APPROSSIMAZIONE E INTERPOLAZIONE CON POLINOMI ALGEBRICT *

A. SOMMARIVA f

Conoscenze richieste. Spazio vettoriale. Spazio normato. Topologia indotta. Polinomi algebrici. Operatore
delta di Kronecker.

Conoscenze ottenute. Migliore approssimazione in spazi normati. Migliore approssimazione in (C'([a, b]), || -
|lso con polinomi algebrici. Teorema di Weierstrass. Teoremi di Jackson. Polinomi di Chebyshev. Costanti di

Lebesgue.

Ore necessarie. 4 in aula e 2 di laboratorio.

1. Migliore approssimazione con polinomi algebrici in (C([a, b]), ||-||cc). Indichiamo
con

P, =< 1,z,2%,...,2" >

lo spazio vettoriale dei polinomi algebrici univariati di grado n, aventi come noto dimensione
N, =n+1.
Risulta evidente che se S,, = IP,, si ha

SoCcSicCc...cS,C...

Inoltre se (C([a, b)), || - ||oo) & lo spazio normato delle continue C([a, b]) in un intervallo
chiuso e limitato [a, b], dotato della norma infinito

[flloc = max [f(z)]
z€[a,b]

si ha che UpenP,, C (C([a, b)), || - lloo)-
TEOREMA 1.1. Sia (X, | - ||) uno spazio funzionale normato e
SoCcSiC...CcS,C...

una successione crescente di sottospazi di dimensione finita N,, = dim(S,,). Allora

E(f)= inf lpa = f 50

n n

se e solo se U, ecnSy, ¢ denso in X.
DIMOSTRAZIONE.

Supponiamo sia E,,(f) = inf, es, |[pn — f|| - 0 per ogni f € X. Sia f € X e sia
fissato un arbitrario € > 0. Allora per un qualche n si ha E,(f) < ¢/2 e dalle proprieta
dell’estremo inferiore si ha pure che esiste p € S,, tale che ||p — f|| < e. Di conseguenza per
ogni € > 0 esiste un certo p € U,enSy, tale che ||p — f|| < ¢, ciod UpenS,, € denso in X.

Viceversa supponiamo che U, NS, sia denso in X e che sia f € X. Essendo
SoCcSiC...CcS,C...
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la successione E,,(f) & decrescente e quindi ammette limite. Essendo U,,cn Sy, denso in X,
per ogni € > 0 esiste un elemento p € Up,enSy, tale che || f — p|| < ee quindi E,(f) =
infy, es, [pn = fI = 0.0

Ci interessa vedere come questo esempio sia applicabile al caso dei polinomi algebrici e
quindi necessita disporre di un risultato di densita.

Sussiste il seguente teorema di Approssimazione di Weierstrass [5, p.107].

TEOREMA 1.2. Ogni funzione continua in [a, b] é limite uniforme di una successione di
polinomi.

Il Teorema 1.2 & equivalente a dire che U,,enP,, & denso in (C([a,b]), | - |leo) € quindi
dal Teorema 1.1 deduciamo che se f € C([a, b]) allora E,,(f) = inf, cp, |[pn — f|| = 0.
Osserviamo che (cf. [6, p.151])

LEMMA 1.3. Una funzione continua f : S — R, con S sottinsieme compatto di uno
spazio normato, ha massimo e minimo, cioé esistono T, ed Tmax tali che

f@min) < (@) < f(zmax)
perogni x € S. e che inoltre (cf. [6, p.150])
LEMMA 1.4. In uno spazio normato di dimensione finita, un insieme & comapatto se e
solo se chiuso e limitato.
Inoltre

LEMMA 1.5. Sia X uno spazio normato e sia f € X. Sia S C X ed(f,") =|f — |
La funzione d(f,-) é continua in ogni punto di S.

DIMOSTRAZIONE. Osserviamo che se x,y € X allora si vede facilmente che

Mzl =Nyl < = = wll.

