
QUADRATURA NUMERICA ∗

A. SOMMARIVA†

Conoscenze richieste. Integrale di Riemann. Teorema di Weierstrass. Polinomi di Lagrange. Derivate di
ordine superiore. Operatori lineari limitati. Teorema di Weierstrass sulla densità di uno spazio polinomiale rispetto
C([a, b]) con [a, b] chiuso. Programmazione in Matlab/Octave.

Conoscenze ottenute. Formule di quadratura. Grado di precisione. Formule interpolatorie. Formule di Newton-
Cotes. Regola del trapezio e di Simpson. Formule composte. Errore di alcune formule di quadratura. Formule a
pesi positivi. Errore formule di quadratura di Newton-Cotes. Errore formule di quadratura di Gauss. Stabilità di una
formula di quadratura. Teorema di Polya-Steklov.

Ore necessarie. 6 teoria e 2 laboratorio.

1. Introduzione. Un classico problema dell’analisi numerica è quello di calcolare l’integrale
definito di una funzione f in un intervallo avente estremi di integrazione a, b (non necessa-
riamente finiti) cioè

Iw(f) := Iw(f, a, b) =

∫ b

a

f(x)w(x)dx

dove w è una funzione peso in (a, b) [1, p.206, p.270].

La nostra intenzione è di approssimare I(f) come

Iw(f) ≈ QN (f) :=

N∑
i=1

wif(xi) (1.1)

I termini wi e xi ∈ [α, β] sono detti rispettivamente pesi e nodi.

2. Formule interpolatorie. Sia (a, b) l’intervallo di integrazione (non necessariamente
limitato), x1, . . . , xN un insieme di N punti a due a due distinti ed f ∈ C([a, b]) una funzione
w-integrabile cioè per cui esista finito Iw(f). Se l’intervallo è limitato, per il teorema di
Weierstrass e l’integrabilità della funzione peso, questo è vero per qualsiasi funzione continua
in quanto ∣∣∣∣∣

∫ b

a

f(x)w(x)dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)|w(x)dx ≤ ‖f‖∞‖w‖1 < +∞

Se

pN−1(x) =

N∑
i=1

f(xi)Li(x)

è il polinomio che interpola le coppie (xi, f(xi)) con i = 1, . . . , N , dove al solito Li indica
l’i-simo polinomio di Lagrange allora
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∫ b

a

f(x)w(x)dx ≈
∫ b

a

pN−1(x)w(x)dx

=

∫ b

a

N∑
i=1

f(xi)Li(x)w(x)dx

=

N∑
i=1

(∫ b

a

Li(x)w(x)dx

)
f(xi) (2.1)

per cui, confrontando con la formula (1.1) abbiamo

wi =

∫ b

a

Li(x)w(x)dx, i = 1, . . . , N.

DEFINIZIONE 2.1. Una formula di quadratura∫ b

a

f(x)w(x)dx ≈
N∑
i=1

wif(xi) (2.2)

per cui

wk =

∫ b

a

Li(x)w(x)dx, k = 1, . . . , N (2.3)

si dice interpolatoria.

DEFINIZIONE 2.2. Una formula∫ b

a

f(x)w(x)dx ≈
M∑
i=1

wif(xi)

ha grado di precisione almeno N se e solo se è esatta per tutti i polinomi f di grado inferiore
o uguale a N . Ha inoltre grado di precisione N se e solo se è esatta per ogni polinomio di
grado N ed esiste un polinomio di grado N + 1 per cui non lo sia.

Mostriamo ora il seguente

TEOREMA 2.3. Una formula∫ b

a

f(x)w(x)dx ≈
N∑
i=1

wif(xi)

è interpolatoria se e solo se ha grado di precisione almeno N − 1.

DIMOSTRAZIONE. Se f = pN−1 è un polinomio di gradoN−1 ovviamente corrisponde
col polinomio interpolante pN−1 nei nodi a due a due distinti x1, . . . , xN e quindi la formula
risulta esatta per polinomi di grado inferiore o uguale a N − 1, cioè

Iw(pN−1) =

N∑
i=1

wif(xi), wi =

∫ b

a

Li(x)w(x)dx, i = 1, . . . , N.

Viceversa se è esatta per ogni polinomio di grado N − 1 allora lo è in particolare per i
polinomi di Lagrange Li ∈ Pn−1, il che implica che wi =

∫ b
a
Li(x)w(x)dx e quindi i pesi

sono proprio quelli della formula interpolatoria corrispondente nei nodi x1, . . . , xN .
2
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FIGURA 3.1. Regola del trapezio e di Cavalieri-Simpson per il calcolo di
∫ 2
0.5 sin (x) dx (rispettivamente

area in magenta e in azzurro).

3. Formule di Newton-Cotes. Si supponga [a, b] un intervallo chiuso e limitato di R e
si ponga w ≡ 1. Per semplicità di notazione, in questo caso porremo I := Iw = I1. Il pri-
mo esempio di formule interpolatorie che consideriamo sono le regole di tipo Newton-Cotes
chiuse (cf. [9, p.336]) che si ottengono integrando l’interpolante di f in nodi equispaziati

xi = a+
(i− 1) (b− a)

N − 1
, i = 1, . . . , N.

Alcune classiche regole sono:
1. regola del trapezio

I(f) ≈ S1(f) := S1(f, a, b) :=
(b− a) (f(a) + f(b))

2

avente grado di precisione 1, cioè esatta per polinomi di grado inferiore o uguale a
1; si può dimostrare (con un po’ di fatica) dal teorema del resto per l’interpolazione
polinomiale (cf. [3, p.132]) che l’errore della regola del trapezio [30] è

E1(f) := I(f)− S1(f) =
−h3

12
f (2)(ξ)

per qualche ξ ∈ (a, b);
2. regola di Cavalieri-Simpson

I(f) ≈ S3(f) := S3(f, a, b) :=
b− a

6

[
f(a) + 4f(

a+ b

2
) + f(b)

]
avente grado di precisione 3, cioè esatta per polinomi di grado inferiore o uguale a
3; si può dimostrare (non facile!) che l’errore della regola di Cavalieri-Simpson [31]
è

E3(f) := I(f)− S3(f) =
−h5

90
f (4)(ξ), h =

b− a
2

per qualche ξ ∈ (a, b);

NOTA 3.1. Vediamo calcolando i pesi, che in effetti le due formule sono interpolatorie.
Partiamo dalla regola del trapezio. Posti x1 = a, x2 = b abbiamo che

L1(x) =
x− b
a− b

, L2(x) =
x− a
b− a

3



FIGURA 3.2. Isaac Newton (1642-1727), Roger Cotes (1682-1716), Bonaventura Francesco Cavalieri (1598-
1647) e Thomas Simpson (1710-1761).

e quindi visto che w ≡ 1 abbiamo

w1 =

∫ b

a

L1(x) dx =

∫ b

a

x− b
a− b

dx =
1

a− b

∫ b

a

(x− b) dx

=
1

a− b
(x− b)2

2
| ba =

1

a− b
(x− b)2

2
| ba =

1

a− b
−(a− b)2

2
=
b− a

2
(3.1)

e

w2 =

∫ b

a

L2(x) dx =

∫ b

a

x− a
b− a

dx =
1

b− a

∫ b

a

(x− a) dx

=
1

b− a
(x− a)2

2
| ba =

1

b− a
(x− a)2

2
| ba =

1

b− a
(b− a)2

2
=
b− a

2
(3.2)

Per quanto riguarda la regola di Cavalieri-Simpson i ragionamenti sono analoghi. D’al-
tra parte essendo quelle dei trapezi e Simpson regole rispettivamente aventi 2 e 3 punti con
grado 2 e 4, allora sono entrambe interpolatorie.

Per ulteriori dettagli si confronti [1, p.252-258], [9, p.333-336].

NOTA 3.2. Qualora le funzioni da integrare non siano sufficientemente derivabili, una
stima dell’errore viene fornita dalle formule dell’errore via nucleo di Peano ([1, p.259]).
Ricordiamo che per N ≥ 8 le formule di Newton-Cotes chiuse hanno pesi di segno diverso e
sono instabili dal punto di vista della propagazione degli errori (cf. [3, p.196]).

