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Abstract

In this paper, we consider the problem of model equivalence for quantum systems.
Two models are said to be (input-output) equivalent if they give the same output for
every admissible input. In the case of quantum systems, the output is the expectation
value of a given observable or, more in general, a probability distribution for the result
of a quantum measurement. We link the input-output equivalence of two models to
the existence of a homomorphism of the underlying Lie algebra. In several cases, a
Cartan decomposition of the Lie algebra su(n) is useful to find such a homomorphism
and to determine the classes of equivalent models. We consider in detail the important
cases of two level systems with a Cartan structure and of spin networks. In the latter
case, complete results are given generalizing previous results to the case of networks
of spin particles with any value of the spin. In treating this problem, we prove some
instrumental results on the subalgebras of su(n) which are of independent interest.

Keywords: Quantum Control Systems, Parameter Identification, Lie Algebraic Methods,
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1 Introduction

Dynamical models of quantum systems have been recently the subject of investigation,
concerning their structural properties, by use of methods of control theory. Appropriate
definitions of controllability and observability of quantum systems have been given and
practical conditions to check these properties have been proposed (see e.g. [1], [6], [10],
[11]). In many cases, the tools used are the ones of Lie algebra and Lie group theory.
Information on the properties of the dynamics is obtained by a study of the structure of
a Lie algebra associated to the system and how this relates to the particular equations at
hand. This geometric approach has proved useful not only to analyze the dynamics but also
to design control laws. This approach can also be used to study problems of parameter

identification of quantum systems and this is the subject of the present paper. In partic-
ular, the problem we shall study is the classification of models of quantum systems whose
behavior cannot be distinguished by an external observer. We shall call these models (input-
output) equivalent. This problem is motivated by several experimental scenarios. In partic-
ular consider a molecule which is a network of particles with spin with all the other degrees
of freedom neglected. A model Hamiltonian is associated to this system in which parame-
ters modeling the interaction between particles as well as the interaction with an external
electro-magnetic field are unknown. Also, the initial state of the system might be unknown.
In experimental scenarios such as Nuclear Magnetic Resonance and Electron Paramagnetic
Resonance, it is possible to drive the system with a magnetic field and measure the expecta-
tion value of a given observable, for example the total spin in a given direction. The question
of fundamental and practical importance is to what extent, with this type of experiments,
it is possible to distinguish between different models. As we shall see in this paper, this
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question is related to the existence of a particular Lie algebra homomorphism which relates
the equations of the two models.

The main results of this paper are the solution of the model equivalence problem for a
class of two level systems in Theorem 2, a number of auxiliary results (Theorems 4-6) on the
structure of the Lie algebra su(n) and its subalgebras and Theorem 7 where we completely
solve the problem of characterizing equivalent models for networks of spin. The latter result
generalizes results previously obtained in [2] and [7] , which were proven only for networks
of spin 1

2 and 1’s, to networks of interacting spins of any value and where the spin itself is
an unknown parameter to be identified. A further motivation for this research can be found
in [14] where it was shown that thermodynamic methods commonly used to identify the
parameters of spin networks such as in molecular magnets [3], [5] are not always adequate.
The generalization presented in this paper is obtained through a Cartan decomposition
technique recently presented in [8] which helps determining the homomorphism between
equivalent models in the form of a Cartan involution.

The paper is organized as follows. In Section 2, we describe the problem of model
equivalence for quantum systems. In Section 3, we link the equivalence of two models to
the existence of an appropriate Lie algebra homomorphism. In several cases the structure of
the dynamics is related to a Cartan decomposition of su(n) and suggests the form of such a
homomorphism as well as of the classes of equivalent models. We give a two level example
in Section 4 and treat the case of general spin networks in Section 5. Instrumental to the
solution of the model equivalence problem for spin networks are some results of independent
interest concerning the existence of subalgebras of su(n) with specific features. The proofs
of these results are presented in Section 6. Concluding remarks are given in Section 7.

2 The problem of model equivalence for quantum sys-
tems

Consider a model Hamiltonian for a quantum system, H(t) := H(u(t)),
where, in a semiclassical description, the dependence on time is due to the interaction

with external fields, u := u(t), which play the role of controls. The evolution of the state of
the system, described by a density matrix ρ := ρ(t), is determined, other than by H, by the
initial state ρ(0) = ρ0. In particular, ρ is the solution of the Liouville’s equation

ρ̇ = [−iH, ρ], (1)

with initial condition ρ(0) = ρ0. For this system, we measure an observable S. Considering,
for simplicity, a Von Neumann-Lüders measurement3, writing S in terms of orthogonal
projections

S :=
∑

j

λjΠj , (2)

the probability of having a result λj , when the state is ρ, is given by

Pj := Tr(Πjρ). (3)

As the probabilities Pj are the only information that can be gathered by an external observer,
it is motivated to ask what classes of models {H(u), ρ0} will give the same probabilities,
for any functional form of the control u. In other terms, we ask what classes of models are

3Natural extensions can be made to general measurements [4] for the related issue of observability of
quantum systems.

2



indistinguishable by experiments that involve driving the system with controls, in a given set
of functions, and measuring a given observable. These models will be called (Input-Output)
Equivalent.

It is appropriate to treat the case where the expectation value of the measurable S, i.e.
the ‘output’,

y := Tr(Sρ), (4)

is measured. Not only this is the case in several experimental situations, such as nuclear
magnetic resonance, but it is not a significant restriction as compared to the case where
the probabilities (3) are considered. As the structure of the output (4) is the same as the
one of the outputs (3), the passage from the treatment for the expectation value to the one
for probabilities corresponds to extending a single output treatment to a multiple output
treatment. This can be accomplished without difficulties.

In order to render the problem of characterizing the classes of equivalent models treatable,
we need to assume some structure on the Hamiltonian H. This corresponds to the passage
from unstructured uncertainty to parametric uncertainty often discussed in identification
theory (see e.g. [13]). In particular, it is often the case that the Hamiltonian H = H(u) has
the bilinear form

H := H0 +
m∑

j=1

Hjuj(t), (5)

for some control functions u1, ..., um, and internal Hamiltonian H0 and interaction Hamil-
tonians Hj ’s, j = 1, ...,m. These can be considered as Hermitian matrices of dimension n,
i.e. elements of isu(n), where n is the dimension of the system, assumed finite. Moreover, in
many cases, H0 and the Hj ’s belong to two orthogonal complementary subspaces of isu(n)
corresponding to a Cartan decomposition of su(n) [9]. These are two subspaces iK and iP,
such that the subspaces of su(n), K and P, satisfy the commutation relations

[K,K] ⊆ K, [K,P] ⊆ P, [P,P] ⊆ K. (6)

If the system is a multipartite system, every Hj is a linear combination of Hamiltonians
modeling the interaction of each individual system with the external field. In matrix nota-
tion, Hj is a linear combination of elements of the type 1⊗1⊗·· ·⊗1⊗L⊗1⊗·· ·⊗1, where
L is an Hermitian matrix of appropriate dimensions and all the other places are occupied by
identities 1. Also, H0 is very often a linear combination of elements modeling the interaction
between two subsystems, which can be written as tensor products of matrices equal to the
identity except in two locations. In these cases the relevant Cartan decomposition for the
Hamiltonian (5) can often be chosen of the odd-even type described in the recent paper [8].
Also if S is a sum of observables on each individual subsystem, i.e. total angular momentum
(see e.g. [12]), it can always be written as sum of tensor products all equal to the identity
except in one position. In these cases iS, belongs to one of the subspaces of the Cartan
decomposition4.

