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ABSTRACT

A basic open question for discrete-time nonlinear systems is that of determining
when, in analogy with the classical continuous-time “positive form of Chow’s Lemma,”
accessibility follows from transitivity of a natural group action.

This paper studies the problem, and establishes the desired implication for analytic
systems in several cases: (i) compact state space, (ii) under a Poisson stability condition,
and (iii) in a generic sense. In addition, the paper studies accessibility properties of the
“controllability sets” recently introduced in the context of dynamical systems studies.
Finally, various examples and counterexamples are provided relating the various Lie
algebras introduced in past work.

1. Introduction. This paper continues the study, initiated in [6], of systems of the
type

x(t+ 1) = f(x(t), u(t)) , t = 0, 1, 2, . . . ,(1)

where x and u take values in manifolds. The smooth mapping f is assumed to be
invertible on x for each fixed u, a restriction which models systems that arise when
dealing with continuous-time plants under digital control. See [6] for further motivation
for the study of such systems, and [11] for general definitions of systems.

Given the system (1), one may introduce the reachable or forward-accessible set from
a state x0, which we will denote by R(x0). This is the set of states to which one may
steer x0 using arbitrary controls. Clearly, reachable sets are one of the central concepts
in control theory.

A mathematically far easier object to deal with is the orbit or forward-backward
accessible set from x0, which we will denote by O(x0). This is defined as the set consisting
of all states to which x0 can be steered using both motions of the system and negative
time motions: a state z is in the orbit of x0 if there exists a sequence of states

x0 = x0, x1, . . . , xk = z

such that, for each i = 1, . . . , k, either xi is reachable from xi−1 or xi−1 is reachable from
xi.
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Of course, R(x0) is always included in O(x0), but these two sets are in general
different. Observe that O(x0) is the orbit of x0 under the group action induced by all
the diffeomorphisms f(·, u), while the main interest in control theory –since negative
time motions are in general not physically realizable– is in R(x0), the orbit under the
corresponding semigroup. One reason that orbits are easier to study is that they have a
natural structure of submanifold of the state space; this induces a decomposition of the
state space into invariant submanifolds which integrate a natural distribution of vector
fields (see for instance [12] and [10]).

One of the central facts in continuous-time controllability is the following property,
valid for analytic systems and arbitrary states x0:

(C) R(x0) has nonempty interior in O(x0).

This property follows directly from the orbit theorem, but it can also be established for
general smooth systems, under appropriate Lie-algebraic assumptions; it is often known
as the “positive form of Chow’s Lemma.” Thus, for continuous-time, the state space can
be partitioned into invariant submanifolds, and inside each submanifold one can reach
an open set from each state. In particular, the interior of the reachable set from x0 is
nonempty —one then says that there is forward accessibility from x0,— if and only if the
orbit is open, —i.e., there is transitivity from x0.

In contrast, Property (C) may fail in discrete-time, even for systems obtained through
the time-sampling of one-dimensional analytic continuous-time systems; see the examples
in [6]. There are two known cases where (C) does hold:

(a) When x0 is an equilibrium point (and the system is analytic and the control-value
set is connected); this is one of the main results in [6].

(b) If the map f is rational on states and controls; see [8].
Both of these properties are quite restrictive; equilibria are in general few, and the ra-
tionality assumption is too strong in discrete-time (note that even when sampling very
simple —for instance, polynomial,— continuous-time systems one does not in general
obtain rational equations.)

In this paper we extend the validity of property (C). For analytic systems, we prove
that Property (C) does hold if the orbit from x0 is compact (see Remark 4.1), or under
certain stability hypotheses related to Hamiltonian dynamics. Another result shows that
if there is only one orbit (the system is transitive), then forward accessibility holds from
an open dense set of states, assuming the state space to have at most finitely many
connected components.

Low-dimensional cases are of interest because certain special implications hold in
those cases, and as sources of examples and counterexamples. For instance, we show that
in dimension one transitivity from a given state x0 implies either forward accessibility
from x0 or backward accessibility (controllability from some open set to x0), but that
this result fails in dimension two.

Recently, Colonius and Kliemann introduced the notion of controllability subsets of
the state space of continuous-time systems. These are essentially sets where “almost
reachability” holds. Controllability sets have proved to be an extremely useful concept;
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in particular, in [3] these authors established an interesting relationship between such
sets and chaotic behavior in subsets of an associated dynamical system. The extension
to discrete-time of the results of Colonius and Kliemann depends critically on the better
understanding of the forward accessibility properties of controllability sets, so we devote
the last part of this paper to that goal. The reader is referred to the conference paper [1]
for a detailed explanation of how the results in [3] can indeed be extended when applying
the techniques developed here.

2. Basic Definitions. In this paper we will deal with discrete-time nonlinear sys-
tems Σ of the type (1) where x(t) ∈ X and u(t) ∈ U . We assume that the state space X is
a connected, second countable, Hausdorff, differentiable manifold of dimension n, except
in Section 5.1, where we wish to study what happens if the connectedness assumption is
dropped.

The control-value space U is always assumed to be a subset of IRm which satisfies
the assumptions

U ⊆ clos intU

and 0 ∈ U . We always assume that U is a connected set, except in Sections 3.1 and 6
where this assumption can be dropped.

The system is of class Ck, with k =∞ or ω, if the manifold X is of class Ck and the
function

f : X × U → X

is of class Ck (i.e., there exists a Ck extension of f to an open neighbourhood of X × U
in X × IRm). We call systems of class C∞ smooth systems and those of class Cω analytic
systems.

The most restrictive technical assumption to be made is that the system is invertible;
this means that for each u ∈ U the map fu = f(·, u) : X → X is a global diffeomorphism
of X. Invertibility allows the application of the techniques in [6]; the assumption is
satisfied when dealing with systems obtained by sampling a continuous time one. We
will use f−1

u to denote the inverse of the map fu.
Unless otherwise stated, from now on we assume that a fixed smooth system Σ is

given.

2.1. Some Notations. If there exists an integer k ≥ 0 and a k-tuple (uk, . . . , u1) ∈
Uk such that fuk,...,u1(x) = z, we will write:

x;
k
z .

As usual, fuk,...,u1 denotes fuk◦ . . . ◦fu1 . For any fixed state x and any nonnegative integer
k define:

ψk,x(u) := fuk,...,u1(x)
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where u = (uk, . . . , u1) ∈ Uk. For each u, let ρk,x(u) be the rank of ∂
∂u
ψk,x[u], and denote

ρ̄k,x := max
u∈Uk

ρk,x(u).