4. Formule di Newton-Cotes composte. Si suddivida l’intervallo (chiuso e limitato)
[a, b] in N subintervalli Tj = [xj , xj+1] tali che xj = a + jh con h = (b − a)/N . Dalle
proprietà dell’integrale∫ b

a

f(x) dx =

N−1∑
j=0

∫ xj+1

xj

f(x) dx ≈
N−1∑
j=0

S(f, xj , xj+1) (4.1)

dove S è una delle regole di quadratura finora esposte (ad esempio S3(f)). Le formule
descritte in (4.1) sono dette composte. Due casi particolari sono

1. formula composta dei trapezi

S
(c)
1 := h

[
f(x0)

2
+ f(x1) + . . .+ f(xN−1) +

f(xN )

2

]
(4.2)
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il cui errore è

E
(c)
1 (f) := I(f)− S(c)

1 (f) =
−(b− a)

12
h2 f (2)(ξ), h =

(b− a)

N

per qualche ξ ∈ (a, b);
2. formula composta di Cavalieri-Simpson fissati il numero N di subintervalli e i punti
xk = a+ kh/2 dove h = b−a

N sia

I(f) ≈ S(c)
3 (f) :=

h

6

[
f(x0) + 2

N−1∑
r=1

f(x2r) + 4

N−1∑
s=0

f(x2s+1) + f(x2N )

]
;

(4.3)
il cui errore è

E
(c)
3 (f) := I(f)− S(c)

3 (f) =
−(b− a)

180

(
h

2

)4

f (4)(ξ)

per qualche ξ ∈ (a, b).

5. Formule gaussiane. Nelle formule interpolatorie di Newton-Cotes (come ad esem-
pio la regola del Trapezio o di Cavalieri-Simpson) i nodi x1, . . . , xn sono equispaziati e il
grado di precisione δ è generalmente uguale almeno a n − 1 ma in alcuni casi, come per la
regola di Cavalieri-Simpson, uguale al numero di nodi n. Vediamo ora formule che a parità
di nodi hanno grado di precisione maggiore di n.

Sia w : (a, b)→ R (non necessariamente limitato) è una funzione peso, cioè tale che (cf.
[1, p.206, p.270])

1. w è nonnegativa in (a, b);
2. w è integrabile in [a, b];
3. esista e sia finito ∫ b

a

|x|nw(x) dx

per ogni n ∈ N;
4. se ∫ b

a

g(x)w(x) dx

per una qualche funzione nonnegativa g allora g ≡ 0 in (a, b).

Tra gli esempi più noti ricordiamo

1. Legendre: w(x) ≡ 1 in [a, b] limitato;
2. Jacobi: w(x) = (1− x)α (1 + x)β in (−1, 1) per α, β ≥ −1;
3. Chebyshev: w(x) = 1√

1−x2
in (−1, 1);

4. Laguerre: w(x) = exp (−x) in [0,∞);
5. Hermite: w(x) = exp (−x2) in (−∞,∞);

NOTA 5.1. Diamo di seguito l’idea sul perchè si utilizzino funzioni peso w per il calcolo
di integrali. Quanto detto non deve essere preso letteralmente ma con un po’ di elasticitá. Se
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dobbiamo approssimare
∫ b
a
g(x) dx con g regolare allora di solito non sarà difficile calcola-

re numericamente il valore dell’integrale, mentre se g è poco regolare sarà molto più one-
roso ottenere buoni risultati. A tal proposito introduciamo delle stime d’errore che verranno
discusse in una sezione successiva. Se (a, b) è limitato allora

|I(g)− In(g)| ≤ 2(b− a) min
qn∈Pn

‖g − qn‖∞.

Essendo minqn∈Pn
‖g−qn‖∞ l’elemento di miglior approssimazione, ricordiamo il teorema

di Jackson

TEOREMA 5.2. Se f ∈ Ck([a, b]), ed f (k) è α hölderiana, cioè

sup
x,y∈[a,b]

|f (k)(x)− f (k)(y)| ≤M |x− y|α

per qualche M > 0, 0 < α ≤ 1. Allora esiste una costante Mk indipendente da f e n per
cui

inf
p∈Pn

‖f − p‖∞ ≤
Mk

nk+α
, n ≥ 1.

La disuguaglianza del Teorema 5.2 dice che al crescere della regolarità k asintoticamente al
crescere di n si ha un errore di migliore approssimazione inferiore.

Introducendo una funzione peso w, e supposto che f = g/w sia regolare, si considera il
calcolo di ∫ b

a

g(x) dx =

∫ b

a

g(x)

w(x)
w(x) dx =

∫ b

a

f(x)w(x) dx.

La regolarità di f e la particolarità del calcolo dipendentemente dalla funzione peso permette
di approssimare meglio

∫ b
a
g(x) dx =

∫ b
a
f(x)w(x) dx. Infatti per I(f) =

∫ b
a
f(x)w(x) dx e

In(f) un’appropriata formula di quadratura (che verrà detta gaussiana rispetto w) abbiamo

|I(f)− In(f)| ≤ 2‖w‖1 min
qn∈Pn

‖f − qn‖∞.

e quindi, nuovamente dalle stime di Jackson, la facilità di calcolo dell’integrale dipenderà
esclusivamente dalla regolarità di f (e non da quella di g = fw che potrebbe essere notevol-
mente inferiore visto che a priori la funzione g potrebbe essere perfino discontinua).

Si supponga ora di dover calcolare per qualche funzione f : (a, b)→ R

Iw(f) :=

∫ b

a

f(x)w(x) dx.

Il problema è evidentemente più generale di quello di calcolare un integrale del tipo
∫ b
a
f(x)dx

con f ∈ C([a, b]), [a, b] limitato, visto che l’integranda fw non é necessariamente continua in
[a, b] (si consideri ad esempio il peso di Chebyshev che ha una singolarità in a = −1, b = 1)
oppure può succedere che l’intervallo sia illimitato come nel caso del peso di Laguerre o
Hermite.

Esistono nuovamente x1, . . . , xn e pesi w1, . . . , wn (detti di Gauss-nome funzione peso)
per cui le relative formule di quadratura di tipo interpolatorio abbiano grado di precisione
almeno δ > n, cioè calcolino esattamente∫ b

a

pm(x)w(x) dx

6



FIGURA 5.1. Adrien-Marie Legendre (1752-1833), Charles Hermite (1822-1901), Carl Gustav Jacob Jacobi
(1804-1851) e Edmond Nicolas Laguerre (1834-1886).

per m > n?

La risposta è affermativa, come si può vedere in [1, p.272].

TEOREMA 5.3. Per ogni n ≥ 1 esistono e sono unici dei nodi x1, . . . , xn e pesi
w1, . . . , wn per cui il grado di precisione sia almeno 2n−1. I nodi sono gli zeri del polinomio
ortogonale di grado n,

φn(x) = An · (x− x1) · . . . · (x− xn)

e i corrispettivi pesi sono

wi =

∫ b

a

Li(x)w(x)dx =

∫ b

a

Li(x)w(x)dx, i = 1, . . . , n.

DIMOSTRAZIONE. Tratta da [3, p.209]. Per prima cosa mostriamo che in effetti con tale
scelta dei nodi la formula interpolatoria ha grado di precisione almeno 2n−1, che i pesi sono
univocamente determinati e positivi.

Sia p2n−1 ∈ P2n−1 e qn−1, rn−1 ∈ Pn−1 tali che

p2n−1 = qn−1φn + rn−1.

Allora poichè

•
∫ b
a
qn−1(x)φn(x)w(x)dx = (qn−1, φn)w = 0, poichè φn è il polinomio ortogonale

rispetto w di grado n; infatti essendo

(φk, φn)w = 0, k = 0 < n

necessariamente da qn−1 =
∑n−1
k=0 γkφk abbiamo

(qn−1, φn)w = (

n−1∑
k=0

γkφk, φn)w

=

n−1∑
k=0

γk(φk, φn)w = 0 (5.1)

• la formula è interpolatoria per costruzione (vedere la definizione dei pesi!), per cui
esatta per ogni polinomio di grado n − 1 in quanto basata su n punti a due a due
distinti;
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• se xk è uno zero di φn allora

p2n−1(xk) = qn−1(xk)φn(xk) + rn−1(xk) = rn−1(xk).

abbiamo

∫ b

a

p2n−1(x)w(x)dx =

∫ b

a

qn−1(x)φn(x)w(x)dx+

∫ b

a

rn−1(x)w(x)dx

= 0 +

∫ b

a

rn−1(x)w(x)dx

=

n∑
k=1

wkrn−1(xk)

=

n∑
k=1

wkp2n−1(xk) (5.2)

per cui la formula di Gauss ha grado di precisione almeno 2n − 1. Inoltre, come dimostrato
da Stieltjes nel 1884, i pesi sono positivi, poichè in particolare la formula è esatta per ognuno
dei quadrati dei polinomi di Lagrange relativo ai punti x1, . . . , xn per cui

0 <

∫ b

a

L2
j (x)w(x)dx =

n∑
k=1

wkL
2
j (xk) = wj .

in quanto deg(L2
i )=2(n− 1) e la formula ha grado di precisione almeno 2n− 1.