In the following, we shall consider, as standing assumption, only finite dimensionality of
the Hamiltonian H and the bilinear form (5) and will make precise the assumptions on the
Cartan structure of the Hamiltonian when needed.

4Notice that the situation may be different if we consider the case of a single output given by the
expectation value (4) and the case of several outputs given by the probabilities in (3).
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3 Model equivalence and Lie algebra homomorphisms

Consider two models with Hamiltonian of the form (5) and output of the form (4)

ρ̇ = [−i(H0 +
m∑

j=1

Hjuj), ρ], ρ(0) = ρ0, y = Tr(Sρ), (7)

ρ̇′ = [−i(H ′
0 +

m∑
j=1

H ′
juj), ρ′], ρ′(0) = ρ′0, y′ = Tr(S′ρ′). (8)

The following theorem links the existence of an appropriate Lie algebra homomorphism to
the equivalence of the two models.

Theorem 1 Let n and n′ be the dimensions of the two models (7), (8), respectively. Let φ
be a homomorphism, φ : u(n) → u(n′), and φ∗ its dual with respect to the standard inner
product < A, B >:= tr(AB∗). Assume

−iH ′
0 = φ(−iH0), −iH ′

j = φ(−iHj), φ∗(iS′) = iS. (9)

Then if iρ′0 = φ(iρ0) the models are equivalent. Viceversa, if the models are equivalent and
(8) is observable, then

iρ′0 = φ(iρ0). (10)

Proof. Multiply (7) and (8) by i and then apply φ to the equation obtained from (7).
Combining the two resulting equations, we obtain

d

dt
(iρ′ − φ(iρ)) = [φ(−iH0) +

∑
j

φ(−iHj)uj , iρ
′ − φ(iρ)]. (11)

Now, if (10) is verified, then iρ′(t) = φ(iρ(t)), for every t and for every control. Therefore
we have

Tr(S′ρ′) = Tr(−iS′i(ρ′)) = Tr(−iS′φ(iρ)) = Tr(φ∗(−iS′)iρ) = Tr(Sρ), (12)

and the two models are equivalent. Viceversa, assume the two models are equivalent. From
(12), we have

Tr(iS′(iρ′ − φ(iρ))(t)) = 0, (13)

for every t. Writing the solution of (11) as (iρ′ − φ(iρ)(t) = X(iρ′ − φ(iρ))(0)X∗, where X
is the solution of the (Schrödinger) operator equation Ẋ = (φ(−iH0) +

∑
j φ(−iHj)uj)X,

X(0) = 1, we have
Tr(X∗iS′X(iρ′0 − φ(iρ0))) = 0. (14)

As the system (8) is observable, we have that X∗iS′X span all of su(n′), which implies
iρ′0 = φ(iρ0). 2

As we shall show in the remainder of the paper (cf. also [2]), it is possible for cases of
physical interest to give a stronger version of Theorem 1. In particular, it is possible to show
that the existence of a homomorphism φ satisfying (9) is also necessary for equivalence of
two models. This way, we can characterize all the classes of equivalent models in terms of
homomorphisms. We shall do this for a two level example in the next section and general
spin networks in Section 5. In both cases we exploit a Cartan decomposition underlying the
dynamics of the models. In general, more structure will have to be assumed to avoid trivial
cases. For example, if S = S′ is a scalar matrix, then every two models are equivalent. To
avoid this case, a reasonable extra assumption is the observability of the two models. Also,
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we need to assume that the initial states are not both perfect mixtures, otherwise, with
S = S′, the output for any two equivalent models will be the same, independently of the
dynamics. Moreover −iHj and −iH ′

j , j = 0, . . . ,m, may be in general assumed traceless,
as the trace only adds an extra common phase factor to the dynamics, which cannot be
detected.

4 Model equivalence of two level systems

Consider a spin 1
2 particle which is driven by an electro-magnetic control field along the

z axis, interacts with a constant unknown magnetic field along a (unknown) direction in
the x − y plane and has unknown initial state. The practical question is to what extent,
by driving the system with the control field and measuring the average value of the spin
magnetization in the z direction, it is possible to obtain information about the unknown

parameters of the system. This type of model has a Cartan structure which is shared
by several other models of physical interest and is instrumental in finding a homomorphism
between equivalent models. We describe this below.

The Lie algebra su(2), which is the relevant Lie algebra in the two level case, has, up to
conjugacy, only one Cartan decomposition (or in other terms all the types of decompositions
coincide in this case) which corresponds to the classical Euler decomposition of the Lie group
SU(2) [9]. This extends to a decomposition of u(2) which can always be written, as

u(2) = K ⊕ P. (15)

Here K and P satisfy the commutation relations in (6) and are given, up to conjugacy, by

K := span{iσz}, P := span{iσx, iσy, i12×2}, (16)

where 12×2 is the 2× 2 identity matrix and σx, σy and σz are the Pauli matrices

σx :=
1
2

(
0 1
1 0

)
, σy :=

1
2

(
0 i
−i 0

)
, σz :=

1
2

(
1 0
0 −1

)
. (17)

The dynamical and output equation, for the above model of a spin 1
2 particle in an electro-

magnetic field, can be written as

ρ̇ = [A + iσzu(t), ρ], y = Tr(σzρ), ρ(0) = ρ0, (18)

where ρ0 is an unknown initial density matrix and A := xiσx +yiσy, with x and y unknown.
This model has a Cartan structure in that A is in P and iσz (the control and observation part)
is in K, with K and P defined in (16). We assume x2 + y2 6= 0 which implies controllability
and therefore observability [6] for this model. The following result characterizes all the
classes of equivalent models in terms of Lie algebra homomorphisms.

Theorem 2 Consider two models

ρ̇ = [A + iσzu(t), ρ], y = Tr(σzρ), ρ(0) = ρ0, (19)

ρ̇′ = [A′ + iσzu(t), ρ], y = Tr(σzρ
′), ρ′(0) = ρ′0, (20)

with ρ0 and ρ′0 not both equal to scalar matrices (representing perfect mixtures) and A and
A′ given by

A := xiσx + yiσy, and A′ := x′iσx + y′iσy. (21)
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Assume
x2 + y2 6= 0 and x′2 + y′2 6= 0. (22)

Then the two models are equivalent if and only if there exists an automorphism φ : u(2) →
u(2) with

φ∗(iσz) = iσz (23)

and
A′ = φ(A), φ(iσz) = iσz, iρ′0 = φ(iρ0). (24)

Proof. It is clear that if the automorphism φ exists, satisfying (23) (24), the two models
are equivalent. This follows from a direct application of Theorem 1. To prove the opposite,
first notice that, from the equivalence assumption, we have

y(t) := Tr(σzρ(t)) = Tr(σzρ
′(t)) := y′(t), (25)

for every t ≥ 0 and every admissible control.