For each x, let also

ρ̄x := max
k≥0

ρ̄k,x;

roughly, this is the largest possible dimension of a manifold reachable from x. Observe
that k′ ≥ k implies

ρ̄k′,x ≥ ρ̄k,x(2)

because if u ∈ Uk achieves ρk,x(u) = ρ̄k,x then also ρk′,x(ũ) ≥ ρk,x(u) for any ũ ∈ Uk′

that extends u. We define the following sets:

Rk(x) := {z | x;
k
z}

is the set of states reachable from x in (exactly) k steps,

R̃k(x) := {ψk,x(u) | u ∈ Uk, ρk,x(u) = ρ̄x}

is the set of states that are maximal-rank reachable from x in (exactly) k steps,

R̄k(x) := {ψk,x(u) | u ∈ Uk, ρk,x(u) = n}

is the set of states that are nonsingularly reachable from x in k steps. Observe that,
clearly,

R̄k(x) ⊆ R̃k(x) ⊆ Rk(x).

We let:

R(x) :=
⋃
k≥0

Rk(x)

and analogously for R̃(x) and R̄(x). Recall that Σ is said to be forward accessible from
x if and only if intR(x) 6= ∅.

We also define:{
O0(x) = x
Ok(x) = { z | ∃z1 ∈ Ok−1 and z1 ;

1
z or z;

1
z1 }

and

O(x) =
⋃
k≥0

Ok(x).

Thus O(x) is the orbit from x; Σ is said to be transitive from x if and only if intO(x) 6= ∅.
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Note that, given any state x, there is a well-defined restriction of the system to the
orbit O(x). Hence all results can be in principle applied in each orbit. The only difficulty
is that orbits are often not connected, while most results hold only under the blanket
assumption that the state space must be connected. In Section 5.1 we make some further
comments about this issue.

Certain Lie algebras of vector fields L, L+, Γ, Γ+ were introduced in [6], —see also
[4] and [5] for previous work,— we repeat their definitions here for the convenience of the
reader.

First we let X+
u and X−u be the following vector fields:

X+
u,i(x) =

∂

∂vi

∣∣∣∣∣
v=0

f−1
u ◦ fu+v(x),

X−u,i(x) =
∂

∂vi

∣∣∣∣∣
v=0

fu ◦ f−1
u+v(x),

one for each i = 1, . . . ,m (for computational aspects associated to these vector fields see
[2]). Given a vector field Y and a control value u, we can define another vector field from
Y by applying a change of coordinates given by the diffeomorphism fu,

(AduY )(x) = (dfu(x))−1Y (fu(x)).

Here dfu stands for the differential of fu with respect to x. In the same way, but now
using the diffeomorphism f−1

u , we also define Ad−1
u . We let:

Adεk···ε1uk···u1
Y = Adε1u1

· · ·Adεkuk Y.(3)

We will use the abbreviated notation Adk0Y for Ad0···0Y with u = 0 repeated k-times, if
k > 0, and for Ad−1···−1

0 ··· 0 Y , if k < 0. Additionally, Ad0
0Y = Y . The Lie algebras Γ+ and

Γ are now defined as

Γ+ = {Aduk···u1X
+
u0,i
|k ≥ 0, 1 ≤ i ≤ m, u0, . . . , uk ∈ U},

Γ = {Adεk···ε1uk···u1
Xσ
u0,i
|k ≥ 0, 1 ≤ i ≤ m, u0, . . . , uk ∈ U, ε1, . . . , εk = ±1, σ = ±}.

Finally the Lie algebras L+ and L are as follows.

L+ = Lie {Adk0X
+
u,i | k ≥ 0, 1 ≤ i ≤ m, u ∈ U},

L = Lie { Adk0X
+
u,i | k ∈ ZZ, 1 ≤ i ≤ m, u ∈ U, }.

We look at the sets of states in which various rank conditions fail, or forward acces-
sibility fails:

B+ := {x | intR(x) = ∅}
B+
L := {x | dimL+(x) < n}

B+
Γ := {x | dim Γ+(x) < n} .

Although well-defined always, the set B+
L will be of interest only when the system is

analytic.
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2.2. Review of Main Known Facts. With these notations, many of the results
obtained in [6] can be visualized by the following diagram, where an arrow “A → B”
indicates inclusion A ⊆ B, and the inclusions involving B+

L are only valid in the analytic
case.

R̃(B+) −→ B+
Γ −→ B+

L

↓ ↓ ↙
R(B+) −→ B+

Note:
• The inclusion

R̃(B+) ⊆ B+
Γ(4)

rephrases the result obtained in Corollary 4.4 of [6].
• The inclusion B+

Γ ⊆ B+ expresses the result in Theorem 6 part (a) of [6].
• The inclusion B+

L ⊆ B+ represents the result in Theorem 6 part (b) of [6].

3. Some New General Properties. In this section we prove a number of general
facts which can be conveniently expressed in terms of the sets just defined.

Remark 3.1. If there exists any k0 such that R̄k0(x) is non-empty, then for all
k ≥ k0 we have R̄k(x) = R̃k(x). Indeed, the assumption implies that ρ̄x = n.

Proposition 3.1. For each x ∈ X, the following properties are equivalent:
(a) int R̄(x) 6= ∅.
(b) int R̃(x) 6= ∅.
(c) intR(x) 6= ∅.

Proof. Since R̄(x) ⊆ R̃(x) ⊆ R(x), it is only necessary to show that (c) implies (a).
We will show the following two properties:

1. for each k ≥ 0 if int R̄k(x) = ∅ then R̄k(x) = ∅;
2. if R̄k(x) = ∅ for all k ≥ 0 then intR(x) = ∅.

Combining (1) and (2) we have that if int R̄(x) = ∅ then all int R̄k(x) = ∅ too, so
intR(x) = ∅, as desired.

We first prove (1). Suppose that R̄k(x) 6= ∅, so that there exists some sequence ū
for which the rank ρk,x(·) is equal to n at ū. Since we assume U ⊂ clos intU , there exists
also some ũ ∈ intUk so that ρk,x(u) = n for each u in some neighbourhood of ũ. By the
implicit mapping theorem, z̃ = ψk,x(ũ) belongs to int R̄k(x).

We now prove (2). If R̄k(x) = ∅ for all k ≥ 0 then each u ∈ Uk is a singular point
of the map ψk,x, for each k. Thus by Sard’s Theorem ψk,x(U

k) has measure zero for all
k ≥ 0. It follows that also

R(x) =
⋃
k≥0

Rk(x) =
⋃
k≥0

ψk,x(U
k)

has measure zero, and hence intR(x) = ∅, as desired.
Proposition 3.2. If the system Σ is analytic then, for any x ∈ X:

closRk(x) = clos R̃k(x)
6



for all k sufficiently large.
Proof. Fix x ∈ X, and let k0 be so that ρ̄k0,x = ρ̄x. For all k ≥ k0, let

Ak(x) = {u | ρk,x(u) = ρ̄x} .

We claim that Ak(x) is an open dense set of Uk. This is because Ak(x) 6= ∅ by (2) and
the complement of Ak(x) is a set defined by the vanishing of certain analytic functions
(suitable determinants) of u.

