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Abstract

The goal of this thesis is to present, following the papers by F. Brunault [Bru07]

and the recent presentation of Bertolini-Darmon [BD], an explicit version of

Beilinson’s formula that relates the product of special values of the L-function

of an elliptic curve (at s = 0 and s = 2) and the complex regulator of an

anti-holomorphic differential for certain modular units.
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1 | Introduction

The main goal of this thesis is to present an explicit version of Beilinson’s

formula that relates the product of special values of the L-function of an elliptic

curve (at s = 0 and s = 2) and the complex regulator of an anti-holomorphic

differential for certain modular units. This result sits in the wide framework of

Beilinson’s conjecture, of which we will only consider a very special and explicit

case. The general theme in which these results and conjecture sit is the problem

of describing special values of L-series of motives by means of some of its relevant

arithmetic invariants, generally referred to as regulators.

As already remarked, in this thesis we will be only concerned with an ex-

plicit version of Beilinson’s theorem, following the basic references of F. Brunault

[Bru07] and the presentation (and generalization) of this result offered recently

by M. Bertolini and H. Darmon in [BD]. Therefore, we will not discuss gen-

eralities of motives, their L-functions and regulators. On the contrary, we will

present explicit (non holomorphic) Eisenstein series and define regulators in

terms of an explicit integral involving logarithmic derivatives of modular units

attached to these Eisenstein series.

In 1984 a Russian mathematician Alexander Beilinson proposed a vast gener-

alization of Birch and Swinnerton-Dyer like conjectures. As a result supporting

his conjectures, he proved that there is relation between complex regulator of

modular units and value of L-function. More precisely, the formula we are

interested in is (cf. [BD, Prop. 2.3]):

L∗(f, χ1, 2) · L∗(f, χ2, 1) = Cf,χ1,χ2 · regC{uχ, u(χ1, χ2)}(ηahf )

where the notation is as follows:

• f is the weight 2 modular form of level Γ0(N) attached by modularity to

an elliptic curve E, of conductor N which for simplicity we assume torsion
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free, defined over the field of rational numbers.

• χ1 and χ2 are two Dirichlet characters of conductors N1 and N2, respec-

tively, with N = N1N2;

• χ = χ̄1χ̄2 is primitive, and we suppose χ(−1) = 1;

• ηah
f is the anti-holomorphic differential attached to f ;

• Cf,χ1,χ2
is a non-zero explicit algebraic number.

Here it should be remarked that the constant Cf,χ1,χ2 arise from the com-

putation, it can be given explicitly, for instance for s = k
2 + l − 1 we have

Cf,χ1,χ2
= i2k−1

N l−1 . We will now describe more clearly the objects introduced

above, and present the main steps in the proof of this result.

Congruence groups and modular forms. For a positive integer N , we use

the usual symbols Γ0(N), Γ1(N) and Γ(N) to denote congruence subgroups of

SL2(Z) (see §5.2). Let Γ be one of the above groups. A modular form of weight

k with respect to Γ is, roughly speaking, a holomorphic function defined on an

upper complex half-plane: f : H → C, H := {z ∈ C : Im(z) > 0} such that

• f = (cz + d)−kf
(
az+b
cz+d

)
,

[
a b

c d

]
∈ Γ

• (cz+ d)−kf
(
az+b
cz+d

)
is holomorphic at infinity for all

[
a b

c d

]
∈ SL2(Z).

Modular forms of weight k with respect to Γ form a vector space over C. We

will denote this space by Mk(Γ). We will use the notation Mk(N,χ) for the

subspace consisting of f ∈Mk(Γ1(N)) such that

(cz + d)−kf

(
az + b

cz + d

)
= χ(d)f, γ =

(
a b

c d

)
∈ Γ0(N).

However, for our purposes we have to introduce another spaceMank (N,χ) that is

closely related to Mk(N,χ); this is defined as the vector space of real analytic

functions with the same transformation properties under Γ0(N) and having

bounded growth at the cusps of X0(N), the compact modular curve of level

Γ0(N) (this is defined as the compactification of the open Riemann surface
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Γ0(N)\H, and the action of SL2(R) on H is via fractional linear transforma-

tions; see also below).

An important subspace of Mk(Γ) is the space of modular forms vanishing at

infinity, called cusp forms. We will denote it by Sk(Γ) and Sk(N,χ). We will let

Sank (N,χ) be the subspace of Mank (N,χ) consisting of forms which have rapid

decay at cusps.

Eisentstein series - an important example of modular forms. One

of the most significant example of modular forms are Eisenstein series. For

Γ = SL2(Z) and weight k ≥ 3, k integer, Eisenstein series is defined:

Gk(z) =
∑
(c,d)

′ 1

(cz + d)k
, z ∈ H.

By the prime sign it is meant that the summation is over Z2 \ {(0, 0)}. It can

be showed that such a series has q-expansion:

Gk(z) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn

where

σk−1(n) =
∑
m>0
m|n

mk−1, q = e2πiz.

Note that we assumed k ≥ 3. With this assumption Eisenstein series defined

as above has uniform and absolute convergence and is a modular form. In the

thesis we shall also briefly describe the case k = 2. When k = 2 convergence of

Eisenstein series is only conditional and it fails to be a modular form. In general,

one can introduce much more complicated Eisenstein series. For instance they

can be defined on more variables or be attached to many Dirichlet characters.

For our purposes we will need in particular non-holomorphic Eisenstein series

and Eisenstein series attached to a pair of Dirichlet characters. Non holomorphic

Eisenstein series are defined to be:

Ẽk,χ(z, s) =
∑

(m,n)∈NZ×Z

′ χ−1(n)

(mz + n)k
· ys

|mz + n|2s
,

where z ∈ H, s ∈ C, χ a primitive Dirichlet character mod N . As a function of s

it is convergent for Re(s) > 1− k
2 and admits a meromorphic continuation to all

s ∈ C. As a function of z it transforms like a modular form on Γ0(N). Choosing
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s = 0 we get, Ẽk,χ := Ẽk,χ(z, 0). For k > 2, we also have Ẽk,χ ∈Mk(N,χ).

Now we shall define an Eisenstein series attached to a pair of Dirichlet char-

acters χ1 and χ2. We will not provide an explicit definition of this series but

present its q-expansion. First define:

δχ1 =

{
1
2 if N1 = 1

0 otherwise

and

σk−1(χ1, χ2)(n) =
∑
d|n

χ1(n/d)χ2(d)dk−1.

For k ≥ 1 and (χ1, χ2) 6= (1, 1), the q-expansion of normalized Eisentstein series

attached to Dirichlet characters χ1, χ2 is:

Ek(χ1, χ2)(z) = δχ1L(1− k, χ−1
1 χ2) +

∞∑
n=1

σk−1(χ1, χ2)(n)qn.

Here L(s, ψ) is the Dirichlet series attached to the character ψ, described in

Section. 4. In the thesis we shall only consider case k = 2.

Petersson scalar product. Let Γ be any congruence subgroup of SL2(Z) as

above. The corresponding modular curve is defined as the quotient space Γ\H:

Y (Γ) = {Γz : z ∈ H}.

Here, for γ =

[
a b

c d

]
∈ SL2(Z) and z ∈ H, we set

γ(z) =
az + b

cz + d
.

This is equipped with a structure of open Riemann surface. If Γ = Γ1(N) we

denote Y (Γ1(N)) = Y1(N). Let PN = Γ\(Q ∪ {∞}). Define

X1(N)(C) = Y1(N) t PN .

This set can be equipped with a canonical structure of compact Riemann surface.

Petersson scalar product is defined on Sank (N,χ)×Mank (N,χ) in the following

way:

〈f1, f2〉k,N :=

∫
X1(N)(C)

ykf̄1(z)f2(z)
dxdy

y2
.
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The definition of Sank (N,χ) andMank (N,χ) guarantees that this integral is well

defined and convergent. It induces a scalar product on Sank (N,χ). Having

introduced the notion of the Petersson scalar product we can define an anti-

holomorphic differential attached to f as

ηahf :=
f̄(z)dz̄

〈f, f〉2,N
.

Modular units. With a slight abuse of notation, we still use the symbol

Y1(N) for Shimura’s model, defined over Q, of the open Riemann surface Y1(N),

and we adopt the same convention for X1(N). Let also Ȳ1(N) be the scalar

extension of Y1(N) to Q̄. By C(Ȳ1(N)) we will mean the field of meromorphic

functions on Ȳ1(N). Further, for arbitrary field F we will define the algebraic

K2-group as

K2(F ) = (F ∗ ⊗Z F
∗)/〈a⊗ (1− a)|a ∈ F \ {0, 1}〉.