Fissatoe > 0,2 € S,siad =e€. Allorasey € Se ||z — y|| < § = € abbiamo che

jd(f,x) —d(f, )l = Il =2 = [If =wll <I(f —2) = (f =)l =z -yl <e

e quindi la funzione d(f,-) & continuain x € S. 0O
Siamo quindi in grado di affermare che

TEOREMA 1.6. Sia Sy, un sottospazio vettoriale di uno spazio normato X. Si supponga
che Sy, sia di dimensione finita e f sia un certo elemento di X. Allora esiste esiste sj, € S,
detto di miglior approssimazione di f in Sk, tale che

_ o* — 1 —
IF = sill = min [ — s].

DIMOSTRAZIONE. L’elemento 0 dello spazio normato X appartiene certamente a ogni
sottospazio S. Quindi sicuramente E,, (f) = inf,, cs, |lpn — fI| < ||f —0]| = || f]|. La fun-
zione d(f,-) = ||f — || & continua. Inoltre essendo lo spazio .S, di dimensione finita, la palla
B(f, Ifl) ={p € Sn : |llp — fll < |If|l} centrata in f e avente raggio || f|| essendo chiusa
(per la topologia indotta!) e limitata ¢ pure compatta e quindi per il teorema di Weierstrass la
funzione d(f, -) ha minimo in B(0, || f||) e di conseguenza in S,,. O
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FIGURA 1.1. Equioscillazione: in nero sin(x) in [—5,5], in rosso il polinomio di polinomio di miglior
approssimazione di grado 5, in verde le funzioni f + Ey (f).

Di conseguenza per ogni grado k, fissata f € (C([a,d]), || - ||c) esiste un polinomio
P, € Py di miglior approssimazione.

Per quanto concerne 1’unicita del polinomio di miglior approssimazione, vale il seguente
teorema dovuto a Chebyshev e noto come di equi-oscillazione (cf.[2], p. 112 oppure [3], [5,
p.149]).

TEOREMA 1.7. Sia f € C([a,b]) con [a,b] limitato e n € N. Allora esiste un unico
elemento py, € P, di miglior approssimazione. Si caratterizza come segue. Esistono n + 2
elementia < xg < ... < xp41 < b non necessariamente unici tali che

(@) = pi(wj) = o(=1) minp € Po|[f = plloc, 5=0,1,...,n+1
con o =1 oppure o = —1.

11 calcolo del polinomio p* € P, di miglior approssimazione di una funzione f €
C([a,b]) non & semplice. L’algoritmo di Remez ne permette una sua determinazione ma
la descrizione dello stesso non & semplice. Una sua buona implementazione la si ha in am-
biente Matlab cui siano state aggiunte le routines di Chebfun (cf. [4]). Il relativo comando si
chiama remez.

Digitando sulla shell di Matlab

>>deg=10;

>> x=chebfun(’'x’,[—5 5]);
>> f=1./(1+x.72);
>>[p,err]=remez(f,deg);

otteniamo in p il polinomio di miglior approssimazione di grado 10 della funzione di Runge
1/(1 + 2?) nell’intervallo [—5, 5] (come stabilito dalla seconda riga).

Dalla Tabella 1.1, risulta chiaro che la miglior approssimante polinomiale a parita di gra-
do approssima meglio la funzione di Runge rispetto al |z — 4| e viene da chiedersi se esistano
delle stime sull’errore compiuto dalla migliore approssimante. Queste vengono fornite dai
seguenti teoremi di Jackson [3, p.142], [1, p.224]
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Grado | Errore 1/(1+ x2) | Errore |z — 4| | Errore sin ()
5 2.17e — 01 1.61e — 01 1.08e — 01
10 6.59e — 02 8.40e — 02 7.03e — 04
15 2.98¢e — 02 5.68e — 02 2.31e — 08
20 9.04e — 03 4.28e — 02 6.69¢ — 12
25 4.08e — 03 3.43e — 02 2.33e — 15
30 1.24e — 03 2.86e — 02 —

35 5.60e — 04 2.46e — 02 —
40 1.70e — 04 2.15e¢ — 02 -
45 7.68e — 05 1.91e — 02 —
50 2.33e — 05 1.72e — 02 —
55 1.05e — 05 1.56e — 02 -
60 3.20e — 06 1.43¢ — 02 -
65 1.44e — 06 1.32e — 02 —
70 4.38e — 07 1.23e — 02 —
75 1.98e — 07 1.14e — 02 -
80 6.0le — 08 1.07e — 02 -
85 2.71e — 08 1.01e — 02 —
90 8.24e — 09 9.51e — 03 —
95 3.72e — 09 9.00e — 03 —
100 1.13e — 09 8.55¢ — 03 -
TABELLA 1.1

Algoritmo di Remez. Errore assoluto di miglior interpolazione relativamente alla funzione di Runge 1/(1 +
x2), |z — 4| e sin (z) in [-5, 5].