We consider an inner automorphism φ of the following type

φ(L) := e−iασzLeiασz , L ∈ u(n), (26)

as α varies in RI .
Clearly (23) and the second one of (24) are verified for any α ∈ RI . Moreover

φ(A) = x̄iσx + ȳiσy, (27)

with (
x̄
ȳ

)
= Kα

(
x
y

)
, (28)

and

Kα :=
(

cos(α) sin(α)
−sin(α) cos(α)

)
. (29)

Also, if we write
iρ0 := ρxiσx + ρyiσy + ρziσz + 1

2 i1,

iρ′0 := ρ′xiσx + ρ′yiσy + ρ′ziσz + 1
2 i1

(30)

we have
φ(iρ0) = ρ̄xiσx + ρ̄yiσy + ρ̄ziσz +

1
2
i1, (31)

with (
ρ̄x

ρ̄y

)
= Kα

(
ρx

ρy

)
. (32)

Using the equivalence assumption (25) at t = 0 we immediately obtain

ρz = ρ′z. (33)

Moreover, differentiating (25) using the dynamical equations (19) (20), we obtain

Tr(ρ[σz, A]) = Tr(ρ′[σz, A
′]). (34)

Writing this at time t = 0 and using the definitions (21) and (30) along with the commutation
relation for the Pauli matrices

[iσx, iσy] = iσz, [iσy, iσz] = iσx, [iσz, iσx] = iσy, (35)
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we obtain

ρyx− ρxy = ρ′yx′ − ρ′xy′. (36)

Differentiating (34) and using the fact that the resulting
equation has to be valid for every value of the control, we obtain the two equations

Tr(σz[A, [A, ρ]]) = Tr(σz[A′, [A′, ρ′]]), (37)

and
Tr(iσz[A, [σz, ρ]]) = Tr(iσz[A′, [σz, ρ

′]]). (38)

From equation (38), as for equation (36), we obtain

xρx + yρy = x′ρ′x + y′ρ′y. (39)

From equation (37), we obtain

(x2 + y2)Tr(σzρ) = (x′2 + y′2)Tr(σzρ
′). (40)

Using the fact that Tr(σzρ) is not always zero (because of the controllability condition (22))
5 and equation (25), we have

x2 + y2 = x′2 + y′2. (42)

Therefore, for some α, we can write(
x′

y′

)
= Kα

(
x
y

)
, (43)

with Kα in (29), and this, compared with (28) and (27), gives the first one of (24). To obtain

the third one (with the same φ), we recall (22) that x2 + y2 6= 0. Letting J :=
(

0 1
−1 0

)
and using (43), we can write (36) and (39), respectively, as

[x, y]J [ρx, ρy]T = [x, y]KT
α J [ρ′x, ρ′y]T , (44)

[x, y][ρx, ρy]T = [x, y]KT
α [ρ′x, ρ′y]T . (45)

Since KT
α commutes with J , we can write these as(

[x, y]J
[x, y]

)
[ρx, ρy]T =

(
[x, y]J
[x, y]

)
KT

α [ρ′x, ρ′y]T . (46)

Since x2 + y2 = −det

(
[x, y]J
[x, y]

)
6= 0, we can write

[ρ′x, ρ′y]T = Kα[ρx, ρy]T , (47)

5From controllability (22), we cannot have

Tr(σzρ(t)) ≡ Tr(σzρ′(t)) ≡ 0, (41)

for every control. This would mean that, for every reachable evolution operator X, solution of the
(Schrödinger) operator equation Ẋ = (A + iσzu)X, X∗σzX would be orthogonal to ρ0. However, be-
cause of controllability X may attain all the values in SU(2) and therefore X∗σzX span, as X varies, all of
isu(2). Therefore, X∗σzX is always orthogonal to ρ0 only if ρ0 is a multiple of the identity, which we have
excluded.
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and therefore
[ρ′x, ρ′y] = [ρ̄x, ρ̄y], (48)

which along with ρ′z = ρz gives
iρ′ = φ(iρ). (49)

This concludes the proof of the Theorem. 2

5 Model equivalence of spin networks

5.1 Set of models of spin networks

We consider a network of n particles with spin that interact according to Heisenberg inter-
action. In particular, we denote the spin of the jth particle by lj and by Nj := 2lj + 1 the
dimension of the Hilbert space for the state of the jth particle. The dimension of the Hilbert
state space associated to the entire network is N :=

∏n
j=1 Nj . The class of Hamiltonians we

consider are of the form

H(t) := i(A + Bxux(t) + Byuy(t) + Bzuz(t)), (50)

where A, modeling the Heisenberg interaction among the particles, and Bx,y,z, modeling the
interaction with external fields, are given by

A := −i
∑n

k<l,k,l=1 Jkl(Ikx,lx + Iky,ly + Ikz,lz).

Bv := −i(
∑n

k=1 γkIkv), for v = x, y, or z,
(51)

respectively. Here and in the following we denote by Ik1v1,...,krvr
, for 1 ≤ k1 < · · · < kr ≤ n

and vj ∈ {x, y, z}, the N×N matrix which is the Kronecker product of n matrices where in
the jth position we have the Nj ×Nj identity if j 6∈ {k1, . . . , kr}, while if j = ks we have the
Nj ×Nj representation of the vs component of spin angular momentum for a particle with
spin lj . Such matrices are given by the Pauli matrices (17) in the case where lj = 1

2 and
can be calculated for every value of the spin (see e.g. [12] Section 3.5). With some abuse
of notation, we shall continue denoting these matrices by σx, σy and σz, without explicit
reference to the value of the spin. These matrices have several properties we shall use in the
following. In particular, they satisfy the commutation relations (35) and

σ2
x + σ2

y + σ2
z = lj(lj + 1)1Nj×Nj

(52)

(see e.g. formula (3.5.34a) in [12]).
The real scalar parameter Jkl in (51) is the exchange constant between particle k and

particle l and the real scalar parameter γk is the gyromagnetic ratio of particle k. We assume
that the spins of the network have all non-zero and different gyromagnetic ratios. We can
associate a graph to the model, where each node represents a particle and an edge connects
two nodes if and only if the corresponding exchange constant is different from zero. It is not
difficult to see that if the model is controllable then, necessarily, this graph is connected.
Moreover, controllability implies observability for every output of the form (4) where S is a
non scalar matrix [6]. In our case, we assume to measure the expectation values of the total
magnetization in the x, y, and z direction, given as in (4) where S is one of the matrices:

Sv :=
n∑

k=1

Ikv, with v ∈ {x, y, z}. (53)
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A model of the type above described will be denoted by Σ := Σ(n, lj , Jkl, γk, ρ0), where the
parameters n, lj , Jkl, γk, ρ0, which determine the model, are unknown. We will assume to
have two controllable models Σ and Σ′ := Σ′(n′, l′j , J

′
kl, γ

′
k, ρ′0) which satisfy the previous

requirements and we look for necessary and sufficient conditions for these two models to be
equivalent. We shall mark with a prime, ′, all the quantities concerning the system Σ′.

5.2 Relevant homomorphism of su(n)

In [8] a method was described to construct a Cartan decomposition of the Lie algebra su(N)
for a multipartite system, starting from decompositions of the Lie algebras su(Nj) associated
to the single subsystems, each of dimension Nj , with N :=

∏n
j=1 Nj . In particular, we have

the following result.