We will denote elements of K2(F ) as {x, y}. A modular unit is a meromorphic

function

u ∈ C(X1(N))∗

such that

Supp(u) ⊂ PN .

The group of modular units is denoted O∗(Y1(C)). There is a strong relation

joining modular units and Eisenstein series. We have a surjective homomor-

phism:

O(Ȳ1(N))∗ ⊗ F dlog−→ Eis2(Γ1(N), F ),

where

dlog(u) :=
1

2πi

u′(z)

u(z)
,

F is an arbitrary field and

Eisl(Γ1(N), F ) ⊂Ml(Γ1(N), F )

is a subspace ofMl(Γ1(N), F ) spanned by weight l Eisenstein series with Fourier

coefficients in F . The following proposition, [Bru07, Prop. 5.3], gives us an

explicit construction of the above elements and represents the first key step
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in the proof of Beilinson’s formula. Before stating this result, we introduce a

couple of more notation: for a modular unit u, write

u(z) =

∞∑
n=n0

anq
n

for its Fourier expansion, and set

û(∞) := an0 ;

define

Eu,v(z, s) =
∑′

m≡Nu, n≡Nv

Im(z)s

|mz + n|2s

where the sum is over all non-zero pairs of integers m and n congruent to u and

v, respectively, mod N , and set

E∗l =
∑
v∈ Z

NZ

l(v)E∗0,v,

E∗u,v(z) = lims→1

(
Eu,v(z, s)−

π

N2(s− 1)

)
,

where l : Z
NZ → C is a function of sum zero.

Theorem 1. For a function of sum zero: l : Z
NZ → C there exists a unique

modular unit

ul ∈ O∗(Y1(N)(C))⊗ C

satisfying

log|ul| =
1

π
· E∗l and ûl(∞) = 1 ∈ C∗ ⊗ C.

For our purposes we shall take modular units

{uχ, u(χ1, χ2)} ∈ K2(C(Ȳ1(N)))

satisfying:

dlog(uχ) = E2,χ, dlog(u(χ1, χ2)) = E2(χ1, χ2).

Complex regulator. Let u, v ∈ F ∗ be rational functions (here, as above,

F = C(Ȳ1(N))). Let

η(u, v) = log|u| · d arg v − log |v| · d arg u.
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Then regC is defined as the map

regC : K2(C(X1(N)))→ HomQ(Ω1(X1(N)),R)

which takes

{u, v} →

(
ω 7→

∫
X1(N)(C)

η(u, v) ∧ ω

)
.

A computation, applying Stokes Theorem, yields:

regC{uχ, u(χ1, χ2)}(ηahf ) =

∫
X1(N)(C)

f̄ · log|uχ| · dlog(u(χ1, χ2)(z))dxdy

〈f, f〉2,N
.

Rankin method. The second key ingredient to prove Beilinson’s formula is

result of Shimura, an application of Rankin method. For a cusp form f in

Sk(N,χf ), with Fourier expansion
∑
n≥1 anq

n, let f∗ :=
∑
n≥1 ānq

n be the

modular form in Sk(N, χ̄f ) obtained by applying complex conjugation to the

Fourier coefficients; here, q = exp(2πis).

Theorem 2. For a weight k cusp form f we have

〈f∗(z), Ẽk−l,χ(z, s) ·g(z)〉k,N = 2
Γ(s+ k − 1)

(4π)s+k−1
L(χ−1, 2s+k− l)D(f, g, s+k−1).

Here, as above,

L(ψ, s) :=

∞∑
n=1

ψ(n)

ns
,

is the Dirichlet L-function attached to a Dirichlet character ψ, and D(f, g, s) is

Rankin-Selberg L-function attached to the pair of modular forms f and g; more

precisely, if f and g have Fourier expansions
∑
n≥1 an(f)qn and

∑
n≥0 an(g)qn,

respectively,

D(f, g, s) :=
∑
n≥1

an(f)an(g)n−s.

Beilinson’s formula. The proof of Beilinson’s formula comes then from a

combination of the two above results after a direct computation, by considering

separately the values s = k
2 + l − 1 and s = 2.

Organization of the material. After introducing some basic preliminary in

the first chapter, in the second chapter, we shall briefly discuss the Riemann

Zeta function, which turns out to be one of the most simple and important
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example of Dirichlet L-functions. Dirichlet L-functions are infinite series related

to Dirichlet characters. Both of them will be described in the separate chapter.

Further we will define modular forms. Set of modular forms turns out to be

a vector space with operators, called Hecke operators, acting on them. It shall

be shown that Hecke operators have properties which allow to treat modular

forms with tools of linear algebra. In the successive sections we shall discuss

most significant examples of modular forms - Eisenstein series. Not all Eisen-

stein series satisfy the definition of modular forms as some of them fail to be

holomorphic, and therefore we will describe this case separately. We shall also

pay a lot of attention to cusp forms, special case of modular forms.

Finally we will define Petersson scalar product. It will be given as an integral.

As it turns out, it is essential to compute the complex regulator on class of anti-

holomorphic differential. Complex regulator provides information about the

density of modular units in algebraic number field. In the last chapter we shall

use this value in Beilinson’s formula.
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2 | Preliminaries

For further reference, we collect in this chapter some definitions and basic no-

tation.

Bernoulli numbers. Bernoulli numbers are used in the definition of normal-

ized Eisenstein series. They are defined as coefficients of a formal power series

expansion:
t

et − 1
=

∞∑
k=0

Bk
tk

k!
.

Character. A character is a group homomorphism between a finite abelian

multiplicative group A and a multiplicative group of invertible complex numbers

C∗:
χ : A→ C∗.

We will say that a character is trivial if it maps all non-zero elements to 1.

Interesting property of characters is that it maps elements of abelian group of

order n to n-th roots of unity in C∗. This is because an = 1∀a ∈ A so by the

properties of group homomorphism (χ(a))n = 1. It follows that χχ̄ = |χ| = 1,

where χ̄ is a complex conjugate of χ. In other words, χ̄ = χ−1.

Induced character. Let M,N be two integers such that M |N and suppose

that we have two characters:

ϕ : (Z/NZ)→ C∗, χ : (Z/MZ)→ C∗.

We will say that the character ϕ is induced by the character χ if it factors like

this:

(Z/NZ) � (Z/MZ)→ C∗.
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Primitive character. We say that a character χ modulo N is primitive if it

is not induced by any character ϕ modulo M such that M |N .

Conductor of a character. Suppose that χ is a Dirichlet character modulo

N . Then conductor of the character χ is the smallest divisor M of N such that

χ is induced by a character modulo M .

Analytic function. Let D ⊂
open

C, z0 ∈ D, f : D → C. We call f analytic,

or equivalently holomorphic, in z0 if

limz→z0
f(z)− f(z0)

z − z0

exists. In case the following holds for all points in D we call a function analytic

on D, and if f is holomorphic on C we call it entire.

Pole of a function. Let U ⊂
open

C, z0 ∈ U and f : U \ {z0} → C be analytic

on its domain. Further let f have a Laurent series expansion (for suitable z):

f(z) =

∞∑
n=−∞

cn(z − z0)n.

We say f has a pole of order k, if k is a positive integer such that c−k 6= 0, c−n =

0 for n > k. If k = 1 pole is called simple.

Meromorphic function. We call a complex function meromorphic on an

open set U if it is analytic on that set apart from discrete subset D. What is

more, all points in D are poles of that function.

Function holomorphic at infinity. We call a function f : H → C holomor-

phic at infinity if it has a Fourier expansion:

f(z) =
∑
n∈Z

an
(
e2nπiz

)
Analytic continuation. Suppose f is analytic function on an open set U ⊂ C
with values in C. Suppose further U ⊂ V, V ⊂

open
C and g is another analytic

function from V to C. We call g analytic continuation of f if g|U = f .
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Logarithmic derivative. By logarithmic derivative of a function f we will

mean f ′

f , where f ′ is a classical derivative.

Operator. Let V,W be two vector spaces. An operator is any mapping from

V to W .

Group action. We define an action of a group G on a non-empty set Ω to be

a function
· : Ω×G→ Ω

(a, g) 7→ a · g

such that it satisfies conditions:

1. a · 1 = a ∀a ∈ Ω

2. (a · g) · h = a · (gh) ∀a ∈ Ω, g, h ∈ G.

Orbit of a group action. For a group action of G on Ω we define an orbit

to be:

Oα = {α · g : g ∈ G}.

Orbits are disjoint, i.e if β ∈ Oα it means that Oα = Oβ .

Fundamental domain. If a group G is acting on a topological space S then

a fundamental domain F is a closed subset of G consisting of exactly one rep-

resentative of each orbit of the group action.