We claim that

Rk(x) ⊆ clos R̃k(x)

which implies

closRk(x) ⊆ clos R̃k(x) for each such k.(5)

This will establish the result, the other inclusion being obvious.
Indeed, pick k ≥ k0 and take any z ∈ Rk(x). Then z = ψk,x(u) for some u =

(uk, . . . , u1). Since Ak(x) is dense, we can find a sequence {ul} such that

ul = (u
(l)
k , . . . , u

(l)
1 ) → u = (uk, . . . , u1) as n→∞

and ul ∈ Ak(x) for each l.
Let zl = ψk,x(ul) ∈ R̃k(x). By continuity, zl → z, which proves (5).
Remark 3.2. Assume that the system Σ is analytic, and that there exists an x0 ∈ X

and a k0 ≥ 0 for which R̄k0(x0) 6= ∅. Then the proof of the previous result together with
Remark (3.1) imply that:

closRk(x0) = clos R̄k(x0)

for all k ≥ k0.
Moreover, since ∂

∂u
ψk,x[u] is analytic also with respect to the x-variable, this partic-

ular k0 works also for an open dense set of states x ∈ X. Thus, under these assumptions,
we have that:

closRk(x) = clos R̃k(x) = clos R̄k(x)

for all k ≥ k0 and for almost all x ∈ X.

3.1. Regular Points. We call x a regular point if ρ̄x is constant in a neighbourhood
of x. The following fact will be useful later; it is of course a well-known general fact about
smooth mappings.

Lemma 3.3. The regular points form an open dense subset of X.
Proof. Let

ρ̄ = max
x∈X

ρ̄x .
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We have ρ̄ ∈ {0, . . . , n}. We will prove our thesis by induction on ρ̄.
If ρ̄ = 0, then each x ∈ X is a regular point, thus the statement is true.
Let ρ̄ > 0. Define

X1 := {x ∈ X | x is a regular point and ρ̄x = ρ̄} ,
Y1 := int {X \X1} .

Then X1 and Y1 are open. Moreover X1
⋃
Y1 is dense in X, since its complement is the

boundary of X1 which is a nowhere dense set. If we call

ρ̄1 = max
x∈Y1

ρ̄x

we have ρ̄1 < ρ̄.
Thus, applying the inductive assumption to (ρ̄1, Y1), we have that the set of regular

points in Y1, denote it by Yr, is dense in Y1. But since the set of regular points of X is
given by X1

⋃
Yr and X1

⋃
Y1 is dense in X, then X1

⋃
Yr is also dense in X.

Note that, in the particular case in which the system is analytic, then in the above
proof the set X1 is already dense, because the rank is less then ρ̄ if and only if certain
determinants, which are analytic functions of x, vanish and this can happen only in a
nowhere dense set.

4. More Results for Analytic Systems. In this section we always assume the
system Σ to be analytic.

Lemma 4.1. Suppose that for a fixed x ∈ X there exists a sequence of elements
{xnk} and some y ∈ X so that dimL+(y) = n, such that:

1. xnk ∈ Rnk(x), with nk →∞,
2. xnk → y.

Then the system is forward accessible from x (i.e. x 6∈ B+).
Proof. Since xnk → y and dimL+(y) = n there is some integer k0 ≥ 0 such that

dimL+(xnk) = n for all k ≥ k0. But for k sufficiently large we know (by Proposition
(3.2)) that

xnk ∈ clos R̃nk(x).

Thus there exists some z ∈ X such that z ∈ R̃nk(x) and dimL+(z) = n. So we can
conclude forward accessibility from x by (4).

Remarks 4.1.

1. The result is also true if the weaker assumption dim Γ+(y) = n is made, but we
shall apply it in the above form.

2. If x and y are as in the previous Lemma, and U is any open neighbourhood of
y then, in particular, we have that R(x) ∩ U is also open.

3. If for a fixed x ∈ X there exists a sequence of elements {xnk} such that xnk ∈
Rnk(x), with nk → ∞ and xnk → x then, by the previous Lemma, we can
conclude that forward accessibility from x is equivalent to dimL+(x) = n. We
will see later that in dimension 1 this equivalence is always true, but it can fail
in higher dimensions.
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For each x ∈ X, we will denote by yk0,x the image under ψk,x(·) of the zero control;
i.e.

yk0,x = ψk,x(0, . . . , 0︸ ︷︷ ︸
k−times

).

Lemma 4.2. Suppose that x, y ∈ X are so that:
1. the system is transitive from y, (or equivalently, dimL(y) = n,)
2. there exists a sequence {ynk0,x} with nk →∞ such that ynk0,x → y.

Then

dimL+(x) = n.

Proof. Choose n vector fields v1, . . . , vn in L such that

{v1(y), . . . , vn(y)}

is a basis for L(y).
As in the proof of Proposition 4.2 in [6], we can assume that the vi’s involve Lie

brackets of a finite numbers of vector fields of the form Ad
kj
0 X

+
uj

, with kj ∈ ZZ. Choose a
positive integer k0 so that kj + k0 ≥ 0 for all such j.

Since the vi’s are linearly independent at y, they are still linearly independent in
some neighbourhood Uy of y. By assumption (2), there is some nk so that ynk0,x ∈ Uy and
nk ≥ k0.

Applying the operator Adnk0 to the vi’s, there result n linearly independent vectors
in L+(x), as desired.

4.1. Poisson Stability. Recall that if Y is a vector field on a manifold M , one says
that x ∈M is a positively Poisson stable point for Y if and only if for each neighbourhood
V of x and each T ≥ 0 there exists some t > T such that etY (x) ∈ V , where etY (·)
represents the flow of Y .

Analoguosly, one can define positive Poisson stability in discrete time, as follows:
Definition 4.1. Let f : X → X be a global diffeomorphism. The point x ∈ X is

positively Poisson stable if and only if for each neighbourhood V of x and each integer
N ≥ 0 there exists some integer k > N such that fk(x) ∈ V .

Theorem 4.3. Let x ∈ X be a positively Poisson stable point for f0 = f(·, 0). Then
transitivity from x implies forward accessibility from x.

Proof. Positive Poisson stability from x implies the existence of a sequence {ynk0,x},
with nk →∞, convergent to x. Thus the result follows immediately combining Lemmas
(4.1), (4.2) (applied with y = x).

4.2. Compact State Space. For each k ≥ 0 we define the following sets:

Ck(x) := { y | y;
k
x},

i.e. the set of states controllable to x in (exactly) k steps, and

C(x) =
⋃
k≥0

Ck(x).
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A system is backward accessible from x if and only if intC(x) 6= ∅.
Theorem 4.4. Let Σ be a discrete time, analytic, invertible system, and assume

that the state space X is compact.
Then, Σ is transitive if and only if it is forward accessible.
Proof. By [6], Theorem 3, it will be enough to show that dimL+(x) = n for all

x ∈ X. Fix any x ∈ X, and consider the sequence

yl0,x = ψl,x(0, . . . , 0).