Se esistesse un’altra formula interpolatoria con grado di precisione almeno 2n − 1 e avesse
nodi {x̃j}j=1,...,n e pesi {w̃j}j=1,...,n per prima cosa i pesi sarebbero positivi poichè il grado
di precisione è almeno 2n−1 e quindi sarebbe esatta per il j-simo polinomio di Lagrange L̃j
da cui

0 <

∫ b

a

L̃2
j (x)w(x)dx =

n∑
k=1

w̃kL̃
2
j (x̃k) = w̃j .

D’altra parte se L̃j è il j-simo polinomio di Lagrange (avente grado n − 1), poichè φn è il
polinomio ortogonale di grado n rispetto al peso w, e w̃j > 0 abbiamo che da

0 = (φn, L̃j)w =

∫ b

a

φn(x)L̃j(x)w(x)dx =

n∑
k=1

w̃kL̃j(x̃k)φn(x̃k) = w̃j · φn(x̃j)

necessariamente xj = x̃j e visto che questo implica Lj = L̃j ricaviamo anche

wj =

∫ b

a

L2
j (x)w(x)dx =

∫ b

a

L̃2
j (x)w(x)dx = w̃j

per cui la formula gaussiana cercata è unica.
8



6. Formule dell’errore. Per quanto riguarda gli errori compiuti da alcune delle formula
di quadratura discusse si ha (cf.[1, p.264])

TEOREMA 6.1. Sia

I(f) ≈ In(f) =

n∑
i=0

wi,nf(xi,n)

una regola di Newton-Cotes.

1. se n è pari e f ∈ C(n+2)([a, b]) allora

I(f)− In(f) = Cn h
n+3f (n+2)(η), η ∈ (a, b)

con

Cn =
1

(n+ 2)!

∫ n

0

µ2(µ− 1) . . . (µ− n)dµ;

2. se n è dispari e f ∈ C(n+1)([a, b]) allora

I(f)− In(f) = Cn h
n+2f (n+1)(η), η ∈ (a, b)

con

Cn =
1

(n+ 1)!

∫ n

0

µ(µ− 1) . . . (µ− n)dµ;

Si osserva facilmente che quanto visto in precedenza per la regola del trapezio e la regola di
Cavalieri-Simpson, è consistente con questi due teoremi. Inoltre, da questi ultimi, si otten-
gono gli errori di regole composte da un numero di punti minore o uguale a 7 (per motivi di
stabilità non si suggeriscono regole con più punti).

Per quanto concerne le formule gaussiane (cf.[1, p.272], cf.[3, p.264], cf.[5, p.344]) ricordia-
mo il seguente teorema di Markov

TEOREMA 6.2. Sia f ∈ C(2n)(a, b) con (a, b) compatto e supponiamo

Iw(f) =

∫ b

a

f(x)w(x)dx ≈ In(f) =
n∑
i=1

wi,nf(xi,n)

sia una formula gaussiana rispetto alla funzione peso w. Allora

En(f) := Iw(f)− Ln(f) =
γn

A2
n(2n)!

f (2n)(η), η ∈ (a, b)

dove An è il coefficiente di grado massimo del polinomio ortogonale φn di grado n, γn =∫ b
a
φ2
n(x)w(x)dx.

In particolare, se w ≡ 1, [a, b] ≡ [−1, 1] allora

En(f) =
22n+1(n!)4

(2n+ 1)[(2n)!]3
f (2n)(η), η ∈ (−1, 1).

9



0 5 10 15 20 25 30 35
10

−140

10
−120

10
−100

10
−80

10
−60

10
−40

10
−20

10
0

FIGURA 6.1. Grafico in scala semilogaritmica della funzione 22n+1(n!)4

(2n+1)[(2n)!]3
.

7. Stabilità di una formula di quadratura. Sia (a, b) un intervallo non necessariamen-
te compatto e w una funzione peso in (a, b). Inoltre supponiamo

Iw(f) :=

∫ b

a

f(x)w(x) dx ≈ In(f) :=

n∑
j=1

wjfj , con fj = f(xj) (7.1)

e che invece di {fj}j si disponga di una loro approssimazione {f̃j}j . Di conseguenza al
posto di In(f) si calcola

Ĩn(f) =

n∑
j=1

wj f̃j ,

ed è

|In(f)− Ĩn(f)| = |
n∑
j=1

wj(fj − f̃j)| ≤
n∑
j=1

|wj ||fj − f̃j |

≤

 n∑
j=1

|wj |

 ·max
j
|fj − f̃j | (7.2)

Quindi la quantità
n∑
j=1

|wj |

è un indice di stabilità della formula di quadratura.

Si dimostra che se (a, b) è limitato allora in effetti l’operatore lineare In : C([a, b]) → R è
continuo in quanto per il teorema di Weierstrass esiste ‖f‖∞ ed è

|In(f)| =

∣∣∣∣∣∣
n∑
j=1

wjfj

∣∣∣∣∣∣ ≤
n∑
j=1

|wj ||fj |

≤

 n∑
j=1

|wj |

 ·max
j
|fj | ≤

 n∑
j=1

|wj |

 · ‖f‖∞ (7.3)
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per cui la norma dell’operatore di quadratura

‖In‖∞ = max
f∈C([a,b]),f 6=0

|In(f)|
‖f‖∞

coincide con
∑n
j=1 |wj |.

Mostriamo ora il seguente teorema attribuito a Stieltjes, che lega l’errore delle formule
di quadratura a quello di miglior approssimazione.

TEOREMA 7.1. Sia (a, b) un intervallo limitato e si supponga w : (a, b) → R sia una
funzione peso e

In(f) =

n∑
j=1

wjfj , con fj = f(xj)

una formula di quadratura avente grado di precisione almeno n. Allora

|I(f)− In(f)| ≤ (‖w‖1 + ‖In‖∞) · min
qn∈Pn

‖f − qn‖∞.

DIMOSTRAZIONE. Se qn ∈ Pn è un polinomio arbitrario di grado n ed I(f) = In(f)
avendo la formula di quadratura grado di precisione almeno n, essendo

|I(f)| =

∣∣∣∣∣
∫ b

a

f(x)w(x)dx

∣∣∣∣∣ ≤ max
x∈[a,b]

|f(x)| ·
∫ b

a

w(x)dx = ‖f‖∞‖w‖1

poichè per definizione

|In(f)| ≤ ‖In‖∞‖f‖∞

abbiamo

|I(f)− In(f)| = |I(f)− In(q) + In(q)− In(f)|
≤ |I(f)− In(q)|+ |In(q)− In(f)|
≤ |I(f)− I(q)|+ |In(q − f)|
≤ |I(f − q)|+ |In(f − q)|
≤ ‖w‖1‖f − q‖∞ + ‖In‖∞‖f − q‖∞
= (‖w‖1 + ‖In‖∞) · ‖f − q‖∞ (7.4)

L’interesse di questo teorema è il legame col polinomio di miglior approssimazione. Se
i pesi sono positivi, allora ‖In‖∞ = ‖w‖1 e si ha

|I(f)− In(f)| ≤ 2‖w‖1 min
qn∈Pn

‖f − qn‖∞.

Per stime delle quantità

min
qn∈Pn

‖f − qn‖∞

si devono usare i teoremi di Jackson per l’errore del polinomio di miglior approssimazione di
una funzione f ∈ C([a, b]) (dotando C([a, b])) della norma infinito).
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Cosı̀ ad esempio, se usiamo la funzione peso di Legendre w ≡ 1 nell’intervallo (−1, 1)
si ha che

|I(f)− In(f)| ≤ 4 · min
qn∈Pn

‖f − qn‖∞

Vista l’arbitrarietà di qn, scelto quale qn il polinomio di miglior approssimazione in norma
infinito, si ottiene l’asserto.

