalence of the two pairs.

In view of the above all we are left with is to prove the following lemma.

Lemma 3.2 Let Pv be the automorphism defined by equation (4) and corresponding to the
matrix Sv =

∑n
k=1 Ikv, v = x, y, and z. Then, for each Hermitian matrix F , it holds:

if F ∈ Io ⇒ Pv(F ) ∈ Io

if F ∈ Ie ⇒ Pv(F ) ∈ Ie
(18)

3.1 Proof of Lemma 3.2

We give the proof of Lemma 3.2 in the case v = z. The other two cases follow easily from
this one. First we need to decompose Sz into its projection matrices. The matrix Sz has
n + 1 different eigenvalues. Each eigenvalue corresponds to the number of spins that are in
the ‘down’ state. In particular we can have all the spin up, one down and the remaining
ones up, two down and the remaining ones up and so on. The corresponding n + 1 values of
the total magnetization in the z direction which are the eigenvalues of Sz will be denoted by
λ0, . . . ,λn. The eigenvalue λk corresponds to the case in which k spins are down and n− k
are up. We define

U := 1
2 id + σz =

(
1 0
0 0

)
,

D := 1
2 id− σz =

(
0 0
0 1

)
.
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U and D are the two dimensional projections onto the subspaces spanned by the spin up
and spin down eigenstates, respectively. Let Hn be the set of matrices of the form G =
G1 ⊗ · · · ⊗ Gn where Gj = U or Gj = D. Moreover, for j = 0, . . . , n, denote by Hn

j the
subset of Hn of those matrices G = G1 ⊗ · · · ⊗ Gn with |{k |Gk = D}| = j. Notice that∣∣∣Hn

j

∣∣∣ =

(
n
j

)
. Then, we let

Πj :=
∑

G∈Hn
j

G. (19)

We have

Sz =
n∑

j=0

λjΠj.

Thus, for each matrix F , we have

Pz(F ) =
n∑

j=0

ΠjFΠj =
n∑

j=0

∑
G,G′∈Hn

j

GFG′.

Each matrix F can be written as F =
∑s

j=1 µjσj1 ⊗ · · ·⊗ σjn where σjk ∈ {σx, σy, σz, id.}.
By linearity, it is sufficient to prove the lemma for matrices of the type Mn := σ1⊗ · · ·⊗ σn

where σj ∈ {σx, σy, σz, id, }, for j = 1, ..., n. For each l = 0, . . . , n, we define

fl(M
n) =

n∑
k=l

∑
G∈Hn

k−l

∑
G̃∈Hn

k

GMnG̃. (20)

Notice that

(fl(M
n))∗ =

n∑
k=l

∑
G∈Hn

k−l

∑
G̃∈Hn

k

(
GMnG̃

)∗
=

n∑
k=l

∑
G∈Hn

k−l

∑
G̃∈Hn

k

G̃MnG. (21)

Moreover, it holds
f0(M

n) = Pz(M
n). (22)

We will prove, by induction on n ≥ 1, that:

if Mn ∈ Ic
o (resp. Ic

e) ⇒ ∀ l = 0, . . . , n, fl(M
n) ∈ Ic

o (resp. Ic
e), (23)

where Ic
o and Ic

e are the complexifications of the vector spaces Io and Ie, respectively. In
view of equality (22), and the fact that f0 maps Hermitian matrices into Hermitian matrices,
(23) implies Lemma 3.2.

To prove (23) we will use the following equalities that can be easily verified by direct
calculation.

UidU = 1
2 id + σz UσzU = 1

2σz + 1
4 id UσxU = 0 UσyU = 0

DidD = 1
2 id− σz DσzD = 1

2σz − 1
4 id DσxD = 0 DσyD = 0

UidD = 0 UσzD = 0 UσxD = 1
2σx + i

2σy UσyD = 1
2σy − i

2σx

DidU = 0 DσzU = 0 DσxU = 1
2σx − i

2σy DσyU = 1
2σy + i

2σx

(24)

8



If n = 1, we have:
f0(M

1) = Pz(M
1) = UM1U + DM1D,

f1(M
1) =

∑
G∈H1

0

∑
G̃∈H1

1

GM1G̃ = UM1D.

Using the equalities given in (24), we can verify (23) for a basis of values of M1, namely all
the values in {id,σx, σy, σz}.

Let n > 1, and write an element of the basis of Ic
o⊕Ic

e as Mn = σ1⊗· · ·⊗σn = σ1⊗Nn−1.
We first obtain an expression for fl(Mn) for l = 0, . . . , n− 1 and then for the case l = n. We
notice that for j = 0, . . . , n:

G ∈ Hn
j ⇒

i) G = U ⊗G1 with G1 ∈ Hn−1
j ,

or
ii) G = D ⊗G1 with G1 ∈ Hn−1

j−1 ,
(25)

where if j = 0 then necessarily we are in case i), while if j = n then necessarily we are in
case ii).