Then since X is compact (and second countable) there exists a subsequence {ylk0,x} which

converges; let y be so that ylk0,x → y. Since Σ is transitive, dimL(y) = n, so, by Lemma
(4.2), dimL+(x) = n as wanted.

Remark 4.1. Notice that, in the previous Theorem, the blanket assumption of
connectedness of the state space X is not needed. In particular, the result holds if the
orbit from a state x is compact.

Remark 4.2. Clearly, using the same arguments as in Theorem (4.4), we also have
that, if the state space is compact, then transitivity from all x ∈ X is equivalent to
backward accessibility from all x ∈ X. We will not use this fact, however. Recall that
for a space Z with a σ-algebra F and a finite measure µ, we say that a measurable
transformation T : Z → Z is measure-preserving if for every A ∈ F we have µ(T−1A) =
µ(A).

The following controllability result is an analogue for discrete-time systems of the
result in [7]. The proof is very similar, but it uses the facts just established.

Proposition 4.5. Assume that the state space X is a compact Riemannian analytic
manifold, and that for all u ∈ U the map fu is a measure preserving transformation (for
the natural measure in X). Then Σ is transitive if and only if Σ is controllable.

Proof. We need only to prove that transitivity implies controllability.
For each u, since fu is a measure preserving map, by the Poincaré Recurrence The-

orem the set of positively Poisson stable points for fu is known to be dense in X.
Let x, y ∈ X; we need y ∈ R(x). By Theorem (4.4), we know that Σ is both forward

and backward accessible from x and y. Choose x̄ ∈ intR(x) and ȳ ∈ intC(y); since Σ is
transitive there exist k, (uk, . . . , u1), and (εk, . . . , ε1), with each ui ∈ U and εi = 1 or −1,
such that:

f εkuk◦ . . . ◦f
ε1
u1

(x̄) = ȳ.

Let l = number of εi = −1. We will show by induction on l the following fact:
there exist x̃ ∈ intR(x) and ỹ ∈ intC(y) such that ỹ ∈ R(x̃).

Clearly the previous statement implies our thesis.
If l = 0 then the statement holds with x̃ = x̄ and ỹ = ȳ. So let l > 0 and let i be

the first index such that εi = −1. Define

xi = fui−1
◦ . . . ◦fu1(x̄)

and

yi = f−1
ui

(xi) .
10



Since ȳ ∈ intC(y), there exists a neighbourhood V of yi such that

f εkuk◦ . . . ◦f
εi+1
ui+1

(V ) ⊆ C(y) ;

let W = fui(V ). Since x̄ ∈ intR(x) we can assume (taking V smaller if necessary) that
W ⊆ R(x).

Choose zi ∈ W positively Poisson stable for fui ; then there exists some n > 1 such
that fnui(zi) ∈ W and the following properties hold:

• fn−1
ui

(zi) = f−1
ui
◦fnui(zi) ∈ V ,

• ŷ = f εkuk◦ . . . ◦f
εi+1
ui+1

(zi) ∈ intC(y).
So we have constructed a trajectory joining zi ∈ intR(x) to ŷ ∈ intC(y) with a number
of negative steps strictly less than l; the statement follows by induction.

Remark 4.3. The result obtained in the previous Proposition can be applied to
any discrete-time system Σ that arises through the time-sampling of a continuous-time
system, if the vector fields in the right hand side of the differential equation are conserva-
tive. The latter happens for Hamiltonian systems; see for instance [9] for many examples
of such Hamiltonian control systems, and the last section of [10] for conditions under
which transitivity is preserved under sampling.

5. Accessibility Almost Everywhere. For analytic systems, we say here that a
property holds for “almost all” x ∈ X if it holds on a set which is the complement of the
set of zeroes of a nonzero analytic function; notice that such a set is open dense and its
complement has zero measure.

Lemma 5.1. Let Σ be an n-dimensional, discrete-time, invertible and analytic sys-
tem. Then the following are equivalent:

1. Σ is transitive from almost all x ∈ X.
2. dimL(x) = n for almost all x ∈ X.
3. Σ is forward accessible from almost all x ∈ X.
4. dimL+(x) = n for almost all x ∈ X.

Proof. We will show (1)→ (2)→ (4)→ (3)→ (1).
(1)→ (2) This is a consequence of Theorem 4 in [6].
(2) → (4) Since the system is analytic, and X is connected it will be enough to

show that there is at least one x with dimL+(x) = n, because the set where this property
holds is either empty or open and dense. To show that there exists such an x we will use
the same procedure used in proving Lemma (4.2).

Fix any y ∈ X for which dimL(y) = n, and let v1, . . . , vn ∈ L be so that

{v1(y), . . . , vn(y)}

is a basis for L(y). Assume that the vi’s involve vector fields of the form

Ad
kj
0 X

+
uj
,

with kj ∈ ZZ, and choose a positive integer k0 so that kj + k0 ≥ 0 for all such j. Applying
the operator Adk0

0 to the vi’s, there result n linearly independent vectors in L+(x), where
x := f−k0

0 (y). Thus dimL+(x) = n.
11



(4)→ (3) Again by analyticity, it will be sufficient to find at least one x form which
Σ is forward accessible. Choose x̄ regular and let k, u = (uk, . . . , u1), and z̄ be such that:

ψk,x̄(u) = z̄ and ρk,x̄(u) = ρ̄x̄.

Let W be some neighbourhood of x̄ so that

ρk,x(u) ≥ ρk,x̄(u) = ρ̄x̄

for each x ∈W . As x̄ is regular

ρ̄x̄ = ρ̄x ≥ ρk,x(u),

so there is equality, ρk,x(u) = ρk,x̄(u). Define

U = fu(W );

since fu is a diffeomorphism, U is open. Moreover, by maximality of the rank, we have:

U ⊆ R̃k(W ).

Since dimL+(x) = n for almost all x, we can choose some z ∈ U for which dimL+(z) = n.
Let

y := f−1
u (z) ∈W.

Note that then z ∈ R̃k(y) and dimL+(z) = n.
We can conclude forward accessibility from y by (4).
(3)→ (1) This is clear.
Remarks 5.1. (1) Since Σ is analytic, in each of the previous statements we can

substitute “there exists x ∈ X” instead of “for almost all x ∈ X.”
(2) Notice that, in general, the open dense sets in which the previous statements

hold are not the same, except for those in parts (1) and (2). In particular, if we denote

B := {x | dimL(x) < n},

we have:
• B = {x | x is not transitive },
• B ⊆ B+

L ⊆ B+,
and the previous inclusions can be proper. For example, for the system described in
example (6.1) below we have:

B = ∅
B+
L = { (k, y) | k ≥ 1 , k ∈ ZZ, −k ≤ y ≤ k }

B+ = { (k, y) | k ≥ 0 , k ∈ ZZ, −k ≤ y ≤ k } = B+
L

⋃
{(0, 0)}.

