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Il problema della quadratura numerica consiste nell'approssimare
I'integrale definito di una funzione f in un intervallo avente estremi
di integrazione a, b (non necessariamente finiti) cioé

I(£) = [M)(F, 5, b) = /b F(x) w(x)dx

a

con N
) =Y wif (xi)
k=1

dove w € una funzione peso in un intervallo avente estremi a, b. A
seconda degli esempi, l'intervallo Z pud essere aperto o chiuso.

| termini w; e x; € Z sono detti rispettivamente pesi e nodi.
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Funzioni peso

Sia w : (a, b) — R una funzione non negativa, con (a, b) non
necessariamente limitato, tale che

1. fab Ix|" w(x) dx < +oo per tutti gli n € N;
2. fab g(x) w(x) dx = 0 per qualche funzione continua e non
negativa g implica g =0 in (a, b).

La funzione w & detta peso. Le funzioni peso pit comuni sono
1. w(x)=1 con x € [-1,1] (peso di Legendre);

2. w(x) = = con x € (—1,1) (peso di Chebyshev);
3. w(x) = (1 —x ) ~(1/2) con x € (=1,1), v > (—1/2) (peso di
Gegenbauer);

4o w(x)=(1-x)*-(1+x)?conxe (-1,1), a> -1, 3> 1
(peso di Jacobi);

5. w(x) = exp (—x) con x € (0,+00) (peso di Laguerre);

6. w(x) = exp (—x?2) con x € (—00,+0o0) (peso di Hermite);
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Formule di Newton-Cotes

Si supponga [a, b] un intervallo chiuso e limitato di R e sia w = 1.
Per semplicita di notazione, in questo caso porremo [ := /(") = ;.
Il primo esempio di formule interpolatorie che consideriamo sono le
regole di tipo Newton-Cotes chiuse che si ottengono integrando
I'interpolante di f in nodi equispaziati

_ . k=1)(b-a)

Xk—a—i-T, k:].,,N

Esempi:

» N=2, regola del trapezio, g.d.p.=1:
/(f) ~ Sl(f) = Sl(f’ a, b) = w

» N=3, regola di Cavalieri-Simpson, g.d.p.=3:
I(f) = S3(f) := S3(f,a, b) := 252 [f(a) + 4F(22) + (b))
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Formule di Newton-Cotes

Figura: Regola del trapezio e di Cavalieri-Simpson per il calcolo di
f02.5 sin (x) dx (rispettivamente area in magenta e in azzurro).

Alvise Sommariva Quadratura numerica 5/ 34



Formule di Newton-Cotes composte

Si suddivida I'intervallo (chiuso e limitato) [a, b] in N subintervalli
T; = [xj, xj+1] tali che x; = a+ jh con h = (b — a)/N. Dalle
proprieta dell’integrale

b N-1 xiy N-1
[ rad=3 [ b Yos(hon) )
a j=0 V% Jj=0

dove S & una delle regole di quadratura finora esposte (ad esempio
S3(f)). Le formule descritte in (1) sono dette composte.
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Formule dei trapezi composte

Formula composta dei trapezi: fissati il numero N di subintervalli e
i punti x, = a + kh dove h = Zz2 & definita da

S = h [@ +0a)+ .+ Flv-1) + f(>2<,\,)] (2)

il cui errore &

) = 1) - 50 = ~L =Dy s (g), =

per qualche £ € (a, b);
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Formule di Cavalieri-Simpson composte

Formula composta di Cavalieri-Simpson: fissati il numero N di
subintervalli e i punti xx = a+ kh/2 dove h = 222 sia

h N-1 N-1
/(f) ~ S?EC)(f) = 5 [f(xo) +2 Z f(Xgr) +4 Z f(X2s_|_1) + f(XzN)]

r=1 s=0
3)
il cui errore &

B (F) = 1(F) — $57(F) = % <g> (¢

per qualche £ € (a, b).
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Formule di Newton-Cotes

06

Figura: Formula dei trapezi composta f02.5 sin (x) dx.
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Formula trapezi composta

La funzione trapezi_composta appena esposta calcola i nodi e i
pesi della omonima formula composta.

function [x,w]=trapezi_composta(N,a,b)

% FORMULA DEI TRAPEZI COMPOSTA.

% INPUT :

% N: NUMERO SUBINTERVALLI.