Now we rewrite fl(Mn) by using the decomposition given by (25) both for G and G̃, and
we get:

fl(M
n) =

n∑
k=l

( ∑
G∈Hn−1

k−l

∑
G̃∈Hn−1

k

Uσ1U ⊗GNn−1G̃ +
∑

G∈Hn−1
k−l−1

∑
G̃∈Hn−1

k−1

Dσ1D ⊗GNn−1G̃+

+
∑

G∈Hn−1
k−l

∑
G̃∈Hn−1

k−1

Uσ1D ⊗GNn−1G̃ +
∑

G∈Hn−1
k−l−1

∑
G̃∈Hn−1

k

Dσ1U ⊗GNn−1G̃
)
.

In this formula, sets of the type Hb
a which have not been defined ((a > b) or a < 0) have to

be considered empty. We can rewrite the previous equation as:

fl(M
n) =

= (Uσ1U)⊗
 n∑

k=l

∑
G∈Hn−1

k−l

∑
G̃∈Hn−1

k

GNn−1G̃

 + (Dσ1D)⊗
 n∑

k=l

∑
G∈Hn−1

k−l−1

∑
G̃∈Hn−1

k−1

GNn−1G̃



+Uσ1D ⊗
 n∑

k=l

∑
G∈Hn−1

k−l

∑
G̃∈Hn−1

k−1

GNn−1G̃

 + Dσ1U ⊗
 n∑

k=l

∑
G∈Hn−1

k−l−1

∑
G̃∈Hn−1

k

GNn−1G̃


In the above formula, the coefficients of Uσ1U and Dσ1D are the same. In order to see this,
notice that

n∑
k=l

∑
G∈Hn−1

k−l

∑
G̃∈Hn−1

k

GNn−1G̃ =
n−1∑
k=l

∑
G∈Hn−1

k−l

∑
G̃∈Hn−1

k

GNn−1G̃,

since Hn−1
n is the empty set. Moreover this is the same as the coefficient of Dσ1D if we

notice that the part of the sum corresponding to k = l is zero and make a change of index
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k → h := k − 1. Neglecting terms in the sum that are zero one can simplify the coefficient
of Dσ1U as well. In conclusion, one can rewrite fl(Mn) as

fl(M
n) = (Uσ1U + Dσ1D)⊗

n−1∑
k=l

∑
G∈Hn−1

k−l

∑
G̃∈Hn−1

k

GNn−1G̃

 + (26)

+Uσ1D ⊗
 n∑

k=l

∑
G∈Hn−1

k−l

∑
G̃∈Hn−1

k−1

GNn−1G̃

 + Dσ1U ⊗
 n−1∑

k=l+1

∑
G∈Hn−1

k−(l+1)

∑
G̃∈Hn−1

k

GNn−1G̃


Notice that

n−1∑
k=l

∑
G∈Hn−1

k−l

∑
G̃∈Hn−1

k

GNn−1G̃ = fl(N
n−1), ∀ l = 0, . . . , n− 1. (27)

Moreover

n∑
k=l

∑
G∈Hn−1

k−l

∑
G̃∈Hn−1

k−1

GNn−1G̃ =



(∑n−1
k=l−1

∑
G∈Hn−1

k−(l−1)

∑
G̃∈Hn−1

k
GNn−1G̃

)
= fl−1(Nn−1)

∀ l = 1, . . . , n− 1(∑n−1
k=1

∑
G∈Hn−1

k

∑
G̃∈Hn−1

k−1
GNn−1G̃

)
= (f1(Nn−1))∗

l = 0,


(28)

where, in the second equation, we have used (21). Also

n−1∑
k=l+1

∑
G∈Hn−1

k−(l+1)

∑
G̃∈Hn−1

k

GNn−1G̃ = fl+1(N
n−1) ∀ l = 0, . . . , n− 2. (29)

Thus, by using equations (27), (28), and (29), we can rewrite (26) as follows.

(a)

f0(M
n) = (Uσ1U + Dσ1D)⊗ f0(N

n−1) + Uσ1D ⊗
(
f1(N

n−1)
)∗

+ Dσ1U ⊗ f1(N
n−1),

(b) for l = 1, . . . , n− 2,

fl(M
n) = (Uσ1U + Dσ1D)⊗ fl(N

n−1) + Uσ1D ⊗ fl−1(N
n−1) + Dσ1U ⊗ fl+1(N

n−1),

(c)
fn−1(M

n) = (Uσ1U + Dσ1D)⊗ fn−1(N
n−1) + Uσ1D ⊗ fn−2(N

n−1).

To complete the picture, we consider the case l = n, which is particularly simple. In this
case, from the definition of fn(Mn) in (20), we have

10



(d)
fn(Mn) = Uσ1D ⊗ · · ·⊗ UσnD.