(3) Let L− be the Lie algebras defined in the same way as L+, but using the
vector fields X−u,i instead of X+

u,i, and k ≤ 0 instead of k ≥ 0. Given this definition, the
conclusions of Lemma 5.1 hold substituting (3) and (4) with the following properties:

(3’) Σ is backward accessible from almost all x ∈ X.
(4’) dimL−(x) = n for almost all x ∈ X.

12



5.1. Nonconnected Orbits. Given any system Σ, its state space can be parti-
tioned into invariant submanifolds, the orbits. Since the system restricted to each orbit
is transitive, one would like to conclude that relative to each orbit there is forward ac-
cessibility from almost every state. Unfortunately, this conclusion is false in general
(see example (5.1) below), because orbits are in general not connected. We can prove
this fact, however, in the particular case of orbits with at most finitely many connected
components, as follows from the next result.

Proposition 5.2. Let Σ be an n-dimensional, discrete-time, invertible and analytic
system, and assume that the state space X has finitely many connected components. If
Σ is transitive then it is forward accessible from almost all x ∈ X.

Proof. Partition X =
⋃l
i=1 Xi, into disjoint nonempty open connected subsets. Note

that, if x ∈ Xi and f(x, u) ∈ Xj, then since Xi × U is connected we have that

f(Xi × U) ⊆ Xj,(6)

by continuity of f . Then for each i there is some j(i) so that:

fu(Xi) ⊆ Xj(i) i = 1, . . . , l,

for every u ∈ U .
Fix now any u ∈ U . Since fu(X) = X, necessarily

⋃l
i=1 Xj(i) = X. As fu is a

diffeomorphism of X, the Xj(i) are all distinct and fu(Xi) = Xj(i). Since Σ is transitive,
we can conclude that for any p = 1, . . . , l − 1, denoting by

fpu = fu, . . . , u︸ ︷︷ ︸
p−times

,

the following holds:

fpu(Xi) 6= Xi ∀ i = 1, . . . , l.(7)

If this were not the case and there exists such p and i, then applying (6) p-times we
would have:

fu1,...,up(Xi) = Xi

for all (u1, . . . , up) ∈ Up. Thus the set

p−1⋃
j=0

f ju(Xi)

will be an invariant set different from X, which contradicts the assumption that Σ is an
orbit. Moreover from (7), since l is finite, we can conclude that:

fu1,...,ul(Xi) = Xi ∀ i.(8)

13



By repeating the arguments used in the proof of the Lemma 5.1 (2→ 4) we conclude
that there exists x ∈ X such that dimL+(x) = n. Assume that x ∈ Xi. Since Xi is
connected we have:

dimL+(y) = n from almost all y ∈ Xi.

Choose x̄ ∈ Xi, x̄ regular and let k, u = (uk, . . . , u1), and z̄ be such that:

ψk,x̄(u) = z̄ and ρk,x̄(u) = ρ̄x̄.

By inequality (2) we can assume that k is a multiple of l. Thus, by (7), we get that
z̄ ∈ Xi. Now, we can repeat the arguments used in the proof of the Lemma 5.1 (4→ 3)
and conclude that Σ is forward accessible from almost all x ∈ Xi.

To conclude that Σ is forward accessible from almost all x ∈ X it is enough to notice
that, for any j 6= i, (7) implies that there exists p such that:

fu1,...,up(Xj) = Xi.

Example 5.1. Consider the following analytic system, with X = IR2, U = IR, and
equations:

x+ = x+ 1

y+ = y + uh(x) ,

where h(x) is any analytic function whose zeros are exactly at the positive integers
{1, 2, 3, . . .}. This system is easily seen to be invertible. Let z0 = (0, 0). Then it is easy
to verify that the orbit O(z0) is as follows:

O(z0) =
⋃
i∈ZZ

Ri,

Ri = { (i, y) | y ∈ IR }.

If we restrict the system to this orbit, the restricted system is not forward accessible from
any the points in Ri, for each i = 1, 2, 3, . . .. This is because there it holds that h(x) = 0,
so z+ and z must have the same y-coordinate.

6. Low-Dimensional Cases. In this section we make some remarks about one-
and two-dimensional systems.

6.1. Dimension One. There we consider systems for which the state space X is
of dimension one. The pointwise versions of [6], Theorem 3, hold for these systems as
follows.

Lemma 6.1. Let Σ be as above, and pick x ∈ X. Then:
14



1. if Σ is smooth then
Σ is forward accessible from x if and only if dim Γ+(x) = 1,

2. if Σ is analytic and U is connected then
Σ is forward accessible from x if and only if dimL+(x) = 1.

Proof. (1) The necessary part follows from part (a) of Theorem 6 in [6], so we will
prove sufficiency. If Σ is not forward accessible from x then f(x, u) must be independent
of u. Moreover if y = fuk,...,u1(x), since Σ is also not forward accessible from y, also

f(y, u) = f(fuk,...,u1(x), u)

must be independent of u. Thus:

Aduk,...,u1X
+
u0

(x) =
∂

∂v

∣∣∣∣∣
v=0

f−1
uk,...,u1

◦f−1
u0
◦fu0+v◦fuk,...,u1(x) = 0

which implies dim Γ+(x) = 0.
(2) The necessary part follows from part (b) of Theorem 6 in [6]. Sufficiency is a

consequence of (1), since L+(x) ⊆ Γ+(x).
Lemma 6.2. Let Σ be a one-dimensional, discrete-time, invertible system, and pick

any x ∈ X so that Σ is transitive from x. Then, either Σ is forward accessible from x or
Σ is backward accessible from x.

Proof. Suppose that neither conclusion holds.
We claim that, for each u ∈ U , Σ is not forward nor backward accessible from

y = fu(x). Since x is not forward accessible, f(x, u) is independent of u. Thus y = fu(x)
for all u ∈ U , so also

f−1
u (y) = x for all u ∈ U.

It follows that C1(y) = x, which implies that

Ck(y) = Ck−1(x) for all k ≥ 1.

Thus if Σ would be backward accessible from y also Σ would be backward accessible from
x. Clearly, forward accessibility from y would imply forward accessibility from x (in any
dimension). So the claim is proved.

With the same arguments we can prove that Σ is not forward nor backward accessible
from z = f−1

u (x) for all u ∈ U .
Now we want to prove that dim Γ(x) = 0, which implies that Σ in not transitive

from x. In order to do that, we will show that:

Adεk,...,ε1uk,...,u1
Xσ
u0

(x) = 0

for all k ≥ 0, (uk, . . . , u1), εi = 1 or −1, σ = 1 or −1, and for all x which are neither
forward nor backward accessible.

We will use induction on k. Take first k = 0.
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• If σ = 1:

X+
u0

(x) =
∂

∂v

∣∣∣∣∣
v=0

f−1
u0
◦fu0+v(x) = 0

since f(x, ·) is independent of u (Σ is not forward accessible from x).
• If σ = −1:

X−u0
(x) =

∂

∂v

∣∣∣∣∣
v=0

fu0◦f
−1
u0+v(x) = 0

since f−1(x, ·) is independent of u (Σ is not backward accessible from x).
Take now any k > 0 and note that:

Adεk,...,ε1uk,...,u1
Xσ
u0

(x) = (df εkuk(x))−1Adεk−1,...,ε1
uk−1,...,u1

Xσ
u0

(f εkuk(x)).

