
APPROSSIMAZIONE E INTERPOLAZIONE CON POLINOMI ALGEBRICI ∗

A. SOMMARIVA †
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‖∞ con polinomi algebrici. Teorema di Weierstrass. Teoremi di Jackson. Polinomi di Chebyshev. Costanti di
Lebesgue.

Ore necessarie. 4 in aula e 2 di laboratorio.

1. Migliore approssimazione con polinomi algebrici in (C([a, b]), ‖·‖∞). Indichiamo
con

Pn =< 1, x, x2, . . . , xn >

lo spazio vettoriale dei polinomi algebrici univariati di grado n, aventi come noto dimensione
Nn = n+ 1.

Risulta evidente che se Sn ≡ Pn si ha

S0 ⊂ S1 ⊂ . . . ⊂ Sn ⊂ . . .

Inoltre se (C([a, b]), ‖ · ‖∞) è lo spazio normato delle continue C([a, b]) in un intervallo
chiuso e limitato [a, b], dotato della norma infinito

‖f‖∞ = max
x∈[a,b]

|f(x)|

si ha che ∪n∈NPn ⊆ (C([a, b]), ‖ · ‖∞).

TEOREMA 1.1. Sia (X, ‖ · ‖) uno spazio funzionale normato e

S0 ⊂ S1 ⊂ . . . ⊂ Sn ⊂ . . .

una successione crescente di sottospazi di dimensione finita Nn = dim(Sn). Allora

En(f) ≡ inf
pn∈Sn

‖pn − f‖
n→ 0

se e solo se ∪n∈NSn è denso in X .

DIMOSTRAZIONE.

Supponiamo sia En(f) ≡ infpn∈Sn ‖pn − f‖
n→ 0 per ogni f ∈ X . Sia f ∈ X e sia

fissato un arbitrario ε > 0. Allora per un qualche n si ha En(f) < ε/2 e dalle proprietà
dell’estremo inferiore si ha pure che esiste p ∈ Sn tale che ‖p− f‖ < ε. Di conseguenza per
ogni ε > 0 esiste un certo p ∈ ∪n∈NSn tale che ‖p− f‖ < ε, cioè ∪n∈NSn è denso in X .

Viceversa supponiamo che ∪n∈NSn sia denso in X e che sia f ∈ X . Essendo

S0 ⊂ S1 ⊂ . . . ⊂ Sn ⊂ . . .
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la successione En(f) è decrescente e quindi ammette limite. Essendo ∪n∈NSn denso in X ,
per ogni ε > 0 esiste un elemento p ∈ ∪n∈NSn tale che ‖f − p‖ ≤ ε e quindi En(f) ≡
infpn∈Sn ‖pn − f‖

n→ 0.

Ci interessa vedere come questo esempio sia applicabile al caso dei polinomi algebrici e
quindi necessita disporre di un risultato di densità.

Sussiste il seguente teorema di Approssimazione di Weierstrass [5, p.107].

TEOREMA 1.2. Ogni funzione continua in [a, b] è limite uniforme di una successione di
polinomi.

Il Teorema 1.2 è equivalente a dire che ∪n∈NPn è denso in (C([a, b]), ‖ · ‖∞) e quindi
dal Teorema 1.1 deduciamo che se f ∈ C([a, b]) allora En(f) ≡ infpn∈Pn ‖pn − f‖

n→ 0.
Osserviamo che (cf. [6, p.151])

LEMMA 1.3. Una funzione continua f : S → R, con S sottinsieme compatto di uno
spazio normato, ha massimo e minimo, cioè esistono xmin ed xmax tali che

f(xmin) ≤ f(x) ≤ f(xmax)

per ogni x ∈ S. e che inoltre (cf. [6, p.150])

LEMMA 1.4. In uno spazio normato di dimensione finita, un insieme è comapatto se e
solo se chiuso e limitato.

