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1. Introduction

We study recurrent neural networks evolving either in discrete or in continuous time.
The dynamics of such systems can be described by a set of either difference or differential
equations of the following type (to simplify notations, we use the superscripts “+” and
“.” to denote time-shift and time-derivative respectively, and we omit the time arguments
t):

x+ ( or ẋ) = ~σ(Ax + Bu)
y = Cx,

(1)

with A ∈ IRn×n, B ∈ IRn×m, C ∈ IRp×n, and where ~σ(x) = (σ(x1), . . . , σ(xn)), with σ
a function from IR to itself. (For the continuous-time case, we always assume that the
function σ is globally Lipschitz, so that the existence and uniqueness of solutions for the
differential equation is guaranteed.)

We will consider the parameter identifiability problem, which asks about the possi-
bility of recovering the entries of the matrices A, B, and C from the input/output map
u(·) 7→ y(·) of the system. This question has been already addressed in [1] and in [2] (and,
for feedforward nets, in [6] and in [4]) where it is proved that, under appropriate mini-
mality assumptions, the zero-initial state i/o behavior determines, up to a small number
of symmetries, the weights of the model. In this paper we establish the same result for
arbitrary-initial state i/o maps. Moreover, we show that, for a generic subclass of these
models, the minimality conditions needed in order for the results to hold are exactly the
observability conditions found in the recent paper [3]. It is interesting to notice that,
inside this subclass, these observability conditions are also necessary for identifiability.

2. The activation function σ

Given any map σ : IR → IR, we say that σ satisfies the independence property (“IP”
from now on) if, for every positive integer l, nonzero real numbers b1, . . . , bl, and real
numbers β1, . . . , βl such that (bi, βi) 6= ±(bj, βj) ∀i 6= j , it must hold that the functions
1 , σ(b1x + β1) , . . . , σ(blx + βl) are linearly independent. The function σ : IR → IR
which appears in our model will always assumed to satisfy property IP and to be odd.
Given a matrix M , we denote by Mi the i−th row of M . For any two positive integer
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n, m, we let:

Bn,m =

{
B ∈ IRn×m

∣∣∣∣∣ Bi 6= 0 ∀ i = 1, . . . , n
Bi 6= ±Bj ∀ i 6= j

}
.

3. Statement of the main results

Assume we are given a σ-system Σ ≡ (A, B, C)σ (either in discrete or in continuous
time) initialized at a given state x0 (we will write Σ ≡ (A, B, C, x0)σ to denote the σ-
system Σ together with the initial state x0). Then we can associate to Σ an i/o map
as follows. In the discrete-time case, for any sequence of inputs u1, . . . , uk a sequence
of outputs y0 = Cx0, y1 . . . , yk is generated. In the continuous-time case for any control
function u(·) : [0, T ] → IRm (which we assume to be measurable essentially bounded),
after solving the differential equation with initial state x0 and denoting its solution with
x(t), we have a corresponding output function y(t) = Cx(t). Thus, in both cases, to the
given initialized system Σ ≡ (A, B, C, x0)σ we associate an i/o map:

λΣ,x0 :

{
(u1, . . . , uk) → (y0, . . . , yk) discrete

u(·) → y(·) continuous.

We say that two initialized σ-system Σ ≡ (A, B, C, x0)σ, and Σ̃ ≡ (Ã, B̃, C̃, x̃0)σ are i/o
equivalent if p = p̃, m = m̃, and λΣ,x0 = λΣ̃,x̃0

. We will study the problem of determining
when two given initialized σ-systems are i/o equivalent.

Let:

Λn =

{
T ∈ Gl (n)

∣∣∣∣∣ T = PQ with
P = permutation matrix ,
Q = Diag (β(1), . . . , β(n)), β(i) = ±1.

}
.

Definition 3.1 We say that two initialized σ-systems Σi = (Di, Ai, Bi, Ci, xi)σ, for i =
1, 2 are (sign-permutation) equivalent if n1 = n2 = n, and if there exists a matrix T ∈ Λn

such that:
A2 = T−1A1T, C2 = C1T, B2 = T−1B1, x2 = T−1x1.

Since σ was assumed to be odd, it is easy to see that two equivalent σ-systems are
i/o equivalent. Our aim is to show that generically also the converse holds. We say that
a subset of IRp is generic if it is nonempty and if its complement is the set of zeroes of a
finite number of polynomials in p variables. By a generic subset of σ-systems we mean a
generic subset of IRn2+nm+np when we identify the set of all σ-systems with IRn2+nm+np.