Risulta importante osservare che il teorema precedente che ha quali contributi il prodotto
di due termini. Il primo è dovuto alla funzione peso e alla stabilità della formula di qua-
dratura, mentre il secondo è dato esclusivamente dalla miglior approssimazione di f (e non
fw)! Quindi se w è una funzione peso con fw non regolare ma f regolare allora l’utiliz-
zo di formule gaussiane rispetto alla funzione peso w, come anticipato prima, offre risultati
potenzialmente migliori.

Quale esempio si pensi di dover calcolare l’integrale∫ 1

−1

exp (x)
√

1− x2dx

con la formula di Gauss-Legendre e una formula di Gauss-Jacobi con esponenti α = 1/2 e
β = 0. Quale delle due sarà da usare e perchè ?

NOTA 7.2. Supponiamo che alcuni pesi siano negativi. Siano {w+
j }j=1,...,n+

e {w−l }l=1,...,n−

rispettivamente i pesi positivi e negativi. Di conseguenza

∫ b

a

w(x)dx =

n∑
k=1

wk =

n+∑
j=1

w+
j +

n−∑
l=1

w−l (7.5)

‖In‖∞ =

n∑
k=1

|wk| =
n+∑
j=1

|w+
j |+

n−∑
l=1

|w−l | =
n+∑
j=1

w+
j −

n−∑
l=1

w−l (7.6)

da cui

‖In‖∞ =

n+∑
j=1

w+
j −

n−∑
l=1

w−l =

∫ b

a

w(x)dx−
n+∑
j=1

w+
j

− n−∑
l=1

w−l =

∫ b

a

w(x)dx−2

n−∑
l=1

w−l ,

mentre se i pesi fossero tutti positivi avremmo

‖In‖∞ =

n+∑
j=1

w+
j −

n−∑
l=1

w−l =

n+∑
j=1

w+
j =

∫ b

a

w(x)dx

per cui maggiore è −2
∑n−
l=1 w

−
l > 0 e peggiore è la stabilità della formula di quadratura.

8. Teoremi di convergenza. Consideriamo una formula di quadratura del tipo

Iw(f) :=

∫ b

a

f(x)w(x)dx ≈ In(f) :=

n∑
i=0

wi,nf(xi,n) (8.1)
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FIGURA 8.1. George Polya (1887-1985) e Vladimir Andreevich Steklov (1864-1926).

con al solito w una funzione peso definita nell’intervallo (a, b). Se tale intervallo è limitato
ed f continua in [a, b] allora per quanto visto in precedenza si ha fw ∈ L1(a, b). Sia

En(f) :=

∫ b

a

f(x)w(x)dx−
n∑
i=0

wi,nf(xi,n).

Dimostriamo ora il teorema di Polya-Steklov [3, p.202], lasciando al lettore che ha cono-
scenze di analisi funzionale la parte di dimostrazione che utilizza il celebrato teorema di
Banach-Steinhaus.

TEOREMA 8.1. Siano xi,ki,k dei punti di un intervallo compatto [a, b]. Condizione
necessaria e sufficiente affinchè per ogni funzione continua f ∈ C([a, b]) si abbia

lim
n→+∞

En(f) = 0

è che sia
1. esiste M ∈ R tale che per ogni n si abbia

n∑
i=0

|wi,n| ≤M ;

2. per ogni k ∈ N si abbia

lim
k→+∞

En(xk) = 0.

DIMOSTRAZIONE. Supponiamo che
1. esiste M ∈ R tale che per ogni n si abbia

n∑
i=0

|wi,n| ≤M ;

2. per ogni k ∈ N si abbia

lim
k→+∞

En(xk) = 0.
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Per un teorema di densità dovuto a Weierstrass, per ogni ε > 0 esiste un polinomio p tale che
‖f − pn‖∞ ≤ ε e quindi

|En(f − pn)| ≤

∣∣∣∣∣
∫ b

a

(f(x)− pn(x))w(x)dx

∣∣∣∣∣+

∣∣∣∣∣
n∑
i=0

wi,n(f(xi,n)− pn(xi,n))

∣∣∣∣∣
≤ ‖f − pn‖∞‖w‖1 +

n∑
i=0

|wi,n||f(xi,n)− pn(xi,n)|

≤ ‖f − pn‖∞ · ‖w‖1 +

(
n∑
i=0

|wi,n|

)
· ‖f − pn‖∞

=

(
‖w‖1 +

n∑
i=0

|wi,n|

)
· ε. (8.2)

Di conseguenza

|En(f)| ≤ |En(f)− En(p)|+ |En(p)|

≤ (‖w‖1 +

n∑
i=0

|wi,n|) · ε+ |En(p)|

≤ (‖w‖1 +M) · ε+ |En(p)|
(8.3)

e siccome |En(p)| → 0 al crescere di n poichè se p(x) =
∑m
k=0 akx

k allora

En(p) =

m∑
k=0

akEn(xk)→ 0

abbiamo

lim
n
|En(f)| ≤ (‖w‖1 +M) · ε+ 0 = (‖w‖1 +M) · ε

da cui per l’arbitrarietà di ε abbiamo limn |En(f)| = 0 e quindi per la continuità della
funzione | · | abbiamo

lim
n
|En(f)| = | lim

n
En(f)| = 0

che permette di concludere limnEn(f) = 0.
14



Viceversa supponiamo limnEn(f) = 0 per ogni f ∈ C([a, b]). Si vede che

|En(f)| = |
∫ b

a

f(x)w(x)dx−
n∑
i=0

wi,nf(xi,n)|

≤
∫ b

a

|f(x)|w(x)dx+ |
n∑
i=0

wi,nf(xi,n)|

≤ ‖w‖1‖f‖∞ +

n∑
i=0

|wi,n||f(xi,n)|

≤ ‖w‖1‖f‖∞ + (

n∑
i=0

|wi,n|)‖f‖∞

=

(
‖w‖1 +

n∑
i=0

|wi,n|

)
· ‖f‖∞ (8.4)

In realtà si prova che

‖En‖∞ = max
f∈C([a,b]),f 6=0

|En(f)|
‖f‖

= ‖w‖1 +

n∑
i=0

|wi,n|.

Il teorema di uniforme limitatezza (talvolta citato come di Banach-Steinhaus) [2, p.58]
stabilisce che se Ln è una sequenza di operatori lineari limitati da uno spazio di Banach V a
uno spazio di Banach W e per ogni v ∈ V la sequenza {Ln(v)}n è limitata allora

sup
n
‖Ln‖ < +∞.

Nel nostro caso
• V ≡ (C([a, b]), ‖ · ‖∞), W ≡ R sono spazi di Banach,
• posto Ln ≡ En, se f ∈ C([a, b]) abbiamo cheEn(f) è limitata in quanto per ipotesi

è infinitesima,
quindi per il teorema di Banach-Steinhaus si ha

sup
n
‖En‖∞ < +∞.

Essendo

sup
n

n∑
i=0

|wi,n| ≤ sup
n

(
‖w‖1 +

n∑
i=0

|wi,n|

)
= sup

n
‖En‖∞ < +∞,

esiste M finito ed indipendente da n tale che
∑n
i=0 |wi,n| ≤M .

Il secondo punto da dimostrare è ovvio in quanto per ogni k, si ha xk ∈ C([a, b])

Notiamo che
1. L’intervallo [a, b] è limitato per cui il teorema di Polya non è applicabile per funzioni

peso quali Gauss-Laguerre e Gauss-Hermite.
2. Si consideri una suddivisione ∆m = {τi}i=0,...,m dell’intervallo (a, b) con τi <
τi+1, τ0 = a, τm = b; si supponga che hi = τi+1 − τi e che sia

h∆m
= max
k=0,...,m−1

|hk|.
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Se l’l-simo intervallo (con l = 1, . . . ,m) della suddivisione contiene i punti

τl−1 = x(l−1)·n < x(l−1)·n+1 < . . . < xl·n = τl

sia s∆m,n(f) la funzione polinomiale a tratti di grado n ottenuta interpolando nell’i-
simo subintervallo con un polinomio di grado n le coppie

(x(l−1)·n, f(x(l−1)·n)), . . . , (xl·n, f(xl·n)), i = 1, . . . ,m.

Come è noto, se f ∈ C(n+1)(a, b), per qualche ξ ∈ (a, b)

‖f − s∆m,n‖∞ ≤
h(n+1)f (n+1)(ξ)

(n+ 1)!
≤ h(n+1)‖f (n+1)‖∞

(n+ 1)!
.