Weakly multiplicative function. Let f : Z → C be a function. We say

that f is weakly multiplicative if:

• f(1) = 1

• f(mn) = f(m)f(n) whenever gcd(m,n) = 1.
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3 | The Riemann Zeta function

In this chapter we want to define the Riemann Zeta function and talk about its

properties. The function is defined for complex numbers with real part greater

than one, but by means of Mellin transform we will manage to show, that it has

analytical continuation for the whole complex space, apart from z = 1. Let’s

take a closer look at Mellin transform and other objects that will be necessary

to prove analytic continuation of the Riemann Zeta function.

Mellin transform. Let f : R+ → C be a function on positive real axis with

complex values. We define Mellin transform of this function as:

g(z) :=

∫ ∞
t=0

f(t)tz
dt
t
.

It is defined for complex z such that the integral converges absolutely.

The Gamma function. For z ∈ C with Re(z) > 0 we define the Gamma

function as follows:

Γ(z) =

∫ ∞
0

e−ttz
dt
t
.

Notice that the Gamma function is a Mellin transform of e−t. Other feature of

Mellin transform and the Gamma function is the following:∫ ∞
0

e−cttz
dt
t

= c−zΓ(z), c const.

It can be obtained the following way:

Γ(z) =

∫ ∞
0

e−ttz
dt
t

=

∫ ∞
0

e−ct(ct)z
cdt
ct

= cz
∫ ∞

0

e−cttz
dt
t
.

The Gamma function has some interesting properties. Let’s recall them:

- Γ is analytic on C \ {0,−1,−2, . . .}
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- Γ(z + 1) = zΓ(z), z ∈ C \ {0,−1,−2, . . .}

- Γ(n) = (n− 1)!, n ∈ N

- Γ(z)Γ(1− z) = π
sinπz , z ∈ C \ Z

- Γ
(
z
2

)
Γ
(
z+1

2

)
=
√
π21−zΓ(z)

The Theta function. Let’s define the Theta function.

θ(t) :=

n=∞∑
n=−∞

e−πtn
2

.

It satisfies the following equation:

θ(t) =
1√
t
θ

(
1

t

)
.

Soon we shall also need the following inequality related to the theta function:

|θ(t)− t
−1
2 | < e

−C
t , C > 0, C const.

All the statements above along with the proves can be found in [Kob93, II.4].

3.1 The Riemann Zeta function

For complex values s the Riemann Zeta function is defined:

ζ(s) =

∞∑
n=1

1

ns
, Re(s) > 1.

Due to Euler we know also that the following holds:

ζ(s) =
∏
p prime

1

1− p−s
, Re(s) > 1.

Theorem 3. The Riemann zeta function ζ(z) extends analytically onto the

whole z-plane, except for a simple pole at z = 1 with residue 1. Let

Λ(z) := π
−z
2 Γ

(z
2

)
ζ(z).

Then Λ(z) = Λ(1− z). In other words, ζ(z) satisfies the functional equation:

π
−z
2 Γ

(z
2

)
ζ(z) = π

z−1
2 Γ

(
1− z

2

)
ζ(1− z).
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Proof : We will follow [Kob93]. First let us define:

φ(z) :=

∫ ∞
1

t
z
2 (θ(t)− 1)

dt
t

+

∫ 1

0

t
z
2

(
θ(t)− 1√

t

dt
t

)
.

Now notice that by the definition of the theta function:

θ(t)− 1 = 2

∞∑
n=1

e−πn
2t.

Therefore the first integral converges. Further, we have seen that |θ(t) − 1√
t
|

is bounded by e
−C
t , so the other integral converges as well. Let’s calculate the

integrals:∫∞
1
t
z
2 (θ(t)− 1)dtt +

∫ 1

0
t
z
2

(
θ(t)− 1√

t
dt
t

)
= 2

∑∞
n=1

∫∞
1
e−πn

2tt
z
2
dt
t +

∫ 1

0
t
z
2 θ(t)dtt −

∫ 1

0
t
z−1

2
dt
t

= 2
∑∞
n=1

∫∞
1
e−πn

2tt
z
2
dt
t +

∫ 1

0
t
z
2 (θ(t)− 1)dtt +

∫ 1

0
t
z
2
dt
t −

2
z−1

= 2
∑∞
n=1

∫∞
1
e−πn

2tt
z
2
dt
t + 2

∑∞
n=1

∫ 1

0
e−πn

2tt
z
2
dt
t + 2

z −
2

1−z

= 2
∑∞
n=1

∫∞
0
e−πn

2tt
z
2
dt
t + 2

z −
2

1−z .

Now recall the following property of the Mellin transform:∫ ∞
0

e−cttz
dt
t

= c−zΓ(z), c > 0, c const.

Replacing c with πn2 and z with z
2 we get the following:

2φ(z) = 2
∑∞
n=1

∫∞
0
e−πn

2tt
z
2
dt
t + 2

z −
2

1−z

= 2
∑∞
n=1(πn2)

−z
2 Γ

(
z
2

)
+ 2

z + 2
1−z

= 2π
−z
2 Γ

(
z
2

)
ζ(z) + 2

z + 2
1−z .

So we obtain the equation for the Riemann Zeta function:

ζ(z) =
π
z
2

Γ(z/2)

(
1

2
φ(z)− 1

z
− 1

1− z

)
:= S, Re z > 1.

We know that π
z
2 , 1

Γ(z/2) , φ(z) are entire functions, so we only have to consider

the behaviour of 1
z ,

1
1−z . Those functions have poles at z = 0 and z = 1.
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Recalling important property of the the Gamma function: Γ(z+ 1) = zΓ(z), we

can rewrite:

ζ(z) =
π
z
2

Γ(z/2)

(
1

2
φ(z)− 1

z
− 1

1− z

)
=

π
z
2

Γ(z/2)

(
1

2
φ(z)− 1

1− z

)
− π

z
2

2Γ(z/2 + 1)
.

Therefore S does not have a pole at z = 0. Now recall

Λ(z) := π
−z
2 Γ

(z
2

)
ζ(z),

so inserting what we have already figured out we obtain:

Λ(z) =
1

2
φ(z)− 1

z
− 1

1− z
.

We have to show Λ(z) = Λ(1− z). First let’s try to show φ(z) = φ(1− z).

φ(z) =
[∫∞

1
t
z
2 (θ(t)− 1)dtt +

∫ 1

0
t
z
2

(
θ(t)− 1√

t
dt
t

)]
|t= 1

s

=
[
−
∫ 1

0

(
1
s

) z
2
(
θ
(

1
s

)
− 1
)
s · −dss2 −

∫∞
1

(
1
s

) z
2
(
θ
(

1
s

)
−
√
s
)
s · −dss2

]
|θ( 1

s )=
√
sθ(s)

=
∫ 1

0

(
1
s

) z
2 (
√
sθ(s)− 1) dss +

∫∞
1

(
1
s

) z
2 (
√
sθ(s)−

√
s) dss

=
∫ 1

0
(s)

1−z
2

(
θ(s)− 1√

s

)
ds
s +

∫∞
1

(s)
1−z

2 (θ(s)− 1) dss = φ(1− z).

Now it is clear that Λ(z) = Λ(1 − z) and therefore the Riemann Zeta function

satisfies the equation stated in the theorem.2

Later on we shall use the following identity, which shall be given without the

proof:

ζ(k) =
−(2πi)kBk

2k!
,

where Bk stands for Bernoulli numbers.
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4 | L-function

In this chapter we shall describe Dirichlet L-functions, generalization of the

Riemann Zeta function.

4.1 Dirichlet character

In order to define Dirichlet L-functions we first need to define Dirichlet character.

We already know that character is a group homomorphism between a finite

abelian multiplicative group and C∗. Now given a character χ : (Z/NZ) → C∗

we are going to lift it to a character χ′ : Z→ C∗, so it satisfies certain conditions:

• χ′(ab) = χ′(a)χ′(b)

• χ′(a) = χ′(b), a ≡ b mod N

• χ′(a) = 0, gcd(a,N) > 1

Such a character is called Dirichlet character. Dirichlet character that has been

obtained by lifting trivial character is called principal Dirichlet character. It is

defined as follows:

χ : Z→ C∗, χ(a) =

{
1 if gcd(a,N) = 1

0 if gcd(a,N) > 1

Trivial Dirichlet character is the unique Dirichlet character mod 1. Thus it

sends all non-zero elements to 1.

In the thesis we shall use the notion of the Gauss sum. The Gauss sum depends

on a character χ and is defined:

τ(χ) =

Nχ∑
a=1

χ(a)e2πia/Nχ , Nχ = cond (χ).