Theorem 3 ([8], Section 5) Consider a multi partite system with n subsystems of dimen-
sions N1, . . . , Nn. Consider the Lie

algebra u(Nj) related to the j-th subsystem and a Cartan decomposition

u(Nj) = Kj ⊕ Pj , (54)

of the type AI or AII 6. Denote by σj (Sj) a generic element of an orthogonal basis of iKj

(iPj). Let the (total) Lie algebra u(N1N2 · · ·Nn) be decomposed as

iu(N1N2 · · ·Nn) = Io ⊕ Ie. (55)

Io (Ie) is the vector space spanned by matrices which are the tensor products of an odd
(even) number of elements of the type σj. Then u(N1N2 · · · Nn) = iIo ⊕ iIe is a Cartan
decomposition i.e.

[iIo, iIo] ⊆ iIo, [iIo, iIe] ⊆ iIe, [iIe, iIe] ⊆ iIo. (56)

The decomposition (55) is called a decomposition of the odd-even type.

Associated to a Cartan decomposition (56) is a Cartan involution φ which is the identity
on iIo and multiplication by −1 on iIe. A Cartan involution is clearly a homomorphism.
The structure of system (50) and (51) suggests that it is possible to choose this Cartan
involution as a homomorphism mapping the equations of two equivalent models as in (9).
In fact, assume that there is the same number of subsystems (spin particles) in the two
models and that corresponding subsystems have the same dimension (namely the same
spin). If we can display a decomposition (54) of the type AI or AII for every (spin) su(Nj),
such that iσx,y,z ∈ Kj , then, for every value of the parameters, it holds that Bx,y,z(′) ∈ iIo

and A(′) ∈ iIe. As shown in the following Theorems 4-6 decompositions of this type exist.
We shall see in the following subsection that the Cartan involution associated to an odd-even
type Cartan decomposition is the correct homomorphism to describe classes of equivalent
spin networks. In fact, not only models which are related by such a homomorphism are
equivalent (according to Theorem 1) but the opposite is true as well. In other terms, two
equivalent models are either exactly the same or are related through such a homomorphism.

The following three Theorems show the existence of a decomposition of su(Nj) of the type
AI or AII where the subalgebra Kj contains the matrices iσx, iσy and iσz. Equivalently,
they show the existence of a subalgebra of

sp(Nj

2 ) (type AII) or so(Nj) (type AI) conjugate to the Lie algebra spanned by iσx, iσy

and iσz. The proofs are presented in the following section. We shall see that the situation
is different for integer and half integer spins.

6In a decomposition AI Kj = so(Nj) and Pj = (so(Nj))
⊥ up to conjugacy. In a decomposition AII

Kj = sp(Nj/2) and Pj = (sp(Nj/2))⊥ up to conjugacy. [9]
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Theorem 4 If the dimension Nj of the system is even (half integer spin (Fermions)) there
exists a subalgebra of sp(Nj

2 ) conjugate to the Lie algebra spanned by iσx, iσy and iσz.

Theorem 5 If the dimension Nj of the system is odd (integer spin (Bosons)) there exists
a subalgebra of so(Nj) conjugate to the Lie algebra spanned by iσx, iσy and iσz.

Theorem 6 If the dimension Nj of the system is even (half integer spin (Fermions)) there
is no subalgebra of so(Nj) conjugate to the Lie algebra spanned by iσx, iσy and iσz.

5.3 Necessary and sufficient conditions for model equivalence

In this subsection we will prove the equivalence result concerning models of spin networks.
This is given by the following Theorem.

Theorem 7 Let Σ := Σ(n, lj , Jkl, γk, ρ0) and Σ′ := Σ(n′, l′j , J
′
kl, γ

′
k, ρ′0) be two fixed models

(see equations (50), (51)). Assume that both models are controllable, that for model Σ (Σ′),
all the γk (γ′k) are non-zero and different from each other, and that ρ0 and ρ′0 are not both
scalar matrices. Then Σ is equivalent to Σ′ i.e.:

yv(t) := Tr(Svρ(t)) ≡ y′v(t) := Tr(S′vρ′(t)), for v ∈ {x, y, z}, (57)

and for every control ux, uy, uz, if and only if the following condition holds:

Cond. (∗):

1. n = n′

Up to a permutation of the of the set {1, ..., n} (i.e. a permutation of the
indices for the particles)

2. γk = γ′k,
and

3.
lk = l′k. (58)

4. One of the following two conditions holds

(a)
A = A′, and ρ0 = ρ′0 (59)

(b) Given the Cartan involution φ associated to the decomposition of the
odd-even type as from Theorem 3

A′ = φ(A), and iρ′0 = φ(iρ0) (60)

The Theorem says that, under appropriate controllability assumptions, two equivalent
models for spin networks are equivalent if and only they have the same number of particles,
corresponding particles have the same spin, and their dynamical model and initial state are
either the exactly the same or are related through the Cartan involution associated to a
decomposition of the odd-even type. In practical terms, given a general spin network, by
driving the network with an external electro-magnetic field and measuring the total spin in
the x, y and z direction, it is, in principle, possible to identify the number of particles, their
spin, the gyromagnetic ratios of every spin and the exchange constants only up to a common
sign factor, if the initial state is not known. The proof that Condition (∗) implies equivalence
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is an application of the general property of Theorem 1. The proof that equivalence implies
Condition (∗) is considerably

longer. However, several results can be obtained with proofs that are formal modifications
of the ones presented in [2] for the special case of spin 1

2 particles. We shall focus on the
new part of the proof needed to generalize to the case of unknown spins.

Condition (∗) implies equivalence

It is clear that if (59) holds, then the two models differ possibly only by a permutation
of the indices of the particles. So they are equivalent. Assume now that Condition (∗) holds
with (60) and assume for simplicity (and without loss of generality) that the permutation
of indices is the identity. Let φ be the Cartan involution associated to the decomposition of
the odd-even type. We notice that

φ∗(iSv) = iSv = iS′v, v = x, y, z. (61)

In fact, given any C ∈ u(N), we can write C = Co + Ce, with Co ∈ iIo and Ce ∈ iIe, it
holds:

Tr(φ∗(iSv)C) := Tr((iSv)φ(C)) = Tr((iSv)(Co − Ce)) = Tr((iSv)Co) = Tr((iSv)C),

which, since it has to hold for every C, gives (61). Equations (60) and (61) imply that
equation (9) of Theorem 1 holds. Since we also have (10), from (60), we conclude that the
two models are equivalent using Theorem 1.

Equivalence implies Condition (*)

The technique used in [2] to prove this result for network of spin 1/2 particles extends to
the general case treated here. However further analysis is required in this case, in particular
to prove that equivalent spin networks have the same values of the spins, while in [2] it was
assumed that the networks were composed by all spin 1

2 ’s. The main reason why the proof
in [2] can be extended to this case is that the basic commutation relations, which were the
essential ingredient of the proofs in [2] still hold. More precisely, the matrices σx, σy and σz

still satisfy, for every value of the spin, the commutation relations (35). This fact implies
that it also holds:

[
Ik1v1,...,krvr

, Ik̄vk̄

]
=


0 if k̄ 6∈ {k1, . . . , kr}
0 if ∃j with k̄ = kj and vk̄ = vj

iIk1v1,...,kj [vjvk̄],...,krvr
if ∃j with k̄ = kj and vk̄ 6= vj

, (62)

independently of the values of the spins.

