
Esercizi

Approssimazione e interpolazione con polinomi
algebrici

Alvise Sommariva
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Esercizi

Migliore approssimazione con polinomi algebrici in
(C ([a, b]), ‖ · ‖∞)

Indichiamo con
Pn =< 1, x , x2, . . . , xn >

lo spazio vettoriale dei polinomi algebrici univariati di grado n,
aventi come noto dimensione Nn = n + 1.
Risulta evidente che se Sn ≡ Pn si ha

S0 ⊂ S1 ⊂ . . . ⊂ Sn ⊂ . . .

Inoltre se (C ([a, b]), ‖ · ‖∞) è lo spazio normato delle continue
C ([a, b]) in un intervallo chiuso e limitato [a, b], dotato della
norma infinito

‖f ‖∞ = max
x∈[a,b]

|f (x)|

si ha che ∪n∈NPn ⊆ (C ([a, b]), ‖ · ‖∞).
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Esercizi

Migliore approssimazione con polinomi algebrici in
(C ([a, b]), ‖ · ‖∞)

Definizione

Un insieme S si dice denso in uno spazio normato X se per ogni
x ∈ X, fissato ǫ > 0, esiste s ∈ S tale che ‖x − s‖ < ǫ.

Equivalentemente,

Definizione

Un insieme S si dice denso in uno spazio normato X si dice denso
in X , se per ogni x ∈ X esiste una successione {sn} di elementi di
S tale che sn → x.
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Esercizi

Migliore approssimazione con polinomi algebrici in
(C ([a, b]), ‖ · ‖∞)

Teorema

Sia (X , ‖ · ‖) uno spazio funzionale normato e

S0 ⊂ S1 ⊂ . . . ⊂ Sn ⊂ . . .

una successione crescente di sottospazi di dimensione finita
Nn = dim(Sn). Allora

En(f ) ≡ inf
pn∈Sn

‖pn − f ‖
n
→ 0

se e solo se ∪n∈NSn è denso in X .
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Esercizi

Migliore approssimazione con polinomi algebrici in
(C ([a, b]), ‖ · ‖∞)

Dimostrazione.

⇒ Supponiamo sia En(f ) ≡ infpn∈Sn
‖pn − f ‖

n
→ 0 per ogni f ∈ X.

Sia f ∈ X e sia fissato un arbitrario ǫ > 0. Allora per un qualche n
si ha En(f ) < ǫ/2 e dalle proprietà dell’estremo inferiore si ha pure
che esiste p ∈ Sn tale che ‖p − f ‖ < ǫ.

Di conseguenza per ogni ǫ > 0 esiste un certo p ∈ ∪n∈NSn tale che
‖p − f ‖ < ǫ, cioè ∪n∈NSn è denso in X .
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Esercizi

Migliore approssimazione con polinomi algebrici in
(C ([a, b]), ‖ · ‖∞)

Dimostrazione.

⇐ Viceversa sia ∪n∈NSn denso in X ed f ∈ X .

Essendo
S0 ⊂ S1 ⊂ . . . ⊂ Sn ⊂ . . .

la successione En(f ) è decrescente e quindi ammette limite.

Essendo ∪n∈NSn denso in X , per ogni ǫ > 0 esiste p ∈ ∪n∈NSn tale
che ‖f − p‖ ≤ ǫ e quindi En(f ) ≡ infpn∈Sn

‖pn − f ‖
n
→ 0.
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Esercizi

Migliore approssimazione con polinomi algebrici in
(C ([a, b]), ‖ · ‖∞)

Ci interessa vedere come questo esempio sia applicabile al caso dei
polinomi algebrici e quindi necessita disporre di un risultato di
densitá.

Sussiste il seguente teorema di Approssimazione di Weierstrass [5,
p.107].

Teorema

Ogni funzione continua in [a, b] è limite uniforme di una
successione di polinomi.