From the first part of the proof, we have that Σ is also neither forward nor backward
accessible from f εkuk(x), so, by inductive assumption, this last vector is zero.

Remark 6.1. A consequence of the two previous Lemmas is that, for each x:
1. dimL(x) = 1 if and only if dimL+(x) = 1 or dimL−(x) = 1.
2. dim Γ(x) = 1 if and only if dim Γ+(x) = 1 or dim Γ−(x) = 1.

The result in Lemma (6.2) is true only pointwise. In fact we can find a one-
dimensional, analytic system Σ which is transitive but is neither forward nor backward
accessible. One example of such a system is as follows.

Consider the following system:

x+ = 1 + x+
u

2
g(x)(9)

with X = IR, U = [−1, 1], and where g(x) is the following function:

g(x) =
sin(πx)

πx
(10)

It is easy to verify that |g′(x)| ≤ 1 for all x ∈ IR. Moreover, g(x) = 0 if and only
if x ∈ ZZ \ {0}. Since |g′(x)| ≤ 1, this system is invertible. Moreover the following
properties hold and are easily verified:

1. Σ is transitive,
2. if x = 1, 2, 3, . . . then Σ is backward accessible but not forward accessible from
x,

3. if x = −1,−2,−3, . . . then Σ is forward accessible but not backward accessible
from x.

6.2. Dimension Two. We now show that both the results in Lemmas (6.1) and
(6.2) are false if the dimension of the state space X is greater than one, even if the system
is invertible, analytic and with a connected control space U.

The following example illustrates these facts.
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Example 6.1. Consider the discrete-time, analytic system with X = IR2, U =
[−1, 1]2, and equations:

x+ = x+ 1 +
u

2
sin(y)g(x)

y+ = y + v

where g(x) is the function in (10).
This system is invertible. In fact the determinant of the Jacobian matrix of the map

fu,v(x, y) is given by:

1 +
u

2
sin(y)g′(x).

Since u ∈ [−1, 1], | sin(y)| ≤ 1 and |g′(x)| ≤ 1,

|u
2

sin(y)g′(x)| < 1

so the determinant is nonzero for all x, y. Moreover it is easy to verify that for each
(u, v) ∈ U , the map fu,v(·, ·) is bijective.

We wish to study the behavior of this system when starting from x = 0, y = 0. Let
z0 = (0, 0). We prove the following properties:

1. the system is not forward accessible from z0,
2. the system is not backward accessible from z0,
3. dimL+(z0) = 2,
4. the system is transitive from z0.

Proof.
(1) This follows from the equality

Rk(z0) = { (k, y) | − k ≤ y ≤ k }

which holds for each k ≥ 1 and it is clear from the equations.
(2) It will be sufficient to show that:

Ck(z0) = { (−k, y) | − k ≤ y ≤ k }(11)

First note that if (xk, yk) ∈ Ck(z0) then we can write yk + v1 + . . .+ vk = 0 with all
|vi| ≤ 1, so |yk| ≤ k.

To prove (11), it is now sufficient to notice the following. For any fixed u ∈ [−1, 1]
and any y ∈ IR, the function

x
h7−→ x+ 1 +

u

2
sin(y)g(x)

is invertible. Moreover

h−1(−k + 1) = −k for all k ≥ 1,
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independently of u and y. Thus x = −k is the only solution of h(x) = −k + 1, for all
u, y, and we have proved

Ck(z0) ⊆ { (−k, y) | − k ≤ y ≤ k }.

The other inclusion is obvious.
(3) Consider the vector fields

X+
(u,v),1(z) = (df(u,v)(z))

−1 ∂

∂ε

∣∣∣∣∣
ε=0

f(u+ε,v)(z)

and

X+
(u,v),2(z) = (df(u,v)(z))

−1 ∂

∂ε

∣∣∣∣∣
ε=0

f(u,v+ε)(z) .

Fix (u, v) = (0, 0). Then:

df(0,0)(z) =

(
1 0
0 1

)

for all z ∈ IR2,

X+
(0,0),1(z) =

(
sin(y)g(x)

2

0

)
,

and

X+
(0,0),2(z) =

(
0
1

)
.

So:

[
X+

(0,0),1, X
+
(0,0),2

]
(z) =

(
cos(y)g(x)

2

0

)
.

In particular,

X+
(0,0),2(z0) =

(
0
1

)

and

[
X+

(0,0),1, X
+
(0,0),2

]
(z0) =

(
1/2
0

)
,

so dimL+(z0) = 2 as desired.
(4) Transitivity at z0 is a consequence of (3) since dimL+(z0) = 2 implies

dimL(z0) = 2.
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7. Controllability Sets. The next definition is a precise analogue of that in [3],
except that we make the assumption of nonempty interior.

Definition 7.1. A set D ⊆ X is called a precontrollability set if

D ⊆ closR(x) for all x ∈ D

and intD 6= ∅. A precontrollability set which is maximal with respect to set inclusion
is called a controllability set . Note that if D is a precontrollability set, then in D the
system Σ is “almost” controllable, in the sense that if x, y ∈ D then from x it is possible
to reach any neighbourhood of y.

Lemma 7.1. Let D ⊆ X be a controllability set. Pick any two elements x̄, ȳ in
intD. Then, for each sequence (u0, . . . , uT ) ∈ UT+1 such that

fuT ◦ . . . ◦fu0(x̄) = ȳ

we have that, necessarily, also

fuk◦ . . . ◦fu0(x̄) ∈ intD for k = 0, . . . , T − 1.

Proof. Let x̄, ȳ , u0, . . . , uT be as in the statement and let E be the following set:

E := { fuk◦ . . . ◦fu0(x̄) , k = 0, . . . , T − 1 }.

We will first prove that E ⊆ D, by showing that D
′

= D
⋃
E is again a precontrollability

set and using that D is maximal. For this, we must prove that:

D
′ ⊆ closR(x) for each x ∈ D′ .

Observe that E ⊆ R(x̄) ⊆ closR(x̄) and ȳ ∈ R(y) ⊆ closR(y) for all y ∈ E .
Thus:

• E ⊆ closR(x̄) ⊆ closR(closR(x)) = closR(x) ∀x ∈ D
• D ⊆ closR(x) ∀x ∈ D
• If y ∈ E then D ⊆ closR(ȳ) ⊆ closR(closR(y)) = closR(y)

and E ⊆ closR(x̄) ⊆ closR(closR(ȳ)) ⊆ closR(y).
Thus: D

⋃
E = D

′ ⊆ closR(x) ∀x ∈ D′ .
So we have proved that, for any two points x̄, ȳ in intD and any trajectory joining

them, all the intermediate states must be in D. We now prove that such intermediate
points must be in intD.

