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Proposito

Il problema della quadratura numerica consiste nell’approssimare
l’integrale definito di una funzione f in un intervallo avente estremi
di integrazione a, b (non necessariamente finiti) cioè

I (w)(f ) := I (w)(f , a, b) =

∫ b

a

f (x)w(x)dx

con

I
(w)
N (f ) :=

N
∑

k=1

wi f (xi )

dove w è una funzione peso in un intervallo avente estremi a, b. A
seconda degli esempi, l’intervallo I può essere aperto o chiuso.

I termini wi e xi ∈ I sono detti rispettivamente pesi e nodi.
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Funzioni peso

Sia w : (a, b) → R una funzione non negativa, con (a, b) non
necessariamente limitato, tale che

1.
∫ b

a
|x |n w(x) dx < +∞ per tutti gli n ∈ N;

2.
∫ b

a
g(x)w(x) dx = 0 per qualche funzione continua e non

negativa g implica g ≡ 0 in (a, b).

La funzione w è detta peso. Le funzioni peso più comuni sono

1. w(x) = 1 con x ∈ [−1, 1] (peso di Legendre);

2. w(x) = 1√
1−x2

con x ∈ (−1, 1) (peso di Chebyshev);

3. w(x) = (1 − x2)γ−(1/2) con x ∈ (−1, 1), γ > (−1/2) (peso di
Gegenbauer);

4. w(x) = (1 − x)α · (1 + x)β con x ∈ (−1, 1), α > −1, β > −1
(peso di Jacobi);

5. w(x) = exp (−x) con x ∈ (0,+∞) (peso di Laguerre);

6. w(x) = exp (−x2) con x ∈ (−∞,+∞) (peso di Hermite);
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Formule di Newton-Cotes

Si supponga [a, b] un intervallo chiuso e limitato di R e sia w ≡ 1.
Per semplicità di notazione, in questo caso porremo I := I (w) = I1.
Il primo esempio di formule interpolatorie che consideriamo sono le
regole di tipo Newton-Cotes chiuse che si ottengono integrando
l’interpolante di f in nodi equispaziati

xk = a +
(k − 1) (b − a)

N − 1
, k = 1, . . . ,N.

Esempi:

◮ N=2, regola del trapezio, g.d.p.=1:
I (f ) ≈ S1(f ) := S1(f , a, b) := (b−a) (f (a)+f (b))

2

◮ N=3, regola di Cavalieri-Simpson, g.d.p.=3:
I (f ) ≈ S3(f ) := S3(f , a, b) := b−a

6

[

f (a) + 4f (a+b
2 ) + f (b)

]
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Formule di Newton-Cotes
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Figura: Regola del trapezio e di Cavalieri-Simpson per il calcolo di
∫ 2

0.5
sin (x) dx (rispettivamente area in magenta e in azzurro).
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Formule di Newton-Cotes composte

Si suddivida l’intervallo (chiuso e limitato) [a, b] in N subintervalli
Tj = [xj , xj+1] tali che xj = a + jh con h = (b − a)/N. Dalle
proprietà dell’integrale

∫ b

a

f (x) dx =

N−1
∑

j=0

∫ xj+1

xj

f (x) dx ≈
N−1
∑

j=0

S(f , xj , xj+1) (1)

dove S è una delle regole di quadratura finora esposte (ad esempio
S3(f )). Le formule descritte in (1) sono dette composte.
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Formule dei trapezi composte

Formula composta dei trapezi: fissati il numero N di subintervalli e
i punti xk = a + kh dove h = b−a

N
è definita da

S
(c)
1 := h

[

f (x0)

2
+ f (x1) + . . . + f (xN−1) +

f (xN)

2

]

(2)

il cui errore è

E
(c)
1 (f ) := I (f ) − S

(c)
1 (f ) =

−(b − a)

12
h2 f (2)(ξ), h =

(b − a)

N

per qualche ξ ∈ (a, b);
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Formule di Cavalieri-Simpson composte

Formula composta di Cavalieri-Simpson: fissati il numero N di
subintervalli e i punti xk = a + kh/2 dove h = b−a

N
sia

I (f ) ≈ S
(c)
3 (f ) :=

h

6

[

f (x0) + 2
N−1
∑

r=1

f (x2r ) + 4
N−1
∑

s=0

f (x2s+1) + f (x2N)