Assume now that the two models Σ and Σ′ are equivalent. Then, using exactly the same
arguments as in the proof of Proposition 4.1 of [2], we obtain that the number of the spin
particle must be the same, namely n = n′, and, up to a permutation of the indices, γk = γ′k,
∀k ∈ {1, ..., n}, which is part 1. and 2. of Condition (∗). Moreover as in Proposition 4.1 of
[2], we obtain

Tr(Ikvρ(t)) = Tr(I ′kvρ′(t)),∀k ∈ {1, ..., n},∀v ∈ {x, y, z}. (63)

Here I ′kv is defined as Ikv but for Σ′ and, at this point, it may be different from Ikv since
we have not shown yet that corresponding spins must be equal. To prove this fact, we shall
use Lemma 5.1 below. The proof of this Lemma is a generalization of the proof of Lemma
5.2 in [2] where we use the general property (52) instead of the corresponding property for
spin 1

2 ’s. We postpone this proof to Appendix A.
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Lemma 5.1 Assume that for all t ≥ 0, all possible trajectories ρ(t) of Σ and corresponding
ρ′(t) of Σ′, for fixed values 1 ≤ k1, . . . , kr ≤ n, vj ∈ {x, y, z} and for given constants β and
β′, we have:

βTr (Ik1v1,...,krvr
ρ(t)) = β′Tr

(
I ′k1v1,...,krvr

ρ′(t)
)
. (64)

Then

1. For any pair of indices k̄, d̄ ∈ {1, . . . , n} with k̄ ∈ {k1, ..., kr} and d̄ /∈ {k1, ..., kr},

βJk̄d̄Tr
(
Ik1v1,...,krvr,d̄v̄ρ(t)

)
= β′J ′k̄d̄Tr

(
I
′

k1v1,...,krvr,d̄v̄ρ′(t)
)

, (65)

for any value v̄ ∈ {x, y, z}.

2. For any pair of indices k̄, d̄ both in {k1, ..., kr}, (for example k̄ = k1, d̄ = k2) then

β(ld̄(ld̄ +1))Jk̄d̄Tr (Ik1v1,k3v3,...,krvr
ρ(t)) = β′(l′d̄(l

′
d̄ +1))J ′k̄d̄Tr

(
I
′

k1v1,k3v3,...,krvr
ρ′(t)

)
.

(66)

In words, formula (66) means that from (64), it is
possible to derive a new formula as follows. Select two indices in the set {k1, ..., kr}, k̄

and d̄. One of the two indices (say d̄) disappears from the subscript in the matrices I and
corresponding I ′. However a coefficient ld̄(ld̄ +1) and l

′

d̄
(ld̄ +1) appears in the left and right

hand side, respectively, as well as a coefficient Jk̄d̄ and J
′

k̄d̄
.

We shall now prove that, under the assumption of equivalence, the squares of the ex-
change constants Jdk and J ′dk must be proportional, with a proportionality factor common to
all pairs of indices d and k and this will also be instrumental in the proof of 3. of Condition
(∗).

Fix any 1 ≤ k1 < k2 ≤ n, then, by applying statement 1. of Lemma 5.1, i.e. equation
(65) with k̄ = k1, d̄ = k2 to equation (63) with k = k1, we have:

Jk1k2Tr (Ik1v1,k2v2ρ(t)) = J ′k1k2
Tr

(
I
′

k1v1,k2v2
ρ′(t)

)
, ∀ v1, v2 ∈ {x, y, z}. (67)

Now, to the previous equality, we apply statement 2. of Lemma 5.1, i.e. equation (66) with
k̄ = k1 and d̄ = k2 to get:

(lk2(lk2 + 1))J2
k1k2

Tr (Ik1v1ρ(t)) = (l′k2
(l′k2

+ 1))J
′2
k1k2

Tr
(
I
′

k1v1
ρ′(t)

)
,

which, by equation (63), implies:

(lk2(lk2 + 1))J2
k1k2

= (l′k2
(l′k2

+ 1))J
′2
k1k2

. (68)

Using the facts that the two indices k1 and k2 above are arbitrary and that the graph
associated to the network is connected, by the controllability assumption, it is easy to see
that there exists a positive constant α ∈ RI such that, for all 1 ≤ d < k ≤ n:

J2
dk = α2J ′

2
dk and lk(lk + 1) =

1
α2

l′k(l′k + 1). (69)

Using (69), we can now prove 3. of Condition (∗). We will do this using some lemmas
and arguing by contradiction. First notice that from (69), we have that if there exists a
k̄ ∈ {1, . . . , n} such that lk̄ = l′

k̄
, then necessarily α2 = 1, thus lj = l′j for all j = 1, . . . , n,

namely all the particles have the same spin. So if we assume that (58) does not hold, without
loss of generality, we can assume l1 > l′1. Using equation (69), we get that lj > l′j for all
j = 1, . . . , n, thus also Nj > N ′

j . Let R := N
N1

=
∏n

j=2 Nj and R′ := N ′

N ′
1

=
∏n

j=2 N ′
j .
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Lemma 5.2 For all t ∈ RI , and all the admissible trajectories ρ and corresponding trajec-
tory ρ′, we have:

Tr
(
(eiσzt ⊗ 1R×R)I1v(e−iσzt ⊗ 1R×R)ρ(s)

)
=

Tr
(
(eiσzt ⊗ 1R′×R′)I

′

1v(e−iσzt ⊗ 1R′×R′)ρ′(s)
)

,
(70)

for all s ≥ 0.

Proof. First we notice that from the Campbell-Baker-Hausdorff formula, we have:

(eiσzt ⊗ 1R×R)I1v(e−iσzt ⊗ 1R×R) =
∞∑

k=0

(
adk

iσz⊗1R×R
I1v

) tk

k!
,∀v ∈ {x, y, z}, (71)

and an analogous equation for Σ′. Moreover, by applying Lemma 7.1 in Appendix A, with
W = I1v, W ′ = I ′1v, and k = 1, v = z, we have:

Tr
(
adiσz⊗1R×R

I1vρ(s)
)

= Tr
(
adiσz⊗1R′×R′ I

′
1vρ′(s)

)
.

Now we can apply again Lemma 7.1 to the previous equality, to get:

Tr
(
ad2

iσz⊗1R×R
I1vρ(s)

)
= Tr

(
ad2

iσz⊗1R′×R′
I
′

1vρ′(s)
)

.

By applying repeatedly this procedure we obtain:

Tr
(
adk

iσz⊗1R×R
I1vρ(s)

)
= Tr

(
adk

iσz⊗1R′×R′
I
′

1vρ′(s)
)

,

for all k ≥ 0. Using this in (71), equation (70) follows. 2

The proof of the following lemma is given in Appendix A

Lemma 5.3 The following formula holds:

(eiσzt ⊗ 1R×R)I1x(e−iσzt ⊗ 1R×R) := PN1(t)⊗ 1R×R, (72)

where the matrix PN1(·) is periodic with period 2π. Moreover

PN1(π) = −PN1(0) = −σx. (73)

Using Lemmas 5.2 and 5.3, we can now conclude the proof that the spins are the same.
Let ρ̄(s)⊗1R×R (resp. ρ̄′(s)⊗1R′×R′) the orthogonal component of ρ(s) (resp. ρ′(s)) along
σx ⊗ 1R×R (resp.