Tale Teorema è equivalente a dire che ∪n∈NPn è denso in
(C ([a, b]), ‖ · ‖∞) e quindi dal Teorema 0.1 deduciamo che se
f ∈ C ([a, b]) allora En(f ) ≡ infpn∈Pn ‖pn − f ‖

n
→ 0.
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Esercizi

Migliore approssimazione con polinomi algebrici in
(C ([a, b]), ‖ · ‖∞)

Miriamo a mostrare l’esistenza di un elemento di miglior appross.,
sotto particolari condizioni. Osserviamo che (cf. [6, p.151])

Lemma

Una funzione continua f : S → R, con S sottinsieme compatto di
uno spazio normato, ha massimo e minimo, cioè esistono xmin ed
xmax tali che

f (xmin) ≤ f (x) ≤ f (xmax)

per ogni x ∈ S.
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Esercizi

Migliore approssimazione con polinomi algebrici in
(C ([a, b]), ‖ · ‖∞)

Inoltre (cf. [6, p.150])

Lemma

In uno spazio normato di dimensione finita, un insieme è compatto
se e solo se chiuso e limitato.

Infine

Lemma

Sia X uno spazio normato e sia f ∈ X. Sia S ⊂ X e
d(f , ·) = ‖f − ·‖. La funzione d(f , ·) è continua in ogni punto di
S.
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Esercizi

Migliore approssimazione con polinomi algebrici in
(C ([a, b]), ‖ · ‖∞)

Dimostrazione.

Osserviamo che se x , y ∈ X allora si vede facilmente che

|‖x‖ − ‖y‖| ≤ ‖x − y‖.

Fissato ǫ > 0, x ∈ S , sia δ = ǫ. Allora se y ∈ S , ‖x − y‖ ≤ δ = ǫ

|d(f , x) − d(f , y)| = |‖f − x‖ − ‖f − y‖|

≤ ‖(f − x) − (f − y))‖ = ‖x − y‖

≤ ǫ (1)

e quindi la funzione d(f , ·) è continua in x ∈ S .
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Esercizi

Migliore approssimazione con polinomi algebrici in
(C ([a, b]), ‖ · ‖∞)

Siamo quindi in grado di affermare che

Teorema

Sia Sk un sottospazio vettoriale di uno spazio normato X . Si
supponga che Sk sia di dimensione finita e f sia un certo elemento
di X . Allora esiste esiste s∗k ∈ Sk , detto di miglior approssimazione
di f in Sk , tale che

‖f − s∗k‖ = min
s∈Sk

‖f − s‖.
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Esercizi

Migliore approssimazione con polinomi algebrici in
(C ([a, b]), ‖ · ‖∞)

Dimostrazione.

L’elemento 0 dello spazio normato X appartiene certamente a ogni
sottospazio Sk . Quindi sicuramente
En(f ) ≡ infpn∈Sn

‖pn − f ‖ ≤ ‖f − 0‖ = ‖f ‖. La funzione
d(f , ·) = ‖f − ·‖ è continua. Inoltre essendo lo spazio Sn di
dimensione finita, la palla B(f , ‖f ‖) = {p ∈ Sn : ‖p − f ‖ ≤ ‖f ‖}
centrata in f e avente raggio ‖f ‖ essendo chiusa (per la topologia
indotta!) e limitata è pure compatta e quindi per il teorema di
Weierstrass la funzione d(f , ·) ha minimo in B(f , ‖f ‖) e di
conseguenza in Sn.
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Esercizi

Migliore approssimazione con polinomi algebrici in
(C ([a, b]), ‖ · ‖∞)

Di conseguenza per ogni grado k, fissata f ∈ (C ([a, b]), ‖ · ‖∞)
esiste un polinomio p∗

k ∈ Pk di miglior approssimazione.

Riguardo l’unicità di tale p∗
k , vale il teorema di equi-oscillazione

(di Chebyshev) (cf.[2], p.112, [3], [5, p.149]).

Teorema

Sia f ∈ C ([a, b]) con [a, b] limitato e n ∈ N. Allora esiste un unico
elemento p∗

n ∈ Pn di miglior approssimazione. Si caratterizza come
segue. Esistono n + 2 elementi a ≤ x0 < . . . < xn+1 ≤ b non
necessariamente unici tali che

f (xj) − p∗
n(xj ) = σ(−1)j min

p∈Pn

‖f − p‖∞, j = 0, 1, . . . , n + 1

con σ = 1 oppure σ = −1.
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Esercizi

Migliore approssimazione con polinomi algebrici in
(C ([a, b]), ‖ · ‖∞)
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Figura: Equioscillazione: in nero sin(x) in [−5, 5], in rosso il polinomio di
miglior approssimazione di grado 5, in verde le funzioni f ± En(f ).
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Esercizi

Migliore approssimazione con polinomi algebrici in
(C ([a, b]), ‖ · ‖∞)

Il calcolo del polinomio p∗ ∈ Pn di miglior approssimazione di una
funzione f ∈ C ([a, b]) non è semplice.