Se consideriamo una formula composta basata sull’applicare una formula di Newton-
Cotes su n+ 1 pesi positivi in ognuno degli m subintervalli, si vede facilmente che
tutti i suoi pesi sono positivi (perchè ?) e siccome in ogni sottointervallo la formula
interpolatoria ha grado di precisione almeno 0, abbiamo

n∑
i=0

|wi,n| =
n∑
i=0

wi,n =

n∑
i=0

wi,n · 1 =

∫ b

a

1 dx = b− a.

Quindi, relativamente alla prima ipotesi del teorema di Polya-Steklov, essa è veri-
ficata per M = b − a. Per quanto riguarda la verifica della seconda ipotesi, tale
formula composta integra esattamente ogni funzione polinomiale a tratti di grado n
su ∆ e quindi dalla formula dell’errore dell’interpolante polinomiale a tratti si ha∫ b

a

f(x)dx =

∫ b

a

(f(x)− s∆m,n)dx+

∫ b

a

s∆m,ndx

=

∫ b

a

(f(x)− s∆m,n)dx+

n∑
i=0

wi,nf(xi,n)dx (8.5)

da cui

|En(f)| =

∣∣∣∣∣
∫ b

a

f(x)dx−
n∑
i=0

wi,nf(xi,n)

∣∣∣∣∣
=

∣∣∣∣∣
∫ b

a

(f(x)− s∆m,n)dx

∣∣∣∣∣
≤

∣∣∣∣∣
∫ b

a

1 · dx

∣∣∣∣∣ · ‖f − s∆m,n‖∞

≤ (b− a) · ‖f − s∆m,n‖∞

≤ (b− a) · h
(n+1)‖f (n+1)‖∞

(n+ 1)!

(8.6)

Siccome un polinomio f(x) = xk è infinitamente derivabile, f (n+1) è continua in
[a, b] e quindi per il teorema di Weierstrass ‖f (n+1)‖∞ è finito. Di conseguenza,
se la successione di formule composte è tale che la massima suddivisione h tende
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a 0 allora En(xk) → 0. Per il teorema di Polya-Steklov si ha cosı̀ che la formula
composta ∫ b

a

f(x)w(x)dx ≈
∑
i

wi,nf(xi,n) (8.7)

è tale che qualsiasi sia la funzione continua f , Em(f) → 0 quando la massima
ampiezza dei subintervalli tende a 0.

3. Se consideriamo una formula di Gauss, su un dominio limitato, i nodi wi,n sono
positivi ed avendo grado di precisione almeno 1

n∑
i=0

|wi,n| =
n∑
i=0

wi,n =

n∑
i=0

wi,n · 1 =

∫ b

a

1 · w(x)dx = ‖w‖1.

Quindi posto M = ‖w‖1, la prima ipotesi del teorema di Polya è verificata. Per
quanto riguarda la seconda ipotesi, essendo il grado di precisione almeno 2n + 1,
fissato k, per n ≥ ceil((k − 1)/2) si ha En(xk) = 0. Di conseguenza, essendo tutti
gli zeri contenuti in (a, b), possiamo applicare il teorema di Polya-Steklov e dedurre
che al crescere del numero di punti n+ 1 della formula gaussiana si ha che

lim
n→+∞

En(f) = 0

qualsiasi sia la funzione continua f ∈ C(a, b).

8.1. Implementazione Matlab di alcune formule composte. Mostreremo di seguito
un’implementazione in Matlab/Octave della formula composta dei trapezi e di Cavalieri-
Simpson.

function [x,w]=trapezi_composta(N,a,b)

% FORMULA DEI TRAPEZI COMPOSTA.

% INPUT:
% N: NUMERO SUBINTERVALLI.
% a, b: ESTREMI DI INTEGRAZIONE.

% OUTPUT:
% x: NODI INTEGRAZIONE.
% w: PESI INTEGRAZIONE (INCLUDE IL PASSO!).

h=(b-a)/N; % PASSO INTEGRAZIONE.
x=a:h:b; x=x’; % NODI INTEGRAZIONE.
w=ones(N+1,1); % PESI INTEGRAZIONE.
w(1)=0.5; w(N+1)=0.5;
w=w*h;

La funzione trapezi composta appena esposta calcola i nodi e i pesi della omonima
formula composta.
L’unica difficoltà del codice consiste nel calcolo dei pesi w. Essendo per loro definizione

I(f) ≈ Sc1(f) :=

N∑
i=0

wif(xi) (8.8)

17



0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

FIGURA 8.2. Formula dei trapezi composta per il calcolo di
∫ 2
0.5 sin (x) dx (area in magenta).

come pure per (4.2)

S
(c)
1 := h

[
f(x0)

2
+ f(x1) + . . .+ f(xN−1) +

f(xN )

2

]
(8.9)

deduciamo che w0 = wN = h/2 mentre w1 = . . . = wN−1 = h, cosa che giustifica le
ultime linee della function trapezi composta.

Si potrebbe usare il comando Matlab trapz nella sua implementazione

>> help trapz

TRAPZ Trapezoidal numerical integration.
Z = TRAPZ(Y) computes an approximation of the integral of Y via
the trapezoidal method (with unit spacing). To compute the integral
for spacing different from one, multiply Z by the spacing increment.

For vectors, TRAPZ(Y) is the integral of Y.
... ... ...

e sostituire la parte relativa al calcolo dei pesi con

I=h*trapz(fx);

Vediamone i dettagli in Matlab (versione 6.1) per il calcolo di∫ 1

0

sin(x)dx = − cos(1)− (− cos(0)) = − cos(1) + 1 ≈ 0.45969769413186.

sia utilizzando la funzione trapz che trapezi composta

>> format long;
>> [x,w]=trapezi_composta(10,0,1);
>> fx=sin(x);
>> I_trapezi_composta=w’*fx
I_trapezi_composta =

0.45931454885798
>> h=(1-0)/10;
>> I_trapz=h*trapz(fx)
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I_trapz =
0.45931454885798

>>

Di conseguenza per implementare la regola è del tutto equivalente usare la function trapezi composta
o trapz. Si osserva che è sbagliato chiamare trapz senza il passo h (nell’esempio non si
dividerebbe per 10, e invece di 0.45931454885798 avremmo 4.5931454885798).
Evitiamo il diretto utilizzo di trapz perchè non presente in alcune vecchie versioni di Octave
(ma non nella più recente 2.1.73).

Per quanto riguarda la formula di Cavalieri-Simpson composta

function [x,w]=simpson_composta(N,a,b)

% FORMULA DI SIMPSON COMPOSTA.

% INPUT:
% N: NUMERO SUBINTERVALLI.
% a, b: ESTREMI DI INTEGRAZIONE.

% OUTPUT:
% x: INTEGRAZIONE.
% w: PESI INTEGRAZIONE (INCLUDE IL PASSO!).

h=(b-a)/N; % AMPIEZZA INTERVALLO.
x=a:(h/2):b; x=x’; % NODI INTEGRAZIONE.

w=ones(2*N+1,1); % PESI INTEGRAZIONE.
w(3:2:2*N-1,1)=2*ones(length(3:2:2*N-1),1);
w(2:2:2*N,1)=4*ones(length(2:2:2*N),1);
w=w*h/6;

Similmente alla routine per il calcolo dei nodi e i pesi di trapezi composta, le ultime
righe sono le più difficili da capire, ma un confronto con (8.8) e (4.3) ne spiega il significato.

Una volta noti il vettore (colonna) x dei nodi e w dei pesi di integrazione, se la funzione
f è richiamata da un m-file f.m, basta

fx=f(x); % VALUT. FUNZIONE.
I=w’*fx; % VALORE INTEGRALE.

per calcolare il risultato fornito dalla formula di quadratura composta.
Ricordiamo che se w = (wk)k=0,...,N ∈ RN+1, fx = (f(xk))k=0,...,N ∈ RN+1 sono due
vettori colonna allora il prodotto scalare

w ∗ fx :=

N∑
k=0

wk · fxk :=

N∑
k=0

wk · f(xk)

si scrive in Matlab/Octave come w’*fx. Osserviamo che dimensionalmente il prodotto di
un vettore 1× (N + 1) con un vettore (N + 1)× 1 dà uno scalare (cioè un vettore 1× 1).