It has the following properties:

18



• τ(χ̄) = χ(−1)τ(χ)

• τ(χ1χ2) = χ1(N2)χ2(N1)τ(χ1)τ(χ2), N1 = cond(χ1), N2 = cond(χ2)

4.2 Dirichlet L-function

Suppose χ is a Dirichlet character modulo N . Dirichlet L-function associated

to this character is defined as follows:

L(s, χ) :=

∞∑
n=1

χ(n)

ns
.

It can be proved that

L(s, χ) = Π
p∈P

(1− χ(p)p−s)−1.

Example 1 One of the examples of Dirichlet L-function is Riemann zeta func-

tion, that has been already introduced. Given by:

ζ(s) =

∞∑
n=1

1

ns
,

it is Dirichlet L-function of trivial Dirichlet character.

Example 2 An interesting example of a Dirichlet character modulo a prime

number p is a Legendre symbol. It is defined as follows:

(
n

p

)
=


1 if x2 ≡ n mod p has solution

0 if p|n
−1 otherwise

An attached Dirichlet L-function is:

L

(
s,

(
·
p

))
=

∞∑
n=1

(
n
p

)
ns

.

Example 3 Suppose we have a character χ : Z/10Z→ C∗ given by:

n 1̄ 2̄ 3̄ 4̄ 5̄ 6̄ 7̄ 8̄ 9̄ 1̄0

χ(n) 1 -i i -1 0 1 -i i -1 0

Then the induced Dirichlet character χ′ : Z→ C∗ is given by:
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n mod 10 1 2 3 4 5 6 7 8 9 10

χ(n) 1 0 i 0 0 0 -i 0 -1 0

Thus the attached Dirichlet L-function is given as follows:

L(s, χ′) =

∞∑
n=1

χ′(n)

ns
=

1

1s
+

i

3s
− i

7s
− 1

9s
+ . . .
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5 | Modular forms

5.1 Modular group

Let us start this section with defining a modular group: SL2(Z).

SL2(Z) =

{[
a b

c d

]
: a, b, c, d ∈ Z, ad− bc = 1

}
.

As a matrix of this form induces a linear automorphism of a vector space,

elements of SL2(Z) can be also given as

T : C ∪ {∞} → C ∪ {∞}

z 7→

[
a b

c d

]
(z) = az+b

cz+d .

It needs to be specified that here we mean:

T (∞) =
a

c
, T

(
−d
c

)
=∞.

In what follows, we are going to denote the upper complex half-plane by H, in

other words:

H := {z ∈ C : Im(z) > 0}.

5.2 Congruence subgroup of level N

An important subgroup of SL2(Z), which is also a normal subgroup, is a con-

gruence subgroup of level N defined as follows:

Γ(N) =

{[
a b

c d

]
∈ SL2(Z) :

[
a b

c d

]
≡

[
1 0

0 1

]
mod N

}
.
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In what follows ∗ indicates an arbitrary entry. We shall define Γ0(N) and Γ1(N),

subgroups of SL2(Z) satisfying:

Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ SL2(Z).

Γ0(N) =

{[
a b

c d

]
∈ SL2(Z) :

[
a b

c d

]
≡

[
∗ ∗
0 ∗

]
mod N

}
,

Γ1(N) =

{[
a b

c d

]
∈ SL2(Z) :

[
a b

c d

]
≡

[
1 ∗
0 1

]
mod N

}
.

5.3 Modular forms for congruence subgroups

In what follows let Γ ⊂ SL2(Z) be such that there exists N ∈ Z+ such that

Γ(N) ⊂ Γ. For f a function f : H → C and a matrix

γ ∈ SL2(Z), γ =

[
a b

c d

]

we define an operator [γ]k:

(f [γ]k)(z) = (cz + d)−kf(γ(z)), z ∈ H.

We call a function f weakly modular of weight k with respect to Γ if the following

is satisfied:

f [γ]k = f, ∀γ ∈ Γ.

Definition 1. We call a function f : H → C a modular form of weight k with

respect to Γ if it satisfies the following conditions:

- f is holomorphic

- f is weakly modular of weight k with respect to Γ

- f [γ]k is holomorphic at infinity for all γ ∈ SL2(Z).

We will denote the set of modular forms of weight k with respect to Γ byMk(Γ).
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5.4 Cusp forms

Definition 2. A cusp form of weight k with respect to Γ is a modular form of

weight k with respect to Γ such that for all γ ∈ SL2(Z) in the Fourier expansion

of f [γ]k, a0 = 0 i.e.

f [γ]k =

∞∑
n=1

anq
n.

We will denote the set of cusp forms with respect to Γ by Sk(Γ). This set with

operations defined like in the previous section is again a vector space over a

field C and again if Γ1 ⊂ Γ2 then Sk(Γ2) ⊂ Sk(Γ1). Analogously as for modular

forms we will denote with Sk(N,χf ) the subspace of space Sk(Γ1(N)) with the

property that f [γ]k = χ(d)f, γ =

(
a b

c d

)
∈ Γ0(N).

For f ∈ Sk(N,χf ) by f∗ we will denote the modular form f∗ ∈ Sk(N,χ−1
f ) such

that the following condition is satisfied: an(f∗) = ān.

Let’s make some comments regarding sets Mk(Γ), Sk(Γ).

1. Let f, g ∈Mk(Γ), α ∈ C, z ∈ H and let

(f + g)(z) = f(z) + g(z), (αf)(z) = α(f(z)).

It can be checked thatMk(Γ) with those operations forms a vector space

over a field C.

2. Suppose that f ∈ Mk1
(Γ), g ∈ Mk2

(Γ). Then it follows from the defini-

tion that fg ∈Mk1+k2
(Γ).

3. Suppose that Γ1 ⊂ Γ2. Notice that if a modular form is weight-k invariant

under Γ2 then it is also weight-k invariant under Γ1. Therefore it holds

Mk(Γ2) ⊂Mk(Γ1).

4. Let now−I ∈ Γ and k be an odd integer. Suppose further that f ∈Mk(Γ).

As the condition (f [γ]k)(z) = (cz + d)−kf(γ(z)) holds for all matrices in

Γ, in particular it holds for −I. Therefore f = −f = 0 and so we conclude

that if −I ⊂ Γ then there are no, different than zero, modular forms with

respect to Γ of odd weight. However if −I /∈ Γ, such modular forms might

occur.
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5. We shall briefly discuss so called twist of a modular form by a Dirich-

let character χ. Let f ∈ Mk(Γ(N)) and let χ be a Dirichlet character

modulo N . Let f have a q-expansion: f =
∑∞
n=0 anq

n. Then the twist

by χ is a modular form: fχ =
∑∞
n=0 anχ(n)qn. We have to be careful,

because although the twist is still a modular form, it doesn’t hold that

fχ ∈Mk(Γ(N)). We will denote by Mk(N,χ) the subspace consisting of

f ∈Mk(Γ1(N)) : f [γ]k = χ(d)f, γ =

(
a b

c d

)
∈ Γ0(N).

6. [BD, section 2] One can introduce spaces Sank (N,χ) ⊂ Mank (N,χ) which

are closely related to Sk(N,χ) ⊂ Mk(N,χ). Let Sk(N,χ) ⊂ Mk(N,χ)

be as above and denote by Sank (N,χ) ⊂ Mank (N,χ) their real analytic

counterparts consisting of real analytic functions on H with the same

transformation properties under Γ0(N) and having bounded growth at

the cusps of Mank (N,χ) (rapid decay at the cusps of Sank (N,χ)).

See also [Kob93, III.3]
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6 | Hecke operators

6.1 Hecke operators: 〈d〉, Tp, 〈n〉, Tn
In this section we shall define 〈d〉, Tp, 〈n〉, Tn Hecke operators. Hecke operators

are described with details in [DS05, Chapter 5]. Other approach, using lattices

in definition of Hecke operators, is presented in [Kob93, III.5]. Let

GL+
2 (Q) =

{[
a b

c d

]
: a, b, c, d ∈ Q, ad− bc > 0

}
.

Let α ∈ GL+
2 and Γ1, Γ2 be the two congruence subgroups of SL2(Z). By

double coset in GL+
2 (Q) we mean the set

Γ1αΓ2 = {γ1αγ2 : γ1 ∈ Γ1, γ2 ∈ Γ2}.

It can be shown that Γ1αΓ2 =
⋃
j Γ1βj , where the union is finite and disjoint

and βj are representatives of orbits of an action by left multiplication of the

group Γ1 on the double coset Γ1αΓ2.