% a, b: ESTREMI DI INTEGRAZIONE.

% OUTPUT :

% x: NODI INTEGRAZIONE.

% w: PESI INTEGRAZIONE (INCLUDE IL PASSO!).

h=(b—a)/N; % PASSO INTEGRAZIONE .
x=a:h:b; x=x'; % NODI INTEGRAZIONE.
w=omnes (N+1,1); % PESI INTEGRAZIONE.
w(1l)=0.5; w(N+1)=0.5;

w=wxh;
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Formula Cavalieri-Simpson composta

La funzione simpson_composta appena esposta calcola i nodi e i
pesi della omonima formula composta.

function [x,w]=simpson_composta(N,a,b)

% FORMULA DI SIMPSON COMPOSTA.

% INPUT:

% N: NUMERO SUBINTERVALLI .

% a, b: ESTREMI DI INTEGRAZIONE.

% OUTPUT :

% x: INTEGRAZIONE.

% w: PESI INTEGRAZIONE (INCLUDE IL PASSO!).

h=(b—a) /N; % AMPIEZZA INTERVALLO .
x=a:(h/2):b; x=x': % NODI INTEGRAZIONE .
w=omnes (2xN+1,1); % PESI INTEGRAZIONE.

w(3:2:2%N—1,1)=2%ones (length (3:2:2xN-1),1);
w(2:2:2%N,1)=4xones (length (2:2:2%N) ,1);
w=wxh /6;
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Vogliamo approssimare I'integrale

f_ll x?0dx = 2/21 ~ 0.09523809523810 tramite le formule
composte dei trapezi e Cavalieri-Simpson. Perché il paragone sia
veritiero, decidiamo che il numero di valutazioni della funzione
integranda sia uguale. Scriviamo nel file demo_composte.m

N=11; %SCEGLIERE DISPARI.

a=-—1; b=1; f=inline( 'x."20");

% a=0; b=1; f=inline ('exp(x)"');

N_trap=N-1; % TRAPEZI COMPOSTA.
[x_trap,w_trap|=trapezi_composta(N_trap,a,b);
fx_trap=feval (f,x_trap); I_trap=w_trap '*xfx_trap;
N_simpson=(N—-1)/2; % CAV.SIMPSON COMPOSTA.
[x_simp,w_simp|=simpson_composta(N_simpson,a,b);
fx_simp=feval(f,x_simp); I_simp=w_simp '*fx_simp;
fprintf('\n\t [TPZ.COMP.][PTS]: %4.0f ,length(x_trap));
fprintf('\n\t [TPZ.COMP.][RIS]: %14.14f" ,I_trap);
fprintf('\n\t [CS.COMP.][PTS]: %4.0f ,length (x_simp));
fprintf('\n\t [CS.COMP.][RIS]: %14.14f \n\n',I_simp);
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Ricordando che il risultato & 0.09523809523810, otteniamo i poco
soddisfacenti

[TRAPEZI COMPOSTA] [PTS]: 11
[TRAPEZI COMPOSTA]| [RIS]: 0.20462631505024
[SIMPSON COMPOSTA] [PTS]: 11

[SIMPSON COMPOSTA] [RIS]: 0.13949200364447

Posto N = 51 nella prima riga di demo_composte.m

[TPZ.COMP .][PTS]: 51
[TPZ.COMP .][RIS]: 0.10052328836742
[cs.coMP .][PTS]: 51

[cS.coMP .|[RIS]: 0.09542292188917
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Esempio 1, |

Vediamo gli errori ottenuti

>> 5=0.09523809523810; % SOL.

>> t11=0.20462631505024; %IRAP. 11.

>> abserr=abs(s—tl1);relerr=abserr/abs(s);
>> [abserr relerr]

ans = 0.1094 1.1486

>> 511=0.13949200364447; %CS. 11.

>> abserr=abs(s—sl11);relerr=abserr/abs(s);
>> [abserr relerr)]

ans = 0.0443 0.4647

>> t51=0.10052328836742; % TPZ: 51.