L’algoritmo di Remez ne permette una sua determinazione ma la
descrizione dello stesso non è semplice. Una sua buona
implementazione la si ha in ambiente Matlab cui siano state
aggiunte le routines di Chebfun (cf. [4]). Il relativo comando si
chiama remez.
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Esercizi

Migliore approssimazione con polinomi algebrici in
(C ([a, b]), ‖ · ‖∞)

Digitando sulla shell di Matlab

>>deg=10;
>> x=chebfun ( ’ x ’ ,[−5 5 ] ) ;
>> f=1./(1+x . ˆ 2 ) ;
>>[p , err ]=remez (f , deg ) ;

otteniamo in p il polinomio di miglior approssimazione di grado 10
della funzione di Runge 1/(1 + x2) nell’intervallo [−5, 5] (come
stabilito dalla seconda riga).
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Esercizi

Migliore approssimazione con polinomi algebrici in
(C ([a, b]), ‖ · ‖∞)

Grado Errore 1/(1 + x2) Errore |x − 4| Errore sin (x)

5 2.17e − 01 1.61e − 01 1.08e − 01

10 6.59e − 02 8.40e − 02 7.03e − 04

15 2.98e − 02 5.68e − 02 2.31e − 08

20 9.04e − 03 4.28e − 02 6.69e − 12

25 4.08e − 03 3.43e − 02 2.33e − 15

30 1.24e − 03 2.86e − 02 −

35 5.60e − 04 2.46e − 02 −

40 1.70e − 04 2.15e − 02 −

45 7.68e − 05 1.91e − 02 −

50 2.33e − 05 1.72e − 02 −

55 1.05e − 05 1.56e − 02 −

60 3.20e − 06 1.43e − 02 −

65 1.44e − 06 1.32e − 02 −

70 4.38e − 07 1.23e − 02 −

75 1.98e − 07 1.14e − 02 −

80 6.01e − 08 1.07e − 02 −

85 2.71e − 08 1.01e − 02 −

90 8.24e − 09 9.51e − 03 −

95 3.72e − 09 9.00e − 03 −

100 1.13e − 09 8.55e − 03 −

Tabella: Algoritmo di Remez. Errore assoluto di miglior interpolazione
relativamente a 1/(1 + x2), |x − 4| e sin (x) in [−5, 5].
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Esercizi

Migliore approssimazione con polinomi algebrici in
(C ([a, b]), ‖ · ‖∞)

Dalla Tabella, risulta chiaro che la miglior approssimante
polinomiale a paritá di grado approssima meglio la funzione di
Runge rispetto al |x − 4| e viene da chiedersi se esistano delle
stime sull’errore compiuto dalla migliore approssimante.

Queste vengono fornite dai seguenti teoremi di Jackson [3,
p.142], [1, p.224]
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Esercizi

Migliore approssimazione con polinomi algebrici in
(C ([a, b]), ‖ · ‖∞)

Teorema

Per ogni n ≥ 1 e per ogni f ∈ C ([a, b]) esiste una costante M
indipendente da n, a, b tale che

inf
p∈Pn

‖f − p‖∞ ≤ Mω

(

f ,
b − a

n

)

dove ω(f , ·) è il modulo di continuità della funzione f su [a,b], cioè

ω(f , δ) := sup
x ,y∈[a,b], |x−y |≤δ

|f (x) − f (y)|.
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Esercizi

Migliore approssimazione con polinomi algebrici in
(C ([a, b]), ‖ · ‖∞)

Teorema

Se f ∈ Cp([a, b]), p ≥ 0 si ha per ogni n > p

inf
p∈Pn

‖f − p‖∞ ≤ Mp+1 (b − a)p

n · (n − 1) . . . (n − p + 1)
ω

(

f (p),
b − a

n − p

)

.
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Migliore approssimazione con polinomi algebrici in
(C ([a, b]), ‖ · ‖∞)

Teorema

Se f ∈ C k([a, b]), ed f (k) è α holderiana, cioè

sup
x ,y∈[a,b]

|f (k)(x) − f (k)(y)| ≤ M|x − y |α

per qualche M > 0, 0 < α ≤ 1. Allora esiste una costante dk

indipendente da f e n per cui

inf
p∈Pn

‖f − p‖∞ ≤
M dk

nk+α
, n ≥ 1.
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Esercizi

Migliore approssimazione con polinomi algebrici in
(C ([a, b]), ‖ · ‖∞)

Ricordiamo che (cf. [5, p.12]).