Applichiamo ora la formula composta di Cavalieri-Simpson all’esempio precedente:

>> format long;
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>> [x,w]=simpson_composta(5,0,1);
>> fx=sin(x);
>> I_simpson=w’*fx
I_simpson =

0.45969794982382
>> length(x)
ans =

11
>>

Facciamo ora un altro esempio. Calcoliamo numericamente utilizzando le formule composte
sopra citate∫ 1

−1

x20dx = (121/21)− (−1)21/21 = 2/21 ≈ 0.09523809523810.

A tal proposito scriviamo il seguente codice demo composte.

N=11; %SCEGLIERE DISPARI.
a=-1; b=1;

N_trap=N-1;
[x_trap,w_trap]=trapezi_composta(N_trap,a,b);
fx_trap=x_trap.ˆ20; % VALUT. FUNZIONE.
I_trap=w_trap’*fx_trap; % TRAPEZI COMPOSTA.

N_simpson=(N-1)/2;
[x_simp,w_simp]=simpson_composta(N_simpson,a,b)
fx_simp=x_simp.ˆ20; % VALUT. FUNZIONE.
I_simp=w_simp’*fx_simp; % SIMPSON COMPOSTA.

fprintf(’\n \t [TRAPEZI COMPOSTA] [PTS]: %4.0f’, length(x_trap));
fprintf(’\n \t [TRAPEZI COMPOSTA] [RIS]: %14.14f’, I_trap);

fprintf(’\n \t [SIMPSON COMPOSTA] [PTS]: %4.0f’, length(x_simp));
fprintf(’\n \t [SIMPSON COMPOSTA] [RIS]: %14.14f’, I_simp);

ottenendo

[TRAPEZI COMPOSTA] [PTS]: 11
[TRAPEZI COMPOSTA] [RIS]: 0.20462631505024
[SIMPSON COMPOSTA] [PTS]: 11
[SIMPSON COMPOSTA] [RIS]: 0.13949200364447

Si può vedere che usando formule di tipo gaussiano (cf. [28], [29]) o di tipo Clenshaw-Curtis
(cf. [26], [11], [13]) a parità di valutazioni della funzione f avremmo ottenuto

[GAUSS-LEGENDRE ]: 0.095238095238095649
[CLENSHAW-CURTIS ]: 0.094905176204004307

col costo aggiuntivo di dover calcolare tramite complicati algoritmi i pesi e i nodi di Gauss o
i nodi di Clenshaw-Curtis via un IFFT [27].
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8.2. Formule gaussiane in Matlab. Eccetto che in pochi casi (come ad esempio per la
funzione peso di Chebyshev), non esistono formule esplicite per l’individuazione di tali nodi
e pesi. Una volta venivano tabulati, oggi si consiglia di applicare del software che si può
trovare ad esempio nella pagina di Walter Gautschi

http://www.cs.purdue.edu/people/wxg

Fissato un peso, ad esempio quello di Jacobi, si cercano per prima cosa i coefficienti di
ricorrenza, che possono essere calcolati con l’ m-file r jacobi.m nel sito di W. Gautschi. La
sintassi è la seguente

ab=r_jacobi(N,a,b)

Come si vede dai commenti al file

% R_JACOBI Recurrence coefficients for monic Jacobi polynomials.
%
% ab=R_JACOBI(n,a,b) generates the first n recurrence
% coefficients for monic Jacobi polynomials with parameters
% a and b. These are orthogonal on [-1,1] relative to the
% weight function w(t)=(1-t)ˆa(1+t)ˆb. The n alpha-coefficients
% are stored in the first column, the n beta-coefficients in
% the second column, of the nx2 array ab. The call ab=
% R_JACOBI(n,a) is the same as ab=R_JACOBI(n,a,a) and
% ab=R_JACOBI(n) the same as ab=R_JACOBI(n,0,0).
%
% Supplied by Dirk Laurie, 6-22-1998; edited by Walter
% Gautschi, 4-4-2002.

a, b corrispondono rispettivamente all’α e β delle formule di Jacobi (e non agli estremi di
integrazione!). I coefficienti di ricorrenza sono immagazzinati nella variabile ab. Ricordiamo
che se {φn(x)} è una famiglia di polinomi ortogonali su [a, b], rispetto ad una funzione peso
w(x), allora per n ≥ 1

φn+1(x) = αn(x− βn)φn(x)− γnφn−1(x)

ove, detto An il coefficiente di grado n in φn, si ha αn = An+1/An,

βn =
(xφn, φn)

‖φn‖2
, γn =

(φn, xφn−1)

‖φn‖2
,

con (f, g) =
∫ b
a
f(x)g(x) dx. Nel caso di r jacobi si usa la formula ricorsiva dei polinomi

ortogonali (monici!) [7, p.216]

φn+1(x) = (x− αn)φn(x)− βnφn−1(x), k = 1, 2, . . .

φ−1(t) = 0, φ0(t) = 1. (8.10)

Osserviamo che, essendo i polinomi ortogonali definiti a meno di una costante moltiplicativa
non nulla (se (φk,φj)= 0 per ogni j < k pure (τφk,φj)= 0 per ogni j < k, per ogni τ 6= 0),
si può richiedere che la famiglia triangolare di polinomi ortogonali sia di polinomi monici
(cioè con coefficienti di grado massimo uguali a 1). Il vettore ab ha quale prima colonna il
vettore dei coefficienti {αk} e quale seconda colonna il vettore dei coefficienti {βk}.
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FIGURA 8.3. Grafico che illustra la distribuzione dei 20 nodi e il valore dei 20 pesi di Gauss-Legendre
nell’intervallo [1, 1]

.

Per ulteriori dettagli sui polinomi ortogonali si confronti [1, p.270-283], [3, p.978-985],
[9, p.375-401]. A questo punto si chiama la funzione gauss.m (reperibile nuovamente presso
lo stesso sito di W. Gautschi)

% GAUSS Gauss quadrature rule.
%
% Given a weight function w encoded by the nx2 array ab of the
% first n recurrence coefficients for the associated orthogonal
% polynomials, the first column of ab containing the n alpha-
% coefficients and the second column the n beta-coefficients,
% the call xw=GAUSS(n,ab) generates the nodes and weights xw of
% the n-point Gauss quadrature rule for the weight function w.
% The nodes, in increasing order, are stored in the first
% column, the n corresponding weights in the second column, of
% the nx2 array xw.
%
function xw=gauss(N,ab)
N0=size(ab,1); if N0<N, error(’input array ab too short’), end
J=zeros(N);
for n=1:N, J(n,n)=ab(n,1); end
for n=2:N

J(n,n-1)=sqrt(ab(n,2));
J(n-1,n)=J(n,n-1);

end
[V,D]=eig(J);
[D,I]=sort(diag(D));
V=V(:,I);
xw=[D ab(1,2)*V(1,:)’.ˆ2];

che per un certo N , uguale al massimo al numero di righe della matrice di coefficienti di
ricorrenza ab, fornisce nodi x e pesi w immagazzinati in una matrice xw che ha quale prima
colonna x e quale seconda colonna w. Osserviamo che dall’help si evince che i polinomi
ortogonali sono monici e quindi compatibili con quelli forniti da r jacobi.

La descrizione di perchè tale software fornisca il risultato desiderato è complicata ma può
essere trovata nella monografia di W. Gautschi sui polinomi ortogonali, per Acta Numerica.
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Conseguentemente per trovare i nodi e pesi relativi alla formula di Gauss-Legendre in
(a, b), che è una formula di tipo Gauss-Jacobi per α = 0 e β = 0, nonchè calcolare con essi
degli integrali di una funzione f , si procede come segue.

8.2.1. Una demo di Gauss-Jacobi. Salviamo nel file integrazione gauss jacobi.m

function [I_jac,x_jac,w_jac]=integrazione_gauss_jacobi(N,ajac,bjac,a,b,f)

% INPUT:
%
% N: GRADO DI GAUSS-JACOBI. SE SI VUOLE CALCOLARE I(f) CON
% I(f)=int_aˆb f(x) dx
% PORRE ajac=0, bjac=0 (FUNZIONE PESO DI LEGENDRE w(x)=1).
% ajac, bjac: PARAMETRI DI GAUSS-JACOBI, CIOE’ SI INTEGRA:
% I(fw)=int_aˆb f(x) w(x) dx
% CON w(x)=(1-x)ˆajac (1+x)ˆbjac.
% a,b: ESTREMI INTERVALLO INTEGRAZIONE.
% f: FUNZIONE DA INTEGRARE.
%
% OUTPUT:
%
% I_jac: VALORE DI I(fw) APPROSSIMATO DA gauss_jacobi. PER ajac=0,
% bjac=0 CORRISPONDE A I(f).
% x_jac: NODI GAUSS-JACOBI.
% w_jac: PESI GAUSS-JACOBI.