Inoltre

LEMMA 1.5. Sia X uno spazio normato e sia f ∈ X . Sia S ⊂ X e d(f, ·) = ‖f − ·‖.
La funzione d(f, ·) è continua in ogni punto di S.

DIMOSTRAZIONE. Osserviamo che se x, y ∈ X allora si vede facilmente che

|‖x‖ − ‖y‖| ≤ ‖x− y‖.

Fissato ε > 0, x ∈ S, sia δ = ε. Allora se y ∈ S e ‖x− y‖ ≤ δ = ε abbiamo che

|d(f, x)− d(f, y)| = |‖f − x‖ − ‖f − y‖| ≤ ‖(f − x)− (f − y))‖ = ‖x− y‖ ≤ ε

e quindi la funzione d(f, ·) è continua in x ∈ S.
Siamo quindi in grado di affermare che

TEOREMA 1.6. Sia Sk un sottospazio vettoriale di uno spazio normato X . Si supponga
che Sk sia di dimensione finita e f sia un certo elemento di X . Allora esiste esiste s∗k ∈ Sk,
detto di miglior approssimazione di f in Sk, tale che

‖f − s∗k‖ = min
s∈Sk

‖f − s‖.

DIMOSTRAZIONE. L’elemento 0 dello spazio normato X appartiene certamente a ogni
sottospazio Sk. Quindi sicuramente En(f) ≡ infpn∈Sn ‖pn− f‖ ≤ ‖f − 0‖ = ‖f‖. La fun-
zione d(f, ·) = ‖f − ·‖ è continua. Inoltre essendo lo spazio Sn di dimensione finita, la palla
B(f, ‖f‖) = {p ∈ Sn : ‖p − f‖ ≤ ‖f‖} centrata in f e avente raggio ‖f‖ essendo chiusa
(per la topologia indotta!) e limitata è pure compatta e quindi per il teorema di Weierstrass la
funzione d(f, ·) ha minimo in B(0, ‖f‖) e di conseguenza in Sn.
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FIGURA 1.1. Equioscillazione: in nero sin(x) in [−5, 5], in rosso il polinomio di polinomio di miglior
approssimazione di grado 5, in verde le funzioni f ± En(f).

Di conseguenza per ogni grado k, fissata f ∈ (C([a, b]), ‖ · ‖∞) esiste un polinomio
p∗k ∈ Pk di miglior approssimazione.

Per quanto concerne l’unicità del polinomio di miglior approssimazione, vale il seguente
teorema dovuto a Chebyshev e noto come di equi-oscillazione (cf.[2], p. 112 oppure [3], [5,
p.149]).

TEOREMA 1.7. Sia f ∈ C([a, b]) con [a, b] limitato e n ∈ N. Allora esiste un unico
elemento p∗n ∈ Pn di miglior approssimazione. Si caratterizza come segue. Esistono n + 2
elementi a ≤ x0 < . . . < xn+1 ≤ b non necessariamente unici tali che

f(xj)− p∗n(xj) = σ(−1)jmin p ∈ Pn‖f − p‖∞, j = 0, 1, . . . , n+ 1

con σ = 1 oppure σ = −1.

Il calcolo del polinomio p∗ ∈ Pn di miglior approssimazione di una funzione f ∈
C([a, b]) non è semplice. L’algoritmo di Remez ne permette una sua determinazione ma
la descrizione dello stesso non è semplice. Una sua buona implementazione la si ha in am-
biente Matlab cui siano state aggiunte le routines di Chebfun (cf. [4]). Il relativo comando si
chiama remez.

Digitando sulla shell di Matlab

>>deg =10;
>> x= chebfun (’x’ ,[−5 5 ] ) ;
>> f = 1 . / ( 1 + x . ˆ 2 ) ;
>>[p , e r r ]= remez ( f , deg ) ;

otteniamo in p il polinomio di miglior approssimazione di grado 10 della funzione di Runge
1/(1 + x2) nell’intervallo [−5, 5] (come stabilito dalla seconda riga).