Definition 3. For β, α as above, k ∈ Z the weight-k β operator on f : H → C
is given by

(f [β]k)(z) = (det β)k−1(cz + d)−kf(β(z)), z ∈ H, β =

[
a b

c d

]

Definition 4. For congruence subgroups Γ1 and Γ2 of SL2(Z) and α ∈ GL+
2 (Q),

the weight-k operator takes functions f ∈Mk(Γ1) to

f [Γ1αΓ2]k =
∑
j

f [βj ]k.
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Definition 5. The Hecke diamond operator is the following weight k double-

coset operator :

〈d〉 :Mk(Γ1(N))→Mk(Γ1(N))

〈d〉f = f [α]k, Γ0(N) 3 α =

[
a b

c δ

]
, δ ≡ d mod N.

Definition 6. The Hecke Tp operator is the following weight k double-coset

operator :

Tp :Mk(Γ1(N))→Mk(Γ1(N))

Tpf = f [Γ1(N)

[
1 0

0 p

]
Γ1(N)], p prime.

The two operators commute.

Examining the representatives of orbits (see [DS05]) we are able to give explicit

form of Tp operator. Namely for operator Tp on Mk(Γ1(N)) we have([DS05,

Proposition 5.2.1]):

Tpf =


∑p−1
j=0 f [

[
1 j

0 p

]
]k if p|N

∑p−1
j=0 f [

[
1 j

0 p

]
]k + f [

[
m n

N p

][
p 0

0 1

]
]k if p - N, mp− nN = 1

Using this result we shall prove the following theorem.

Theorem 4. Let f ∈Mk(Γ1(N)) have a Fourier expansion

f(z) =

∞∑
n=0

an(f)qn, q = e2πiz.

Then:

1. Let 1N be a trivial character modulo N . Then Tpf has Fourier expansion

(Tpf)(z) =

∞∑
n=0

(anp(f) + 1N (p)pk−1an/p(〈p〉f))qn,

in other words

an(Tpf) = anp(f) + 1N (p)pk−1an/p(〈p〉f).
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2. Let χ : (Z/NZ)∗ → C∗ be a character. If f ∈ Mk(N,χ) then Tpf ∈
Mk(N,χ) and has a Fourier expansion:

(Tpf)(z) =

∞∑
n=0

(anp(f) + χ(p)pk−1an/p(f))qn,

in other words

an(Tpf) = anp(f) + χ(p)pk−1an/p(f).

Proof : We will follow [DS05, Proposition 5.2.2]. For the first part suppose first

that p|N . Then the definition of β weight-k operator computation yields:

f [

[
1 j

0 p

]
]k(z) = pk−1(0z + p)−kf

(
z + j

0z + p

)
=

1

p

∞∑
n=0

an(f)e2πin(z + j)/p.

From the representation of Tpf we found we deduce:

Tpf(z) =

p−1∑
j=0

f [

[
1 j

0 p

]
]k =

p−1∑
j=0

1

p

∞∑
n=0

an(f)e2πin(z + j)/p =

∞∑
n=0

anp(f)qn.

For p - N we need to add the term:

f [

[
m n

N p

][
p 0

0 1

]
]k(z) = (〈p〉f)[

[
p 0

0 1

]
]k(z) =

pk−1(0z + 1)−k(〈p〉f)(pz) = pk−1
∞∑
0

an(〈p〉f)qnp.

As 1N (p) takes value 0 if p|N and 1 otherwise, we can combine results to one

formula:

(Tpf)(z) =

∞∑
n=0

(anp(f) + 1N (p)pk−1an/p(〈p〉f))qn.

The second part follows from the first part. 2

Note that operator Tp is defined only for prime numbers and 〈d〉 for d such that

(d,N) = 1. We can extend those operators to all n ∈ Z+.

Definition 7. For n ∈ Z+, n = Πpeii , pi primes we define an operator Tn to be

Tn = ΠTpeii
where Tp is like in the previous definition and

Tpr = TpTpr−1 − pk−1〈p〉Tpr−2 , r ≥ 2.
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To extend 〈d〉 to all n ∈ Z+, let 〈n〉 = 0 when (n,N) > 1 and use total

multiplicativity:

∀m,n∈Z+〈mn〉 = 〈m〉〈n〉.

For Tnf we have theorem analogous to the one for Tpf describing Fourier ex-

pansion of Tnf .

Theorem 5. Let f ∈Mk(Γ1(N)) have Fourier expansion

f(z) =

∞∑
m=0

am(f)qm.

Then for all n ∈ Z+, Tnf has Fourier expansion

(Tnf)(z) =

∞∑
m=0

am(Tnf)qm

where

am(Tnf) =
∑

d|(m,n)

dk−1amn/d2(〈d〉f).

In particular, if f ∈Mk(N,χ) then

am(Tnf) =
∑

d|(m,n)

χ(d)dk−1amn/d2(f).

The proof is mostly computation and inserting results for Tpf . It will not be

given, but it can be found in [DS05, Proposition 5.3.1]. Further we shall need

the definition of Hecke eigenforms:

Definition 8. A non-zero modular form f ∈Mk(Γ1(N)) that is an eigenform

for the Hecke operators Tn and 〈n〉 for all n ∈ Z+ is a Hecke eigenform or

simply an eigenform. The eigenform

f(z) =

∞∑
n=0

an(f)qn

is normalized when a1(f) = 1.

We have the following theorem joining cusp forms and Hecke operators:

Theorem 6. The space Sk(Γ1(N)) has an orthogonal basis of simultaneous

eigenforms for the Hecke operators {〈n〉, Tn : (n,N) = 1}.
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Proof:[DS05, Proposition 5.5.4].

We shall close this section with the following theorem:

Theorem 7. Let f ∈ Mk(N,χ). Then f is normalized eigenform if and only

if its Fourier coefficients satisfy the conditions

1. a1(f) = 1

2. apr (f) = ap(f)apr−1(f)− χ(p)pk−1apr−2(f) for all p prime and r ≥ 2

3. amn(f) = am(f)an(f) when (m,n) = 1.

Proof:[DS05, Proposition 5.8.5].
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7 | Eisenstein series

7.1 Eisenstein series of weight higher than 2

Eisenstein series are very important examples of modular forms. In this sec-

tion we shall define Eisenstein series of weight higher than 2 and find their

q-expansion. First we shall discuss the case Γ = SL2(Z) and then move to

arbitrary Γ(N).

Eisenstein series for Γ = SL2(Z). Fix an even integer k > 2 (recall from

section about modular forms that it does not make sense to chose even integers

for Γ = SL2(Z), as all such forms are equal to zero). The Eisenstein series of

weight k is defined to be:

Gk(z) =
∑
(c,d)

′ 1

(cz + d)k
, z ∈ H.

By the prime sign it is meant that the summation is over Z2 \ {(0, 0)}. In what

follows we will use Bernoulli numbers Bk. It can be proved that Eisenstein

series have expansion:

Gk(z) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn

where

σk−1(n) =
∑
m>0
m|n

mk−1, q = e2πiz.

Sketch of the proof is the following. Using the formula for ζ(k):

ζ(k) =
−(2πi)kBk

2k!
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and identity
∞∑

n=−∞

1

(mz + n)k
=

(2πi)k

(k − 1)!

∞∑
n=1

nk−1e2πinmz

we obtain
∞∑

n=−∞

1

(mz + n)k
= − 2k

Bk
ζ(k)

∞∑
d=1

dk−1qdm,

where q = e2πiz. So

Gk(z) = 2ζ(k) + 2
∑∞
m=1

∑∞
n=−∞

1
(mz+n)k

=

2ζ(k)
(

1− 2k
Bk

∑∞
m,d=1 d

k−1qdm
)

=

2ζ(k)
(

1− 2k
Bk

∑∞
n=1 σ(n)qn

)
.

More shall be said about the identity
∞∑

n=−∞

1

(mz + n)k
=

(2πi)k

(k − 1)!

∞∑
n=1

nk−1e2πinmz.

It is obtained from the product formula for sine:

sin(πz) = πzΠ∞n=1

(
1− z2

n2

)
.

Taking logarithmic derivative of this equation we obtain:

πcot(πz) =
1

z
+

∞∑
n=1

(
1

z − n
+

1

z + n

)
.

Using series representation of cot we moreover have:

πcot(πz) = πi− 2πi

∞∑
m=0

(e2πimz),

so
1

z
+

∞∑
n=1

(
1

z − n
+

1

z + n

)
= πi− 2πi

∞∑
m=0

(e2πimz)

and the identity is obtained by differentiating both sides of the equation k − 1

times with respect to z.

Using this expansion for Eisenstein series we are able to define normalized Eisen-

stein series of weight k:

Ek(z) =
Gk(z)

2ζ(k)
= 1− 2k

Bk

∞∑
n=1

σk−1(n)qn.