Pick any x̄, ȳ, u0, . . . , uT as above. Let k ∈ {0, . . . , T−1} and z̄ = fuk◦ . . . ◦fu0(x̄). By
continuity of f−1

u0
◦ . . . ◦f−1

uk
and of fuk+1

◦ . . . ◦fuT , there exists some open neighbourhood
V of z̄ such that:

f−1
u0
◦ . . . ◦f−1

uk
(V ) ⊆ intD and fuk+1

◦ . . . ◦fuT (V ) ⊆ intD.

Pick any z ∈ V . For such a z,

z = fuk◦ . . . ◦fu0(x)
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for some x ∈ intD and

y = fuk+1
◦ . . . ◦fuT (z) ∈ intD.

Thus, applying the first part of the proof to x and y (rather than to x̄ and ȳ), it follows
that z ∈ D. We conclude that V ⊆ D, so z̄ is in intD, as desired.

Lemma 7.2. Let D ⊆ X be a precontrollability set. Then we have:

D ⊆ closFk(intD) for all k = 0, 1, 2, . . .

where

Fk(intD) =
⋃
l≥k

Rl(intD)

Proof. We proceed by induction on k. The case k = 0 follows directly from the
defintion of controllability set. So let k ≥ 1 and pick any x ∈ D.

Choose y ∈ intD, y 6= x. By inductive assumption there exists a sequence yn → y

with

yn ∈ Fk(intD).

For n̄ sufficiently large, yn̄ ∈ D (since y ∈ intD) and yn̄ 6= x (since y 6= x), where each
yn̄ is of the form

yn̄ = ψl,z(u)

with z ∈ intD, l ≥ k, for some u ∈ U l. Pick one such n̄. Since x ∈ closR(yn̄), there
exist a sequence {tn} and a sequence {zn} so that

zn ∈ Rtn(yn̄) and zn → x.

Since yn̄ 6= x we can assume tn ≥ 1 for all n. Thus

zn ∈ Rl+tn(z) ⊆ Fk+1(intD),

which implies x ∈ closFk+1(intD).
Remark 7.1. The conclusion of the previous lemma can be rephrased by saying

that:

D ⊆ limkR
k(intD)

where for any family of sets Ek , limkEk =
⋂∞
k=0

⋃
l≥k El.

Lemma 7.3. Let D ⊆ X be a controllability set. Then :

closD = clos intD

Proof. Let x ∈ D. We only need to prove that for any neighbourhood W of x,

W ∩ intD 6= ∅
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Pick any such W and choose any y ∈ intD. Since y ∈ closR(x), we can find z = ψk,x(u)
for some k ≥ 0 and some u ∈ Uk, such that z ∈ intD. Let Uz be a neighbourhood of z
contained in D. Then, by continuity, there exists a neighbourhood Ux of x such that for
all y ∈ Ux, ψk,y(u) is in Uz and so, in particular, in intD.

Let Wx = Ux ∩W. Choose y′ ∈ intD. Since x ∈ closR(y′), we can find k
′
, u

′
such

that

x̄ := ψk′,y′(u
′) ∈Wx.

Let ū be the concatenation of u′ and u. Since x̄ ∈ Ux,

ψk,x̄(u) ∈ intD.

Thus

ψk+k′,y′(ū) ∈ intD,

so by Lemma (7.1), x̄ ∈ intD. Hence

Wx ∩ intD 6= ∅,

so W ∩ intD 6= ∅ as wanted.
Definition 7.2. Let x ∈ X and S ⊆ X. We say that x is forward accessible in S

(resp. backward accessible in S ) if

int (R(x) ∩ S) 6= ∅

(resp. int (C(x) ∩ S) 6= ∅).
If we simply say that x is forward (backward) accessible, we mean forward (backward)

accessible in X.
Lemma 7.4. Let S ⊆ X and define:

Sf = { x ∈M | x is forward accessible in S },

then Sf is open.
Proof. If Sf = ∅, then it is trivially open; thus assume Sf 6= ∅. Pick any x ∈ Sf .
By assumption there exists W ⊆ S open such that W ⊆ R(x); therefore there exists

k such that W ∩Rk(x) has nonzero measure. Let

Uk
W = { u | u ∈ Uk, and ψk,x(u) ∈ W },

then Uk
W is open and the image of

ψk,x|UkW

has nonzero measure. It follows, by Sard’s Theorem, that there exists u ∈ Uk such that
ρk,x(u) = n. We may assume, without loss of generality, that u ∈ intUk.
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Now pick any neighbourhood V of x such that ψk,V (u) ⊆ W and still ρk,y(u) = n

for all y ∈ V . By the implicit mapping theorem, V ⊆ Sf ; therefore Sf is open.
We assume from now on that the system Σ to be analytic and transitive. In this

case, we can conclude the following important property of precontrollability sets.
Theorem 7.5. Let D ⊆ X be a precontrollability set. Then every point of D is

forward accessible in D.
Proof. Since Σ is transitive and analytic, by Lemma 5.1 we have that there exists

an open dense set of points for which dimL+(x) = n. If we intersect this set with intD
then this intersection, which we denote by W , is open.

Pick any x ∈ D, and y in W , with x 6= y. Now, we will construct a sequence of
elements yn such that

yn → y, yn ∈ Rkn(x) and kn →∞ as n→∞.

Then, using Lemma 4.1 and its succesive Remarks, we can conclude that from x it is
possible to reach an open set within any neighbourhood of y, i.e. since y ∈ intD, x is
forward accessible in D, as desired.

To construct the yn’s we proceed as follows. Let’s denote by Wn a neighbourhood of
y. Since y ∈ closR(x), we can find y1 ∈ W1, y1 6= y, and y1 ∈ Rk1(x) where (since y 6= x)
we can assume k1 ≥ 1.

Now we proceed by induction. Suppose that we have found y1, . . . , yn such that:

yi ∈Wi, yi 6= y, yi ∈ Rki(x) and ki ≥ i for i = 1, . . . , n.

Since y ∈ closR(yn) we can find yn+1 ∈Wn+1 such that

yn+1 6= y, yn+1 ∈ Rl(yn)

with l ≥ 1. Since yn ∈ Rkn(x),

yn+1 ∈ Rkn+l(x)

and kn+1 = kn + l ≥ n+ 1. Thus kn →∞ as n→∞; moreover, we can choose the Wi’s
in such a way that yn → y.

The definition of precontrollability set is not reversible in time, so we cannot conclude
backward accessibility from every point. However, the next result provides backward
accessibility from a dense subset.

Proposition 7.6. Let D ⊆ X be a controllability set. Then there exists some
(necessarily nonempty) open subset E ⊆ D such that:

1. closE = closD,
2. if y ∈ E then y is backward accessible in D.