TEOREMA 1.8. Per ognin > 1 e per ogni f € C([a,b]) esiste una costante M
indipendente da n, a, b tale che

. b—a
inf Hf_pHOOSMw (f7 )
p€EP,

n

dove w(f,-) ¢ il modulo di continuita della funzione f su [a,b], cioe

w(f,0) == sup |f (@) = f(y)l-

z,y€la,b], |[z—y|<é

TEOREMA 1.9. Se f € C?([a,b]), p > 0 si ha per ogni n > p

b—a)? b—a
. R ( (p) .
plenu»ﬂ’Hf Pllec < n.(n_1)...(n—p+1)w<f ‘n-p

TEOREMA 1.10. Se f € C*([a,b]), ed f*) & o holderiana, cioé

sup |f¥(x) — fP(y)| < Mz —y|*
z,y€la,b]
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per qualche M > 0, 0 < o < 1. Allora esiste una costante dy, indipendente da f e n per cui

. M dy,
plélgn 1f=plleo < e > 1

Per i prossimi teoremi serve definire delle funzioni in campo complesso (cf. [5, p.12]).

DEFINIZIONE 1.11. Sia R una regione del piano complesso e sia f : R — C. Se
zo € R, f sidice analitica in z se ha una rappresentazione della forma

f(z) = Z an(z —20)"
n=0

valida in qualche intorno di z.
Una funzione si dice analitica in R se e solo se ¢ analitica in ogni punto di R.

Alcuni esempi di funzioni analitiche nel piano complesso sono i polinomi di grado arbi-
trario, le funzioni sin (z), cos (z), exp (z). La funzione di Runge 1/(1 + 22) & analitica in
ogni regione non contenente —¢ € 4.

TEOREMA 1.12. Se f ¢ analitica in un aperto Q) del piano complesso contenente [a, b),
allora esiste 0 € (0,1) tale che E,(f) = ||p, — f|| = O(0™). Inoltre se f ¢ intera (cioé si
puo scegliere Q) = C) allora la la convergenza é superlineare, cioé

limsup (E,(f))"" = 0.

n— oo

Per quanto visto, la funzione di Runge f(z) = 1/(1 + 2?), con = € [—5,5] & olomorfa
in un aperto {2 del piano complesso contenente [—5, 5] (si noti che possiede i soli poli in —i e
1) e una verifica empirica con i dati della tabella stabilisce che 6 ~ 0.814.

La convergenza del polinomio di migliore approssimazione nel caso di f(z) = sin (),
con x € [—5,5] & molto rapida. In effetti tale funzione & intera e quindi la convergenza
superlineare.

Nel caso di f(z) = |z — 4| da ||z — 4] — |y — 4|| < |= — y| e dal fatto che per z < 4 si
ha f(x) = 4 — x mentre per ¢ > 4 si ha f(z) = x — 4 si vede facilmente che

w(f,0) = sup [f(@) = f(y)l =0

z,y€la,b], |[z—y|<s
e quindi dal Teorema 1.8 che per qualche M

. b—a
inf ||f_pHoo S M .
peP, n

In effetti, un confronto coi dati stabilisce che posti a = —5 e b = 5 (estremi dell’intervallo)

b—a 085

inf ||f — p|loo = 0.085 -
pEPy n

e quindi una convergenza lenta di E, (f) a 0, se paragonata alla quantita E,,(f) ~ 0.814"
trovata nell’esempio di Runge.