>> abserr=abs(s—t51);relerr=abserr/abs(s);
>> [abserr relerr]

ans = 0.0053 0.0555

>> s51=0.09542292188917; % CS.51

>> abserr=abs(s—s51);relerr=abserr/abs(s);
>> [abserr relerr]

ans = 0.0002 0.0019
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Esempio 1, Il

[TPZ.COMP .][PTS]: 11
[TPZ.COMP .][RIS]: 1.71971349138931
[cs.coMP .][PTS]: 11

[CS.COMP .| [RIS]: 1.71828278192482
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Approssimiamo fol exp (x)dx = exp(1) — 1 ~ 1.718281828459046
tramite le formule composte dei trapezi e Cavalieri-Simpson.
Perche il paragone sia veritiero, decidiamo che il numero di
valutazioni della funzione integranda sia uguale. Modifichiamo la
funzione f nel file demo_composte.m e ricaviamo

[TPZ.COMP .][PTS]: 11
[TPZ.COMP .][RIS]: 1.71971349138931
[CS.COMP .][PTS]: 11

[CS.COMP .|[RIS]: 1.71828278192482

Gli errori relativi sono rispettivamente circa 8.33 - 107 e
5.55-10~7, quelli assoluti circa 1.43-1073 e 9.55 - 10~ 7.
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Esempio 2: errore

Nel caso della formula dei trapezi composta, abbiamo

b— a)
N

Ap)y = 1(F) ~ 510 = L pe ey, =
per qualche £ € (a, b) e quindi
(©py < |(b=3) <1
BVl < |—75—h Xren(gﬁ)exp( x)| = zhexp(1)
Nel nostro esempio h = 0.1 e quindi

1
E) < 35 exp(l)——20-126XP(1)%2-3'10_37

mentre |'errore assoluto effettivo era circa 1.43 - 1073.
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Esempio 2: errore

Nel caso della formula di Cavalieri-Simpson composta, abbiamo

ESY(F) = 1(F) = S57(F) = % (2) (¢

da cui

1 /m\*
< — | =
— 180 <2) exp(1)

Nel nostro esempio h = (b —a)/N = 0.2 (N subintervalli) e quindi

4
©py < |Z(b—a) (h
|E57 ()] < ‘ 180 5 Xg}gﬁ)exp(X)

4 4
() < A (h - 1 (02 ~ 10—6
157 (] = 155 <2> exp(1) = o= (| exp(1) = 1.5102:10°°,

mentre |'errore assoluto effettivo era circa 9.55- 1077
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Formule gaussiane

Nelle formule interpolatorie di Newton-Cotes (come ad esempio la
regola del Trapezio o di Cavalieri-Simpson) i nodi xi, ..., x, sono
equispaziati e il grado di precisione § & generalmente uguale almeno
a n—1 ma in alcuni casi, come per la regola di Cavalieri-Simpson,
uguale al numero di nodi n. Vediamo ora formule >~/ _; wif(xk)
» hanno grado di precisione § maggiore di 2n — 1;
» per qualche funzione f : (a, b) — R continua approssimino
IW(f) = fab f(x)w(x) dx, con (a,b) non necessariamente
limitato.
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Formule gaussiane

Teorema. Per ogni n > 1 esistono e sono unici dei nodi xi, ..., X,
e pesi wi,..., W, per cui il grado di precisione sia almeno 2n — 1. |
nodi sono gli zeri del polinomio ortogonale di grado n,

On(x)=An- (x—x1) ... (x —xpn)

e i corrispettivi pesi sono
b b
w; = / Li(x)w(x)dx = / Li(x)w(x)dx, i=1,...,n.
a a

Importante: Si dimostra che gli zeri sono semplici e interni
all'intervallo (a,b).
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Vantaggi integrali con peso

Diamo di seguito I'idea sul perche si utilizzino funzioni peso w per
il calcolo di integrali. Se dobbiamo approssimare fab g(x)dx con g
regolare allora di solito non sara difficile calcolare numericamente il
valore dell’integrale, mentre se g & poco regolare sara molto piu
oneroso ottenere buoni risultati.

Introducendo una funzione peso w, e supposto che f = g/w sia
regolare, si considera il calcolo di

/abg(x) dx = /ab%w(x) dx = /ab f(x)w(x) dx.