For more details see [Kob93, III.2].
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Eisenstein series for arbitrary modular group. Choose a row vector v̄ ∈
(Z/NZ) and an integer k ≥ 3. Define level N Eisenstein series:

Gv̄k(z) :=
∑
m̄∈Z2

m̄≡v̄ mod N

1

(m1z +m2)k
.

Theorem 8. Gv̄k ∈Mk(Γ(N)).

Proof: We will follow [Kob93, Proposition 21]. Gv̄k(z) is absolutely and uni-

formly convergent, hence holomorphic. To show invariance under Γ(N) let

γ =

(
a b

c d

)
, γ ∈ Γ(N) and notice:

Gv̄k(z)[γ]k = (cz + d)−k
∑
m̄≡v̄ mod N

1
(m1

az+b
cz+d+m2)k

=

∑
m̄≡v̄ mod N

1
((m1a+m2c)z+(m1b+m2d))k

=

Gv̄γk (z) = Gv̄k(z)

where two last equalities hold because

(m1a+m2c,m1b+m2d) = mγ, m ≡ vγ mod N

and we have by definition γ ≡ I mod N . The last condition we need to check

is holomorphy at infinity. Observe that

limz→i∞G
v̄
k =

∑
m̄≡v̄ mod N,m1=0

m−k2 =

{
0 if v1 6= 0∑
n≡v2 mod N n

−k if v1 = 0

As we have chosen k ≥ 3 the sum converges and therefore Gv̄k is holomorphic at

infinity and that concludes the proof. 2

Recall that for Γ = SL2(Z) we found q-expansion for Eisenstein series. Similarly

we can give q-extension for Gv̄k. It is given by the following theorem:

Theorem 9. Let

ck :=
(−1)k−12kζ(k)

NkBk
,

bv̄0,k :=

{
0 if v1 6= 0

ζv2(k) + (−1)kζ−v2(k) if v1 = 0

ξ := e2πi/N , qN = e2πiz/N ,
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where

ζv(k) :=
∑

n≥1,n≡a mod N

n−k.

For k ≥ 3, Gv̄k has q-expansion

Gv̄k = bv̄0 + ck

(∑
m1≡v1 mod N,m1>0

∑∞
j=1 j

k−1ξjv2qjm1

N

+(−1)k
∑
m1≡−v1 mod N,m1>0

∑∞
j=1 j

k−1ξ−jv2qjm1

N

)
.

Proof: [Kob93, Proposition 22].

7.2 Eisenstein series of weight 2

One shall pay attention to the case k = 2. So far we always assumed k ≥ 3 and

that guaranteed uniform and absolute convergence of Eisenstein series. With

k = 2 Eisenstein series does not longer satisfy the definition of modular form,

and therefore it shall be described in separate section. This time we will only

focus on case Γ = SL2(Z).

Eisenstein series of weight 2 for SL2(Z). Recall, that Eisenstein series of

weight 2 is given by:

G2(z) =
∑
(c,d)

′ 1

(cz + d)2
.

Convergence of such a series is only conditional. However, it still holds:

G2(z) = 2ζ(2)− 8π2
∞∑
n=1

σ(n)qn.

Eisenstein series in such form is not a modular form as it fails to be a weakly

modular form. It holds, however, that

(G2[γ]2)(z) = G2(z)− 2πic

cz + d
.

Unfortunately,the corrected series G2(z) − π
Im(z) which is weight-2 invariant

under SL2(Z) fails to be holomorphic. More details can be found in [DS05,

Chapter 1.2] and in [Kob93, p.112-114].
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7.3 Non-holomorphic Eisenstein series

Let χ : (Z/NZ)∗ → C∗ be a primitive character. Then we can attach to it a

non-holomorphic Eisenstein series of weight k and level N:

Ẽk,χ(z, s) =
∑

(m,n)∈NZ×Z

′ χ−1(n)

(mz + n)k
· ys

|mz + n|2s
.

As a function of s it is convergent for Re(s) > 1− k
2 and admits a meromorphic

continuation to all s ∈ C. As a function of z it transforms like a modular form

on Γ0(N), i.e.

Ẽk,χ(γz, s) = χ(d)(cz + d)kẼk,χ(z, s), γ =

[
a b

c d

]
∈ Γ0(N)

and so Ẽk,χ ∈ Mank (N,χ). An easier case to analyze is: Ẽk,χ(z, 0). We will

denote is as Ẽk,χ(z). Such a series is actually a modular form: Ẽk,χ(z) ∈
Mk(N,χ) and we can give a normalized Eisenstein series in a form of equation:

Ẽk,χ(z, 0) = 2N−kτ(χ−1)
(−2πi)k

(k − 1)!
Ek,χ(z, 0),

where τ(χ−1) is the Gauss sum, and Ek,χ(z, 0) is a normalized Eisenstein series.

To find out more about non-holomorphic Eisenstein series see [DS05, Chapter

4.10] or [BD, section 2.1].

Further in the thesis we shall need equation joining non-holomorphic Eisenstein

series of different weight. First let’s define Shimura-Maass operator (see also

[Hid93, 10.1] and [BD, section 2.1]) sending Mank (N,χ) to Mank+2(N,χ):

δk :=
1

2πi

(
d

dz
+
ik

2y

)
.

Then the following holds:

δkẼk,χ(z, s) = − (s+ k)

4π
Ẽk+2,χ(z, s− 1).

Now let:

δtk := δk+2t−2 . . . δk+2δk.

Thus:

δtkẼk,χ(z, s) =
(−1)t

(4π)t
(s+ k) . . . (s+ k + t− 1)Ẽk+2t,χ(z, s− t),
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so

δtkẼk,χ(z, s)|
k = k − 2t

s = 0

=
(k − 2t− 1)!

(k − t− 1)!
(−4π)tδtk−2tẼk−2t,χ(z).

7.4 Eisenstein series attached to pair of charac-

ters

Let N1 and N2 be integers satisfying N1N2 = N and χ1, χ2 Dirichlet characters

modulo N1, N2. Further suppose χ1χ2 satisfies the following parity condition:

χ1χ2(−1) = (−1)k. Let

δχ1
=

{
1
2 if N1 = 1

0 otherwise

and

σk−1(χ1, χ2)(n) =
∑
d|n

χ1(n/d)χ2(d)dk−1.

For k ≥ 1 and (χ1, χ2) 6= (1, 1) q-expansion of normalized Eisentstein series

attached to Dirichlet characters χ1, χ2 is:

Ek(χ1, χ2)(z) = δχ1
L(1− k, χ−1

1 χ2) +

∞∑
n=1

σk−1(χ1, χ2)(n)qn.

For more information see [DS05, 4.5].
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8 | L-functions of modular forms

Let f ∈Mk(Γ), f =
∑∞
n=0 anq

n. We can attach to it an L-function. For s ∈ C
we define L-function of f to be:

L(s, f) =

∞∑
n=1

ann
−s.

When it comes to convergence of such a series we have the following theorem:

Theorem 10. If f ∈ Mk(Γ1(N)) is a cusp form then L(s, f) converges abso-

lutely for all s with Re(s) > k
2 +1. If f is not a cusp form then L(s, f) converges

absolutely for all s with Re(s) > k.

Proof: [DS05, Proposition 5.9.1].

What is more, the following theorem gives us Euler’s factorization for modular

forms that happen to be a normalized eigenform:

Theorem 11. Let f ∈ Mk(N,χ), f(z) =
∑∞
n=0 anq

n. Then the following are

equivalent:

• f is a normalized eigenform

• L(s, f) has an Euler product expansion

L(s, f) = Πp(1− app−s + χ(p)pk−1−2s)−1.

Proof: [DS05, Theorem 5.9.2].

As a consequence of this theorem we have:

L(Ek(χ1, χ2), s) = L(χ1, s)L(χ2, s− k + 1)

.
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For further results we will need something more, an L-series that would be

attached to two modular forms. So let l < k and

f :=

∞∑
n=1

an(f)qn ∈ Sk(N,χf ), g :=

∞∑
n=1

an(g)qn ∈Mk(N,χg).

To those forms we shall attach Rankin L-series:

D(f, g, s) :=
∑

an(f)an(g)n−s.

From now on let’s make another, stronger, assumption about f and g, namely

let’s assume that both of them are normalized eigenforms of level N . According

to the last point of the last theorem in chapter about Hecke operators coefficients

of f and g are weakly multiplicative. It is a well known fact from analytic

number theory that for L-function attached to a weakly multiplicative function

f we have the following factorization:

L(f, s) = Πp prime

∞∑
n=0

f(pn)p−ns.