Dalla Tabella 1.1, risulta chiaro che la miglior approssimante polinomiale a paritá di gra-
do approssima meglio la funzione di Runge rispetto al |x− 4| e viene da chiedersi se esistano
delle stime sull’errore compiuto dalla migliore approssimante. Queste vengono fornite dai
seguenti teoremi di Jackson [3, p.142], [1, p.224]
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Grado Errore 1/(1 + x2) Errore |x− 4| Errore sin (x)

5 2.17e− 01 1.61e− 01 1.08e− 01

10 6.59e− 02 8.40e− 02 7.03e− 04

15 2.98e− 02 5.68e− 02 2.31e− 08

20 9.04e− 03 4.28e− 02 6.69e− 12

25 4.08e− 03 3.43e− 02 2.33e− 15

30 1.24e− 03 2.86e− 02 −
35 5.60e− 04 2.46e− 02 −
40 1.70e− 04 2.15e− 02 −
45 7.68e− 05 1.91e− 02 −
50 2.33e− 05 1.72e− 02 −
55 1.05e− 05 1.56e− 02 −
60 3.20e− 06 1.43e− 02 −
65 1.44e− 06 1.32e− 02 −
70 4.38e− 07 1.23e− 02 −
75 1.98e− 07 1.14e− 02 −
80 6.01e− 08 1.07e− 02 −
85 2.71e− 08 1.01e− 02 −
90 8.24e− 09 9.51e− 03 −
95 3.72e− 09 9.00e− 03 −
100 1.13e− 09 8.55e− 03 −

TABELLA 1.1
Algoritmo di Remez. Errore assoluto di miglior interpolazione relativamente alla funzione di Runge 1/(1 +

x2), |x− 4| e sin (x) in [−5, 5].

TEOREMA 1.8. Per ogni n ≥ 1 e per ogni f ∈ C([a, b]) esiste una costante M
indipendente da n, a, b tale che

inf
p∈Pn

‖f − p‖∞ ≤Mω

(
f,
b− a
n

)
dove ω(f, ·) è il modulo di continuità della funzione f su [a,b], cioè

ω(f, δ) := sup
x,y∈[a,b], |x−y|≤δ

|f(x)− f(y)|.

TEOREMA 1.9. Se f ∈ Cp([a, b]), p ≥ 0 si ha per ogni n > p

inf
p∈Pn

‖f − p‖∞ ≤Mp+1 (b− a)p

n · (n− 1) . . . (n− p+ 1)
ω

(
f (p),

b− a
n− p

)
.

TEOREMA 1.10. Se f ∈ Ck([a, b]), ed f (k) è α holderiana, cioè

sup
x,y∈[a,b]

|f (k)(x)− f (k)(y)| ≤M |x− y|α
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per qualche M > 0, 0 < α ≤ 1. Allora esiste una costante dk indipendente da f e n per cui

inf
p∈Pn

‖f − p‖∞ ≤
M dk
nk+α

, n ≥ 1.

Per i prossimi teoremi serve definire delle funzioni in campo complesso (cf. [5, p.12]).

DEFINIZIONE 1.11. Sia R una regione del piano complesso e sia f : R → C. Se
z0 ∈ R, f si dice analitica in z se ha una rappresentazione della forma

f(z) =

∞∑
n=0

an(z − z0)n

valida in qualche intorno di z0.
Una funzione si dice analitica in R se e solo se è analitica in ogni punto di R.

Alcuni esempi di funzioni analitiche nel piano complesso sono i polinomi di grado arbi-
trario, le funzioni sin (z), cos (z), exp (z). La funzione di Runge 1/(1 + z2) è analitica in
ogni regione non contenente −i e +i.

TEOREMA 1.12. Se f è analitica in un aperto Ω del piano complesso contenente [a, b],
allora esiste θ ∈ (0, 1) tale che En(f) = ‖p∗n − f‖ = O(θn). Inoltre se f è intera (cioè si
può scegliere Ω = C) allora la la convergenza è superlineare, cioè

lim sup
n→∞

(En(f))1/n = 0.