]

(3)
il cui errore è

E
(c)
3 (f ) := I (f ) − S

(c)
3 (f ) =

−(b − a)

180

(

h

2

)4

f (4)(ξ)

per qualche ξ ∈ (a, b).
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Formule di Newton-Cotes
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Figura: Formula dei trapezi composta
∫ 2

0.5 sin (x) dx .
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Formula trapezi composta

La funzione trapezi composta appena esposta calcola i nodi e i
pesi della omonima formula composta.

f u n c t i o n [ x , w ]=trapezi_composta (N , a , b )
% FORMULA DEI TRAPEZI COMPOSTA.
% INPUT :
% N: NUMERO SUBINTERVALLI .
% a , b : ESTREMI DI INTEGRAZIONE .
% OUTPUT:
% x : NODI INTEGRAZIONE .
% w: PESI INTEGRAZIONE (INCLUDE IL PASSO! ) .
h=(b−a ) /N ; % PASSO INTEGRAZIONE .
x=a : h : b ; x=x ’ ; % NODI INTEGRAZIONE .
w=ones (N+1 ,1) ; % PESI INTEGRAZIONE .
w (1) =0.5 ; w ( N+1)=0.5 ;
w=w∗h ;
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Formula Cavalieri-Simpson composta

La funzione simpson composta appena esposta calcola i nodi e i
pesi della omonima formula composta.

f u n c t i o n [ x , w ]=simpson_composta (N , a , b )
% FORMULA DI SIMPSON COMPOSTA.
% INPUT :
% N: NUMERO SUBINTERVALLI .
% a , b : ESTREMI DI INTEGRAZIONE .
% OUTPUT:
% x : INTEGRAZIONE .
% w: PESI INTEGRAZIONE (INCLUDE IL PASSO! ) .
h=(b−a ) /N ; % AMPIEZZA INTERVALLO .
x=a : ( h /2) : b ; x=x ’ ; % NODI INTEGRAZIONE .
w=ones (2∗N+1 ,1) ; % PESI INTEGRAZIONE .
w ( 3 : 2 : 2 ∗ N−1 ,1)=2∗ones ( l e n g t h ( 3 : 2 : 2 ∗ N−1) ,1 ) ;
w ( 2 : 2 : 2 ∗ N , 1 ) =4∗ones ( l e n g t h ( 2 : 2 : 2 ∗ N ) , 1 ) ;
w=w∗h /6 ;
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Esempio 1

Vogliamo approssimare l’integrale
∫ 1
−1 x20dx = 2/21 ≈ 0.09523809523810 tramite le formule

composte dei trapezi e Cavalieri-Simpson. Perchè il paragone sia
veritiero, decidiamo che il numero di valutazioni della funzione
integranda sia uguale. Scriviamo nel file demo composte.m

N=11; %SCEGLIERE DISPARI .
a=−1; b=1; f=inline ( ’ x . ˆ20 ’ ) ;
% a=0; b=1; f=i n l i n e ( ’ exp ( x ) ’ ) ;
N_trap=N−1; % TRAPEZI COMPOSTA.
[ x_trap , w_trap ]=trapezi_composta ( N_trap , a , b ) ;
fx_trap=f e v a l (f , x_trap ) ; I_trap=w_trap ’∗ fx_trap ;
N_simpson=(N−1) /2 ; % CAV.SIMPSON COMPOSTA.
[ x_simp , w_simp ]=simpson_composta ( N_simpson , a , b ) ;
fx_simp=f e v a l (f , x_simp ) ; I_simp=w_simp ’∗ fx_simp ;
f p r i n t f ( ’ \n\ t [TPZ .COMP . ] [ PTS ] : %4.0 f ’ , l e n g t h ( x_trap ) ) ;
f p r i n t f ( ’ \n\ t [TPZ .COMP . ] [ RIS ] : %14.14 f ’ , I_trap ) ;
f p r i n t f ( ’ \n\ t [ CS .COMP . ] [ PTS ] : %4.0 f ’ , l e n g t h ( x_simp ) ) ;
f p r i n t f ( ’ \n\ t [ CS .COMP . ] [ RIS ] : %14.14 f \n\n ’ , I_simp ) ;
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Esempio 1