σx ⊗ 1R′×R′). Using equation (72), equality (70) with v = x can be written as :

Tr (PN1(t)ρ̄(s))R = Tr
(
PN ′

1
(t)ρ̄′(s)

)
R′. (74)

Since we have assumed by contradiction R > R′, from (74) we have for every t:

Tr (PN1(t)ρ̄(s)) < Tr
(
PN ′

1
(t)ρ̄′(s)

)
. (75)

Now we will derive a contradiction by evaluating the previous inequality at t = 0 and t = π
and using (73). In fact we have:

Tr (PN1(0)ρ̄(s)) < Tr
(
PN ′

1
(0)ρ̄′(s)

)
,

thus

Tr (PN1(π)ρ̄(s)) = −Tr (PN1(0)ρ̄(s)) > −Tr
(
PN ′

1
(0)ρ̄′(s)

)
= Tr

(
PN ′

1
(π)ρ̄′(s)

)
.
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The previous inequality contradicts equation (75). Thus we conclude that l1 = l′1, which
implies that equation (58) holds.

Since the two equivalent models Σ and Σ′ have the same spin, the positive constant α
in (69) is equal to one. Therefore, for every pair d, k ∈ {1, ..., n}, Jdk and J ′dk only differ
possibly by the a sign factor. Using the same argument as in the main Theorem of [2] we
can in fact conclude that there are only two possible case: The case where Jdk = J

′

dk for
every pair d, k and the case where Jdk = −J

′

dk for every pair d, k. If we are in the first
case, then from the observability (which follows from controllability) of the model, we must
have ρ0 = ρ′0, thus equation (59) holds. This would be the case a of part 4. of Condition
(∗). On the other hand, if J ′kd = −Jkd for every pair 1 ≤ k < d ≤ n, we may conclude
using Theorem 1. In fact we consider the homomorphism φ given by the Cartan involution
associated to the odd-even decomposition as in the previous part of the proof. Conditions
(9) hold, thus, since the models are equivalent and observable, we get that:

iρ′0 = φ(iρ0),

thus equation (60) holds. This concludes the proof of the Theorem.

6 Proofs of Theorems 4-6

In the proofs of Theorems 4 and 5, we shall use the following two types of elementary k× k
matrices:

Ck := diag(−1, 1,−1, ..., (−1)k), Tk = adiag(1, 1, 1, ..., 1). (76)

The matrix Ck is diagonal with alternating elements while Tk is antidiagonal with all ones
on the secondary diagonal and zeros everywhere else. Obvious properties of these matrices
are the following

C2
k = T 2

k = 1k×k, Tk = TT
k . (77)

We are interested in the action of these matrices by similarity transformation on diagonal
and tridiagonal k × k matrices. In particular, let us denote by D a generic, real, diagonal,
k×k matrix and by F a generic, real, k×k, tridiagonal matrix, which is also symmetric and
it has zero diagonal. If Ma denotes the antitransposed of M , namely the matrix obtained
by reflecting about the secondary diagonal, we can easily verify the following properties.

1.
CkDCk = D, CkFCk = −F, (78)

2.
TkDTk = Da, TkFTk = F a. (79)

Now we are ready to prove Theorems 4 and 5.

Proof of Theorem 4 The matrices iσz and iσx have (for every value of the spin) the
following structure

iσz = i

(
D 0
0 −Da

)
, (80)

iσx = i

(
F P
PT F a

)
, (81)
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where F and D have the structure above specified with k := Nj

2 and P is a k×k real matrix
of all zeros except in the (k, 1)-th position. Now use

U :=
(

Ck 0
0 Tk

)
, (82)

which is orthogonal and therefore unitary.
We calculate, using the first ones of (78) and (79)

iσ̃z := UiσzU
∗ = i

(
D 0
0 −D

)
. (83)

Moreover, using the second ones of (78) and (79), we have

iσ̃x := UiσxU∗ = i

(
−F CkPTk

TkPCk F

)
. (84)

It is easily seen that iσ̃z and iσ̃x are symplectic, by observing that CkPTk is a real symmetric
matrix (only the (k, k)-th element is different from zero). Therefore sp(Nj

2 ) contains a
subalgebra conjugate to the one spanned by iσx and iσz and therefore iσy and the Theorem
is proved. 2

We now proceed to the proof of Theorem 5.

Proof of Theorem 5 In this case we set k := Nj−1
2 . The matrix iσz has the form

iσz := i

−D 0 0
0 0 0
0 0 Da

 , (85)

with D of dimension k × k. Moreover iσx has the form

iσx := i

 F v 0
vT 0 wt

0 w F a

 , (86)

where F is as above and v (w) is a vector of dimension k with only the last (the first)
component different from zero, and the components different from zero are equal for v and
w. We use the unitary matrix

U :=

 i√
2
Ck 0 (−1)k i√

2
Tk

0 1 0
1√
2
Tk 0 1√

2
Ck

 , (87)

which is easily seen to be unitary by (76) (77). We calculate.

iσ̃z := UiσzU
∗ = i

 1
2 (TkDaTk − CkDCk) 0 i

2 ((−1)kTkDaCk − CkDTk)
0 0 0

i
2 (TkDCk − (−1)kCkD2Tk) 0 1

2 (CkDaCk − TkDTk)

 .

(88)
Using the first ones of (78) and (79), we find that the diagonal blocks are zero. Moreover,
the remaining elements of the matrix are real so that iσ̃z is real. Analogously, we calculate

iσ̃x := UiσxU∗ = (89)
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i

 1
2 (CkFCk + (−1)2kTkF aTk) i√

2
(Ckv + (−1)kTkw) i

2 (CkFTk + (−1)kTkF aCk)
∗ 0 1√

2
(vT Tk + wT Ck)

∗ ∗ 1
2 (TkFTk + CkF aCk)

 ,

where we have denoted by a star ∗ the components that can be obtained from the requirement
that the matrix is skew Hermitian. Now the (1, 1) and (3, 3) blocks are zero from the second
ones of properties (78) and (79), while the (2,3) block is zero because of the structure of the
vectors v and w. All the other blocks are purely real matrices so that iσ̃x is also in so(n)
and this completes the proof. 2

We now give the proof of the negative result in Theorem 6.
Proof of Theorem 6 Assume that there exists a matrix X ∈ SU(Nj) such that

XiσxX∗ := R̃x, (90)

XiσyX∗ := R̃y, (91)

XiσzX
∗ := R̃z, (92)

with R̃x, R̃y and R̃z in so(Nj). Then we can use the AI Cartan decomposition of SU(Nj)
[9] to write X as

X = K1AK2, (93)

with K1 and K2 in SO(Nj) and A diagonal i.e.

A := diag(eiφ1 , ..., e
iφ Nj

2 ). (94)

Therefore we can write
K1AK2iσx,y,zK

T
2 ĀKT

1 = R̃x,y,z, (95)

or, defining Rx,y,z := KT
1 R̃x,y,zK1 which is also real skew-symmetric, we can write

K2iσx,y,zK
T
2 = ĀRx,y,zA. (96)

The real matrices Rx,y,z must satisfy the same basic commutation relations (35) of iσx,
iσy and iσz and have the same eigenvalues of iσx, iσy and iσz, namely for a (half integer)
spin j, ±ji, ±(j + 1)i,...,± 1

2 i. We now study the structure of Rx,y,z in (96) and get a
contradiction with these facts.