% ROUTINES ESTERNE: r_jacobi, gauss.

ab_jac=r_jacobi(N,ajac,bjac); % TERM. RICORSIVI.
xw_jac=gauss(N,ab_jac); % NODI E PESI IN MATRICE.
x_jac=xw_jac(:,1); % NODI GAUSS-LEGENDRE [-1,1].
x_jac_ab=((a+b)/2)+((b-a)/2)*x_jac; % NODI GAUSS-LEGENDRE [a,b].
w_jac=xw_jac(:,2); % PESI GAUSS-LEGENDRE [-1,1].
w_jac_ab=((b-a)/2)*w_jac; % PESI GAUSS-LEGENDRE [a,b].
fx_jac_ab=feval(f,x_jac_ab); % VALUTAZIONE FUNZIONE.
I_jac=w_jac_ab’*fx_jac_ab; % VALORE INTEGRALE.

e nel file f.m delle funzioni su cui effettueremo dei test. Un esempio è

function fx=f(x)

fx=x.ˆ20;

% ALCUNE FUNZIONI CHE FANNO PARTE DEL SET STUDIATO NELL’ARTICOLO:
% "IS GAUSS QUADRATURE BETTER THAN CLENSHAW-CURTIS?"
% DI L.N. TREFETHEN.

% fx=exp(x);

% fx=exp(-x.ˆ2);
% fx=1./(1+16*(x.ˆ2));
% fx=exp(-x.ˆ(-2));
% fx=abs(x); fx=fx.ˆ3;
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% fx=x.ˆ(0.5);
% fx=exp(x).*(sqrt(1-x));

Altre funzioni test [11] sono

fx = x.ˆ20
fx = exp(x)
fx = exp(-x.ˆ2)
fx = 1./(1+16*(x.ˆ2))
fx = exp(-x.ˆ(-2))
fx = (abs(x)).ˆ3;
fx=x.ˆ(0.5);
fx=exp(x).*(sqrt(1-x));

con a = −1, b = 1 e per cambiare il tipo di funzione, basta modificare la posizione dei
caratteri %.
Scaricando dalla pagina web del corso i files integrazione gauss jacobi.m, f.m e
dalla pagina di W. Gautschi r jacobi.m e gauss.m possiamo fare alcuni esperimenti.

1. Si osservi che per ottenere i nodi e pesi di Gauss-Legendre in (a, b) da quelli di
Gauss-Jacobi in (−1, 1) abbiamo effettuato uno scaling: se xi,[−1,1] sono i nodi di
Gauss-Jacobi in [−1, 1] allora i nodi di Gauss-Jacobi xi,[a,b] in [a, b] sono

xi,[a,b] = ((a+ b)/2) + ((b− a)/2) · xi,[−1,−1];

2. se wi,[−1,1] sono i pesi di Gauss-Jacobi in [−1, 1] allora i pesi di Gauss-Jacobi
wi,[a,b] in [a, b] sono

wi,[a,b] = ((b− a)/2) · wi,[−1,1].

L’idea è la seguente. Dovendo le formule essere esatte per le costanti come la
funzione f ≡ 1, nel caso della funzione peso di Legendre w ≡ 1∑

i

wi,[a,b] =

∫ b

a

w(x) dx = b− a

mentre nel caso di a = −1, b = 1 derivante dalla funzione peso di Jacobi abbiamo∑
i

wi,[−1,1] =

∫ 1

−1

w(x) dx = 2;

si ha quindi l’intuizione che i pesi in (a, b) siano quelli in (−1, 1) moltiplicati per
b−a

2 .
3. Nonostante l’introduzione riguardante nodi e pesi in [a, b] non necessariamente

uguale a [−1, 1], alla fine eseguiremo test esclusivamente in quest’ultimo intervallo.
Qualora necessario, basta aggiungere nuove funzioni matematiche al file f.m, modi-
ficare adeguatamente a, b, fornire il relativo risultato esatto in exact results.m
e testare la formula gaussiana. Per avere il risultato con alta precisione si usi la fun-
zione quadl.m o quad8.m di Matlab oppure integrazione gauss jacobi.m
con N = 500;

4. l’intervallo tipico di Gauss-Legendre è [a, b] (chiuso), mentre per Gauss-Jacobi l’in-
tervallo è tipicamente (a, b) (aperto),poichè in generale gli esponenti della funzione
peso di Jacobi possono essere negativi; per Gauss-Legendre il problema non sussiste,
visto che la funzione peso è continua, e i punti a, b sono un insieme trascurabile.
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Se ora testiamo il primo esempio, cioè il calcolo di∫ 1

−1

x20 dx ≈ 0.09523809523809523300

otteniamo

>> format long;
>> N=11; ajac=0; bjac=0; a=-1; b=1;
>> [I_jac,x_jac,w_jac]=integrazione_gauss_jacobi(N,ajac,bjac,a,b,@f);
>> I_jac
I_jac =

0.09523809523810
>> length(x_jac)
ans =

11
>> fprintf(’\n \t [GAUSS-LEGENDRE]: \%15.20f’,I_jac);

[GAUSS-LEGENDRE]: 0.09523809523809564900
>> 0.09523809523809523300-0.09523809523809564900
ans =

-4.163336342344337e-016
>>

8.2.2. Un’integrale con funzione peso. Consideriamo ora l’integrale∫ 1

−1

exp (x)
√

1− x dx = 1.7791436546919097925911790299941. (8.11)

Tale risultato è stato ottenuto usando il comando simbolico di Matlab 6.5 (non funziona in
Octave, vedere in alternativa il programma Maxima!!)

>> syms x
>> int(’(exp(x)) * ( (1-x)ˆ(0.5) )’,-1,1)
ans =
1.7791436546919097925911790299941

Si capisce che
1. syms x rende la variabile x di tipo simbolico (e non numerico!);
2. il termine

int(’(exp(x)) * ( (1-x)ˆ(0.5) )’,-1,1)

calcola simbolicamente l’integrale∫ 1

−1

exp (x)
√

1− x dx.

E’ immediato osservare che w(x) =
√

1− x è un peso di Gauss-Jacobi

w(t) = (1− t)α(1 + t)β

per α = 1/2 e β = 0.
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FIGURA 8.4. Grafico che illustra l’errore delle formule di quadratura dei trapezi composta, Cavalieri-Simpson
composta, Gauss-Legendre e Clenshaw-Curtis [11] sulla funzione test (8.11).

Infatti se w(x) =
√

1− x, allora g(x) = exp (x)w(x) il che corrisponde a usare Gauss-
Jacobi con f(x) = exp (x). Quindi paragoniamo le formule gaussiane (il codice funziona in
Matlab 6.1 come pure nella release 2.1.73 di Octave

>> a=-1; b=1;
>> [I_jac,x_jac,w_jac]=integrazione_gauss_jacobi(10,1/2,0,a,b,@exp);
>> fprintf(’\n \t [GAUSS-JACOBI]: %15.20f’,I_jac);

[GAUSS-JACOBI]: 1.77914365469190930000
>> 1.7791436546919097925911790299941-1.77914365469190930000
ans =

4.440892098500626e-016
>> length(x_jac)
ans =

10
>> [I_jac,x_jac,w_jac]=...
integrazione_gauss_jacobi(10,0,0,-1,1,inline(’exp(x).*sqrt(1-x)’));

>> fprintf(’\n \t [GAUSS-LEGENDRE]: %15.20f’,I_jac)

[GAUSS-LEGENDRE]: 1.77984112101478020000
>> 1.7791436546919097925911790299941-1.77984112101478020000
ans =
-6.9747e-004

>> length(x_jac)
ans =

10
>>

Entrambe le formule hanno lo stesso numero di nodi (e pesi), come si vede dalla riga di
comando

>> length(x_jac)
ans =

10

ma offrono risultati diversi, con un errore assoluto di circa 4.44 · 10−16 per Gauss-Jacobi con
a = 1/2, b = 0 e di 2.52 · 10−3 per Gauss-Legendre (cioè Gauss-Jacobi con a = 0, b = 0).