Proof. Since Σ is transitive and analytic, by Lemma 5.1 applied to the “inverse”
system

x(t+ 1) = f−u (x(t)),
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we know that there exists an open dense set from which we have backward accessibility.
Moreover, there exists some integer k0 such that the set G of states x ∈ X for which
intCk0(x) 6= ∅ and

clos intCk(x) = closCk(x)

for all k ≥ k0 is itself open dense (Remark 3.2). Consider first the open set

E
′
= intD ∩G.

We claim that E
′

is open and

closE
′
= clos intD.

In order to show this, it is enough to establish that intD ⊆ closE ′. So take any x ∈ intD.
By density of G, there exists some sequence {yn} with yn ∈ G for all n, yn → x. Thus

yn ∈ intD ∩G

for all large enough n, and this shows that x ∈ closE ′. Finally, let:

E = E
′ ∩ Fk0(intD)

where Fk0(intD) is defined as in Lemma (7.2). Then E is also open, since Fk(intD) is
open for any k. Moreover, using the result in Lemma (7.2) (i.e. D ⊆ closFk0(intD)) and
the same arguments used before we have

closE = closE ′ = clos intD.

Thus, by Lemma (7.3),

closE = closD.

So E satisfies property (1). We prove next that it also satisfies (2).
Pick y ∈ E. Since y ∈ Fk0(intD) then there exists x ∈ intD so that y ∈ Rk(x) for

some k ≥ k0. This means that x ∈ Ck(y). Since y ∈ G,

x ∈ clos intCk(y).

Thus, since x ∈ intD, we can find some z ∈ intD ∩ intCk(y), which means that y is
backward accessible in D. Thus (2) is proved.

Lemma 7.7. Let D ⊆ X be a controllability set and let E be any set as in the
conclusion of the previous Proposition. Then

E ⊆ R(x) for each x ∈ D.

Proof. Take any y ∈ E and x ∈ D. By the previous Proposition, there exists some
nonempty open set W ⊆ D ∩ C(y). Choose any z ∈ W . Since D is a controllability set,
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z ∈ closR(x), so there exists also z̃ ∈ R(x) ∩W . Thus z̃ ∈ R(x) and y ∈ R(z̃) (since
z̃ ∈ C(y)) imply y ∈ R(x).

Definition 7.3. For any set S ⊆ X, define:

Core (S) := { x ∈ intS | x is forward and backward accessible in S }.

Using Lemma (7.4) twice (once for Σ and another time for the “inverse” system x(t+1) =
f−u (x(t))), we can conclude the following.

Lemma 7.8. For any subset S ⊆ X, Core (S) is open. For a controllability set

D, we proved (see results in Theorem 7.5 and Proposition (7.6)) that Core (D) ⊇ E for
some E ⊆ D such that closE = closD. Thus we have:

clos Core (D) = closD for a controllability set D.(12)

Moreover the result in Lemma (7.7) can be rephrased as follows.
Proposition 7.9. If D is a controllability set, and E = Core (D), then E ⊆ R(x)

for all x ∈ D.

If D is a controllability set, then, by the previous results, Core (D) is a dense subset
of D in which we have exact controllability. Note that if Σ was a continuous time system
then Core (D) would have been equal to intD. However for discrete-time systems there
are controllability sets D for which Core (D) is strictly contained in intD, as it is shown
in the next example.

Example 7.1. Let us consider the discrete-time, analytic system with X = IR2, U =
[−1, 1]2, and equations:

x+ = x+ 1 + uy

y+ = y +
v

2
g(x)

where g(x) is the function in (10).
This system is invertible. In fact the determinant of the Jacobian matrix of the map

fu,v(x, y) is given by:

1− uv

2
g′(x).

Since u, v ∈ [−1, 1], and |g′(x)| ≤ 1,

|uv
2
g′(x)| ≤ 1/2

so the determinant is nonzero for all x, y. Moreover it is easy to verify that for each
(u, v) ∈ U , the map fu,v(·, ·) is bijective. It is also easy to prove that this system is
transitive.

For this system we can see that for all k ∈ IN with k ≥ 1 the following hold:
1. the points of the type (−k, 0) are not backward accessible,
2. the points of the type (k, 0) are not forward accessible.
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Let:

B = { (k, 0) | k ∈ IN, k ≥ 1 }.
Next we want to show that D = IR2 \B is a controllability set.

Notice that D is certainly maximal; in fact, no points in B could belong to a con-
trollability set, since they are not forward accessible. To prove that D satisfies:

D ⊆ R̄(ξ) for all ξ ∈ D(13)

we will prove the following:

IR2 \ { (k, y) | k ∈ ZZ, y ∈ IR } ⊆ R(ξ)(14)

which, by taking the closure in both sides, implies (13). Let F = { (k, y) | k ∈ ZZ, y ∈ IR }.
First we notice that, since | sin(π(x + 1))| = | sin(πx)|, if we apply to any (x, y) a

control sequence of the form:

ul = 0, vl = sign (g(x+ l − 1)),(15)

then, after k steps, we will reach the point:

xk = x+ k

yk = y +
| sin(πx)|

2π

k−1∑
l=0

1

|x+ l| .

Using this fact and the divergence of the series
∑
n 1/n we will prove (14).

Fix (x̄, ȳ) ∈ D and (x̃, ỹ) ∈ IR2 \F . Notice that, since (x̄, ȳ) 6∈ B, it is not restrictive
to assume:

g(x̄) 6= 0 and ȳ 6= 0.

First we choose ul, vl as in (15). Since g(x̄) 6= 0 there exists k such that yk > 1. Next
we apply a control sequence with all vl = 0 so as to reach a state (x′, y′) of the type:

x′ = x̃− n and y′ = yk

where n is a positive integer that will be chosen later. Notice that we can assume ỹ < y′.
Now we want to find a sequence of controls (0, vl) such that we get the state (x̃, ỹ)

in exactly n steps. It is clear that this is possible if and only if:

y′ − | sin(πx̃)|
2π

n−1∑
l=0

1

|x̃− n+ l| ≤ ỹ(16)

So we just have to choose n large enough such that (16) is satisfied. This is possible since
sin(πx̃) 6= 0 and:

n−1∑
l=0

1

|x̃− n+ l| =
n∑

m=1

1

|x̃−m|
is divergent. Thus D is a controllability set.

Notice that, for this controllability set D, Core (D) is strictly contained in D = intD.
In fact, none of the points of the type (−k, 0) with k a strictly positive integer, belongs
to Core (D).
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abilité des systèmes non linéaires en temps discret,” C.R. Acad. Sciences de Paris, 1983.

[6] Jakubczyk, B., and E.D. Sontag, “Controllability of nonlinear discrete-time systems: A Lie-algebraic
approach,” SIAM J. Control and Opt. 28(1990): 1-33.

[7] Lobry, C., “Controllability of nonlinear systems on compact manifolds,” SIAM J. Control 12(1974):
1-4.

[8] Mokkadem, A., “Orbites de semi-groupes de morphismes réguliers et systèmes non linéaires en temps
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