First notice that, since A is diagonal as in (94), the action of A on the right hand side
of (96) namely, R → ĀRA changes the (real) element rjk of R into rjke−i(φj−φk). Since
the entries on the left hand side of (96) are either all purely imaginary or all purely real, if
φj −φk is not a multiple of π

2 then we must have rjk = 0. Consider the indices 1, ..., Nj and
let O be the set of indices k such that φ1 − φk is and odd multiple of π

2 and E the set of
indices k such that φ1 − φk is an even multiple of π

2 , and N the set of indices k such that
φ1 − φk is not an integer multiple of π

2
From (96) it follows that since iσy is real the terms rjk of Ry where j and k belong to

different sets must be zero because in that case ei(φj−φk) in (94) has a nonzero imaginary
part in this case. Therefore only the elements rjk where j and k belongs both to O, or both
to E , or both to N , are possibly different from zero. Therefore after possibly a reordering
of rows and columns, which corresponds to a similarity transformation by a permutation
matrix, Ry must be of block diagonal form and without loss of generality and for simplicity
we shall assume only two blocks (rather than three). Therefore we write

Ry :=
(

Y11 0
0 Y22

)
, (97)
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where Y11 has dimensions no × no with no the cardinality of O and Y22 has dimension
(n−no)× (n−no). Both Y11 and Y22 are skew-symmetric matrices. An analogous argument
shows that, after possibly the same re-ordering of column and row indices, Rz can be written
as

Rz :
(

0 Z12

−ZT
12 0

)
, (98)

where Z12 is a general matrix of dimensions no × (n− no).
Now consider the possible values for no. no odd is to be excluded because this would

cause detY11 = 0 in (97) and this contradicts the fact that Ry has no zero eigenvalues.
Moreover no 6= (n − no) (i.e. no 6= Nj

2 ) would cause Rz to have determinant equal to zero.
This can be easily verified by calculating

det(R2
z) = (detRz)2 = det

(
−Z12Z

T
12 0

0 −ZT
12Z12

)
, (99)

since, in this case, at least one of the matrices on the diagonal blocks does not have full rank.
These considerations already exclude the cases where Nj

2 is an odd number as for spins 1
2 ,

5
2 , 9

2 etc. and we can assume Ry and Rz of the form (97) and (98) with no = Nj

2 . To obtain
a contradiction in this case too we first notice that, since Y11 and Y22 have even dimension

and are skew-symmetric, we can apply a similarity transformation T :=
(

T1 0
0 T2

)
, with

T1 and T2 orthogonal so that TRyTT is block diagonal

TRyTT = (D1, D2, ..., DNj
2

), (100)

where the 2× 2 block Dk has the form

Dk :=
(

0 lk
−lk 0

)
, (101)

where each lk corresponds to a couple of complex conjugate eigenvalues of Ry so that lk = p
2

with p odd corresponds to the pair ±p
2 i. Moreover we choose T so that the first Nj

4 blocks
are ordered according to the increasing value of lk and the same thing for the last Nj

4 blocks.
We shall therefore assume this structure of Ry in the remainder of the proof. We notice
also that the transformation TRzT

T does not change the structure of Rz as Z12 in (98)
was chosen to be a general Nj

2 × Nj

2 real matrix. Express Z12 in terms of 2× 2 blocks Lfk,
f, k = 1, ...,

Nj

4 , k = Nj

4 + 1, ...,
Nj

2 , which is possible since Nj

2 is an even number. Now, we
impose the fact that Ry and Rz have to satisfy the same commutation relations as iσy and
iσz. In particular, we must have

[[Ry, Rz], Ry] = Rz. (102)

This equation gives for the Lfk block the following one

2DfLfkDk − LfkD2
k −D2

fLfk = Lfk. (103)

If we write the generic Lfk as

Lfk :=
(

a1 a2

a3 a4

)
, (104)

and recall the structure of Df and Dk,

Df :=
(

0 lf
−lf 0

)
, Dk :=

(
0 lk
−lk 0

)
, (105)
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we obtain the following equations for a2 and a3 (and analogous equations for a1 and a4)

2lklfa3 = (1− l2f − l2k)a2, (106)

2lklfa2 = (1− l2f − l2k)a3. (107)

Combining these, we obtain
4l2kl2fa3 = (1− l2k − l2f )2a3, (108)

which shows, taking the square root of both sides, that the only possibilities to have a3 and
therefore a2 different from zero are the cases lf + lk = ±1. In these cases we can easily see
that

a3 = −a2. (109)

Similarly, one finds that we have a4 and a1 in (104) different from zero if and only if
lf + lk = ±1 and, in these cases we have

a1 = a4. (110)

In conclusion, all the blocks Lfk are zero except the ones corresponding to indices f and k
with neighboring values of lf and lk which have the structure

Lfk :=
(

x y
−y x

)
. (111)

Therefore Rz has the form in (98) where the f−th block row of Z12 has at most two blocks
different from zero and with the structure in (111). We denote these blocks by Pf and
Sf , where P (S) stands for ’predecessor’ (’successor’) and correspond to the index k such
that lk = lf − 1 and lk = lf + 1, respectively. Now, we argue that a matrix Rz with this
structure must necessarily have all the (purely imaginary) eigenvalues with multiplicity at
least two and this gives the desired contradiction because Rz should have the same spectrum
of iσx,y,z which consists of all simple eigenvalues. In order to see this fact, re-consider the
block structure of Ry in (100). If the blocks corresponding to eigenvalues ± 1

2 i and ± 3
2 i

belong to the same half, then the corresponding matrix Rz will have a two dimensional
block row (or column) equal to zero, and therefore 0 will be an eigenvalue with multiplicity
at least 2. Therefore we can assume that these two blocks belong to two different halves
and by the ordering we have imposed they must be the first ones of each half. Assume
that the block corresponding to ± 1

2 i is in the first half. If this is not the case, consider
the transposed of Rz and repeat the arguments that follow. It is possible to choose a block
diagonal similarity transformation

U := diag(G1, G2, ..., GNj
4

, F1, F2, ..., FNj
4

), (112)

with all the Gf ’s and Ff ’s 2× 2 orthogonal matrices so that URzU
T has the same structure

as before but all the matrices Pj and Sj are scalar matrices. We construct the matrix U
proceeding by block rows. The first block row contains only S1 as 1

2 has no predecessors.
All the zero blocks remain zero and S1 is transformed as

G1S1F
T
1 . (113)

We choose F1 = 12×2 and G1, which has the general form

G1 :=
(

cos(θ) sin(θ)
−sin(θ) cos(θ)

)
, (114)

so that
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sin(θ)x + cos(θ)y = 0 if S1 :=
(

x y
−y x

)
. This will give a scalar matrix. At the generic

f−th block row, we have, at the most two nonzero blocks Pfk and Sfb where we now use an
extra index k and b to indicate the block column to which they belong. They transform as