La regolarita di f e la particolarita del calcolo dipendentemente
dalla funzione peso permette di approssimare meglio

[P g(x)dx = [P F(x)w(x) dx.
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Vantaggi integrali con peso

Teorema. Sia (a, b) un intervallo limitato e si supponga

w : (a, b) — R sia una funzione peso, /(") = fab f(x)w(x)dx e
/,(,,W)(f) = > iy wif(x;) una formula di quadratura avente g.d.p.
n. Allora ricordato che ||/p]|c0 = SUPfeC(a,b)\0 n (/|1 ] oo
lwlly = [ w(x)dx, abbiamo

10— 59 < (Il + 15 loc) - min 1 = ol

n

Quindi & importante avere formule con grado di precisione n alto e
f regolare cosi da avere minore ming,cp, ||f — gn|-
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Consideriamo il calcolo approssimato

1
/ exp (x)V1 — x dx = 1.7791436546919097925911790299941.
-1
(4)

» Non & suggerito il calcolo dell'integrale con formule composte
poiche la funzione exp (x)v/1 — x & poco regolare.

» Non & indicato usare formule gaussiane con peso w(x) =1
poiche la funzione exp (x)v/1 — x & poco regolare.

» Si suggerisce di usare formule gaussiane con peso di Jacobi
w(x) = vIT—x = (1 — x)%/2 poiche la funzione exp (x) &
C>®(-1,1).
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Formule gaussiane in Matlab

Il calcolo di nodi e pesi delle formule gaussiane, per una fissata
funzione peso w non & semplice. Di seguito ci interesseremo al caso
particolare delle funzioni peso di Jacobi. A tal proposito aiutano le
routines gauss.m e r_jacobi.m di W. Gautschi e D. Laurie che
possono essere scaricate dalla homepage del primo autore. La
funzione gauss_jacobi.m, se registrata nella stessa cartella di
gauss.m e r_jacobi.m, calcola i nodi x = {x;j}j=1,_, e i pesi

w = {W;};j=1.._p della formula gaussiana (avente g.d.p. 2n — 1)

1 n
/ ) (L= (L 4+0)° = Y i)

-1

function [x,w]=gauss_jacobi(n,alpha, beta)
ab=r_jacobi(n, alpha, beta);

xw=gauss (n,ab);

x=xw(:,1);

w=xw(:,2);
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Formule gaussiane in Matlab: scalatura

Specialmente per le formule con peso w(x) = 1 si ha spesso da
effettuare l'integrale fab f(x)dx con (a, b) diverso da (—1,1). In tal
caso si osserva che se y(t) = (a(1 — t)/2) + (b(1 + t)/2), per {tx}
e {wk} nodi e pesi della formula di Gauss-Legendre,

n

b Lp—a —a
[ fde = [ 2320~ Y 25 mr((s)

k=1

e quindi
b n
/ Fx)d~ S wiF(xf)
g k=1

con W;(k = %Wk, X = ’}/(t’k) = (a(l — t'k)/2) + (b(]. + t'k)/2)
Questo processo si chiama scalatura dei nodi e dei pesi.
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Formule gaussiane in Matlab: demo

Scriviamo quindi nel file demo_gauss_jacobi

N=11;

alpha=0; beta=0;

a=-—1; b=1; f=inline( 'x."20");

% a=0; b=1; f=inline ('exp(x)"');
[x,w]=gauss_jacobi (N, alpha, beta);
xx=a*x(l—x)/24+bx(1+x)/2; wu=(b—a)*w/2;
fxx=feval (£, xx);

I=ww *xfxx;

fprintf ("\n\t[N]:%3.0f [I]: %1.15e \n\n',N,I)

calcolando cosi con una formula gaussiana di 11 nodi I'integrale
Ji exp (x)dx = exp(1) — 1 ~ 1.718281828459046.
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Formule gaussiane in Matlab: demo ed esempio 1

Dalla shell di Matlab/Octave

>> demo_gauss_jacobi
[N]: 11 [I]: 9.523809523809551e—02

>> 1

I = 9.523809523809551e—-02
>> Iex=2/21; abs(I-Iex)

ans = 2.775557561562891e—16

che va confrontato, a parita di nodi, con 5.28 - 1073e185-107%
rispettivamente delle formule dei trapezi e Cavalieri-Simpson
composte. Si osservi che il grado di precisione della formula
gaussiana con n =11 & 2n — 1 = 21 e quindi l'integrale f_ll x20dx
e calcolato, a meno di errori macchina, esattamente.
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Formule gaussiane in Matlab: demo ed esempio 2