Per quanto visto, la funzione di Runge f(x) = 1/(1 + x2), con x ∈ [−5, 5] è olomorfa
in un aperto Ω del piano complesso contenente [−5, 5] (si noti che possiede i soli poli in −i e
i) e una verifica empirica con i dati della tabella stabilisce che θ ≈ 0.814.

La convergenza del polinomio di migliore approssimazione nel caso di f(x) = sin (x),
con x ∈ [−5, 5] è molto rapida. In effetti tale funzione è intera e quindi la convergenza
superlineare.

Nel caso di f(x) = |x− 4| da ||x− 4| − |y − 4|| ≤ |x− y| e dal fatto che per x ≤ 4 si
ha f(x) = 4− x mentre per x > 4 si ha f(x) = x− 4 si vede facilmente che

ω(f, δ) := sup
x,y∈[a,b], |x−y|≤δ

|f(x)− f(y)| = δ

e quindi dal Teorema 1.8 che per qualche M

inf
p∈Pn

‖f − p‖∞ ≤M
b− a
n

.

In effetti, un confronto coi dati stabilisce che posti a = −5 e b = 5 (estremi dell’intervallo)

inf
p∈Pn

‖f − p‖∞ ≈ 0.085 · b− a
n

=
0.85

n

e quindi una convergenza lenta di En(f) a 0, se paragonata alla quantità En(f) ≈ 0.814n

trovata nell’esempio di Runge.
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2. Alcune note sui polinomi di Chebyshev. Consideriamo la funzione

Tn(x) = cos(n arccos(x))

con x ∈ [−1, 1] (cf. [1, p.211]). A priori, in virtù della presenza del coseno, Tn non sembra
essere un polinomio. In realtà si vede subito che T0(x) = cos(0 arccos(x)) = 1, T1(x) =
cos(1 arccos(x)) = x. Da note formule trigonometriche

cos((n+ 1) θ) = (cos(n θ)) · cos(θ)− (sin(n θ)) · sin(θ)

cos((n− 1) θ) = (cos(n θ)) · cos(θ) + (sin(n θ)) · sin(θ) (2.1)

sommando membro a membro le due uguaglianze abbiamo

cos((n+ 1) θ) + cos((n− 1) θ) = 2 (cos(n θ)) · cos(θ)

Posto θ = arccos(x) si ha

Tn+1(x) + Tn−1(x) = 2 (cos(n θ)) · cos(θ) = 2Tn(x)x

da cui

Tn+1(x) = 2xTn(x)− Tn−1(x)

Di conseguenza, per ricorrenza, si deduce che Tn è un polinomio di grado n e che inoltre per
n > 0 è del tipo Tn(x) = 2n−1 xn + · · · .

Gli zeri xk del polinomio di Chebyshev sono i punti per cui cos(n arccos(xk)) = 0, per
cui

n arccos(xk) =
π

2
+ kπ =

(2k + 1)π

2

arccos(xk) =
(2k + 1)π

2n

xk = cos(arccos(xk)) = cos

(
(2k + 1)π

2n

)
, k = 0, . . . , n− 1.

Notiamo che gli zeri del polinomio di Chebyshev Tn sono esattamente n, distinti e nell’inter-
vallo [−1, 1].

3. Costanti di Lebesgue. Sia f ∈ C([a, b]), con [a, b] intervallo chiuso e limitato e si
consideri il polinomio pn ∈ Pn che interpola le coppie (xk, f(xk)) (per k = 0, . . . , n, xk a
due a due distinti). Si ponga per semplicità di notazione fk := f(xk). Come è noto, indicato
con Lk il k-simo polinomio di Lagrange, si ha

pn(x) =

n∑
k=0

fkLk(x).