Pfk → GfPfkFT
k , (115)

and
Sfb → GfSfbF

T
b , (116)

respectively, while all the other blocks remain zero. If Fk has not been chosen before we
set Fk = 12×2. In any case, we choose Gf as before to make GfPfkFT

k a scalar matrix.
We then choose Fb to make GfSfbF

T
b a scalar matrix. Gf and Fb had not been chosen at

previous steps. This is obvious for Gf and follows by an induction argument for Fb since
all the F matrices chosen before the f−th step correspond to predecessors and successors
with (column) indices strictly less then b (recall that in the two halves of the matrix Ry

the blocks are arranged in increasing order of (absolute value of) eigenvalue). In conclusion,
modulo the similarity transformation defined by U in (112), we can assume that Rz has the
form

Rz = K ⊗ I2×2, (117)

where K is a skew-symmetric Nj

2 × Nj

2 matrix. By known results on the eigenvalues of the
Kronecker products of two matrices, it follows that the eigenvalues of Rz are the same as
those of K each with multiplicity at least two. This gives the desired contradiction and
concludes the proof of the Theorem. 2

7 Conclusions

This paper has presented a collection of mathematical results concerning the input-output
equivalence of quantum systems. Models that are equivalent cannot be distinguished by an
external observer and therefore the determination of parameters in a quantum Hamiltonian
can only be obtained up to equivalent models. Motivated by recent results on the isospectral-
ity of quantum Hamiltonians [14] in molecular magnets, we have completely characterized
the classes of spin networks which are equivalent. In several cases, the characterization of
equivalent models can be obtained through a Lie algebra homomorphism which is suggested
by a Cartan structure of the underlying dynamics.

We believe many of the results and the concepts presented in this paper for quantum
systems could be generalized to classes of systems relevant in other applications with both
dynamics and output linear in the state. This will be the subject of further research.
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Appendix A: Additional results and proofs

The proof of the following Lemma can be obtained with a formal modification of the proof
of Lemma 4.4 in [2] and it is therefore omitted.

Lemma 7.1 Let Σ and Σ′ be two equivalent models models. If W and W ′ are two given
Hermitian matrices such that

Tr(Wρ(t)) = Tr(W ′ρ′(t)), (118)

for every pair of corresponding trajectories ρ(t) and ρ′(t), then it also holds

Tr([W, Ikv]ρ(t)) = Tr([W ′, I
′

(k)v]ρ′(t)), ∀ k ∈ {1, . . . , n},∀v ∈ {x, y, z}, (119)

up to a permutation of the indices 7.
7This permutation is the same and fixed for all the results where it is mentioned
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Proof of Lemma 5.1

We first state a Lemma whose proof can be obtained from the proof of Lemma 5.1 in [2]
and then proceed to the proof of Lemma 5.1

Lemma 7.2 Assume that for all t ≥ 0, all the possible trajectories ρ(t) of Σ and corre-
sponding ρ′(t) of Σ′, for fixed values 1 ≤ k1, . . . , kr ≤ n, and fixed vj ∈ {x, y, z}, we have:

Tr (Ik1v1,...,krvr
ρ(t)) = Tr

(
I
′

k1v1,...,krvr
ρ′(t)

)
. (120)

Then:

1. equation (120) holds for any possible choice of the values of vj ∈ {x, y, z};

2.
Tr

([[
iId̄vd̄

, [iIk̄vk̄
, A]

]
, Ik1v1,...,krvr

]
ρ(t)

)
=

Tr
([[

iI
′

d̄vd̄
, [iI

′

k̄vk̄
, A′]

]
, I

′

k1v1,...,krvr

]
ρ′(t)

)
,

(121)

for all the indices 1 ≤ d̄ 6= k̄ ≤ n and every {vd̄ 6= vk̄} ∈ {x, y, z}.

We now proceed to the proof of Lemma 5.1. First notice that from Lemma 7.2, it is
enough to prove (65) and (66) for a particular choice of {vj} and v̄. Moreover, we have, for
d̄ > k̄,

[iId̄z, [iIk̄x, A]] = −Jk̄d̄iIk̄z,d̄x. (122)

1. By applying Lemma 7.2 (equation (121)) to (64) and using (122) we get:

βTr
([
−Jk̄d̄iIk̄z,d̄x, Ik1v1,...,krvr

]
ρ(t)

)
= β

′
Tr

([
−J ′k̄d̄iI

′

k̄z,d̄x, I
′

k1v1,...,krvr

]
ρ′(t)

)
. (123)

We may assume, without loss of generality, that k̄ = kj and vj = x. In this case we have:

−Jk̄d̄

[
Ik̄z,d̄x, Ik1v1,...,krvr

]
= Jk̄d̄iIk1v1,...,kjy,...,krvr,d̄x.

Combining the previous equality with (123), equation (65) follows easily.
2. Using the same procedure, we obtain again equation (123), but now both indices k̄ and

d̄ are in {k1, . . . , kr}. Assume, for example that k1 = k̄ and k2 = d̄, and take vk1 = vk2 = x.
Now we have:

[Ik1z,k2x, Ik1x,k2x,...,krvr
] = Ik1y,k2x2,k3v3...,krvr

, (124)

where, with this notation, we mean that in the kth
2 position we have the matrix σ2

x. Thus,
combining equations (123) and (124), we get:

βJk1k2Tr
(
Ik1y,k2x2,k3v3...,krvr

ρ(t)
)

= β′J ′k1k2
Tr

(
I
′

k1y,k2x2,k3v3...,krvr
ρ′(t)

)
. (125)

Using the same procedure, we conclude:

βJk1k2Tr
(
Ik1y,k2y2,k3v3...,krvr

ρ(t)
)

= β′J ′k1k2
Tr

(
I
′

k1y,k2y2,k3v3...,krvr
ρ′(t)

)
, (126)

and

βJk1k2Tr
(
Ik1y,k2z2,k3v3...,krvr

ρ(t)
)

= β′J ′k1k2
Tr

(
I
′

k1y,k2z2,k3v3...,krvr
ρ′(t)

)
. (127)

Adding together equations (125), (126), and (127) and using (52), we get:

β(lk2(lk2 + 1))Jk1k2Tr (Ik1y,k3v3...,krvr
ρ(t)) = β′(l′k2

(l′k2
+ 1))J ′k1k2

Tr
(
I
′

k1y,k3v3...,krvr
ρ′(t)

)
,

as desired.
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Proof of Lemma 5.3

Proof.
We recall the formulas (72) and (73) to be proved, i.e.:

(eiσzt ⊗ 1R×R)I1x(e−iσzt ⊗ 1R×R) := PN1(t)⊗ 1R×R, (128)

where the matrix P (·) is periodic with period 2π, and

PN1(π) = −PN1(0) = σx. (129)

The proof can be done directly by computing the matrix above. This is simplified by the
fact that the matrix σz is always a diagonal matrix. We will give an outline of the argument
when l1 is half integer spin. The idea is to use the representations for the matrices σz and σx

given by equations (80) and (81). The case of integer spin can be derived similarly starting
with the representations given by equations (85) and (86).

Using equations (80) and (81), we obtain

eiσztiσxe−iσzt =
(

eiDtFe−iDt eiDtPeiDat

eiDatPT e−iDt e−iDatF aeiDat

)
. (130)

The properties of the matrices D, P and F are described in Section 6. Moreover D =
diag(j, j− 1, ..., 1

2 ) for a half integer spin j. By using these properties, it follows that all the
time

depending terms in equation (130) are of the form eit. Thus matrix (130) is periodic of
period 2π. The fact that the dependence is of the type eit, in turn, implies that equations
(128) and (129) hold.

2
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