Applying it to our Rankin L-function we get the following factorization:

D(f, g, s) = Πp primeD(p)(f, g, s), D(p)(f, g, s) =

∞∑
n=0

apn(f)apn(g)p−ns.

For f, g normalized eigenforms of levelN , simultaneous eigenvector for the Hecke

operators Tn : (n,N) = 1 and a prime p we will denote by (αp(f), βp(f)) the

roots of the following Hecke polynomial:

x2 − ap(f)x+ χf (p)pk−1.

By (αp(g), βp(g)) we mean roots of polynomial

x2 − ap(g)x+ χg(p)p
l−1.

We shall use them to construct the following Rankin convolution L-series:

L(f ⊗ g, s) := Π
p
Lp(f ⊗ g, s)

where:

L(p)(f ⊗ g, s) := (1− αp(f)αp(g)p−s)−1(1− αp(f)βp(g)p−s)−1

(1− βp(f)αp(g)p−s)−1(1− βp(f)βp(g)p−s)−1.
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It can be computed that:

D(p)(f, g, s) = (1− χ−1(p)pk+l−2−2s)L(p)(f ⊗ g, s)

and therefore:

L(f ⊗ g, s) = L(χ−1, 2s− k − l + 2)D(f, g, s).

We shall now say few words about expression L∗(j, f, ϕ) (it shall be called

algebraic part of special value L(j, f, ϕ)). Let ϕ be any Dirichlet character,

η = ϕ(−1)(−1)j−1. By Qf,ϕ we will denote the field generated by the Fourier

coefficients of f and the values of ϕ. Further chose complex periods to satisfy:

Ω+
f Ω−f = (2π)2〈f, f〉k,N .

Define:

L∗(j, f, ϕ) :=
(j − 1)!τ(ϕ̄)

(−2πi)j−1Ωεf
L(j, f, ϕ).

Here τ(ϕ̄) is the value of Gauss sum for the character ϕ̄. It holds that L∗(f, ϕ, j) ∈
Qf,ϕ. Proof and more information about chosen complex periods and L∗(j, f, ϕ)

can be found in [Shi77].
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9 | Petersson scalar product

Let z ∈ H, z = x+ yi.

Definition 9. Let Γ be any congruence subgroup of SL2(Z). The corresponding

modular curve is defined as the quotient space Γ\H:

Y (Γ) = {Γz : z ∈ H}.

If Γ = Γ1(N) we denote Y (Γ1(N)) = Y1(N). Let PN = Γ\(Q ∪ {∞}). Denote

X1(N)(C) = Y1(N)(C) t PN .

Definition 10. Petersson scalar product is defined on Sank (N,χ)×Mank (N,χ)

in the following way:

〈f1, f2〉k,N :=

∫
X1(N)(C)

ykf̄1(z)f2(z)
dxdy
y2

.

We shall briefly explain why the integral is well defined. First notice that the

hyperbolic measure

dz =
dxdy
y2

is SL2(Z)-invariant. Let further F be a fundamental domain for the action of

Γ0(N) on the upper half-plane H. Then the integral from definition of scalar

product becomes in fact:∫
X1(N)(C)

ykf̄1(z)f2(z)
dxdy
y2

=
∑
j

∫
F

ϕ(αj(z))dz

where

ϕ(z) := ykf̄1(z)f2(z)

and αj(z) are chosen orbit representatives in the fundamental domain. Now to

make sure that the definition of integral is correct we need to check that it does
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not depend on chosen representatives. But:

ϕ(γ(z)) = ykγz f̄1(γ(z))f2(γ(z)) =

(f1[γ]k)(z)(cz + d)k(f2([γ]k)(z)(cz + d)kykz |(cz + d)|−2k =

(f1[γ]k)(z)f2([γ]k)(z)(cz + d)kykz =

ykf̄1(z)f2(z) = ϕ(z)

where we mean:

yγ(z) = Im (γ(z)), yz = Im (z).

Further we shall say something about convergence of the integral. Let’s start

with the following two definitions:

Definition 11. A function f is called slowly increasing if for any α ∈ SL2(Z)

there exist positive numbers A,B such that f [α]k ≤ A(1 + y−B) as y →∞.

Definition 12. A function f is called rapidly decreasing if for any B ∈ R and

α ∈ SL2(Z), there exist a positive constant A such that f [α]k ≤ A(1 + yB) as

y →∞.

As it is stated in [Hid93, p.297]: if f1 and f2 are modular forms of weight k

with respect to Γ0(N) and if f1 is rapidly decreasing and f2 is slowly increas-

ing, then the integral defining Petersson scalar product 〈f1, f2〉k,N is absolutely

convergent. Therefore the domain chosen to define Petersson scalar product

guarantees that the integral is convergent.

We are ready to define:

Definition 13. The anti-holomorphic differential attached to f is:

ηahf :=
f̄(z)dz̄

〈f, f〉2,N
.

Apart from [Hid93] more detailed description of Petersson scalar product can

be found for example in [DS05, 5.4] or [Kob93, p.168 - 172].
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10 | Complex regulator

Let Y1(N) be a modular curve over Q and Ȳ1(N) its extension to Q̄. By

C(Ȳ1(N)) we will mean the field of meromorphic functions on Ȳ1(N). Further,

for arbitrary field F we will define algebraic K-group coming from K-theory.

This group will be defined as a quotient:

K2(F ) = (F ∗ ⊗Z F
∗)/〈a⊗ (1− a)|a ∈ F \ {0, 1}〉.

We will denote elements of K2(F ) as {x, y}. We shall give the definition of a

complex regulator.

Definition 14. Let u, v ∈ F ∗ be rational functions. Let

η(u, v) = log|u| · d arg v − log |v| · d arg u.

Then regC is:

regC : K2(C(X1(N)))→ HomQ(Ω1(X1(N)),R)

{u, v} →
(
ω 7→

∫
X1(N)(C)

η(u, v) ∧ ω
)
.

We shall point out few facts:

log z := log |z|+ i arg (z)

dlog(u) := 1
2πi

u′(z)
u(z)

d arg u = d Im(log u) = d
(
log u−log u

2i

)
= −1

4π

(
du
u −

dū
ū

)
d log |u| = d Re(log u) = d

(
log u−log u

2

)
= 1

4πi

(
du
u −

dū
ū

)
d arg u ∧ ωf = − 1

2i
dū
ū ∧ ωf = id(log|u| · ωf ).

41



Further the Stokes theorem gives us:∫
X1(N)(C)

log |u| · d(log |v| · ωf ) = −
∫
X1(N)(C)

log |v| · d(log |u| · ωf ).

Let’s perform some computations:∫
X1(N)(C)

η(u, v) ∧ ωf =

∫
X1(N)(C)

(log|u| · d arg v − log |v| · d arg u) ∧ ωf =

∫
X1(N)(C)

log|u| · d arg v ∧ ωf −
∫
X1(N)(C)

log|v| · d arg u ∧ ωf =

2
∫
X1(N)(C)

log|u| · d arg v ∧ ωf =

2i
∫
X1(N)(C)

log|u| · d( log v · ωf ).

Definition 15. A modular unit is a meromorphic function u in C(X1(N))∗

such that Supp(u) ⊂ PN . The group of modular units is denoted: O∗(Y1(C)).

There is a strong relation joining modular units and Eisenstein series. We have

a surjective homomorphism:

O(Ȳ1(N))∗ ⊗ F dlog−→ Eis2(Γ1(N), F ),

where

dlog(u) :=
1

2πi

u′(z)

u(z)
,

F is an arbitrary field and

Eisl(Γ1(N), F ) ⊂Ml(Γ1(N), F )

is a subspace of Ml(Γ1(N), F ) spanned by weight l Eisenstein series with co-

efficients in F . See also [Ste85, p.521] and [BD, section 2.4]. The following

proposition, [Bru07, Prop. 5.3], gives us an explicit construction of the above

elements and represents the first key step in the proof of Beilinson’s formula.

Before stating this result, we introduce a couple of more notation: for a modular

unit u, write

u(z) =

∞∑
n=n0

anq
n
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for its Fourier expansion, and set

û(∞) := an0
;

define

Eu,v(z, s) =
∑′

m≡Nu, n≡Nv

Im(z)s

|mz + n|2s

where the sum is over all non-zero pairs of integers m and n congruent to u and

v, respectively, mod N , and set

E∗l =
∑
v∈ Z

NZ

l(v)E∗0,v,

E∗u,v(z) = lims→1

(
Eu,v(z, s)−

π

N2(s− 1)

)
.

Theorem 12. For a function of sum zero: l : Z
NZ → C there exists a unique

modular unit

ul ∈ O∗(Y1(N)(C))⊗ C

satisfying

log|ul| =
1

π
· E∗l and ûl(∞) = 1 ∈ C∗ ⊗ C.