Supponiamo che i valori di fk siano perturbati (per esempio per via dell’arrotondamento del
numero) e sostituiti con f̃k. Otteniamo quindi quale polinomio interpolatore

p̃n(x) =

n∑
k=0

f̃kLk(x).
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Si ha cosı̀ che

pn(x)− p̃n(x) =

n∑
k=0

(fk − f̃k)Lk(x)

|pn(x)− p̃n(x)| ≤
n∑
k=0

|fk − f̃k||Lk(x)| ≤
(

max
k
|fk − f̃k|

) n∑
k=0

|Lk(x)|

e quindi posto

Λn = max
x∈[a,b]

n∑
k=0

|Lk(x)|

si ha

‖pn − p̃n‖∞ ≤
(

max
k
|fk − f̃k|

)
· Λn.

Il valore Λn è nota come costante di Lebesgue dell’insieme di punti x0, . . . , xn (cf. [10]).
Si vede immediatamente che è un indice di stabilità dell’interpolazione di Lagrange: più è
piccola e più l’approssimazione è stabile (cf. [3, p.139-140]).
Ricordiamo che se (X , ‖·‖X ), (Y , ‖·‖Y ) sono due spazi normati,A : X → Y è un operatore
lineare limitato se e solo se il numero

‖A‖ = sup
‖x‖≤1

‖Ax‖Y = sup
x∈X,x 6=0

‖Ax‖Y
‖x‖X

è finito. Il numero reale ‖A‖ si chiama norma dell’operatore lineare A (cf. [7, p.224]).
Si può mostrare che se Ln è l’operatore (lineare e limitato) che associa a f ∈ C([a, b]) il suo
polinomio di interpolazione nei nodi x0, . . . , xn allora

Λn = max
g∈C([a,b]), g 6=0

‖Ln(g)‖∞
‖g‖∞

cioè la costante di Lebesgue è la norma dell’operatore di interpolazioneLn rispetto alla norma
‖ · ‖∞.

TEOREMA 3.1. Se f ∈ C([a, b]) e pn è il suo polinomio di interpolazione relativo ai
punti x0, . . . , xn si ha

‖f − pn‖∞ ≤ (1 + Λn)En(f) (3.1)

dove

En(f) = inf
qn∈Pn

‖f − pn‖∞

è l’errore compiuto dal polinomio di migliore approssimazione uniforme.

DIMOSTRAZIONE.
Se f ∈ Pn, allora f ≡ pn ≡ qn e quindi l’asserto è ovvio. Supponiamo quindi che f

non appartenga a Pn, cioè f − qn non sia la funzione nulla, qualsiasi sia qn ∈ Pn.
7



Per ogni polinomio qn ∈ Pn, è Ln(qn) = qn, in quanto l’unico polinomio che interpola
in n+ 1 punti distinti un polinomio di grado n è il polinomio stesso. Inoltre

Ln(f − qn) = Ln(f)− Ln(qn) = pn − qn.

Poichè f − qn non è la funzione nulla, abbiamo

Λn = max
g∈C([a,b]), g 6=0

‖Ln(g)‖∞
‖g‖∞

≥ ‖Ln(f − qn)‖∞
‖f − qn‖∞

‖pn − qn‖∞
‖f − qn‖∞

(3.2)

e di conseguenza

‖(pn − qn)‖∞ ≤ Λn · ‖f − qn‖∞. (3.3)

Per concludere, osserviamo che per la disuguaglianza triangolare da f − p = (f − q) +
(q − p) e (3.3)

‖f − pn‖∞ = ‖(f − qn) + (q − pn)‖∞
≤ ‖f − qn‖∞ + ‖qn − pn‖∞
≤ ‖f − qn‖∞ + Λn ‖f − qn‖∞
= (1 + Λn) ‖f − qn‖∞ (3.4)

Questo teorema è utile, perchè fa capire che se la costante di Lebesgue è piccola allo-
ra l’errore compiuto dall’interpolante polinomiale è poco più grande dell’errore di miglior
approssimazione uniforme.

FIGURA 3.1. Henri Lebesgue (1875-1941).