Dalla shell di Matlab/Octave, rimaneggiando i commenti del
codice,

>> demo_gauss_jacobi

[N]: 11 [I]: 1.718281828459045e+00

>> Tex=exp(1l)—exp(0); I=1.718281828459045¢e+00;

>> abs(Iex—I)
ans = 4.440892098500626e—16

che va confrontato, a parita di nodi, con 1.43-1073 e 9.55 - 10~/
rispettivamente delle formule dei trapezi e Cavalieri-Simpson
composte.
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Formule gaussiane in Matlab: demo ed esempio 3

Approssimiamo in un file Matlab/Octave demo_comparison.m

f_ll exp (x)v1 — x dx = 1.77914365469190979259 . . . . mediante la
formula dei trapezi composta, Cav.-Simpson composta,
Gauss-Legendre e Gauss-Jacobi con a =1/2, f =0.

N=11; a=—1;b=1; Iex=1.7791436546919097925911790299941;
g=inline('exp(x).xsqrt(l—x)"'); f=inlimne( 'exp(x)’);
[xt,wt]=trapezi_composta(N,a,b); % TPZ.

fxt=feval (g,xt);It=wt *fxt;et=abs(lex—It);
[xcs,wcs]=simpson_composta(N,a,b); % C.S.
fxcs=feval(g,xcs);Ics=wcs *xfxcs;ecs=abs(Iex—Ics);
[xgl ,wgl]=gauss_jacobi (N,0,0); % G.L.
fxgl=feval(g,xgl);Igl=wgl *fxgl;egl=abs(Iex—Igl);
[xj,wj]=gauss_jacobi (N,0.5,0); % G.J.

fxj=feval (f,xj); Ij=wj '*fxj;ej=abs(Iex—1Ij);
fprintf('\n TPZ:%1.1e CS:%1.1e’ ,et,ecs);
fprintf('GL:%1.1e GJ:%1.1e \n\n',egl,ej);
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Formule gaussiane in Matlab: demo ed esempio 3

Con ovvia notazione, a parita di valutazioni della funzione

integranda, abbiamo

>> demo_comparison

[TPZ]: 4.4e—02 [CS]: 6.2¢—03 [GL]: 5.3e—04 [GJ]: 6.7e
-16

>>

che evidenzia la superiorita delle formule gaussiane, una volta che
il peso & scelto opportunamente.
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Esercizio sulla formula di Fejér, |

» Calcolare con una routine Matlab nodi_chebyshev.m i nodi
di Gauss-Chebyshev

xx = cos(0x), Ox=2k—1)-w/(2n), k=1,2,...,n

per un certo n prefissato.
» Calcolare con una routine Matlab momenti_chebyshev.m i

valori
Ym =2/(1—m?), sem pari
Ym = 0, se m dispari
per m=0,...,n, per un certo n prefissato. Questi valori

corrispondono con i momenti dei polinomi di Chebyshev
Tm(x) = cos(m - arccos(x))

rispetto alla misura di Legendre, cioé ai valori

1
TYm ::/ Tm(x) dx.
-1
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Esercizio sulla formula di Fejér, I

» Aiutandosi col comando

|>> help gallery

valutare la matrice di Vandermonde per i polinomi di
Chebyshev V di grado n in n+ 1 nodi di Chebyshev.

Se w ¢ il vettore che risolve il problema V - w = v (attenzione alle
dimensioni!), allora si ottiene la formula di quadratura di Fejér

1 n+1
/ F)dx ~ S wi ().
k=1

-1
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Esercizio sulla formula di Fejér, IlI

Effettuare una routine Matlab Formula Fejer.m che
1. calcoli n+ 1 nodi di Chebyshev {x};

2. valuti la matrice di Vandermonde per i polinomi di Chebyshev
V di grado nin {x.};

3. calcoli i momenti v dei polinomi di Chebyshev;

4. risolva tramite il comando backslash di Matlab il sistema
lineare V - w = .
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Esercizio sulla formula di Fejér, IV

» Usare la formula di Fejér con n = 11 per calcolare I'integrale
It x20dx = 2/21 & 0.09523809523810;

» Usare la formula di Fejér con n = 11 per calcolare I'integrale
Ji exp (x)dx = exp(1) — 1 ~ 1.718281828459046. Se
opportuno, sostituire il calcolo di questo integrale con uno in

(~1,1).

Alvise Sommariva Quadratura numerica 34/ 34