Now, assume Mn ∈ Ic
o. Then for f0(Mn) we consider the three elements in the sum

(a) above. If σ1 is the identity, then Nn−1 is in Ic
o and so are by the inductive assumption

f0(Nn−1), f1(Nn−1) and f1(Nn−1)∗. Moreover it follows from (24) that Uσ1U + Dσ1D = id
and Uσ1D = Dσ1U = 0, which shows that f0(Mn) ∈ Ic

o. If σ1 is a Pauli matrix, then,
from the inductive assumption f0(Nn−1), f1(Nn−1) and f1(Nn−1)∗ are in Ic

e while from (24)
Uσ1U + Dσ1D is either zero or σz and Uσ1D and Dσ1U are linear combinations of Pauli
matrices. Analogously, using the inductive assumption and (24), one can verify f0(Mn) ∈ Ic

e

if Mn ∈ Ic
e . Analogously one can verify (23) for n ≥ l > 0, using (b), (c) and (d) above.

The crucial fact, beside the inductive assumption, is that UσD, DσU and UσU + DσD are
in Ic

o if σ = σx, σy, or σz, while they are in Ic
e if σ = id. This completes the proof of the

Lemma.

4 Discussion

The notion of input-output equivalence for quantum control systems is relevant to modelling
and parameter identification. This notion can be extended to consider cases where we per-
form several evolutions and measurements. In these cases, the dynamics have to be modified
to incorporate the effect of the measurement on the state. Motivated by problems of model
identification for molecular magnets, we have considered in the input-output equivalence
of networks of spin 1

2 where the total magnetization is measured. According to the main
result of [3] if we drive a spin network with an electromagnetic field and measure the total
magnetization the results will always be the same for networks with parameters and initial
states related by equations (11) or (12). This raised the question of whether it is possible to
distinguish the cases (11) and (12) by performing several Von Neumann measurements and
this paper has given a negative answer to this question.

As a simple example of the situation (12) described in Theorem 1, consider an Heisenberg
network of two spins 1

2 and consider the two initial states

ρ0 =
1

4
id⊗ id− σz ⊗ σz, ρ

′
0 =

1

4
id⊗ id + σz ⊗ σz. (30)

These are both physically admissible density matrices as they are Hermitian, trace one and
positive semidefinite. In particular ρ0 represents a mixture with equal weights of two pure
states representing respectively spin 1 up and spin 2 down and spin one down and spin 2
up, i.e. in Dirac notation

ρ0 =
1

2
| ↑↓><↑↓ |+ 1

2
| ↓↑><↓↑ |. (31)

With the same notation ρ′0 represent the mixture

ρ′0 =
1

2
| ↑↑><↑↑ |+ 1

2
| ↓↓><↓↓ |. (32)
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These two states are related as in (12). From, the results of this paper it follows that by
driving the system with an electro-magnetic field and measuring the total magnetization, it
is not possible to decide whether we are in the initial state (31) and the coupling constant is
positive or we started from an initial state (32) and the coupling constant is negative. And
this is not possible even if we allow multiple Von Neumann measurements.

The results presented here concern the input output behavior of different models and
are preliminary to algorithms for state and model identifications. These algorithms might
simplify if we assume preliminary knowledge. For example, if the model is known, they
are just algorithms for quantum state determination, which are currently under intensive
research. Some references and analysis from a control theoretic perspective can be found in
[8]. It should be mentioned that, opposite to classical systems, identification algorithms for
quantum systems will require several copies of the same system, as the measurement will in
general modify the state.

The fact that input-output equivalence under one measurement or multiple measure-
ments are the same for Heisenberg spin systems is a special property of the class of models
considered here and it is not true for other class of models. For example, if we consider
a class of pairs model-initial state where the model is the same and the initial states can
possibly change the notion of input-output equivalence is the same as the notion of indis-
tinguishability for states. According to the results of [8] states are indistinguishable in k
measurements if and only if they have the same components on the observability space Vk

(defined in [8] in terms of commutators depending on the output and the model). As the
sequence of observability spaces Vk is typically strictly increasing (for small k) there exists
states that are indistinguishable in one measurement but can be distinguished in be distin-
guished in more than one measurement. More examples of systems where 1-equivalence is
not the same as multiple equivalence can be constructed by considering generalized measure-
ment i.e. measurement not necessarily of the Von Neumann type [6]. In these cases the state
will be modified according to

ρ → F(ρ) :=
∑

m∈M
Φm(ρ), (33)

whereM is the set of possible outcomes and Φm is a set of positive linear operators which take
different form according to the measurement we are considering (e.g. unsharp measurements,
indirect measurements). The operation F is a generalization of P in (3) (4) and does not in
general satisfy the property of Lemma (3.2).

Input-output equivalence will be investigated for different models and for open systems
in future research.
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