Ricordando che il risultato è 0.09523809523810, otteniamo i poco
soddisfacenti

[ TRAPEZI COMPOSTA ] [ PTS ] : 11
[ TRAPEZI COMPOSTA ] [ RIS ] : 0.20462631505024
[ SIMPSON COMPOSTA ] [ PTS ] : 11
[ SIMPSON COMPOSTA ] [ RIS ] : 0.13949200364447

Posto N = 51 nella prima riga di demo composte.m

[ TPZ . COMP . ] [ PTS ] : 51
[ TPZ . COMP . ] [ RIS ] : 0.10052328836742
[ CS . COMP . ] [ PTS ] : 51
[ CS . COMP . ] [ RIS ] : 0.09542292188917
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Esempio 1, I

Vediamo gli errori ottenuti

>> s=0.09523809523810; % SOL .
>> t11=0.20462631505024; %TRAP . 11 .
>> abserr=abs (s−t11 ) ; relerr=abserr/ abs ( s ) ;
>> [ abserr relerr ]
ans = 0.1094 1.1486
>> s11=0.13949200364447; %CS . 11 .
>> abserr=abs (s−s11 ) ; relerr=abserr/ abs ( s ) ;
>> [ abserr relerr ]
ans = 0.0443 0.4647
>> t51=0.10052328836742; % TPZ : 51 .
>> abserr=abs (s−t51 ) ; relerr=abserr/ abs ( s ) ;
>> [ abserr relerr ]
ans = 0.0053 0.0555
>> s51=0.09542292188917; % CS .51
>> abserr=abs (s−s51 ) ; relerr=abserr/ abs ( s ) ;
>> [ abserr relerr ]
ans = 0.0002 0.0019

Posto N = 51 nella prima riga di demo composte.m
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Esempio 1, II

[ TPZ . COMP . ] [ PTS ] : 11
[ TPZ . COMP . ] [ RIS ] : 1.71971349138931
[ CS . COMP . ] [ PTS ] : 11
[ CS . COMP . ] [ RIS ] : 1.71828278192482
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Esempio 2

Approssimiamo
∫ 1
0 exp (x)dx = exp(1) − 1 ≈ 1.718281828459046

tramite le formule composte dei trapezi e Cavalieri-Simpson.
Perchè il paragone sia veritiero, decidiamo che il numero di
valutazioni della funzione integranda sia uguale. Modifichiamo la
funzione f nel file demo composte.m e ricaviamo

[ TPZ . COMP . ] [ PTS ] : 11
[ TPZ . COMP . ] [ RIS ] : 1.71971349138931
[ CS . COMP . ] [ PTS ] : 11
[ CS . COMP . ] [ RIS ] : 1.71828278192482

Gli errori relativi sono rispettivamente circa 8.33 · 10−4 e
5.55 · 10−7, quelli assoluti circa 1.43 · 10−3 e 9.55 · 10−7.
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Esempio 2: errore

Nel caso della formula dei trapezi composta, abbiamo

E
(c)
1 (f ) := I (f ) − S

(c)
1 (f ) =

−(b − a)

12
h2 f (2)(ξ), h =

(b − a)

N

per qualche ξ ∈ (a, b) e quindi

|E (c)
1 (f )| ≤

∣

∣

∣

∣

−(b − a)

12
h2 max

x∈(0,1)
exp(x)

∣

∣

∣

∣

≤ 1

12
h2exp(1)

Nel nostro esempio h = 0.1 e quindi

|E (c)
1 (f )| ≤ 1

12
h2exp(1) =

1

12
0.12exp(1) ≈ 2.3 · 10−3,

mentre l’errore assoluto effettivo era circa 1.43 · 10−3.
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Esempio 2: errore

Nel caso della formula di Cavalieri-Simpson composta, abbiamo

E
(c)
3 (f ) := I (f ) − S

(c)
3 (f ) =

−(b − a)

180

(

h

2

)4

f (4)(ξ)

da cui

|E (c)
3 (f )| ≤

∣

∣

∣

∣

∣

−(b − a)

180

(

h

2

)4

max
x∈(0,1)

exp(x)

∣

∣

∣

∣

∣

≤ 1

180

(

h

2

)4

exp(1)