Definizione

Sia R una regione del piano complesso e sia f : R → C. Se z0 ∈ R,
f si dice analitica in z se ha una rappresentazione della forma

f (z) =

∞
∑

n=0

an(z − z0)
n

valida in qualche intorno di z0.

Definizione

Una funzione si dice analitica in R se e solo se è analitica in ogni
punto di R.

Alvise Sommariva Appross. e interpolazione con polinomi algebrici 22/ 41



Esercizi

Migliore approssimazione con polinomi algebrici in
(C ([a, b]), ‖ · ‖∞)

Alcuni esempi di funzioni analitiche nel piano complesso sono i
polinomi di grado arbitrario, le funzioni sin (z), cos (z), exp (z). La
funzione di Runge 1/(1 + z2) è analitica in ogni regione non
contenente −i e +i .

Teorema

Se f è analitica in un aperto Ω del piano complesso contenente
[a, b], allora esiste θ ∈ (0, 1) tale che En(f ) = ‖p∗

n − f ‖ = O(θn).
Inoltre se f è intera (cioè si può scegliere Ω = C) allora la la
convergenza è superlineare, cioè

lim sup
n→∞

(En(f ))1/n = 0.
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Migliore approssimazione con polinomi algebrici in
(C ([a, b]), ‖ · ‖∞)

◮ Per quanto visto, la funzione di Runge f (x) = 1/(1 + x2), con
x ∈ [−5, 5] è olomorfa in un aperto Ω del piano complesso
contenente [−5, 5] (si noti che possiede i soli poli in −i e i) e
una verifica empirica con i dati della tabella stabilisce che
θ ≈ 0.814.

◮ La convergenza del polinomio di migliore approssimazione nel
caso di f (x) = sin (x), con x ∈ [−5, 5] è molto rapida. In
effetti tale funzione è intera e quindi la convergenza
superlineare.
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Esercizi

Migliore approssimazione con polinomi algebrici in
(C ([a, b]), ‖ · ‖∞)

◮ Nel caso di f (x) = |x − 4| da ||x − 4| − |y − 4|| ≤ |x − y | e
dal fatto che per x ≤ 4 si ha f (x) = 4 − x mentre per x > 4
si ha f (x) = x − 4 si vede facilmente che

ω(f , δ) := sup
x ,y∈[a,b], |x−y |≤δ

|f (x) − f (y)| = δ

e quindi dal Teorema di Jackson che per qualche M

inf
p∈Pn

‖f − p‖∞ ≤ M
b − a

n
.

In effetti, un confronto coi dati stabilisce che posti a = −5 e
b = 5

inf
p∈Pn

‖f − p‖∞ ≈ 0.085 ·
b − a

n
=

0.85

n

e quindi una convergenza lenta di En(f ) a 0, se paragonata
alla quantità En(f ) ≈ 0.814n trovata nell’esempio di Runge.

Alvise Sommariva Appross. e interpolazione con polinomi algebrici 25/ 41



Esercizi

Alcune note sui polinomi di Chebyshev

Consideriamo la funzione

Tn(x) = cos(n arccos(x))

con x ∈ [−1, 1] (cf. [1, p.211]). A priori, in virtù della presenza
del coseno, Tn non sembra essere un polinomio. In realtà si vede
subito che T0(x) = cos(0 arccos(x)) = 1,
T1(x) = cos(1 arccos(x)) = x . Da note formule trigonometriche

cos((n + 1) θ) = (cos(n θ)) · cos(θ) − (sin(n θ)) · sin(θ)

cos((n − 1) θ) = (cos(n θ)) · cos(θ) + (sin(n θ)) · sin(θ) (2)

sommando membro a membro le due uguaglianze abbiamo

cos((n + 1) θ) + cos((n − 1) θ) = 2 (cos(n θ)) · cos(θ)
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Alcune note sui polinomi di Chebyshev

Posto θ = arccos(x) si ha

Tn+1(x) = 2x Tn(x) − Tn−1(x)

poiché

Tn+1(x) + Tn−1(x) = 2 (cos(n θ)) · cos(θ) = 2Tn(x)x

Di conseguenza, per ricorrenza, si deduce che Tn è un polinomio di
grado n e che inoltre per n > 0 è del tipo Tn(x) = 2n−1 xn + · · · .
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Alcune note sui polinomi di Chebyshev

Gli zeri xk del polinomio di Chebyshev sono i punti per cui
cos(n arccos(xk)) = 0, per cui

n arccos(xk) =
π

2
+ kπ =

(2k + 1)π

2

arccos(xk) =
(2k + 1)π

2n

xk = cos(arccos(xk)) = cos

(

(2k + 1)π

2n

)

, k = 0, . . . , n − 1.