Vediamo ora quali sono le stime delle costanti di Lebesgue per alcuni set di n+ 1 punti
x0, . . . , xn particolarmente interessanti, nell’intervallo [−1, 1] (cf. [8]):

1. punti equispaziati: si dimostra che la costante di Lebesgue relativa a questi punti
vale asintoticamente Λn ≈ 2n+1

en log(n) (cf. [3, p.142]);

2. punti di Chebyshev: corrispondono a cos(2k−1)
2(n+1) dove k = 1, . . . , n + 1; si dimostra

che la costante di Lebesgue relativa a questi punti vale asintoticamente

2

π

(
log(n+ 1) + γ +

8

π

)
+O

(
1

(n+ 1)2

)
dove γ ≈ 0.577 è la costante di Eulero-Mascheroni (cf. [9]);

8



3. punti di Chebyshev estesi: sono definiti da cos(2k−1)
2(n+1)·cos( π

2n+1 )
dove k = 1, . . . , n+ 1;

si dimostra che la costante di Lebesgue relativa a questi punti vale asintoticamente

2

π

(
log(n+ 1) + γ + log

(
8

π

)
− 2

3

)
+O

(
1

log(n+ 1)

)
;

4. configurazione ottimale: si dimostra che la minima costante di Lebesgue (non è nota
esplicitamente!) vale

2

π

(
log(n+ 1) + γ + log

(
4

π

))
+O

(
log(log(n+ 1))

log(n+ 1)

)
Vediamo usando Matlab quanto siano differenti tali costanti per gradi n quali 5, 10, . . . , 50.

>> n = ( 5 : 5 : 5 0 ) ’ ; % VETTORE COLONNA DI GRADI .
>> % NODI EQUISPAZIATI .
>> s = ( 2 . ˆ ( n + 1 ) ) . / ( exp ( 1 )∗ n .∗ l o g ( n ) ) ;
>> % NODI CHEBYSHEV.
>> % \ f r a c {2}{\ p i} \ l e f t ( \ l o g ( n +1) + \gamma

%+\ f r a c {8}{\ p i} \ r i g h t )+ O\ l e f t ( \ f r a c {1}{(n +1)ˆ2} \ r i g h t )
>> t = ( 2 / p i )∗ ( l o g ( n +1) + 0 .577 + ( 8 / p i ) ) ;
>> [ s t ]

ans =

2 .9258 e +000 3 .1291 e +000
3 .2720 e +001 3 .5150 e +000
5 .9352 e +002 3 .7536 e +000
1 .2877 e +004 3 .9267 e +000
3 .0679 e +005 4 .0626 e +000
7 .7425 e +006 4 .1746 e +000
2 .0316 e +008 4 .2698 e +000
5 .4825 e +009 4 .3526 e +000
1 .5112 e +011 4 .4259 e +000
4 .2351 e +012 4 .4915 e +000

>>

Dalla stima precedente tra errore compiuto dall’interpolante rispetto a quello della miglior
approssimazione uniforme, si capisce bene, una volta ancora, perchè i nodi di Chebyshev
siano da preferire a quelli equispaziati.

4. Esercizi.
1. (Non facile, e richiede qualche conto su carta). Si implementi un codice Matlab

che approssimi la costante di Lebesgue di un set di punti x0, . . . , xn in un intervallo
prefissato [a, b], valutando la funzione di Lebesgue

∑n
k=0 |Lk(x)| (dove al solito Lk

è il k-simo polinomio di Lagrange) in M = 1000 punti test equispaziati in [a, b].
In seguito si valuti con tale codice la costante di Lebesgue di un set di 10 punti
equispaziati in [−1, 1] e in 10 punti di Chebyshev.

2. (Facile, ma un po’ lungo). Sfruttando i valori citati (a meno di O grandi), si con-
frontino i valori delle costanti di Lebesgue per i nodi equispaziati, di Chebyshev e
di Chebyshev estesi.
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