Nel nostro esempio h = (b − a)/N = 0.2 (N subintervalli) e quindi

|E (c)
3 (f )| ≤ 1

180

(

h

2

)4

exp(1) =
1

180

(

0.2

2

)4

exp(1) ≈ 1.5102·10−6 ,

mentre l’errore assoluto effettivo era circa 9.55 · 10−7.
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Formule gaussiane

Nelle formule interpolatorie di Newton-Cotes (come ad esempio la
regola del Trapezio o di Cavalieri-Simpson) i nodi x1, . . . , xn sono
equispaziati e il grado di precisione δ è generalmente uguale almeno
a n − 1 ma in alcuni casi, come per la regola di Cavalieri-Simpson,
uguale al numero di nodi n. Vediamo ora formule

∑n
k=1 wk f (xk)

◮ hanno grado di precisione δ maggiore di 2n − 1;

◮ per qualche funzione f : (a, b) → R continua approssimino

I (w)(f ) :=
∫ b

a
f (x)w(x) dx , con (a,b) non necessariamente

limitato.
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Formule gaussiane

Teorema. Per ogni n ≥ 1 esistono e sono unici dei nodi x1, . . . , xn

e pesi w1, . . . ,wn per cui il grado di precisione sia almeno 2n − 1. I
nodi sono gli zeri del polinomio ortogonale di grado n,

φn(x) = An · (x − x1) · . . . · (x − xn)

e i corrispettivi pesi sono

wi =

∫ b

a

Li (x)w(x)dx =

∫ b

a

Li (x)w(x)dx , i = 1, . . . , n.

Importante: Si dimostra che gli zeri sono semplici e interni
all’intervallo (a,b).
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Vantaggi integrali con peso

Diamo di seguito l’idea sul perchè si utilizzino funzioni peso w per
il calcolo di integrali. Se dobbiamo approssimare

∫ b

a
g(x) dx con g

regolare allora di solito non sarà difficile calcolare numericamente il
valore dell’integrale, mentre se g è poco regolare sarà molto più
oneroso ottenere buoni risultati.

Introducendo una funzione peso w , e supposto che f = g/w sia
regolare, si considera il calcolo di

∫ b

a

g(x) dx =

∫ b

a

g(x)

w(x)
w(x) dx =

∫ b

a

f (x)w(x) dx .

La regolarità di f e la particolarità del calcolo dipendentemente
dalla funzione peso permette di approssimare meglio
∫ b

a
g(x) dx =

∫ b

a
f (x)w(x) dx .
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Vantaggi integrali con peso

Teorema. Sia (a, b) un intervallo limitato e si supponga

w : (a, b) → R sia una funzione peso, I (w) =
∫ b

a
f (x)w(x)dx e

I
(w)
m (f ) :=

∑m
k=1 wi f (xi ) una formula di quadratura avente g.d.p.

n. Allora ricordato che ‖In‖∞ = supf ∈C(a,b)\0 |In(f )|/‖f ‖∞,

‖w‖1 =
∫ b

a
w(x)dx , abbiamo

|I (w) − I
(w)
m (f )| ≤

(

‖w‖1 + ‖I (w)
m ‖∞

)

· min
qn∈Pn

‖f − qn‖∞.

Quindi è importante avere formule con grado di precisione n alto e
f regolare cos̀ı da avere minore minqn∈Pn ‖f − qn‖∞.
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Esempio

Consideriamo il calcolo approssimato

∫ 1

−1
exp (x)

√
1 − x dx = 1.7791436546919097925911790299941.

(4)

◮ Non è suggerito il calcolo dell’integrale con formule composte
poichè la funzione exp (x)

√
1 − x è poco regolare.

◮ Non è indicato usare formule gaussiane con peso w(x) = 1
poichè la funzione exp (x)

√
1 − x è poco regolare.