2. Alcune note sui polinomi di Chebyshev. Consideriamo la funzione
T, (z) = cos(n arccos(z))

conz € [—1,1] (cf. [1, p.211]). A priori, in virth della presenza del coseno, 7;, non sembra
essere un polinomio. In realta si vede subito che Tp(x) = cos(0arccos(z)) = 1, T1(z) =
cos(1 arccos(z)) = x. Da note formule trigonometriche

cos((n+1)0) = (cos(nf)) - cos(f) — (sin(n0)) - sin(9)
cos((n—1)0) = (cos(nf)) - cos(d) + (sin(n0)) - sin() 2.1

sommando membro a membro le due uguaglianze abbiamo
cos((n+1)0) + cos((n—1)80) = 2(cos(nb)) - cos(h)
Posto § = arccos(x) si ha
Tot1(x) + Tho1(x) = 2 (cos(n b)) - cos(9) = 2T, (x)x
da cui
Tot1(z) =22T,(x) — T—1(x)
Di conseguenza, per ricorrenza, si deduce che 7;, € un polinomio di grado n e che inoltre per

n > 0e&del tipo Ty, (z) = 2"~ ta™ 4 ...
Gli zeri x, del polinomio di Chebyshev sono i punti per cui cos(n arccos(zy)) = 0, per

cui
2 1
narccos(zy) = (AR S (2k + 1)
2 2
_ (2k+1)m
arccos(zg) = 5
@k+ r

xy, = cos(arccos(zy)) = cos < ) ,k=0,...,n—1

2n

Notiamo che gli zeri del polinomio di Chebyshev T, sono esattamente n, distinti e nell’inter-
vallo [—1, 1].

3. Costanti di Lebesgue. Sia f € C([a,b]), con [a, b] intervallo chiuso e limitato e si
consideri il polinomio p,, € P, che interpola le coppie (zy, f(x)) (per k = 0,...,n, % a
due a due distinti). Si ponga per semplicita di notazione f; := f(zx). Come & noto, indicato
con Ly il k-simo polinomio di Lagrange, si ha

pa(@) =Y frLi(x).
k=0

Supponiamo che i valori di f, siano perturbati (per esempio per via dell’arrotondamento del
numero) e sostituiti con f. Otteniamo quindi quale polinomio interpolatore

Pu(x) =Y frli(x).
k=0
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Si ha cosi che

Pn(x) = (fx = fi)Li(x)
k=0

i) = a0 < 3 1fe = FllEato)] < (gl — ) Y- Ea(o)

k=0 k=0

e quindi posto
= Li(
g Z' +{

si ha

Il valore A,, ¢ nota come costante di Lebesgue dell’insieme di punti xg, ..., x, (cf. [10]).
Si vede immediatamente che ¢ un indice di stabilita dell’interpolazione di Lagrange: piu ¢
piccola e piu I’approssimazione ¢ stabile (cf. [3, p.139-140]).

lineare limitato se e solo se il numero

Ax
JAl = sup JAely = sup IA2llY
]| <1 cex,z20 17| x

¢ finito. Il numero reale || A|| si chiama norma dell’operatore lineare A (cf. [7, p.224]).
Si pud mostrare che se £,, & I’operatore (lineare e limitato) che associa a f € C([a, b]) il suo
polinomio di interpolazione nei nodi zy, . . ., z, allora

_ HLH(Q)HOO
9€C([ab]), 9720 [|9loo

cioe la costante di Lebesgue ¢ la norma dell’operatore di interpolazione L,, rispetto alla norma

TEOREMA 3.1. Se f € C([a,b]) e py, ¢ il suo polinomio di interpolazione relativo ai
punti g, ...,T, Si ha

dOVe
E’I’L J l'Ilf ) - F’I’L o
( ) QW,E;[n || ||

e l’errore compiuto dal polinomio di migliore approssimazione uniforme.

DIMOSTRAZIONE.
Se f € Py, allora f = p,, = ¢, e quindi I’asserto & ovvio. Supponiamo quindi che f
non appartenga a P,, cio¢ f — ¢, non sia la funzione nulla, qualsiasi sia ¢,, € P,,.
7



Per ogni polinomio ¢, € Py, ¢ L,,(¢n) = ¢n, in quanto I’unico polinomio che interpola
in n + 1 punti distinti un polinomio di grado n ¢ il polinomio stesso. Inoltre

ﬁn(f - qn) = En(f) - »Cn(Qn) = Pn — qn.
Poich¢ f — g, non ¢ la funzione nulla, abbiamo