We first let S to be the subset of σ-systems (1) for which the matrix B is in Bn,m.
Notice that S is a generic subset of σ-systems.

We say that a subspace V of IRn is a coordinate subspace if it is of the type:

V = span { ei1 , . . . , eik },

where eij are the vectors of the canonical basis in IRn. For any pair of matrices (A, C) we
denote by Oc(A, C) the largest A-invariant coordinate subspace included in ker C. Next
Remark presents a simple procedure to compute Oc(A, C).
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Remark 3.2 For any σ-system Σ, we let:

I0(Σ) = { i | ∃ j ∈ {1, . . . , p} and cji 6= 0 },
Ik(Σ) = { i | ∃ l ∈ Ik−1(Σ) with ali 6= 0 },

and
I(Σ) =

⋃
k≥0 Ik(Σ),

Ic(Σ) = {1, . . . , n} \ I(Σ) .

Moreover, for each subset J ⊆ {1, . . . , n}, let VJ be the following coordinate subspace:

VJ = span { ej | j ∈ J } .

With these notations we have:

Proposition 3.3 Oc(A, C) = VIc(Σ).

A system Σ is said to be observable if for each two distinct initial states there exists
some control that gives different output when Σ is started at those states (for a precise
statement, both for discrete and continuous time systems, see e.g. [5]). Given these
definitions, the following result holds (see [3], Theorem 1):

Proposition 3.4 A system Σ ∈ S is observable if and only if ker A∩ker C =Oc(A, C)=0.

Now, we can state our main results, which will be proved in a later section.

Theorem 1 Assume that σ is an odd map which satisfies property IP, (and, for
the continuous-time case, it is globally Lipschitz). Let Σ ≡ (A, B, C, x0)σ and Σ̃ ≡
(Ã, B̃, C̃, x̃0)σ be two observable σ-systems in S. Then, these systems are i/o equivalent
if and only if they are equivalent.

Remark 3.5 Notice that, inside the class S, the observability condition is also necessary
in order to guarantee the implication

i/o equivalence ⇒ equivalence.

More precisely, if S0 ⊆ S is any class of systems so that this implication holds for any
pair of systems in S0 and initial states, then every system in S0 must be observable.
This is proved as follows. Assume that Σ ≡ (A, B, C)σ is not observable. By definition of
observability, there exist then two distinct states x1 and x2 which are not distinguishable.
This means precisely that Σ1 ≡ (A, B, C, x1)σ and Σ2 ≡ (A, B, C, x2)σ are i/o equivalent.
If the above implication would hold, then the systems must be equivalent. So there is
a T ∈ Λn such that TB = B and Tx2 = x1. But the fact that B ∈ Bn,m implies that
T is the identity. (In other words, the action of Λn on S is a free group action.) Thus
x1 = x2, a contradiction.
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Remark 3.6 It is also interesting to notice that, if a σ-system is not observable because
Oc(A, C) 6= 0, a reduction by unobservability is possible. It is only necessary to note
that one can induce a dynamics on the quotient space IRn/Oc(A, C), which can be done
because the subspace Oc(A, C) is an A-invariant coordinate subspace. More precisely,
the construction is as follows.

Let Σ ∈ S. If Oc(A, C) 6= 0, then after if necessary reordering variables, the equations
for Σ take the following block form. The first block of variables corresponds to a basis of
Oc(A, C), and has size n1 = dimension of Oc(A, C); the second set of variables has size
n2 = n− n1.

x+
1 = σ(A1x1 + A2x2 + B1u)

x+
2 = σ(A3x2 + B2u)

y = C2x2.

Then (A, B, C, (x1, x2))σ and Σ′ ≡ (A3, B2, C2, x2)σ are i/o-equivalent, for any initial
state x = (x1, x2) of the original system, and the second system has lower dimension.
The system Σ′ is again in S. Moreover, Σ′ is observable if ker A∩ ker C = 0. Indeed, the
choice of variables insures that Oc(A3, C2) = 0. Furthermore,

rank

 A1 A2

0 A3

0 C2

 = n

implies

rank
(

0 A3

0 C2

)
= n2

so the conclusion ker A3 ∩ ker C2 = 0 follows from ker A ∩ ker C = 0.
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