◮ Si suggerisce di usare formule gaussiane con peso di Jacobi
w(x) =

√
1 − x = (1 − x)1/2 poichè la funzione exp (x) è

C∞(−1, 1).
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Formule gaussiane in Matlab

Il calcolo di nodi e pesi delle formule gaussiane, per una fissata
funzione peso w non è semplice. Di seguito ci interesseremo al caso
particolare delle funzioni peso di Jacobi. A tal proposito aiutano le
routines gauss.m e r jacobi.m di W. Gautschi e D. Laurie che
possono essere scaricate dalla homepage del primo autore. La
funzione gauss jacobi.m, se registrata nella stessa cartella di
gauss.m e r jacobi.m, calcola i nodi x = {xi}i=1,...,n e i pesi
w = {wi}i=1,...,n della formula gaussiana (avente g.d.p. 2n − 1)

∫ 1

−1
f (x) · (1 − x)α(1 + x)β ≈

n
∑

i=1

wi f (xi )

f u n c t i o n [ x , w ]=gauss_jacobi (n , alpha , beta )
ab=r_jacobi (n , alpha , beta ) ;
xw=gauss (n , ab ) ;
x=xw ( : , 1 ) ;
w=xw ( : , 2 ) ;
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Formule gaussiane in Matlab: scalatura

Specialmente per le formule con peso w(x) ≡ 1 si ha spesso da

effettuare l’integrale
∫ b

a
f (x)dx con (a, b) diverso da (−1, 1). In tal

caso si osserva che se γ(t) = (a(1− t)/2) + (b(1 + t)/2), per {tk}
e {wk} nodi e pesi della formula di Gauss-Legendre,

∫ b

a

f (x)dx =

∫ 1

−1

b − a

2
f (γ(t))dt ≈

n
∑

k=1

b − a

2
wk f (γ(tk))

e quindi
∫ b

a

f (x)dx ≈
n

∑

k=1

w∗
k f (x∗

k )

con w∗
k = b−a

2 wk , xk = γ(tk) = (a(1 − tk)/2) + (b(1 + tk)/2).
Questo processo si chiama scalatura dei nodi e dei pesi.

Alvise Sommariva Quadratura numerica 25/ 34



Formule gaussiane in Matlab: demo

Scriviamo quindi nel file demo gauss jacobi

N=11;
alpha=0; beta =0;
a=−1; b=1; f=inline ( ’ x . ˆ20 ’ ) ;
% a=0; b=1; f=i n l i n e ( ’ exp ( x ) ’ ) ;
[ x , w ]=gauss_jacobi (N , alpha , beta ) ;
xx=a∗(1−x )/2+b∗(1+x ) /2 ; ww=(b−a ) ∗w /2 ;
fxx=f e v a l (f , xx ) ;
I=ww ’∗ fxx ;
f p r i n t f ( ’ \n\ t [N] :%3 .0 f [ I ] : %1.15 e \n\n ’ ,N , I )

calcolando cos̀ı con una formula gaussiana di 11 nodi l’integrale
∫ 1
0 exp (x)dx = exp(1) − 1 ≈ 1.718281828459046.
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Formule gaussiane in Matlab: demo ed esempio 1

Dalla shell di Matlab/Octave

>> demo_gauss_jacobi

[ N ] : 11 [ I ] : 9.523809523809551 e−02
>> I

I = 9.523809523809551 e−02
>> Iex=2/21; abs (I−Iex )
ans = 2.775557561562891 e−16

che va confrontato, a parità di nodi, con 5.28 · 10−3 e 1.85 · 10−4

rispettivamente delle formule dei trapezi e Cavalieri-Simpson
composte. Si osservi che il grado di precisione della formula
gaussiana con n = 11 è 2n − 1 = 21 e quindi l’integrale

∫ 1
−1 x20dx

è calcolato, a meno di errori macchina, esattamente.
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Formule gaussiane in Matlab: demo ed esempio 2

Dalla shell di Matlab/Octave, rimaneggiando i commenti del
codice,

>> demo_gauss_jacobi

[ N ] : 11 [ I ] : 1.718281828459045 e+00
>> Iex=exp (1)−exp (0) ; I=1.718281828459045 e+00;
>> abs ( Iex−I )
ans = 4.440892098500626 e−16

che va confrontato, a parità di nodi, con 1.43 · 10−3 e 9.55 · 10−7

rispettivamente delle formule dei trapezi e Cavalieri-Simpson
composte.
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Formule gaussiane in Matlab: demo ed esempio 3

Approssimiamo in un file Matlab/Octave demo comparison.m
∫ 1
−1 exp (x)

√
1 − x dx = 1.77914365469190979259 . . . . mediante la

formula dei trapezi composta, Cav.-Simpson composta,
Gauss-Legendre e Gauss-Jacobi con α = 1/2, β = 0.