Let

uχ, u(χ1, χ2) ∈ K2(C(Ȳ1(N)))

be modular units such that

dlog(uχ) = E2,χ, dlog(u(χ1, χ2)) = E2(χ1, χ2).

Recall formula for anti-holomorphic differential:

ηahf :=
f̄(z)dz̄

〈f, f〉2,N
.

Now we shall compute regC{uχ, u(χ1, χ2)}(ηahf ). Letting

u = uχ, v = u(χ1, χ2), ωf = ηahf

we get:

regC{uχ, u(χ1, χ2)}(ηahf ) =

∫
X1(N)(C)

f̄ · log|uχ| · dlog(u(χ1, χ2)(z))dxdy

〈f, f〉2,N
.

More about complex regulator can be found in [Bru07].
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11 | Beilinson’s formula

Beilinson’s formula is given by:

L∗(f, χ1, 2) · L∗(f, χ2, 1) = Cf,χ1,χ2 · regC{uχ, u(χ1, χ2)}(ηahf ),

where Cf,χ1,χ2
is a constant.

Rankin method. The key to prove this formula is proposition by Shimura

([Hid93, 10.2]).

Theorem 13. For a weight k modular form f , s ∈ C, Re(s) >> 0

〈f∗(z), Ẽk−l,χ(z, s) ·g(z)〉k,N = 2
Γ(s+ k − 1)

(4π)s+k−1
L(χ−1, 2s+k− l)D(f, g, s+k−1).

This is an application of Rankin method. If we let s = s− k + 1 we obtain

〈f∗(z), Ẽk−l,χ(z, s− k + 1) · g(z)〉k,N = 2 Γ(s)
(4π)sL(χ−1, 2s− k − l + 2)D(f, g, s)

L(χ−1, 2s− k − l + 2)D(f, g, s) = (4π)s

2Γ(s) 〈f
∗(z), Ẽk−l,χ(z, s− k + 1) · g(z)〉k,N

Recall also:

L(f ⊗ g, s) = L(χ−1, 2s− k − l + 2)D(f, g, s).

Combining previous results we get

L(f ⊗ g, s) =
(4π)s

2Γ(s)
〈f∗(z), Ẽk−l,χ(z, s− k + 1) · g(z)〉k,N .

Let k = l + m + 2t, k, l,m, t integers, and further c := k+l+m−2
2 = k − t − 1.

Recall that:

Ẽk,χ(z,−t) =
(k − 2t− 1)!

(k − t− 1)!
(−4π)tδtk−2tẼk−2t,χ(z).
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With our definition of k assuming m ≥ 1, t ≥ 0 we get

Ẽk−l,χ(z,−t) =
(m− 1)!

(m+ t− 1)!
(−4π)tδtmẼm,χ(z).

Therefore

L(f ⊗ g, c) =
1

2
(−1)t(4π)c+t

(m− 1)!

(m+ t− 1)!(c− 1)!
〈f∗, δtmẼm,χ(z) · g(z)〉k,N .

Recall:

Ẽk,χ(z) = 2N−kτ(χ−1)
(−2πi)k

(k − 1)!
Ek,χ(z).

If we insert this identity to the formula above, using properties of scalar product

we obtain:

L(f ⊗ g, c) =
(−1)t2k−1(2π)k+m−1(iN)−mτ(χ−1)

(m+ t− 1)!(c− 1)!
〈f∗(z), δtmEm,χ(z) · g(z)〉k,N .

Other approach is to recall that

L(Ek(χ1, χ2), s) = L(χ1, s)L(χ2, s− k + 1)

and then we get

L(f ⊗ El(χ1, χ2), c) = L(f, χ1, c) · L(f, χ2, c− l + 1).

So:

L(f, χ1, c) · L(f, χ2, c− l + 1) =

=
(−1)t2k−1(2π)k+m−1(iN)−mτ(χ−1)

(m+ t− 1)!(c− 1)!
〈f∗(z), δtmEm,χ(z) · El(χ1, χ2)〉k,N .

From now on we will assume:

• l = m

• χf = 1, f∗ = f, χ = χ̄1χ̄2

• |τ(χ)|2 = N

• (N1, N2) = 1 so

τ(χ) = τ(χ̄1)τ(χ̄2)χ1(N2)χ2(N1) = τ(χ1)τ(χ2)χ(−1)χ1(N2)χ2(N1).

We should treat separately the critical points.
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Critical point. We want to deduce Beilinson’s formula for critical values in

the sense of Deligne (see [Del79]) of L-functions. Let then: c = k
2 + l − 1. It

turns out it is a critical value for all components of:

L(f ⊗ El(χ1, χ2), c) = L(f, χ1, c) · L(f, χ2, c− l + 1).

Let’s gather previous results to obtain:

L∗(f, χ1,
k

2
+ l − 1) · L∗(f, χ1,

k

2
) =

=
(k/2 + l − 2)!(k/2− 1)!τ(χ̄1)(τ(χ̄2))

(−2πi)k+l−1〈f, f〉k, N
L(f, χ1,

k

2
+ l − 1) · L(f, χ1,

k

2
) =

=
(k/2 + l − 2)!(k/2− 1)!τ(χ̄1)(τ(χ̄2))

(−2πi)k+l−1〈f, f〉k, N
·

· (−1)t2k−1(2π)k+m−1(iN)−mτ(χ−1)

(m+ t− 1)!(c− 1)!
〈f∗, δk/2−ll El,χ · El(χ1, χ2)〉k,N

so recalling our assumption we get

L∗(f, χ1,
k

2
+ l − 1) · L∗(f, χ1,

k

2
) = Cf,χ1,χ2

〈f, δk/2−ll El,χ · El(χ1, χ2)〉k,N
〈f, f〉k,N

,

where Cf,χ1,χ2
= i2k−1

N l−1 is a constant.

Beilinson’s formula for s=2. Form now on we set: k = l = 2 (note that

with previous assumptions it gives us c = 2, t = −1). Recall the definition of

normalised Eisenstein series Ẽk,χ(z):

Ẽk,χ(z) = 2N−kτ(χ−1)
(−2πi)k

(k − 1)!
Ek,χ(z)

and the following formula:

δkẼk,χ(z, s) = − (s+ k)

4π
Ẽk+2,χ(z, s− 1).

Letting k = 0, s = 1 we get:

δ0Ẽ0,χ(z, 1) = 1
2πi

d
dz Ẽ0,χ(z, 1) = −1

4π Ẽ2,χ(z) =

−1
4π 2N−2τ(χ−1)(−4π2)E2,χ(z) = 2πN−2τ(χ−1)E2,χ(z).

Recalling

dlog(uχ) = E2,χ, dlog(u(χ1, χ2)) = E2(χ1, χ2)
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we get:

L(f ⊗ E2(χ1, χ2), 2) =
1

2
(4π)2〈f(z), Ẽ0,χ(z, 1) · E2(χ1, χ2)(z)〉2,N =

1

2
· (4π)2 · 2πN−2τ(χ−1)〈f(z), log|uχ(z)| · dlog(u(χ1, χ2)(z))〉2,N =

16π3N−2τ(χ−1)〈f(z), log|uχ(z)| · dlog(u(χ1, χ2)(z))〉2,N .

Comparing again two ways of expressing L(f ⊗ E2(χ1, χ2), 2) we get:

L∗(f, χ1, 2)L∗(f, χ2, 1) =
Cf,χ1,χ2

〈f, f〉2,N
〈f(z), log|uχ(z)| · dlog(u(χ1, χ2)(z))〉2,N =

Cf,χ1,χ2

〈f, f〉2,N

∫
X1(N)(C)

f̄ · log|uχ| · dlog(u(χ1, χ2)(z))dxdy,

where Cf,χ1,χ2
is a constant. Now recall the definition of an anti-holomorphic

differential:

ηahf =
f̄(z)dz̄

〈f, f〉2,N
and what we have said about the complex regulator:

regC{uχ, u(χ1, χ2)}(ηahf ) =

∫
X1(N)(C)

f̄ · log|uχ| · dlog(u(χ1, χ2)(z))dxdy

〈f, f〉2,N

and we get Beilinson formula:

L∗(f, χ1, 2) · L∗(f, χ2, 1) = Cf,χ1,χ2
· regC{uχ, u(χ1, χ2)}(ηahf ).

As it has been mentioned in the abstract, the motivation to write this thesis

was the second chapter of article by Henri Darmon and Massimo Bertolini (see

[BD]). The reasoning presented in this chapter follows [BD]. Therefore readers

with special interest in Beilinson’s formula should get familiar with this article,

which later part describes p-adic case.
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