Notiamo che gli zeri del polinomio di Chebyshev Tn sono
esattamente n, distinti e nell’intervallo [−1, 1].
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Costanti di Lebesgue

Sia f ∈ C ([a, b]), con [a, b] intervallo chiuso e limitato e si
consideri il polinomio pn ∈ Pn che interpola le coppie (xk , f (xk))
(per k = 0, . . . , n, xk a due a due distinti). Si ponga per semplicità
di notazione fk := f (xk). Come è noto, indicato con Lk il k-simo
polinomio di Lagrange, si ha

pn(x) =
n

∑

k=0

fkLk(x)

con
Lk(x) =

∏

j 6=k

(x − xk)/
∏

j 6=k

(xj − xk).

Supponiamo che i valori di fk siano perturbati (per esempio per via
dell’arrotondamento del numero) e sostituiti con f̃k .
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Costanti di Lebesgue

Otteniamo quindi quale polinomio interpolatore

p̃n(x) =
n

∑

k=0

f̃kLk(x).

Si ha cos̀ı che essendo pn(x) =
∑n

k=0 fkLk(x)

pn(x) − p̃n(x) =

n
∑

k=0

(fk − f̃k)Lk(x)

|pn(x)− p̃n(x)| ≤

n
∑

k=0

|fk − f̃k ||Lk(x)| ≤

(

max
k

|fk − f̃k |

) n
∑

k=0

|Lk(x)|

e quindi posto

Λn = max
x∈[a,b]

n
∑

k=0

|Lk(x)|

si ha

‖pn − p̃n‖∞ ≤

(

max
k

|fk − f̃k |

)

· Λn.
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Costanti di Lebesgue

Il valore Λn è nota come costante di Lebesgue dell’insieme di
punti x0, . . . , xn (cf. [10]). Si vede immediatamente che è un
indice di stabilità dell’interpolazione di Lagrange: più è piccola e
più l’approssimazione è stabile (cf. [3, p.139-140]).

Ricordiamo che se (X , ‖ · ‖X ), (Y , ‖ · ‖Y ) sono due spazi normati,
A : X → Y è un operatore lineare limitato se e solo se il numero

‖A‖ = sup
‖x‖≤1

‖Ax‖Y = sup
x∈X ,x 6=0

‖Ax‖Y

‖x‖X

è finito.

Il numero reale ‖A‖ si chiama norma dell’operatore lineare A
(cf. [7, p.224]).
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Costanti di Lebesgue

Si può mostrare che se Ln è l’operatore (lineare e limitato) che
associa a f ∈ C ([a, b]) il suo polinomio di interpolazione nei nodi
x0, . . . , xn allora

Λn = max
g∈C([a,b]), g 6=0

‖Ln(g)‖∞
‖g‖∞

cioè la costante di Lebesgue è la norma dell’operatore di
interpolazione Ln rispetto alla norma ‖ · ‖∞.
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Costanti di Lebesgue

Teorema

Se f ∈ C ([a, b]) e pn è il suo polinomio di interpolazione relativo ai
punti x0, . . . , xn si ha

‖f − pn‖∞ ≤ (1 + Λn)En(f ) (3)

dove
En(f ) = inf

qn∈Pn

‖f − pn‖∞

è l’errore compiuto dal polinomio di migliore approssimazione
uniforme.
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Costanti di Lebesgue

Dimostrazione.

Se f ∈ Pn, allora f ≡ pn ≡ qn e quindi l’asserto è ovvio.
Supponiamo quindi che f /∈ Pn, cioè f − qn 6= 0, per ogni qn ∈ Pn.
Per ogni qn ∈ Pn, è Ln(qn) = qn, in quanto l’unico polinomio che
interpola in n + 1 punti distinti un polinomio di grado n è il
polinomio stesso. Inoltre

Ln(f − qn) = Ln(f ) − Ln(qn) = pn − qn.