26



8.3. Esercizio. Si calcolino per N = 10, 20 con la formula composta dei trapezi, di
Cavalieri-Simpson e un’appropriata formula gaussiana i seguenti integrali

∫ 1

−1

x20 dx = 2/21 ≈ 0.095238095238096801 (8.12)∫ 1

−1

ex dx = e− e−1 ≈ 2.3504023872876032 (8.13)∫ 1

−1

e−x
2

dx = erf(1)·
√
π ≈ 1.4936482656248538 (8.14)∫ 1

−1

1/(1 + 16x2) dx = 1/2 · atan(4) ≈ 0.66290883183401628 (8.15)∫ 1

−1

e−1/x2

dx ≈ 0.17814771178156086 (8.16)∫ 1

−1

|x|3 dx = 1/2 (8.17)∫ 1

0

√
x dx = 2/3 (8.18)∫ 1

−1

ex
√

1− x dx ≈ 1.7791436546919095 (8.19)

1. Quali delle due formule ha errori relativi inferiori?
2. Quali funzioni risultano più difficili da integrare numericamente?
3. La scelta N = 10, 20 nei singoli codici a quanti nodi corrisponde?
4. Suggerimento: ricordarsi che il peso w(x) ≡ 1 corrisponde ad un’opportuna scelta

del peso di Jacobi.

9. Facoltativo: Equazioni di Fredholm di seconda specie. Si consideri l’equazione
integrale di Fredholm di seconda specie

λu(x) =

∫ b

a

k(x, y)u(y)dy + f(x), x ∈ [a, b] (9.1)

dove k ∈ C([a, b]× [a, b]) e f ∈ C([a, b]), λ ∈ R.
Esistono vari teoremi di esistenza ed unicità della soluzione u∗. Un primo esempio è che

sia (cf.[2, p.139])

max
a≤x≤b

∫
|k(x, y)|dy < |λ|.

Per un’analisi più accurata si consulti [12].
Introduciamo ora il metodo di Nyström (cf.[2, p.373]). Sia una sequenza di formule di

quadratura ∫ b

a

g(y)dy ≈
n∑
j=1

wj,ng(xj,n), g ∈ C([a, b]) (9.2)
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FIGURA 9.1. Erik Ivar Fredholm (1866-1927).

e supponiamo che tale sequenza converga all’integrale esatto qualsiasi sia g ∈ C([a, b]).
Possiamo cosı̀ considerare quale appossimazione del problema originario, la determinazione
della funzione un soluzione del problema

λun(x) =

n∑
j=1

wj,nk(x, xj,n)un(xj,n) + f(x), x ∈ [a, b]. (9.3)

dove {un(xj,n)}j=1,...,qn verifica

λu(xi,n) =

n∑
j=1

wj,nk(xi,n, xj,n)un(xj,n) + f(x), x ∈ [a, b]. (9.4)

Posti A(n)
i,j = wj,nk(xi,n, xj,n), un = {un(xj,n)}j , fn = {f(xj,n)}j si ha cosı̀ che

λun = A(n)un + fn

per cui se B(n) = λ · I −A(n) è non singolare, allora

B(n)un = fn,

sistema lineare che può essere risolto con il comando \ di Matlab.
Una volta ottenuto un(xj,n), tramite (9.3), la funzione soluzione un può essere valutata

in qualsiasi punto x ∈ [a, b]. Per le proprietà di convergenza di questo metodo si veda [2,
p.376]

9.1. Facoltativo. Esercizio. Si consideri il problema

2 · u(x) =

∫ 1

0

exp (xy)u(y)dy+ (2 exp(x)− 1

x+ 1
· (exp(x+ 1)− 1)), x ∈ [a, b]. (9.5)

avente unica soluzione exp (x) (perchè ?). Usando una formula di Gauss-Legendre, scalata
nell’intervallo [0, 1], si valutino per n = 2, 4, 8, 16, 32 le soluzioni approssimate un nei nodi
test xk = kh dove h = 1/100, k = 0, . . . , 100 e si calcoli

En = max
k=0,...,100

|un(xk)− exp (xk)|.

Come diminuisce l’errore (farne un plot in scala semilogaritmica)?
Suggerimento: in una versione di base, si può descrivere la valutazione dell’operatore inte-
grale tramite due cicli for innestati

28



for i_index=1:length(x_pts)
for j_index=1:length(x_gl_ab)

kern_eval=feval(kern,x_pts(i_index),x_gl_ab(j_index));
B_gl_grid(i_index,j_index)=kern_eval*w_gl_ab(j_index);

end
end

10. Online. Quale nota storica osserviamo che da [22]
Simpson is best remembered for his work on interpolation and numerical
methods of integration. However the numerical method known today as
Simpson’s rule, although it did appear in his work, was in fact due to New-
ton as Simpson himself acknowledged. By way of compensation, however,
the Newton-Raphson method for solving the equation f(x) = 0 is, in its
present form, due to Simpson. Newton described an algebraic process for
solving polynomial equations which Raphson later improved. The method
of approximating the roots did not use the differential calculus. The mo-
dern iterative form xn+1 = xn − f(xn)/f ′(xn) is due to Simpson, who
published it in 1740.

11. Frasi celebri.
1. Cayley, Hermite and I constitute the Invariantive Trinity. (Sylvester)
2. The traditional mathematics professor of the popular legend is absentminded. He

usually appears in public with a lost umbrella in each hand. He prefers to face a
blackboard and to turn his back on the class. He writes a, he says b, he means c, but
it should be d. Some of his sayings are handed down from generation to generation:

(a) In order to solve this differential equation you look at it till a solution occurs
to you.

(b) This principle is so perfectly general that no particular application of it is
possible.

(c) Geometry is the science of correct reasoning on incorrect figures.
(d) My method to overcome a difficulty is to go round it.
(e) What is the difference between method and device? A method is a device

which you used twice.
3. Even fairly good students, when they have obtained the solution of the problem and

written down neatly the argument, shut their books and look for something else.
Doing so, they miss an important and instructive phase of the work. ... A good
teacher should understand and impress on his students the view that no problem
whatever is completely exhausted. (Polya)

4. One of the first and foremost duties of the teacher is not to give his students the
impression that mathematical problems have little connection with each other, and
no connection at all with anything else. We have a natural opportunity to investigate
the connections of a problem when looking back at its solution. (Polya)

5. If there is a problem you can’t solve, then there is an easier problem you can solve:
find it. (Polya)

6. A great discovery solves a great problem, but there is a grain of discovery in the
solution of any problem. Your problem may be modest, but if it challenges your
curiosity and brings into play your inventive faculties, and if you solve it by your
own means, you may experience the tension and enjoy the triumph of discovery.
(Polya)
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7. The first rule of discovery is to have brains and good luck. The second rule of
discovery is to sit tight and wait till you get a bright idea. (Polya)

8. If you have to prove a theorem, do not rush. First of all, understand fully what the
theorem says, try to see clearly what it means. Then check the theorem; it could be
false. Examine the consequences, verify as many particular instances as are needed
to convince yourself of the truth. When you have satisfied yourself that the theorem
is true, you can start proving it. (Polya)

9. Mathematics consists of proving the most obvious thing in the least obvious way.
(Polya)

10. Mathematics is the cheapest science. Unlike physics or chemistry, it does not require
any expensive equipment. All one needs for mathematics is a pencil and paper.
(Polya)

11. There are many questions which fools can ask that wise men cannot answer. (Polya)
12. A mathematician who can only generalise is like a monkey who can only climb up

a tree, and a mathematician who can only specialise is like a monkey who can only
climb down a tree. In fact neither the up monkey nor the down monkey is a viable
creature. A real monkey must find food and escape his enemies and so must be able
to incessantly climb up and down. A real mathematician must be able to generalise
and specialise. (Polya)

13. Look around when you have got your first mushroom or made your first discovery:
they grow in clusters. (Polya)

14. John von Neumann was the only student I was ever afraid of. (Polya)
15. The apex and culmination of modern mathematics is a theorem so perfectly general

that no particular application of it is feasible. (Polya)
16. I am too good for philosophy and not good enough for physics. Mathematics is in

between. (Polya)
17. The elegance of a mathematical theorem is directly proportional to the number of

independent ideas one can see in the theorem and inversely proportional to the effort
it takes to see them. (Polya)
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