N=11; a=−1;b=1; Iex=1.7791436546919097925911790299941;
g=inline ( ’ exp ( x ) .∗ s q r t (1−x ) ’ ) ; f=inline ( ’ exp ( x ) ’ ) ;
[ xt , wt ]=trapezi_composta (N , a , b ) ; % TPZ .
fxt=f e v a l (g , xt ) ; It=wt ’∗ fxt ; et=abs ( Iex−It ) ;
[ xcs , wcs ]=simpson_composta (N , a , b ) ; % C. S .
fxcs=f e v a l (g , xcs ) ; Ics=wcs ’∗ fxcs ; ecs=abs ( Iex−Ics ) ;
[ xgl , wgl ]=gauss_jacobi (N , 0 , 0 ) ; % G. L .
fxgl=f e v a l (g , xgl ) ; Igl=wgl ’∗ fxgl ; egl=abs ( Iex−Igl ) ;
[ xj , wj ]=gauss_jacobi (N , 0 . 5 , 0 ) ; % G. J .
fxj=f e v a l (f , xj ) ; Ij=wj ’∗ fxj ; ej=abs ( Iex−Ij ) ;
f p r i n t f ( ’ \n TPZ:%1.1 e CS:%1.1 e ’ ,et , ecs ) ;
f p r i n t f ( ’GL:%1.1 e GJ:%1.1 e \n\n ’ , egl , ej ) ;
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Formule gaussiane in Matlab: demo ed esempio 3

Con ovvia notazione, a parità di valutazioni della funzione
integranda, abbiamo

>> demo_comparison

[ TPZ ] : 4 . 4 e−02 [ CS ] : 6 . 2 e−03 [ GL ] : 5 . 3 e−04 [ GJ ] : 6 . 7 e
−16

>>

che evidenzia la superiorità delle formule gaussiane, una volta che
il peso è scelto opportunamente.
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Esercizio sulla formula di Fejér, I

◮ Calcolare con una routine Matlab nodi chebyshev.m i nodi
di Gauss-Chebyshev

xk = cos(θk), θk = (2k − 1) · π/(2n), k = 1, 2, . . . , n

per un certo n prefissato.
◮ Calcolare con una routine Matlab momenti chebyshev.m i

valori
γm = 2/(1 − m2), se m pari

γm = 0, se m dispari

per m = 0, . . . , n, per un certo n prefissato. Questi valori
corrispondono con i momenti dei polinomi di Chebyshev

Tm(x) = cos(m · arccos(x))

rispetto alla misura di Legendre, cioè ai valori

γm :=

∫ 1

−1
Tm(x) dx .
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Esercizio sulla formula di Fejér, II

◮ Aiutandosi col comando

>> h e l p g a l l e r y

valutare la matrice di Vandermonde per i polinomi di

Chebyshev V di grado n in n + 1 nodi di Chebyshev.

Se w è il vettore che risolve il problema V · w = γ (attenzione alle
dimensioni!), allora si ottiene la formula di quadratura di Fejér

∫ 1

−1
f (x)dx ≈

n+1
∑

k=1

wk f (xk).
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Esercizio sulla formula di Fejér, III

Effettuare una routine Matlab Formula Fejer.m che

1. calcoli n + 1 nodi di Chebyshev {xk};
2. valuti la matrice di Vandermonde per i polinomi di Chebyshev

V di grado n in {xk};
3. calcoli i momenti γ dei polinomi di Chebyshev;

4. risolva tramite il comando backslash di Matlab il sistema
lineare V · w = γ.
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Esercizio sulla formula di Fejér, IV

◮ Usare la formula di Fejér con n = 11 per calcolare l’integrale
∫ 1
−1 x20dx = 2/21 ≈ 0.09523809523810;

◮ Usare la formula di Fejér con n = 11 per calcolare l’integrale
∫ 1
0 exp (x)dx = exp(1) − 1 ≈ 1.718281828459046. Se

opportuno, sostituire il calcolo di questo integrale con uno in
(−1, 1).
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