Poichè f − qn non è la funzione nulla, abbiamo

Λn = max
g∈C([a,b]), g 6=0

‖Ln(g)‖∞
‖g‖∞

≥
‖Ln(f − qn)‖∞
‖f − qn‖∞

‖pn − qn‖∞
‖f − qn‖∞

(4)
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Dimostrazione.

e di conseguenza

‖(pn − qn)‖∞ ≤ Λn · ‖f − qn‖∞. (5)

Per concludere, osserviamo che per la disuguaglianza triangolare da
f − p = (f − q) + (q − p) e (5)

‖f − pn‖∞ = ‖(f − qn) + (q − pn)‖∞

≤ ‖f − qn‖∞ + ‖qn − pn‖∞

≤ ‖f − qn‖∞ + Λn ‖f − qn‖∞

= (1 + Λn) ‖f − qn‖∞ (6)
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Questo teorema è utile, perchè fa capire che se la costante di
Lebesgue è piccola allora l’errore compiuto dall’interpolante
polinomiale è poco più grande dell’errore di miglior
approssimazione uniforme.

Figura: Henri Lebesgue (1875-1941).
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Vediamo ora quali sono le stime delle costanti di Lebesgue per
alcuni set di n + 1 punti nell’intervallo [−1, 1] (cf. [8]):

◮ punti equispaziati: si dimostra che asintoticamente
Λn ≈ 2n+1

en log(n) ;

◮ punti di Chebyshev: corrispondono a cos(2k−1)
2(n+1) dove

k = 1, . . . , n + 1; si dimostra che asintoticamente

Λn ≈
2

π

(

log(n + 1) + γ +
8

π

)

+ O

(

1

(n + 1)2

)

dove γ ≈ 0.577 è la costante di Eulero-Mascheroni (cf. [9]);
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◮ punti di Chebyshev estesi: sono definiti da cos(2k−1)
2(n+1)·cos( π

2n+1
)

dove k = 1, . . . , n + 1; si dimostra che asintoticamente

Λn ≈
2

π

(

log(n + 1) + γ + log

(

8

π

)

−
2

3

)

+O

(

1

log(n + 1)

)

;

◮ configurazione ottimale: si dimostra che la minima costante di
Lebesgue (non è nota esplicitamente!) vale

Λn ≈
2

π

(

log(n + 1) + γ + log

(

4

π

))

+ O

(

log(log(n + 1))

log(n + 1)

)
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Usando Matlab, notiamo quanto siano differenti Λn per
n = 5, 10, . . . , 50.

>> n=(5 :5 :50) ’ ; % GRADI .
>> s=(2.ˆ( n+1)) . / ( exp (1) ∗n .∗ l o g (n ) ) ; % EQSP.
>> t=(2/ p i ) ∗( l o g (n+1) + 0.577 + (8/ p i ) ) ; % CHEB.
>> [ s t ]
ans =

2.9258 e+000 3.1291 e+000
3.2720 e+001 3.5150 e+000
5.9352 e+002 3.7536 e+000
1.2877 e+004 3.9267 e+000
3.0679 e+005 4.0626 e+000
7.7425 e+006 4.1746 e+000
2.0316 e+008 4.2698 e+000
5.4825 e+009 4.3526 e+000
1.5112 e+011 4.4259 e+000
4.2351 e+012 4.4915 e+000

>>
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Dalla stima precedente tra errore compiuto dall’interpolante
rispetto a quello della miglior approssimazione uniforme, si capisce
bene, una volta ancora, perchè i nodi di Chebyshev siano da
preferire a quelli equispaziati.

1. (Non facile, e richiede qualche conto su carta). Si implementi
un codice Matlab che approssimi la costante di Lebesgue di
un set di punti x0, . . . , xn in un intervallo prefissato [a, b],
valutando la funzione di Lebesgue

∑n
k=0 |Lk(x)| (dove al

solito Lk è il k-simo polinomio di Lagrange) in M = 1000
punti test equispaziati in [a, b]. In seguito si valuti con tale
codice la costante di Lebesgue di un set di 10 punti
equispaziati in [−1, 1] e in 10 punti di Chebyshev.

2. (Facile, ma un po’ lungo). Sfruttando i valori citati (a meno
di O grandi), si confrontino i valori delle costanti di Lebesgue
per i nodi equispaziati, di Chebyshev e di Chebyshev estesi.
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