_ 1£n(Dlloo o [1£n(f = gn)lloo [IPn = gnll
n - -
9eC(ab]), 920 ||9llo If = dnlle  [If = anlloo

(3.2)

e di conseguenza

||(pn_qn)Hoo <A, ||f_CInHoo' (3.3)

Per concludere, osserviamo che per la disuguaglianza triangolare da f —p = (f — ¢) +
(¢—p)e3)

1f = Palls = I(f = @n) + (¢ — Pn)llso
<f = anllos +llgn = Prlloo
<Nf = dnlloe + An|[f — anllso
=1+ M) If = gnllo 349

Questo teorema ¢ utile, perche fa capire che se la costante di Lebesgue ¢ piccola allo-
ra I’errore compiuto dall’interpolante polinomiale € poco piu grande dell’errore di miglior
approssimazione uniforme.

FIGURA 3.1. Henri Lebesgue (1875-1941).

Vediamo ora quali sono le stime delle costanti di Lebesgue per alcuni set di n + 1 punti
Zo, . . ., Tn particolarmente interessanti, nell’intervallo [—1, 1] (cf. [8]):
1. punti equispaziati: si dimostra che la costante di Lebesgue relativa a questi punti
2n+1 -
) (cf. [3, p.142]);

enlog(n
2. punti di Chebyshev: corrispondono a % dove k = 1,...,n + 1; si dimostra

che la costante di Lebesgue relativa a questi punti vale asintoticamente

2 8 1
— 1 1 — O ————
7T(og(n—i— )+’y+7r)+ ((n+1)2)
dove v ~ 0.577 ¢ la costante di Eulero-Mascheroni (cf. [9]);
8
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3. punti di Chebyshev estesi: sono definiti da 50

cos(2k—1)

WdOVek:L...,n—i—l;

si dimostra che la costante di Lebesgue relativa a questi punti vale asintoticamente

2 (g1 1 (2) - 2) w0 ()

4. configurazione ottimale: si dimostra che la minima costante di Lebesgue (non € nota
esplicitamente!) vale

% <1og(n+ 1) +7+log <:>) o (W)

Vediamo usando Matlab quanto siano differenti tali costanti per gradi n quali 5, 10, . . ., 50.

>> n=(5:5:50)"; % VETTORE COLONNA DI GRADI.
>> % NODI EQUISPAZIATI.
>> s=(2."(n+1))./(exp(l)*n.xlog(n));
>> % NODI CHEBYSHEV.
>> % \frac{2}{\pi} \left( \log(n+1) + \gamma
%+\ frac {8}{\pi} \right)+ O\left( \frac{I}{(n+1)"2} \right)
>> t=(2/pi)*( log(n+l) + 0.577 + (8/pi) );

>> [s t]

1)
=
7z

.9258e+000
.2720e+001
.9352e+002
2877e+004
0679e+005
7425e+006
0316e+008
4825e+009
5112e+4011
4.2351e+012

—_ N N W= W N

>>

AR R AR WLWW

.1291e+000
.5150e+000
.7536e+000
.9267e+000
.0626e+000
.1746e+000
.2698¢e+000

3526e+000
4259e+000
4915e+000

Dalla stima precedente tra errore compiuto dall’interpolante rispetto a quello della miglior
approssimazione uniforme, si capisce bene, una volta ancora, perche i nodi di Chebyshev
siano da preferire a quelli equispaziati.

4. Esercizi.
1. (Non facile, e richiede qualche conto su carta). Si implementi un codice Matlab
che approssimi la costante di Lebesgue di un set di punti x, . . ., x,, in un intervallo

prefissato [a, b], valutando la funzione di Lebesgue >~} _ | Ly (z)| (dove al solito Ly,
¢ il k-simo polinomio di Lagrange) in M = 1000 punti test equispaziati in [a, ).
In seguito si valuti con tale codice la costante di Lebesgue di un set di 10 punti
equispaziati in [—1, 1] e in 10 punti di Chebyshev.

. (Facile, ma un po’ lungo). Sfruttando i valori citati (a meno di O grandi), si con-

frontino i valori delle costanti di Lebesgue per i nodi equispaziati, di Chebyshev e
di Chebyshev estesi.
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